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Introduction

The main goal of this paper is to give a topological interpretation of the higher rank Askey-Wilson algebra. More precisely, we will prove that there is an explicit isomorphism AW(n) ∼ -→ Sk q (Σ 0,n+1 ) between the rank (n-2) Askey-Wilson algebra AW(n) and the Kauffman bracket skein algebra Sk q (Σ 0,n+1 ) of the (n + 1)-punctured sphere. The Kauffman bracket skein algebra is an invariant of oriented surfaces given by considering framed links in the thickened surface and imposing the following skein relations = q 1 2 + q -1 2 , = -q -q -1 which allows one to resolve all crossing and remove trivial links at the cost of a constant. These relations and the diagrammatic calculus based on Jones-Wenzl idempotents [MV94; Lic93; KL94], make skein algebras an ideal setting for carrying out concrete computations. The Kauffman bracket skein relation can be renormalised to give the famous Jones polynomial and the skein algebra Sk q (Σ) itself is a quantisation of the SL 2 character variety of the surface [Bul97; PS00; BFKB99].

On the other hand, the original Askey-Wilson algebra Zh q (a, b, c, d) was first introduced by Zhedanov [START_REF] Zhedanov | Hidden symmetry" of Askey-Wilson polynomials[END_REF] in 1991 as the algebra of the bispectral operators of the Askey-Wilson polynomials. Askey-Wilson polynomials are hypergeometric orthogonal polynomials which can be considered as Macdonald polynomials for the affine root system (C ∨ 1 , C 1 ) [START_REF] Noumi | Askey-Wilson polynomials: an affine Hecke algebra approach[END_REF]. Askey-Wilson algebras and polynomials have applications in physics such as to the one-dimensional Asymmetric Simple Exclusion Process (ASEP) statistical mechanics model [START_REF] Uchiyama | Asymmetric simple exclusion process with open boundaries and Askey-Wilson polynomials[END_REF] as well as applications to more algebraic areas such as the theory of Leonard pairs [START_REF] Terwilliger | Leonard pairs and the Askey-Wilson relations[END_REF]. Askey-Wilson polynomials can also be truncated to give q-Racah polynomials which encode the 6j-symbols or Racah coefficients which occur in angular momentum recoupling when there are three sources of angular momentum. The Askey-Wilson algebra 1 can in turn be considered as a truncated version of the q-Onsager algebra; the q-Onsager algebra is the reflection equation algebra of the quantum group U q sl 2 of the affine lie group sl 2 [START_REF] Terwilliger | Two relations that generalize the q-Serre relations and the Dolan-Grady relations[END_REF][START_REF] Baseilhac | Deformed Dolan-Grady relations in quantum integrable models[END_REF] and is used in integrable systems such as in the analysis of the XXZ spin chains with non-diagonal boundary conditions [START_REF] Baseilhac | A deformed analogue of Onsager's symmetry in the XXZ open spin chain[END_REF][START_REF] Baseilhac | The half-infinite XXZ chain in Onsager's approach[END_REF].

There are multiple alternative versions of Askey-Wilson algebras. As well as of Zhedanov's original algebra Zh q (a, b, c, d) there is aw(3) in which the parameters a, b, c, d have been replaced by central elements and the universal Askey-Wilson algebra ∆ q of Terwilliger [START_REF] Terwilliger | The Universal Askey-Wilson Algebra[END_REF] with a different choice of central elements. We shall use AW(3) which is a quotient of aw(3) by a relation involving the quantum Casimir. For a more complete account of the different versions of the Askey-Wilson algebra and their applications see [START_REF] Crampé | The Askey-Wilson algebra and its avatars[END_REF] and the references therein.

There are multiple possible approaches to generalising the definition of the Askey-Wilson algebra to higher ranks and we shall follow the approach based on relating AW(3) to quantum groups. Huang showed that there is an embedding AW(3) -→ U q (sl 2 ) ⊗ U q (sl 2 ) ⊗ U q (sl 2 )

with the generators { Λ A | A ⊆ {1, 2, 3} } of AW(3) under the embedding being constructed out the quantum Casimir of U q (sl 2 ) using coproducts and a map τ [START_REF] Hau | An embedding of the universal Askey-Wilson algebra into U q (sl 2 ) ⊗ U q (sl 2 ) ⊗ U q (sl 2 )[END_REF][START_REF] Crampé | Revisiting the Askey-Wilson algebra with the universal R-matrix of U q (sl 2 )[END_REF]. This definition was then generalised by Post and Walter to AW(4) [START_REF] Post | A higher rank extension of the Askey-Wilson Algebra[END_REF] and by de Clerq et al. to AW(n) which is defined as a subalgebra AW(n) ⊂ U q (sl 2 ) ⊗n generated by explicit generators { Λ A | A ⊆ {1, . . . , n} } [De 19; DBDCV20]. De Clerq et al. also showed that an algebra isomorphic to AW(n), the rank (n -2) Bannai-Ito algebra, was the symmetric algebra of the Z n 2 q-Dirac-Dunkl model [START_REF] De Bie | The Higher Rank q-Deformed Bannai-Ito and Askey-Wilson Algebra[END_REF].

Isomorphism between Askey-Wilson and Skein Algebras. In this paper we shall prove Theorem 1.1. There is an isomorphism

Sk q (Σ 0,n+1 ) ∼ -→ AW(n) : s A → -Λ A
between the Kauffman bracket skein algebra Sk q (Σ 0,n+1 ) of the (n + 1)-punctured sphere and the rank (n -2) Askey-Wilson algebra AW(n) which sends the 2 simple closed curve s A around the punctures A to the Askey-Wilson generator Λ A with a negative coefficient.

To show the power of this theorem in Section 6, we shall use some skein algebraic calculations to obtain an elegant new proof of the theorem of de Clerq [De 19, Theorem 3.2] which states that AW(n) satisfies a generalisation of the commutator relations which are used to define the classical Askey-Wilson algebras. We also show in Section 7 that this isomorphism is compatible with the action of the braid group. Theorem 1.1 is a generalisation of the classical result that AW(3) is isomorphic to the Kauffman bracket skein algebra of the four-punctured sphere. This was proven by showing that AW(3) is isomorphic to the (C ∨ 1 , C 1 ) spherical double affine Hecke algebra (DAHA) [START_REF] Tom | The relationship between Zhedanov's algebra AW(3) and the double affine Hecke algebra in the rank one case[END_REF][START_REF] Terwilliger | The universal Askey-Wilson algebra and DAHA of type (C ∨ 1 , C 1 )[END_REF] and by comparing the presentation of the (C ∨ 1 , C 1 ) spherical DAHA to the presentation of the Kauffman bracket skein algebra of the fourpunctured sphere [START_REF] Berest | Affine cubic surfaces and character varieties of knots[END_REF][START_REF] Cooke | Kauffman skein algebras and quantum Teichmüller spaces via factorization homology[END_REF][START_REF] Hikami | DAHA and skein algebra of surfaces: double-torus knots[END_REF]. This approach is not readily generalisable so we will instead prove Theorem 1.1 by chaining together the following three maps Sk q (Σ 0,n+1 ) ⊆ Sk st q (Σ 0,n+1 ) ∼ -→ O q (sl 2 ) ⊗n ∼ -→ U q (sl 2 ) lf ⊗n -→ U q (sl 2 ) ⊗n , which we shall now discuss.

Braiding the Tensor Product and the Generators of the Askey-Wilson Algebra. The last of these maps is a injective homomorphism that unbraids the braided tensor product ⊗ of Majid [Maj91;[START_REF] Majid | Foundations of quantum group theory[END_REF] to give the ordinary tensor product. In Section 3 we will show that if we consider the Askey-Wilson algebra AW(n) as a subalgebra of the braided rather than unbraided tensor product of n copies of U q (sl 2 ) we obtain a simpler description of the generators with no τ map:

Theorem 1.2. The generator Λ A for A = {i 1 < • • • < i k } ⊆ {1, . . . , n} as an element of U q (sl 2 ) lf ⊗n is given by ∆ k (Λ) i where Λ is the quantum Casimir, ∆ is the 'braided' coproduct, and the subscript i = (i 1 , . . . , i k ) denotes that j th tensor factor of the coproduct is placed in position i j of the tensor product and 1 is placed in all the empty positions. For example,

Λ 134 = Λ (1) ⊗ 1 ⊗ Λ (2) ⊗ Λ (3) ∈ U q (sl 2 ) lf ⊗4
where we are using Sweedler notation for the coproduct.

Reflection Equation Algebras and Presentations. The middle map is a Hopf algebra isomorphism and is given componentwise by the Rosso isomorphism from the reflection equation algebra O q (sl 2 ) to U q (sl 2 ) lf , the locally finite subalgebra of U q (sl 2 ) [START_REF] Klimyk | Quantum groups and their representations[END_REF]. The defining relation for the reflection equation algebra is the reflection equation which first arose in integrable systems related to factorisable scattering on a half-line with a reflecting wall and is based on the standard R-matrix of U q (sl 2 ) [START_REF] Kulish | Yang-Baxter equation and reflection equations in integrable models[END_REF]. The algebra O q (sl 2 ) ⊗n is a special case for the (n + 1)-punctured sphere of the Aleeksev moduli algebra L Σ which is defined combinatorically for more general surfaces with different tensor products depending on how the handles of the handlebody decomposition of the surface interact [START_REF] Yu | Integrability in the Hamiltonian Chern-Simons theory[END_REF][START_REF] Yu | Combinatorial quantization of the Hamiltonian Chern-Simons theory[END_REF]. The subalgebra L Uq(sl2) Σ of the Aleeksev moduli algebra which is invariant under the action of U q (sl 2 ) is naturally filtered by degree. In Section 8 we will use the explicit algebraic description for L Σ to compute the Hilbert series of L Uq(sl2) Σ which enumerates the vector space dimension of each graded part of the associated graded algebra. For a general punctured surface Σ g,r of genus g with r > 1, the graded algebras associated with L Uq(sl2) Σg,r and the skein algebra Sk q (Σ g,r ) punctures are graded isomorphic. Also, for the punctured sphere Σ 0,n+1 , the graded algebras associated with L Uq(sl2) Σ0,n+1 and the Askey-Wilson algebra AW(n) are graded isomorphic. Thus, we also obtain Hilbert series for Sk q (Σ g,r ) and AW(n):

Theorem 1.3. The Hilbert series of L Uq(sl2) Σg,r , AW(n) and Sk q (Σ g,r ) is

h(t) = (1 + t) n-2 (1 -t) n (1 -t 2 ) 2n-3 n-2 k=0 n -2 k 2 t 2k - n-3 k=0 n -2 k n -2 k + 1 t 2k+1
where n = 2g + r -1.

Despite skein algebras dating back to the 80s, presentations of Kauffman bracket skein algebras are only known for a handful of punctured surfaces: spheres with up to four punctures and tori with up to two punctures [START_REF] Bullock | Multiplicative structure of Kauffman bracket skein module quantizations[END_REF]. Whilst it is not difficult to find relations between elements of a skein algebra, it is difficult to conclude you have enough relations. In Section 9 we will use this Hilbert series together with a Poincare-Birkhoff-Witt basis to solve this problem and obtain a presentation for the skein algebra of the five-punctured sphere. This also give us a presentation for the rank 2 Askey-Wilson algebra AW(4) which is the first of the generalised Askey-Wilson algebras and also the case originally considered by Post and Walter.

Theorem 1.4. A presentation for Sk q (Σ 0,5 ) ∼ = AW(4) is given by the simple loops s A for A ⊆ {1, 2, 3, 4} subject to the generalised Askey-Wilson commutator relations, non-intersecting loops commuting and relations of types (see Theorem 9.3 and Appendix A for full details): In particular, this means that AW(n) contains many relations which are not derived from the original Askey-Wilson operator relations.

Skein Algebras and Generalisations. Finally, the leftmost map is a Hopf algebra isomorphism from the stated skein algebra Sk st q (Σ 0,n+1 ) to the Aleeksev moduli algebra. Stated skein algebras are an extension of Kauffman bracket skein algebras which allows tangles with end points rather than only closed loops [START_REF] Thang | Triangular decomposition of skein algebras[END_REF][START_REF] Costantino | Stated skein algebras of surfaces[END_REF]. This extension means that, unlike ordinary skein algebras, stated skein algebras behave well under gluing: they satisfy an excision property. This is crucial in constructing the isomorphism to L Σ0,n+1 = O q (sl 2 ) ⊗n given in [START_REF] Costantino | Stated skein algebras of surfaces[END_REF].

The stated skein algebra is a special case for U q (sl 2 ) of a more general construction based on skein categories SkCat V (Σ) [Wal06; JF21; Coo19a] and internal skein algebras Sk V (Σ) int [GJS19] which generalises to other quantum groups U q (g) or indeed any ribbon category V (for the explicit relation between stated and internal skein algebras see [START_REF] Haïoun | Relating stated skein algebras and internal skein algebras[END_REF]). Skein categories are categories whose homspaces are vector spaces of ribbon tangles (often with coupons) in the thickened surface with skein relations imposed: the skein relations are determined by the choice of quantum group or ribbon category. The skein algebra Sk V (Σ) is then simply Hom SkCat V (Σ) (∅, ∅) and the internal skein algebra is Sk V (Σ) int = Hom SkCat V (Σ) ( , ∅) : V → Vect. These skein categories satisfy excision and can thus be considered as factorisation homology theories [Coo19b; Coo19a] (and independently when V is modular by [START_REF] Kirillov | Factorization Homology and 4D TQFT[END_REF]).

For any punctured surface Σ and any quantum group U q (g) when q is not a root of unity the internal skein algebra is isomorphic to the Aleeksev moduli algebra and the skein algebra is the U q (g)-invariant subalgebra [START_REF] Gunningham | The finiteness conjecture for skein modules[END_REF] (and [START_REF] Faitg | Holonomy and (stated) skein algebras in combinatorial quantization[END_REF] for the G = SL 2 case without using factorisation homology). This gives us a generalisation of the left-hand map to an isomorphism

Sk Uq(g) (Σ) → L Uq(g) G,Σ
for any punctured surface Σ and for any quantum group U q (g) assuming q is generic. For a higher genus surface L G,Σg,r = O q (g) ⊗2g ⊗O q (g) ⊗r-1 where ⊗ is a different tensor product from the Majid braided tensor product. Whilst it is beyond the scope of this paper, the consideration of other gauge groups in particular g = sl n using this connection to skein theory may prove fruitful and would be interesting to compare to other generalisations such as the one based of the affine ŝ l n q-Osanger algebra in [START_REF] Baseilhac | Higher rank classical analogs of the Askey-Wilson algebra from the sl N Onsager algebra[END_REF].

Summary of Sections.

Section 2: In this section we define AW(n) and its set of generators Λ A . Section 3: In this section we define the braided tensor product, show that the unbraiding map is an injective morphism of algebras and prove Theorem 1.2.

Section 4: In this section we define the reflection equation algebra O q (SL 2 ), Alekseev moduli algebra L Σ and the map between the reflection equation algebra and the quantum group U q (sl 2 ). Section 5: In this section we define the stated skein algebra and prove Theorem 1.1. Section 6: In this section we use skein algebras to give a much shorter proof of Theorem 3.2 of [De 19]. Section 7: In this section we show that the isomorphism given in Theorem 1.1 is compatible with the action of the braid group. Section 8: In this section we find the graded vector space dimension of the graded algebra associated to L Uq(sl2) Σ (Theorem 1.3) and consequently of the associated graded algebras of the Askey-Wilson algebra AW(n) and the skein balgebra Sk q (Σ g,r ) for r > 1. Section 9: In this section we prove Theorem 1.4 by constructing a confluent terminating term rewriting system based on the relations to obtain a linear basis with the same Hilbert series as Sk q (Σ 0,5 ).

Notation. For an algebra A over a field, two integers k < l and i

= (i 1 , . . . , i k ) with 1 ≤ i 1 ≤ • • • ≤ i k ≤ l, we will use an embedding A ⊗k → A ⊗l . It is defined by x 1 ⊗ • • • x k → 1 ⊗ • • • ⊗ 1 ⊗ x 1 ⊗ 1 ⊗ • • • ⊗ 1 ⊗ x k ⊗ 1 ⊗ • • • ⊗ 1
, where the tensorand x j is at the i j -th position. The image of x ∈ A ⊗k will be then denoted by x i . We will also use the Sweedler notation for coproducts and coaction: if (C, ∆) is a coalgebra and (M, ∆ M ) is a right-comodule over C, the coproduct of c ∈ C will be denoted by ∆

(c) = c (1) ⊗ c (2) and the coaction of C on m ∈ M by ∆ M (m) = m (1) ⊗ m (0) .

Askey-Wilson Algebras

In this section we shall define the Askey-Wilson algebra AW(3), explain how it can be embedded into three tensor copies of the quantum group U q (sl 2 ) and thus generalised to the higher rank Askey-Wilson algebra AW(n).

2.1. Classical Askey-Wilson algebras. The Askey-Wilson algebra was originally defined by Zhedanov [START_REF] Zhedanov | Hidden symmetry" of Askey-Wilson polynomials[END_REF] to study Askey-Wilson orthogonal polynomials as the representations of Askey-Wilson algebras can be used to better understand the associated polynomials.

Definition 2.1. The Zhedanov Askey-Wilson algebra Zh q (a 1 , a 2 , a 3 , a 123 ) is the algebra over C(q) with generators A, B and C such that

A + q 2 -q -2 -1 [B, C] q = q + q -1 -1 (C 1 C 2 + C 3 C 123 ) B + q 2 -q -2 -1 [C, A] q = q + q -1 -1 (C 2 C 3 + C 1 C 123 ) C + q 2 -q -2 -1 [A, B] q = q + q -1 -1 (C 3 C 1 + C 2 C 123 )
where [X, Y ] q := qXY -q -1 Y X is the quantum Lie bracket and C i := q ai + q -ai .

If we weaken the relations, so that instead of having equalities we simply require the expressions on the left-hand-side are central in the algebra, we obtain the universal Askey-Wilson algebras which was defined by Terwilliger [START_REF] Terwilliger | The Universal Askey-Wilson Algebra[END_REF]:

Definition 2.2. The universal Askey-Wilson algebra ∆ q is the algebra over C(q) with generators A, B, C such that

A + q 2 -q -2 -1 [B, C] q B + q 2 -q -2 -1 [C, A] q C + q 2 -q -2 -1 [A, B] q are central. If we set α = q + q -1 A + q 2 -q -2 -1 [B, C] q , β = q + q -1 B + q 2 -q -2 -1 [C, A] q , γ = q + q -1 C + q 2 -q -2 -1 [A, B] q
and also define the 'Casimir' element

Ω = qABC + q 2 A 2 + q -2 B 2 + q 2 C 2 -qAα -q -1 Bβ -qCγ
we also have the following alternative presentation:

Proposition 2.3 ([Ter13, Proposition 2.8]).
The universal Askey-Wilson algebra ∆ q is the algebra over C(q) with generators A, B, C, α, β, γ and Ω such that α, β, γ and Ω are central and

[A, B] q = -q 2 -q -2 C + q -q -1 γ [B, C] q = -q 2 -q -2 A + q -q -1 α [C, A] q = -q 2 -q -2 B + q -q -1 β Ω = qABC + q 2 A 2 + q -2 B 2 + q 2 C 2 -qAα -q -1 Bβ -qCγ 2.2.
Huang's embedding into U q (sl 2 ) ⊗3 . Huang [START_REF] Hau | An embedding of the universal Askey-Wilson algebra into U q (sl 2 ) ⊗ U q (sl 2 ) ⊗ U q (sl 2 )[END_REF] showed that the universal Askey-Wilson algebra can be embedded into U q (sl 2 ) ⊗3 . We first recall the classical definition of U q (sl 2 ) and choose one of its many Hopf algebra structure. We stress that we follow the conventions of [START_REF] Costantino | Stated skein algebras of surfaces[END_REF] which are different from [START_REF] Hau | An embedding of the universal Askey-Wilson algebra into U q (sl 2 ) ⊗ U q (sl 2 ) ⊗ U q (sl 2 )[END_REF].

Definition 2.4. The quantum algebra U q (sl 2 ) is the C(q)-algebra generated by K, K -1 , E and F , subject to the following relations:

K ±1 K ∓1 = 1, KE = q 2 EK, KF = q -2 F K and [E, F ] = K -K -1
q -q -1 . We endow it with a Hopf algebra structure with the following comultiplication ∆, counit ε and antipode S:

∆(K) = K ⊗ K, ε(K) = 1, S(K) = K -1 , ∆(E) = E ⊗ K + 1 ⊗ E, ε(E) = 0, S(E) = -EK -1 , ∆(F ) = F ⊗ 1 + K -1 ⊗ F, ε(F ) = 0, S(F ) = -KF.
The quantum Casimir of U q (sl 2 ) is

Λ := q -q -1 2 F E + qK + q -1 K -1 = q -q -1 2 EF + q -1 K + qK -1 ;
this is a central element.

The embedding is given by: Theorem 2.5 ([Hua17, Theorem 4.1 and Theorem 4.8]). Let : ∆ q -1 → U q (sl 2 ) ⊗ U q (sl 2 ) ⊗ U q (sl 2 ) be the following map

A → ∆(Λ) ⊗ 1, B → 1 ⊗ ∆(Λ), C → q -1 (∆(Λ) ⊗ 1)(1 ⊗ ∆(Λ)) -q(1 ⊗ ∆(Λ))(∆(Λ) ⊗ 1) q 2 -q -2 + Λ ⊗ 1 ⊗ Λ + (1 ⊗ Λ ⊗ 1)∆ (2) (Λ) q + q -1 , α → Λ ⊗ Λ ⊗ 1 + (1 ⊗ 1 ⊗ Λ)∆ (2) (Λ), β → 1 ⊗ Λ ⊗ Λ + (Λ ⊗ 1 ⊗ 1)∆ (2) (Λ), γ → Λ ⊗ 1 ⊗ Λ + (1 ⊗ Λ ⊗ 1)∆ (2) (Λ),
where

∆ (2) = (∆ ⊗ id) • ∆.
Then is an injective morphism of algebras.

Remark 2.6. In Huang's original result, the isomorphism ∆ q → U q (sl 2 )⊗U q (sl 2 )⊗U q (sl 2 ) uses the opposite coproduct to ∆. It is related to by the algebra isomorphism ∆ q → ∆ q -1 which sends (A, B, C, α, β, γ, δ) to (B, A, C, β, α, γ) and with the algebra automorphism of U q (sl 2 ) ⊗ U q (sl 2 ) ⊗ U q (sl 2 ) sending x ⊗ y ⊗ z to z ⊗ y ⊗ x.

For the generator C, which is not required to generate the algebra, but makes the presentation more symmetric, Crampé, Gaboriaud, Vinet, and Zaimi [START_REF] Crampé | Revisiting the Askey-Wilson algebra with the universal R-matrix of U q (sl 2 )[END_REF] showed that its image has the simpler expression C = (1 ⊗ τ L )∆(Λ) where τ L is defined below.

Definition 2.7. We denote by I L the subalgebra of U q (sl 2 ) generated by E, F K, K and Λ. It is a left U q (sl 2 )-comodule with action

τ L :            I L -→ U q (sl 2 ) ⊗ I L E -→ K ⊗ E F K -→ K -1 ⊗ F K -qF ⊗ Λ + q q + q -1 F ⊗ K -q -1 (q -q -1 ) 2 F 2 K ⊗ E K -→ 1 ⊗ K -q -1 (q -q -1 ) 2 F K ⊗ E Λ -→ 1 ⊗ Λ
Clearly the image of the map is contained in the subalgebra of U q (sl 2 ) ⊗3 generated by the elements

Λ 1 := Λ ⊗ 1 ⊗ 1, Λ 2 := 1 ⊗ Λ ⊗ 1, Λ 2 := 1 ⊗ 1 ⊗ Λ, Λ 123 := ∆ 2 (Λ), Λ 12 := ∆(Λ) ⊗ 1, Λ 13 := (1 ⊗ τ L )∆(Λ), Λ 23 := 1 ⊗ ∆ 2 (Λ).
It was shown by Huang [Hua17, Corollary 4.6] that this subalgebra is contained in the centraliser of

U q (sl 2 ) in U q (sl 2 ) ⊗3 C(U q (sl 2 )) = X ∈ U q (sl 2 ) ⊗3 (∆ ⊗ id)∆(x), X = 0, ∀x ∈ U q (sl 2 )
Note that whilst there is an injective C-algebra homomorphism ∆ q -1 → C(U q (sl 2 )) it is not surjective as we do not have Λ i and Λ 123 in the image. We instead need the following centrally extended universal Askey-Wilson algebra:

Definition 2.8. The Askey-Wilson algebra AW(3)3 is the algebra over C(q) with generators A, B, C and central generators

C 1 , C 2 , C 3 , C 123 such that A + q 2 -q -2 -1 [B, C] q = q + q -1 -1 (C 1 C 2 + C 3 C 123 ) B + q 2 -q -2 -1 [C, A] q = q + q -1 -1 (C 2 C 3 + C 1 C 123 ) C + q 2 -q -2 -1 [A, B] q = q + q -1 -1 (C 3 C 1 + C 2 C 123 ) Ω = q + q -1 2 -C 2 1 -C 2 2 -C 2 3 -C 2 123 -C 1 C 2 C 3 C 123 where Ω := qABC +q 2 A 2 +q -2 B 2 +q 2 C 2 -qA (C 1 C 2 + C 3 C 123 )-q -1 B (C 2 C 3 + C 1 C 123 )-qC (C 3 C 1 + C 2 C 123 ) .
2.3. Higher rank Askey-Wilson algebras. The embedding of the universal Askey-Wilson algebra into the centraliser of three copies of the quantum group U q (sl 2 ) makes it possible define a higher rank Askey-Wilson algebra by constructing Casimirs Λ A for A ⊆ {1, . . . , n} in the centraliser of U q (sl 2 ) ⊗n for n ≥ 1. Post and Walter [START_REF] Post | A higher rank extension of the Askey-Wilson Algebra[END_REF] Definition 2.9. Let A = {i 1 < • • • < i k } be a non-empty subset of {1, . . . , n} and let Λ be the quantum Casimir of U q (sl 2 ). The Casimir Λ A is defined by

Λ A = id ⊗(i k -2) ⊗α i k -1 • • • • • (id ⊗α 2 ) • α 1 (Λ) ⊗ 1 n-i k ,
with α i = ∆ if i ∈ A and α i = τ L otherwise. We also set Λ ∅ = q + q -1 by convention.

Definition 2.10. The Askey-Wilson algebra of rank (n-2) denoted AW(n) is the subalgebra of U q (sl 2 ) ⊗n generated by Λ A for all non-empty subsets A ⊆ {1, . . . , n}.

Remark 2.11. This algebra is defined over C(q), but will need to consider filed extension of this algebra, notably to C(q 1/4 ) where q 1/4 is a fixed fourth root of q.

De Clercq [De 19, Theorem 3.1 and 3.2] show that the higher rank Askey-Wilson algebras satisfy a generalised version of the commutator relations which define AW(3). We shall give an alternative and much shorter proof of this result in Section 6.

2.4.

Changing the coproduct or how to obtain isomorphisms. We show now explain how the change of conventions for the coproduct from those used in [START_REF] Hau | An embedding of the universal Askey-Wilson algebra into U q (sl 2 ) ⊗ U q (sl 2 ) ⊗ U q (sl 2 )[END_REF] to those used in this paper affect the definition of the Askey-Wilson algebra AW(n). Let us denote by AW(n) the Askey-Wilson algebra of [De 19; DBDCV20] obtained from the coproduct ∆ op . Explicitly, AW(n) is the subalgebra of U q (sl 2 ) ⊗n generated by ΛA for A a non-empty subset of {1, . . . , n} given by

ΛA = 1 ⊗i1-1 ⊗ α i1+1 ⊗ id ⊗(n-i1-1) • • • • • (α n-1 ⊗ id) • α n (Λ) for A = {i 1 < . . . < i k }, with α i = ∆ op if i ∈ A and α i = τ op
L otherwise. The following isomorphism is the higher rank version of the algebra isomorphism ∆ q → ∆ q -1 of [Ter13, Lemma 2.11] which sends (A, B, C, α, β, γ) to (B, A, C, β, α, γ).

Proposition 2.12. The algebra isomorphism U q (sl 2 ) ⊗n → U q (sl 2 ) ⊗n given by

x 1 ⊗• • •⊗x n → x n ⊗• • •⊗x 1 restricts in an algebra isomorphism AW(n) AW(n). This isomorphism moreover sends Λ A to Λ Ã where à = { n + 1 -i | i ∈ A }.
Proof. This is immediate from the definitions of Λ A and ΛA .

The following anti-isomorphism is the higher rank version of the algebra anti-isomorphism ∆ q → ∆ q -1 which sends (A, B, C, α, β, γ) to (A, B, C, α, β, γ).

Proposition 2.13. The algebra anti-isomorphism S ⊗n : U q (sl 2 ) ⊗n → U q (sl 2 ) ⊗n restricts in an algebra anti-isomorphism AW(n) AW(n). This isomorphism moreover sends Λ A to ΛA .

Proof. The isomorphism follows from the fact that S ⊗ S

• ∆ = ∆ op , that S ⊗ S • τ L = τ R • S and from [De 19, Proposition 2.3]. Here τ R is given in [De 19, Definition 2.1].
Composing the two previous isomorphisms, we obtain the higher rank version of the algebra antiautomorphism of AW(n) of [Ter13, Lemma 2.9]. Proposition 2.14. There exists an algebra anti-automorphism of AW(n) sending Λ A to Λ Ã.

3. Braided Tensor Product of copies of the locally finite part of U q (sl 2 )

As explained in the introduction, the isomorphism between the skein algebra of the (n + 1)-punctured sphere and the Askey-Wilson algebra AW(n) consists of a sequence of steps. In this section, we describe the Askey-Wilson algebra as the image of an injective morphism called the unbraiding map and we give an explicit form of the preimages of the generators Λ A . One of the key ideas is the interpretation of the coaction τ as the conjugation by the R-matrix [START_REF] Crampé | Revisiting the Askey-Wilson algebra with the universal R-matrix of U q (sl 2 )[END_REF] and the fact that the left coideal I L is the locally finite part of U q (sl 2 ) for the left adjoint action.

Grading and the left adjoint action.

There exists a Z-grading on U q (sl 2 ) given on the generators by |E| = 1, |F | = -1 and |K| = 0. Note that Kx = q 2|x| xK for any homogeneous element x.

As it is a Hopf algebra, U q (sl 2 ) acts on itself via the left adjoint action given by

h x = h (1) xS h (2) ,
for any h, x ∈ U q (sl 2 ). Note that |h x| = |h| + |x|.

Definition 3.1. The locally finite elements of U q (sl 2 ) for the left adjoint action are:

U q (sl 2 ) lf = x ∈ U q (sl 2 ) U q (sl 2 ) x is finite dimensional .
By definition, U q (sl 2 ) then acts on U q (sl 2 ) lf via the left adjoint action. It is known that U q (sl 2 ) lf is a subalgebra of U q (sl 2 ) and also a left coideal of U q (sl 2 ), that is ∆ U q (sl 2 ) lf ⊂ U q (sl 2 ) ⊗ U q (sl 2 ) lf , see [VY20, Lemma 3.112] for example.

The following is a theorem of Joseph-Letzter [START_REF] Joseph | Local finiteness of the adjoint action for quantized enveloping algebras[END_REF] in the specific case of U q (sl 2 ). Note that our convention for the coproduct is different from [START_REF] Joseph | Local finiteness of the adjoint action for quantized enveloping algebras[END_REF].

Proposition 3.2. The subalgebra and left coideal U q (sl 2 ) lf coincides with I L .

3.2.

The quasi-R-matrix. In this subsection, we introduce the R-matrix for U q (sl 2 ) following [START_REF] Lusztig | Introduction to Quantum Groups[END_REF]Chapter 4]. The Hopf algebra U q (sl 2 ) fails to be a quasi-triangular Hopf algebra. This problem is usually overcomed using the notion of quasi-R-matrix.

First, we define Ψ : U q (sl 2 ) ⊗ U q (sl 2 ) → U q (sl 2 ) ⊗ U q (sl 2 ) as the algebra isomorphism defined on homogeneous elements by Ψ

(x ⊗ y) = xK -|y| ⊗ K -|x| y = K -|y| x ⊗ yK -|x| .

Theorem 3.3 ([Lus10, Chapter 4]).

There exists an element Θ = i≥0 Θ i with Θ i = u i ⊗ v i satisfying the following properties:

• u i ⊗ v i = q i(i-1)/2 q -q -1 i [i]! E i ⊗ F i ;
• for all x ∈ U q (sl 2 ), we have Ψ(∆ op (x))Θ = Θ∆(x);

• Θ is invertible with inverse Γ = i≥0 Γ i with Γ i = S(u i )K i ⊗ v i = u i ⊗ S -1 (v i )K -i ; • ∆ ⊗ id(Θ) = Ψ 23 (Θ 13 )Θ 23 and id ⊗∆(Θ) = Ψ 12 (Θ 13 )Θ 12 .
In Sweedler notation, one has that for any homogeneous x ∈ U q (sl 2 )

(3.1) i≥0 x (2) K -|x (1) | u i ⊗ x (1) K |x (2) | v i = i≥0 u i x (1) ⊗ v i x (2) .
Thanks to the quasi-R-matrix, one can endow the category of type 1 integrable weight modules with a braiding as follows. Let M and N be two integrable weight modules of type 1. For m ∈ M of weight µ and n ∈ N of weight ν, we define

c M,N (m ⊗ n) = i≥0 q (µ+2i)(ν-2i)/2 (v i n) ⊗ (u i m).
Note that in general the coefficients appearing in the formula above are in Q(q 1/2 ). This then defines a map c M,N : M ⊗ N → N ⊗ M which is a braiding for the category of type 1 integrable weight modules (see [Jan96, Section 3] for more details).

3.3. Braided tensor product. For two algebras in a braided monoidal category, Majid had defined their braided tensor product [Maj95, Lemma 9.2.12]. In the spectific case of a category of modules of a quasi-triangular Hopf algebra, the multiplication in the braided tensor product is explicitely given using the R-matrix [Maj95, Corollary 9.2.13]. In our situation, since we are working in the category of integrable weight modules over U q (sl 2 ), we can not define the braided tensor product of U q (sl 2 ) with itself since it is not an integrable module for the left adjoint action. One way to remedy to this problem is to work with the locally finite part U q (sl 2 ) lf so that the definition of the multiplication is still valid. Proposition 3.4. For any homogeneous elements g, h, x and y of U q (sl 2 ) lf , we define the braided product • by

(3.2) (g ⊗ h) • (x ⊗ y) = i≥0 q 2(|h|+i)(|x|-i) g(v i x) ⊗ (u i h)y.
This defines an associative multiplication on the vector space U q (sl 2 ) lf ⊗ U q (sl 2 ) lf . The resulting algebra is the braided tensor product and will be denoted by U q (sl 2 ) lf ⊗ U q (sl 2 ) lf .

We can also inductively define a braided product on U q (sl 2 ) ⊗n and we denote the resulting algebra by U q (sl 2 ) lf ⊗n . One can check that this multiplication is compatible with the adjoint action: for any h ∈ U q (sl 2 ) and x, y ∈ U q (sl 2 ) lf ⊗n , one has

h (x • y) = (h (1) x) • (h (2) y).
This multiplication endows U q (sl 2 ) lf ⊗n with an algebra structure in the category of integrable U q (sl 2 )-modules. We can also endow this algebra with a bialgebra structure in the category of U q (sl 2 )modules.Define ∆ following [Maj91, Section 3]:

∆(x) = i≥0 x (1) S K i+|x (2) | v i ⊗ u i x (2)
One may check that this endows U q (sl 2 ) lf with a bialgebra structure in the category of left U q (sl 2 )modules, that is the multiplication • and the comultiplication ∆ satisfy the usual axioms of a bialgebra and that they are all compatible with the adjoint action. For example,

∆(h x) = h ∆(x).
Furthermore, we inductively define the iterated comultiplication ∆ (n) by ∆ (0) = id, and ∆ (n+1) = id ⊗∆ (n) • ∆, and define the iterated comultiplication ∆ (n) similarly. Note that ∆ (1) = ∆ and ∆ (1) = ∆. One may inductively show that

∆ (n-1) (x) = i≥0 x (1) S K i+|x (2) | v i ⊗ ∆ (k-2) u i x (2) = i≥0 x (1) S K i+|x (2) | v i ⊗ u i ∆ (n-2) x (2) . (3.3)
We have the following explicit formulas for ∆(x) when x is a generator of U q (sl 2 ) lf ⊗n , each of which follows from direct computation. Lemma 3.5. We have

∆(E) = E ⊗ K + q -1 Λ -q -1 K ⊗ E, ∆(KF ) = K ⊗ KF + q -1 KF ⊗ C -q -1 K , ∆(K) = K ⊗ K + q -1 q -q -1 2 KF ⊗ E, ∆(Λ) = q -1 C ⊗ C -q -2 C ⊗ K -q -2 K ⊗ C + q -2 q + q -1 K ⊗ K + q -q -1 2 E ⊗ KF + q -2 KF ⊗ E .
3.4. Unbraiding the braided tensor product. Following [START_REF] Fiore | Unbraiding the braided tensor product[END_REF], we unbraid the tensor product into the usual tensor product. Since we work with the quantum group U q (sl 2 ), we need to use the quasi-R-matrix Θ and the locally finite part.

Proposition 3.6. For any k ≥ 1, the map ϕ n : U q (sl 2 ) lf ⊗n → U q (sl 2 ) ⊗ U q (sl 2 ) lf ⊗(n-1) defined by

ϕ n (a ⊗ b) = i≥0 aK i+|b| v i ⊗ u i b,
for any homogeneous elements a ∈ U q (sl 2 ) lf and b ∈ U q (sl 2 ) lf ⊗(n-1) , is an injective morphism of algebras.

Proof.

First, it is easy to check that a ⊗ b → i≥0 aS(v i )K -(i+|b|) ⊗ u i b is a left inverse of ϕ n .
We now check that ϕ n is a morphism of algebra. Let a, c ∈ U q (sl 2 ) lf and b, d ∈ U q (sl 2 ) lf ⊗(n-1) and we compute:

ϕ n (a ⊗ b) • (c ⊗ d) = i≥0 q 2(|b|+i)(|c|-i) ϕ n a(v i c) ⊗ ((u i b) • d) = i,j≥0 q 2(|b|+i)(|c|-i) a(v i c)K i+j+|b|+|d| v j ⊗ u j ((u i b) • d).
Now, we use the definition of the left adjoint action, its compatibility with the braided product, together with ∆ ⊗ id(Θ) = Ψ 23 (Θ 13 )Θ 23 and id ⊗∆(Θ) = Ψ 12 (Θ 13 )Θ 12 to find that

ϕ n (a ⊗ b) • (c ⊗ d) = i,j,k,l≥0 q 2(|b|+i+k)(|c|-i-k) aK -i v k cS(v i )K i+j+k+l+|b|+|d| v j v l ⊗ (u j u i u k b) • K j u l d .
Since for any homogeneous x ∈ U q (sl 2 ) we have Kx = q 2|x| xK, we find that

ϕ n (a ⊗ b) • (c ⊗ d) = i,j,k,l≥0 aK k+|b| v k cS(v i )K j v j K l+|d| v l ⊗ (u j u i u k b) • (u l d). Finally, since i,j≥0 u j u i ⊗ S(v i )K j v j = 1 ⊗ 1, we have ϕ n (a ⊗ b) • (c ⊗ d) = k,l≥0 aK k+|b| v k cK l+|d| v l ⊗ (u k b) • (u l d) = ϕ n (a ⊗ b) • ϕ n (c ⊗ d),
and ϕ n is a morphism of algebra.

By composing the one-step unbraiding maps ϕ n from Proposition 3.6, one can inductively define an unbraiding map γ n : U q (sl 2 ) lf ⊗n → U q (sl 2 ) ⊗n . We define γ 1 to be the injection of the locally finite part U q (sl 2 ) lf inside the whole quantum group U q (sl 2 ) and for n ≥ 1 we define

γ n+1 = (id ⊗γ n ) • ϕ n+1 .
Corollary 3.7. The map γ n : U q (sl 2 ) lf ⊗n → U q (sl 2 ) ⊗n is an injective morphism of algebras.

We end this subsection by explaining how the adjoint action of U q (sl 2 ) on U q (sl 2 ) lf ⊗n behaves under the unbraiding map γ n .

Proposition 3.8. For any x ∈ U q (sl 2 ) lf ⊗n and h ∈ U q (sl 2 ) we have

γ n (h x) = ∆ (n-1) h (1) γ n (x)∆ (n-1) S h (2) .
Proof. Once again, we proceed by induction on n with case n = 1 being true by the definition of the left adjoint action. We start by computing ϕ n+1 (h (a ⊗ b)) for any h ∈ U q (sl 2 ), a ∈ U q (sl 2 ) lf and b ∈ U q (sl 2 ) lf ⊗n :

ϕ n+1 h (a ⊗ b) = ϕ n+1 h (1) a ⊗ h (2) b = i≥0 h (1) a K i+|h (2) |+|b| v i ⊗ u i h (2) b = i≥0 h (1) aS h (2) K i+|h (3) |+|b| v i h (4) S h (5) ⊗ u i h (3) b = i≥0 h (1) aS h (2) K i v i K |h (3) | h (4) K |b| S h (5) ⊗ u i K -i h (3) K |h (4) | b,
the second to last equality following from the counit and antipode axioms. Now, we use the fact that the quasi-R-matrix and Ψ intertwine the coproduct ∆ and its opposite ∆ op (see Equation (3.1)) to obtain

ϕ n+1 h (a ⊗ b) = i≥0 h (1) aS h (2) h (3) K i v i K |b| S h (5) ⊗ h (4) u i K -i b = i≥0 h (1) aK i v i K |b| S h (3) ⊗ h (2) u i K -i b = i≥0 h (1) aK i+|b| v i S h (3) ⊗ h (2) u i b,
where the second to last equality follows once again from the counit and antipode axioms. We now use the inductive definition of the unbraiding map and the induction hypothesis and we obtain

γ n+1 h (a ⊗ b) = i≥0 h (1) aK i+|b| v i S h (3) ⊗ γ n h (2) u i b = i≥0 h (1) aK i+|b| v i S h (4) ⊗ ∆ (n-1) h (2) γ n (u i b)∆ (n-1) S h (3) = ∆ (n) h (1)   i≥0 aK i+|b| v i ⊗ γ n (u i b)   ∆ (n) S h (2) = ∆ (n) h (1) γ n+1 (a ⊗ b)∆ (n) S h (2) ,
as expected.

This last proposition leads to the following interesting corollary concerning centralizers.

Corollary 3.9. Invariants elements of U q (sl 2 ) lf ⊗n under the left adjoint action are sent by the unbraiding map γ n into the centralizer of U q (sl 2 ) in U q (sl 2 ) ⊗n . Explicitly, any x ∈ U q (sl 2 ) lf ⊗n stable under the left adjoint action commutes with ∆ (n-1) (h) for any h ∈ U q (sl 2 ).

Proof. Suppose that z ∈ U q (sl 2 ) ⊗n satisfies the following: for any h ∈ U q (sl 2 ) we have

∆ (n-1) h (1) z∆ (n-1) S h (2) = ε(h)z.
Then for such an element z we have

∆ (n-1) (h)z = ∆ (n-1) h (1) z∆ (n-1) S h (2) ∆ (n-1) h (3) = ε h (1) z∆ (n-1) h (2) = z∆ (n-1) (h),
the first equality following from the counit and antipode axiom, the second one from the hypothesis on z and the last one from the counit axiom. The statement follows then immediately from Proposition 3.8 3.5. Inserting units and unbraiding. Our next aim is to understand the images of the elements ∆ (k-1) (x) i under the unbraiding map γ n . If x = Λ is the Casimir element of U q (sl 2 ), we will show that ∆ (k-1) (x) i coincides with the generator Λ A of the Askey-Wilson algebra, for A = {i 1 , . . . , i k }.

As a corollary we obtain that the Askey-Wilson algebra AW(n) lies inside the centralizer of U q (sl 2 ) in U q (sl 2 ) ⊗n , generalizing a result of Huang [Hua17, Corollary 4.6].

Lemma 3.10. For any x ∈ U q (sl 2 ) lf we have

(3.4) τ L (x) = i≥0 K i+|x| v i ⊗ u i x.
Only a finite number of terms of the sum are non-zero since x lies in the locally finite part of U q (sl 2 ) for the left adjoint action.

Proof. Let us denote by τ L (x) the right-hand side of Equation (3.4). One easily checks that τ L (xy) = τ L (x)τ L (y) using the relation ∆ ⊗ id(Θ) = Ψ 23 (Θ 13 )Θ 23 . It remains to check that τ L and τ L coincide on the generators of U q (sl 2 ), which is a straightforward calculation.

As noted in [Cra+20, Lemma 4.1], the map τ L is also given by conjugation by the R-matrix.

Lemma 3.11. For any x ∈ U q (sl 2 ) lf we have

τ L (x) = Ψ -1 Θ 21 (1 ⊗ x)Θ -1
21 . Proof. We start with the conjugation by Θ 21 :

Θ 21 (1 ⊗ x)Θ -1 21 = i,j≥0 v i v j ⊗ u i xS(u j )K j = i,j≥0 v i v j ⊗ u i xS K i u j K i+j = i≥0 v i ⊗ (u i x)K i ,
the last equality following from ∆ ⊗ (Θ) = Ψ 23 (Θ 13 )Θ 23 and from the definition of the adjoint action. Applying Ψ -1 concludes the proof.

Corollary 3.12. The map τ L is a morphism of algebras and defines a left coation of U q (sl 2 ) on U q (sl 2 ) lf , that is

(∆ ⊗ id) • τ L = (id ⊗τ L ) • τ L and (ε ⊗ id) • τ L = id.
Proof. The map τ L is clearly a morphism of algebra thanks to Lemma 3.11. It is also not difficult to check that it is a left coaction using the relation id ⊗∆(Ψ) = Ψ 12 (Θ 13 )Θ 12 .

Finally, we obtain an explicit formula for the image of ∆ (k-1) (x) i under unbraiding.

Proposition 3.13. Let n ∈ Z >0 , k ∈ Z ≥0 with k ≤ n, i = (i 1 , . . . , i k ) with 1 ≤ i 1 < • • • < i k ≤ n and x ∈ U q (sl 2 ) lf . Then γ n ∆ (k-1) (x) i = id ⊗(i k -2) ⊗α i k -1 • • • • • (id ⊗α 2 ) • α 1 (x) ⊗ 1 n-i k , with α i = ∆ if i ∈ {i 1 , . . . , i k } and α i = τ L otherwise.
Proof. Once again, we proceed on induction on n, and there is nothing to prove if n = 1. Let us suppose the result proven for some n ∈ Z >0 and any k, i and x as above. Let

k ≤ n + 1, i = (i 1 , . . . , i k ) with 1 ≤ i 1 < • • • < i k ≤ n + 1 and x ∈ U q (sl 2 ) lf . We first suppose that i 1 = 1 so that ∆ (k-1) (x) i = 1 ⊗ ∆ (k-1) (x) i-1 , where i -1 = (i 1 -1, . . . , i k -1). Then ϕ n+1 ∆ (k-1) (x) i = i≥0 K i+|x| v i ⊗ u i ∆ (k-1) (x) i-1 = i≥0 K i+|x| v i ⊗ ∆ (k-1) (u i x) i-1 .
By the induction hypothesis, we have

γ n ∆ (k-1) (u i x) i-1 = id ⊗(i k -3) ⊗β i k -2 • • • • • (id ⊗β 2 ) • β 1 (u i x) ⊗ 1 n-i k +1 , with β i = ∆ if i ∈ {i 1 -1, . . . , i k -1} and β i = τ L otherwise. Therefore, γ n+1 ∆ (k-1) (x) i = (id ⊗γ n ) • ϕ n+1 ∆ (k-1) (x) i = i≥0 K i+|x| u i ⊗ γ n ∆ (k-1) (v i x) i-1 = id ⊗(i k -2) ⊗β i k -2 • • • • • (id ⊗β 2 ) • (id ⊗β 1 )   i≥0 K i+|x| u i ⊗ (v i x)   ⊗ 1 n-i k +1 = id ⊗(i k -2) ⊗β i k -2 • • • • • (id ⊗β 2 ) • (id ⊗β 1 ) • τ L (x) ⊗ 1 n-i k +1 , which has the desired form if we set α i = β i-1 for 2 ≤ i ≤ i k -1 and α 1 = τ L .
We now suppose that i 1 = 1 so that

∆ (k-1) (x) i = i≥0 x (1) S K i+|x (2) | v i ⊗ u i ∆ (k-2) x (2) i --1 ,
where i --1 = (i 2 -1, . . . , i k -1). Then we have

ϕ n+1 ∆ (k-1) (x) i = i,j≥0 x (1) S K µ+|x (2) | v i K i+j+|x (2) | v j ⊗ (u j u i ) ∆ (k-2) x (2) i --1 = i,j≥0 x (1) S(v i )K j v j ⊗ (u j u i ) ∆ (k-2) x (2) i --1 = x (1) ⊗ ∆ (k-2) (x) i --1 ,
the last equality following once again from Theorem 3.3. As in the case i 1 = 1, we use the inductive definition of γ n+1 , apply the induction hypothesis and obtain the expected result, the only difference being that α 1 = ∆ instead α 1 = τ L .

Remark 3.14. In the specific case of k = n, the previous proposition states that γ n • ∆ (n-1) = ∆ (n-1) • γ 1 .

With x = Λ we recover the generator Λ A of AW(n) for a suitable A ⊂ {1, . . . , n}.

Corollary 3.15. The element ∆ (k-1) (Λ) i is sent to the element Λ A of the Askey-Wilson algebra under the unbraiding map γ n , where A = {i 1 , . . . , i k }.

Since the Casimir element Λ is central, combining Proposition 3.13 with Corollary 3.9, we obtain the following corollary:

Corollary 3.16. The Askey-Wilson algebra AW(n) is a subalgebra of the centralizer of U q (sl 2 ) in U q (sl 2 ) ⊗n .

Moduli algebras

In order to state the results of Costantino-Lê for (stated) skein algebras of punctured spheres, we introduce the quantum coordinate algebra and the reflection equation algebra.

4.1. Quantum coordinate algebra. We begin by defining the quantum coordinate algebra, otherwise known as the Faddeev-Reshetikhin-Takhtajan algebra [START_REF] Yu | Quantization of Lie groups and Lie algebras[END_REF], for the following 4 × 4 R-matrix:

R =     q 0 0 0 0 1 q -q -1 0 0 0 1 0 0 0 0 q     .
Definition 4.1. The quantum coordinate algebra SL q (2) is the algebra with generators the entries of

the matrix U = u + + u + - u - + u - -
with the relations given by

u + -u + + = qu + + u + -, u - -u + -= qu + -u - -, u - + u + + = qu + + u - + , u - -u - + = qu - + u - -, u + -u - + = u - + u + -, and 
u + + u - --q -1 u + -u - + = 1, u - -u + + -qu - + u + -= 1.
We endow this algebra with a structure of a Hopf algebra with coproduct ∆, counit ε and antipode S given by

∆ u + + u + - u - + u - - = u + + ⊗ u + + + u + -⊗ u - + u + -⊗ u - -+ u + + ⊗ u + - u - + ⊗ u + + + u - -⊗ u - + u - -⊗ u - -+ u - + ⊗ u + - , ε u + + u + - u - + u - - = 1 0 0 1 , and S u + + u + - u - + u - - = u - - -qu + - -q -1 u - + u + + .
There exists a non-degenerate Hopf pairing •, • between SL q (2) and U q (sl 2 ) given by

K, u + + u + - u - + u - - = q 0 0 q -1 , E, u + + u + - u - + u - - = 0 1 0 0 and F, u + + u + - u - + u - - = 0 0 1 0 .
This pairing implies that any right comodule over SL q (2) can be turned into a left module over U q (sl 2 ): if M is a right SL q (2)-comodule with coaction ∆ M then the action of U q (sl 2 ) is

x • m = x, m (0) m (1) , with the right coaction on M being ∆ M (m) = m (1) ⊗ m (0) .
Example 4.2. It can be checked that the left U q (sl 2 )-module structure arising from the right SL q (2)comodule structure on SL q (2) is given on the generators by

K • u + + = qu + + , K • u + -= q -1 u + -, K • u - + = qu - + , K • u - -= q -1 u - -, E • u + + = 0, E • u + -= u + + , E • u - + = 0, E • u - -= u - + , F • u + + = u + -, F • u + -= 0, F • u - + = u - -, F • u - -= 0.
The Hopf algebra SL q (2) is cobraided with the co-R-matrix ρ being given by R:

ρ u + + u + - u - + u - - ⊗ u + + u + - u - + u - - = R.
Therefore, the category of right SL q (2)-modules is braided: given two SL q (2)-modules V and W with respective coactions ∆ V and ∆ W , the co-R-matrix ρ defines an isomorphism c ρ V,W :

V ⊗ W → W ⊗ V given by c ρ V,W (v ⊗ w) = ρ v (0) ⊗ w (0) w (1) ⊗ v (1)
where ∆

V (v) = v (1) ⊗ v (0) ∈ V ⊗ SL q (2) and ∆ W (v) = w (1) ⊗ w (0) ∈ W ⊗ SL q (2).
The following proposition is classical and compares the two braidings c ρ V,W and c V,W , where we see V and W as left U q (sl 2 )-modules through the pairing.

Proposition 4.3. Let V and W be two right comodules over SL q (2) that we also equip with the structure of left modules over U q (sl 2 ). If the obtained modules are weight modules with a locally nilpotent action of E and F . Then we have c V,W = c ρ V,W as maps from V ⊗ W to W ⊗ V . Proof. By definition, we have

c ρ V,W (v ⊗ w) = ρ v (0) ⊗ w (0) w (1) ⊗ v (1) , and 
c V,W (v ⊗ w) = n≥0 q (|v|+2n)(|w|-2n)/2 q n(n-1)/2 (q -q -1 ) n [n]! E n , v (0) F n , w (0) w (1) ⊗ v (1)
for all weight vectors v ∈ V and w ∈ W . Note that since ∆

V (K • v) = (1 ⊗ K) • ∆ V (v)
, and similarly for W , we have

c R V,W (v ⊗ w) = n≥0 q (|v (0) |+2n)(|w (0) |-2n)/2 q n(n-1)/2 (q -q -1 ) n [n]! E n , v (0) F n , w (0) w (1) ⊗ v (1) .
Therefore, the claim is proved once we have checked that

(4.1) ρ(x ⊗ y) = n≥0 q (|x|+2n)(|y|-2n)/2 q n(n-1)/2 (q -q -1 ) n [n]! E n , x F n , y .
Denote by ρ (x⊗y) the right-hand side of Equation (4.1). Using the various properties of the R-matrix and of the co-R-matrix, it is a routine calculation to check that

ρ (xy ⊗ z) = ρ x ⊗ z (1) ρ y ⊗ z (2) , ρ (1 ⊗ z) = ε(z), ρ (x ⊗ yz) = ρ x (1) ⊗ z ρ x (2) ⊗ y , ρ (x ⊗ 1) = ε(x),
for all x, y and z ∈ SL q (2). Therefore, it remains to check that ρ(x ⊗ y) = ρ (x ⊗ y) for x and y in the set {u ± ± }, which is an easy and omitted calculation.

4.2. Reflection equation algebras. We now introduce another algebra which is not isomorphic to the quantum coordinate algebra but is twist-equivalent to it [START_REF] Donin | Reflection equation, twist, and equivariant quantization[END_REF].

Definition 4.4. The reflection equation algebra O q (SL 2 ) is the algebra with generators the entries of

the matrix K = k + + k + - k - + k - -
which satisfy the following:

(1) the quantum determinant relation:

k + + k - --qk + -k - + = 1, (2) the reflection equation: R 21 (K ⊗ I)R(K = I 2 ⊗ K) = (I ⊗ K)R 21 (K ⊗ I)R.
From the theory of L-operators, see for example [VY20, Proposition 3.116], we may deduce an algebra isomorphism between O q (SL 2 ) and U q (sl 2 ) lf . It is explicitly given by

k + + k + - k - + k - - → q -1 Λ -q -1 K q -1 q -q -1 E q -q -1 KF K .
The bar coproduct ∆ on U q (sl 2 ) lf defined in Section 3.3 has a much nicer expression through this isomorphism: it becomes the usual matrix coproduct given by

K → k + + ⊗ k + + + k + -⊗ k - + k + -⊗ k - -+ k + + ⊗ k + - k - + ⊗ k + + + k - -⊗ k - + k - -⊗ k - -+ k - + ⊗ k + - .
Finally, we note also that the element tr q (K) := qk + + + q -1 k - -is sent to the Casimir element Λ.

4.3. Alekseev moduli algebras. We end this section by introducing Alekseev moduli algebras, also known as quantum loop algebras, in the case of U q (sl 2 ). These algebras are attached to the punctured surfaces Σ g,r . In the particular case of the punctured sphere Σ 0,n+1 , we recover the braided tensor power O q (SL 2 ) ⊗n U q (sl 2 ) lf ⊗n already encountered in Section 3.4. In general, we also need the notion of the elliptic double D q (SL 2 ). As a vector space, the elliptic double is isomorphic to O q (SL 2 ) ⊗2 , see [START_REF] Brochier | Fourier transform for quantum D-modules via the punctured torus mapping class group[END_REF] for further details on the multiplication.

Definition 4.5. The Alekseev moduli algebra associated with the punctured surface Σ g,r is

L Σg,r = D q (SL 2 ) ⊗g ⊗O q (SL 2 ) ⊗r-1 ,
where ⊗ still denotes the braided tensor product.

It should be noted that, as a vector space, the algebra L Σg,r (SL 2 ) is isomorphic to O q (SL 2 ) ⊗2g+r-1 . Indeed, D q (SL 2 ) is defined as a vector space by O q (SL 2 ) ⊗2 and the multiplication is twisted using the R-matrix. We will also write L Σg,r = O q (SL 2 ) ⊗2g ⊗O q (SL 2 ) ⊗r-1 , where ⊗ emphasises that the multiplication on O q (SL 2 ) ⊗2g is not the trivial one, but is such that O q (SL 2 ) ⊗2g = D q (SL 2 ) ⊗g as an algebra.

Skein Algebras

In this section, we shall prove that the Askey-Wilson algebra AW(n) is isomorphic to the Kauffman bracket skein algebra Sk q (Σ 0,n+1 ) of the (n + 1)-punctured sphere and explicitly match up the generators on both sides of this correspondence. To do this we shall consider the Kauffman bracket skein algebra as a subalgebra of the stated skein algebra. Costantino and Lê proved that the stated skein algebra of a (n+1)-punctured sphere is isomorphic to the braided tensor product of n copies of the reflection equation algebra O q (SL 2 ) [START_REF] Costantino | Stated skein algebras of surfaces[END_REF]. The reflection equation algebra is in turn isomorphic to U q (sl 2 ) lf (Section 4.2). Finally, we shall use the description of the Askey-Wilson algebra AW(n) as a subalgebra of the braided tensor product of n copies of U q (sl 2 ) lf which we developed in Section 3.4 to obtain our result. 5.1. Kauffman Bracket Skein Algebras and Stated Skein Algebra. The Kauffman bracket skein algebra is based on the Kauffman bracket: Definition 5.1. Let L be a link without contractible components (but including the empty link). The Kauffman bracket polynomial L in the variable q is defined by the following local skein relations:

= q 1 2 + q -1 2 , (5.1) = -q -q -1 . (5.2)
These diagrams represent links with blackboard framing which are identical outside a 3-dimensional disc and are as depicted inside the disc. It is an invariant of framed links and it can be 'renormalised' to give the Jones polynomial. The Kauffman bracket can also be used to define an invariant of 3-manifolds: Definition 5.2. Let M be a smooth 3-manifold, R be a commutative ring with identity and q be an invertible element of R. The Kauffman bracket skein module Sk q (M ) is the R-module of all formal linear combinations of links, modulo the Kauffman bracket skein relations pictured above.

Remark 5.3. For the remainder of the paper we will use the coefficient ring R := C q 1/4 . For a surface Σ, we define its skein algebra Sk q (Σ) to be the skein module Sk q (Σ × [0, 1]) and define multiplication by first stacking the links on top of each other to obtain a link in Σ × [0, 2] and then rescaling the second coordinate to obtain Σ × [0, 1] again. Usually links are drawn by projecting onto Σ. In this case the multiplication XY is obtained by drawing Y above X.

Typically, this algebra is noncommutative; however, its q = ±1 specialisation is commutative since in this case the right-hand side of the first skein relation is symmetric with respect to switching the crossing. Bullock, Przytycki and Sikora [Bul97; PS00] showed that at q = -1 the skein algebra Sk q (Σ) is isomorphic to the ring of functions on the SL 2 character variety of Σ. [START_REF] Bullock | Understanding the Kauffman bracket skein module[END_REF] strengthened this statement by showing that the skein algebra is a quantization of the SL 2 character variety of Σ with respect to Atiyah-Bott-Goldman Poisson bracket.

Recall that Σ g,r denotes the compact oriented surface with genus g and r punctures. We will restrict ourselves to punctured surfaces so we assume that r > 1. Every punctured surface Σ g,r has a handlebody decomposition which is given by attaching n = 2g + r -1 handles to a disc. For example, the handlebody decomposition of Σ 0,5 is shown in Figure 1.

Definition 5.4. Let Σ • g,n denote the surface with a choice of marking on its boundary. The marking must be on the disc part of the handlebody decomposition of the surface.

For every subset A ⊆ {1, . . . , n} there is a simple closed curve s A which intersects the handles A. These simple curves s A form a generating set for the skein algebra:

1 2 3 4 ∼ = 1 2 3 4 ∼ = 2 3 4 1 Figure 1.
This figure shows the handlebody decomposition of Σ • 0,5 . One of the five punctures is around the outside of the figures and the other four punctures are labeled 1-4. The marking on the boundary is depicted as a black circle and the generating loop s 13 is also shown.

Theorem 5.5 ([Bul99]

). The curves s A for all non-empty subsets A ⊆ {1, . . . , n} generate the skein algebra Sk q (Σ 0,n+1 ).

In order to relate these Kauffman bracket skein algebras to quantum loop algebras, one must consider the skein algebra as a subalgebra of an algebra of skeins which are not all closed loops. Definition 5.6 ( [START_REF] Thang | Triangular decomposition of skein algebras[END_REF]). Let Σ be an oriented surface with boundary ∂Σ. Let T be a tangle in Σ × [0, 1] together with a colouring ± on each point where T meets the boundary ∂Σ. The stated skein algebra Sk st q (Σ) is the R-module of all formal linear combinations of isotopy classes of such tangles T , modulo the Kauffman bracket skein relations (Equations (5.1) and (5.2)) and the boundary conditions:

+ + = _ _ = 0 + _ = q -1 4 = q 1 4 _ + -q 5 4 _ + (5.3)
The reason we wish to consider stated skein algebras is that stated skein algebras satisfy excision [CL20, Theorem 4.12] which in particular means that the stated skein algebra Sk st q Σ • 0,n+1 can be constructed out of copies of the simpler skein algebra Sk st q Σ • 0,2 . Remark 5.7. Stated skein algebras are a special case for SL 2 of internal skein algebras which were defined by Gunningham, Jordan, and Safronov [START_REF] Gunningham | The finiteness conjecture for skein modules[END_REF] based on skein categories [Coo19a; JF21]. Skein categories and thus internal skein algebras are defined for any linear ribbon category V over any unital commutative ring.

5.2. Isomorphism of Skein Algebra and Askey-Wilson Algebra. In this subsection we shall combine the results of this paper so far together with the results of Costantino and Lê to obtain an explicit isomorphism between the Kauffman bracket skein algebra of the (n + 1)-punctured sphere Sk q Σ • 0,n+1 and the rank n Askey-Wilson algebra AW(n).

Costantino and Lê [CL20, Theorem 3.4] show that the quantum coordinate algebra 4 SL q (2) has a straightforward topological interpretation as the stated skein algebra of the bigon B with isomorphism

Sk st q (B) ∼ -→ SL q (2) : α(a, b) → u a b
By embedding the marked annulus Σ • 0,2 into the bigon as shown in the figure they conclude: Proposition 5.8 ([CL20, Proposition 4.25]). The stated skein algebra Sk st q Σ • 0,2 is isomorphic as a Hopf algebra to the reflection equation algebra O q (SL 2 ).

The isomorphism is described explicitly in the proof of Proposition 4.25 5 and on generators this isomorphism is given by (5.4)

β(ε 1 , ε 2 ) → C(-ε 1 )k -ε1 ε2
where C(+) = C(-) = -q -5/4 and C(-) = C(+) = q -1/4 . 4 Costantino and Lê follow Majid in referring to SLq(2) as the quantum coordinate algebra and denote it as Oq(G).

This Oq(G) does not correspond to our Oq(G) which denotes the reflection equation algebra.

5 Note that the reflection equation algebra is denoted BSLq(2) by Costantino and Lê and referred to as the transmuted or braided version of the quantum coordinate algebra. The skein algebra of the (marked) annulus Sk q Σ • 0,2 is isomorphic to R[s 1 ] where s 1 is the loop around the puncture. If we consider Sk q Σ • 0,2 as a subalgebra of the associated stated skein algebra we have

s 1 = = q 1 4 + _ -q 5 4 + _ → q 1 4 C(-)k - --q 5 4 C(+)k + + = -q -1 k - --qk + + ,
so using Proposition 5.8 together with the results of Section 4.2 we conclude:

f 1 : Sk st q Σ • 0,2 ∼ -→ O q (SL 2 ), s 1 → -tr q (K)
Using the excision of stated skein algebras, this result can be extended to multiple punctures.

Proposition 5.9 ([CL20]). The stated skein algebra Sk st q Σ • 0,n+1 is isomorphic as an algebra to the quantum loop algebra L Σ0,n+1 = O q (SL 2 ) ⊗n . Moreover, this isomorphism sends the closed loop s A , for

A = {i 1 < • • • < i r }, to the element -∆ (k-1) (tr q (K)) i of O q (SL 2 ) ⊗n .
Proof. The isomorphism is given in [CL20, Proposition 4.25]. We untangle the definition of this isomorphism and compute it on the closed loops s

A . Let A = {i 1 < • • • < i k } be a subset of {1, • • • , n}.
Using one puncture to flatten the sphere the loop s A has form

... ... ... i 1 i 2 i k-1 i k ... ...
As before we apply Equation (5.3) to obtain

C(+) -1 ... ... ... i 1 i 2 i k-1 i k + _ + C(-) -1 ... ... ... i 1 i 2 i k-1 i k + _
Applying the relation again at each puncture leaves us with

ε,εi C(-ε) -1 k-1 i=1 C(ε i ) -1 ... ... ... i 1 i 2 i k-1 i k -ε ε ε 1 -ε 1 ε 2 ...-ε k-2 ε k-1 -ε k-1
where we sum over all possible values of ε, ε i ∈ {±}. The map g n is now simply given by Equation (5.4) on each puncture so we have

ε,εi C(-ε) -1 C(ε) k-1 i=1 C(ε i ) -1 C(ε i ) k i=1 k εi εi+1 i = ε∈{±} C(-ε) -1 C(ε)∆ (k-1) (k ε ε ) i = -q∆ (k-1) k + + i -q -1 ∆ (k-1) k - -i
= -∆ (k-1) (tr q (K)) i as required.

Remark 5.10. In [START_REF] Costantino | Stated skein algebras of surfaces[END_REF], the braided structure on the tensor product O q (SL 2 ) ⊗n is defined using the co-R-matrix ρ. But, as an easy consequence of Proposition 4.3, this braided structure is the same as the braided structure obtained with the R-matrix of U q (sl 2 ) and the left action of U q (sl 2 ) on O q (SL 2 ) arising from the adjoint action.

Combining Proposition 5.9 with our previous results we conclude:

Theorem 5.11. If q is generic then there is an algebra isomorphism Sk q Σ • 0,n+1 → AW(n) sending the closed loop s A ∈ Sk q Σ • 0,n+1 to -Λ A ∈ AW(n).

Proof. By Proposition 5.9 there is an isomorphism Sk st q Σ • 0,n+1 → O q (SL 2 ) ⊗n . By Section 4.2 there is an isomorphism O q (SL 2 ) → U q (sl 2 ) lf which gives us an isomorphism g n : Sk st q Σ • 0,n+1 → U q (sl 2 ) lf ⊗n . Combining this with the injective unbraiding map γ n : U q (sl 2 ) lf ⊗n → U q (sl 2 ) ⊗n defined in Section 3.4 gives us an injective algebra morphism

Sk st q Σ • 0,n+1 gn -→ U q (sl 2 ) lf ⊗n γn -→ U q (sl 2 ) ⊗n .
Therefore, to prove the result it is sufficient to show that the generators

s A ∈ Sk q Σ • 0,n+1 ⊂ Sk st q Σ • 0,n+1
are sent to the generators -Λ A ∈ AW(n) ⊂ U q (sl 2 ) ⊗n , which follows from the explicit computations in Proposition 5.9 and Corollary 3.15.

Commutator Relations

As an illustration of the usefulness of being able to use diagrams for calculations involving Askey-Wilson algebras, we are now going to reprove the main results of [De 19]. The first result is proving that loops in AW(n) satisfy a generalisation of the commutator relations used to define AW(3). Theorem 6.1. Let A 1 , A 2 , A 3 , A 4 ⊆ {1, . . . , n} such that max A i < min A j whenever i < j and both A i and A j are non empty. Let A and B be one of the following (1)

A = A 1 ∪ A 2 ∪ A 4 and B = A 2 ∪ A 3 , (2) A = A 2 ∪ A 3 and B = A 1 ∪ A 3 ∪ A 4 , (3) A = A 1 ∪ A 3 ∪ A 4 and B = A 1 ∪ A 2 ∪ A 4 We have the commutator [Λ A , Λ B ] q = q -2 -q 2 Λ (A∪B)\(A∩B) + q -q -1 Λ A∩B Λ A∪B + Λ A\(A∩B) Λ B\(A∩B) .
Proof. We use the isomorphism Sk q (Σ 0,n+1 ) → AW(n) : s A → -Λ A and instead prove the result for loops in Sk q (Σ 0,n+1 ). As usual, we represent Σ 0,n+1 as n points in a line with the final point used to flatten the sphere onto the page. We omit any point not in A 1 ∪ A 2 ∪ A 3 ∪ A 4 as these points make no difference to the calculation: either they are to the left or right of the loops, or the loops pass below them. We note that the condition on the A i means that all the points are partitioned into A 1 , A 2 , A 3 , A 4 in order.

If

A = A 1 ∪ A 2 ∪ A 4 and B = A 2 ∪ A 3 then we have s A s B = A 1 A 2 A 3 A = A 1 A 2 A 3 A + q -1 A 1 A 2 A 3 A 4 + q A 1 A 2 A 3 A 4 + A 1 A 2 A 3 A 4 s B s A = A 1 A 2 A 3 A 4 = A 1 A 2 A 3 A 4 + q A 1 A 2 A 3 A + q -1 A 1 A 2 A 3 A 4 + A 1 A 2 A 3 A 4
Hence, we have qs A s B -q -1 s B s A = q 2 -q -2 s (A∪B)\(A∩B) + q -q -1 (s A\(A∩B) s B\(A∩B) + s A∩B s A∪B ).

The other cases are similar.

The second result of [De 19] is even easier to prove: Theorem 6.2. Let B ⊆ A ⊂ {1, . . . , n} then Λ A and Λ B commute.

Proof. If B ⊆ A ⊂ {1, . . . , n} then the loops s A and s B do not intersect so they commute.

As the loops s A and s B also do not intersect if A ∩ {min B, . . . , max B} = ∅, we also have: Proposition 6.3. Let B, A ⊂ {1, . . . , n} such that A ∩ {min B, . . . , max B} = ∅ then Λ A and Λ B commute.

Remark 6.4. Note that the loops s A and s B also do not intersect when A ∩ {min B, . . . , max B} = ∅. Hence, we can immediately conclude in this case that s A and s B commute. Alternatively, this is the case of Theorem 6.1 with

A 1 = { a ∈ A | a < b, ∀b ∈ B }, A 2 = ∅, A 3 = B and A 4 = { a ∈ A | a > b, ∀b ∈ B }.

Action of the braid group

As noted in [Cra+21a, Section 8], both the Askey-Wilson algebra AW(3) and the skein algebra of the 4-punctured sphere admit an action of the braid group on 3 strands, and these actions are compatible with the isomorphism between the Askey-Wilson algebra and the skein algebra. We give in this section a higher rank version of this result.

Recall that the braid group on n strands B n is the group with the following presentation:

β 1 , . . . , β n-1 | β i β i+1 β i = β i+1 β i β i+1 for 1 ≤ i < n -1, β i β j = β j β i for |i -j| > 1 .
7.1. Action of B n on the skein algebra of the n + 1-punctured sphere. The braid group B n acts by half Dehn twists on the skein algebra of the (n + 1)-punctured sphere. It permutes the punctures by anti-clockwise rotations and any framed link on the sphere is continuously deformed during the rotation process.

Example 7.1. For example, the generator β 2 permutes anti-clockwise the second and third punctures and the framed link is deformed during the process:

β 2 •       = Proposition 7.2. Let A = {i 1 < • • • < i k } be
a non-empty subset of {1, . . . , n} and 1 ≤ i ≤ n -1. We have

β i • s A =          s A if i, i + 1 ∈ A or i, i + 1 ∈ A, s (A\{i})∪{i+1} if i ∈ A, i + 1 ∈ A, s A , s {i,i+1} q -q -q -1 s i+1 s A∪{i} + s i s A\{i+1} q 2 -q -2 if i ∈ A, i + 1 ∈ A. Proof. If i, i + 1 ∈ A or i, i + 1 ∈ A, there is nothing to prove. If i ∈ A and i + 1 ∈ A, it is clear that β i • s A = s (A\{i})∪{i+1}
. The case i ∈ A and i + 1 ∈ A is a pleasant computation along the lines of the graphical proof of Theorem 6.1.

7.2. Action of B n on the higher rank Askey-Wilson algebra. The action of the braid group B n on AW(n) by algebra automorphisms is given by conjugation by the R-matrix. Given x ∈ U q (sl 2 ) ⊗ U q (sl 2 ), we define β(x) in (a completion of) U q (sl 2 ) ⊗ U q (sl 2 ) by:

β(x) = σ Ψ -1 ΘxΘ -1
where σ(a ⊗ b) = b ⊗ a. For 1 ≤ i ≤ n -1 the action of the generator β i ∈ B n is given by the endomorphism id ⊗i-1 ⊗β ⊗ id ⊗n-i-1 . Once again, we should act on a completion of U q (sl 2 ) ⊗n because the quasi-R-matrix Θ is an infinite sum.

The properties of the quasi-R-matrix Θ ensure that we obtain an action of B n . Thanks to Lemma 3.11, the generators Λ A of the Askey-Wilson algebra can be rewritten using the action of the braid group. Given i < j, let

β i,j = β j-1 • • • β i+1 β i . Then if A = {i 1 < • • • < i k } is a non-empty subset of {1, . . . , n}, we have Λ A = β 1,i1 β 2,i2 • • • β k,i k • ∆ (k-1) (Λ) ⊗ 1 ⊗n-k ∈ AW(n).
Proposition 7.3. The action of the braid group on (a completion of ) U q (sl 2 ) ⊗n restricts to AW(n). Moreover, the images of the generators Λ A are given as follows:

β i • Λ A =          Λ A if i, i + 1 ∈ A or i, i + 1 ∈ A, Λ (A\{i})∪{i+1} if i ∈ A, i + 1 ∈ A, - Λ A , Λ {i,i+1} q -q -q -1 Λ i+1 Λ A∪{i} + Λ i Λ A\{i+1} q 2 -q -2 if i ∈ A, i + 1 ∈ A.
Proof. The first assertion follows from the explicit formulas for the action since this shows that

ψ i (Λ A ) ∈ AW(n) for all 1 ≤ i ≤ n -1 and A ⊆ {1, . . . , n}. Let A = {i 1 < • • • < i k } be a non-empty subset of {1, . . . , n}.
We first suppose that i ∈ A. Let j be such that i j = i. Since β i β r,s = β r,s β i if i + 1 < r or s < i, we have

β i • Λ A = β i • β 1,i1 β 2,i2 • • • β k,i k • ∆ (k-1) (Λ) ⊗ 1 ⊗n-k = β 1,i1 • • • β j-1,ij-1 β i β j,ij • • • β k,i k • ∆ (k-1) (Λ) ⊗ 1 ⊗n-k = β 1,i1 • • • β j-1,ij-1 β j,i+1 β j+1,ij+1 • • • β k,i k • ∆ (k-1) (Λ) ⊗ 1 ⊗n-k , which is obviously equal to Λ (A\{i})∪{i+1} if i + 1 ∈ A.
If i + 1 ∈ A, then i j+1 = i + 1 and since β j,i+1 β j+1,i+1 = β j,i β j,i+1 = β j,i β j+1,i+1 β j , we find that

β i • Λ A = β 1,i1 β 2,i2 • • • β k,i k β j • ∆ (k-1) (Λ) ⊗ 1 ⊗n-k .
As Ψ(∆ op (x))Θ = Θ∆(x) and j < k, we have

β j • ∆ (k-1) (Λ) ⊗ 1 ⊗n-k = ∆ (k-1) (Λ) ⊗ 1 ⊗n-k . Therefore, β i • Λ A = Λ A .
We now suppose that i ∈ A. If we also have that i + 1 ∈ A then the arguments are similar to the previous case. If i + 1 ∈ A, we set A = A\{i + 1} ∪ {i}. Thanks to Theorem 6.1, we have

Λ A , Λ {i,i+1} q = -q 2 -q -2 Λ A + q -q -1 Λ i+1 Λ A∪{i} + Λ i Λ A\{i+1} .
We now act with β i to obtain

β i • Λ A , β i • Λ {i,i+1} q = -q 2 -q -2 β i • Λ A + q -q -1 (β i • Λ i ) β i • Λ A∪{i} + (β i • Λ i+1 ) β i • Λ A\{i+1} . But β i • Λ A = Λ A , β i • Λ {i,i+1} = Λ {i,i+1} , β i • Λ A∪{i} = Λ A∪{i} and β i • Λ A\{i+1} = Λ A\{i+1}
by the previous cases and β i • Λ i = Λ i+1 and β i • Λ i+1 = Λ i since the Casimir Λ is central. We then obtain the formula for β i • Λ A . Form Proposition 7.2 and Proposition 7.3, we immediately deduce the following Proposition 7.4. The algebra isomorphism Sk q (Σ 0,n+1 ) → AW(n) given by s A → -Λ A commutes with the action of the braid group B n .

Graded Dimensions

In this section we will compute the Hilbert series of the Askey-Wilson algebra AW(n) and the skein algebra Sk q (Σ g,r ) of the surface Σ g,r of genus g with r > 0 punctures. These algebras are filtered and their Hilbert series encodes vector space dimension of each graded part of the associated graded algebra. In the next section, we will use these Hilbert series to find presentations for AW(4) and Sk q (Σ 0,5 ).

Definition 8.1. The Hilbert series of the Z ≥0 graded vector space A = n∈Z ≥0 A[n -1] is the formal power series

h A (t) = n∈Z ≥0 dim(A[n])t n .
The Hilbert series of a Z ≥0 graded algebra A is the Hilbert series of its underlying Z ≥0 graded vector space.

We will use the isomorphism between the subalgebra L Uq(sl2) Σ0,n+1 of the Aleeksev moduli algebra L Σ0,n+1 which is invariant under the action of U q (sl 2 ) and the Askey-Wilson algebra AW(n) from Section 4, and also the isomorphism between L Uq(sl2) Σg,r and the skein algebra Sk q (Σ g,r ) from Section 5, so that we can instead compute the Hilbert series of L Uq(sl2) Σg,r whose compution is a generalisations of the calculations for Σ 0,4 by the first author in [START_REF] Cooke | Kauffman skein algebras and quantum Teichmüller spaces via factorization homology[END_REF].

Recall that the Alekseev moduli algebra

L Σg,r = D q (SL 2 ) ⊗g ⊗O q (SL 2 ) ⊗r-1 = O q (SL 2 ) ⊗2g ⊗O q (SL 2 ) ⊗r-1
is generated as an algebra by elements (k i ) δ ∈ K i → L Σg,r for i ∈ 1, . . . , (2g + r -1). If we define the degree |(k i ) δ | = 1 then all the relations of L Σg,r are homogeneous except the determinant relations

(k i ) + + (k i ) - --q(k i ) + -(k i ) - + = 1
for which the non-homogeneous element is in the ground ring. Hence, L Σg,r is filtered with the j th filtered part L Σg,r (j) being the vector space spanned by all monomials in the generators (k i ) δ with degree at most j 6 . As L Σg,r is filtered rather than graded we need to consider its associated graded algebra.

Definition 8.2. The associated graded algebra of the Z ≥0 filtered algebra

A = n∈Z ≥0 A(n) is G (A) = n∈Z ≥0 A[n] where A[n] = A(0) for n = 0 A(n)/A(n -1) for n > 0.
The Hilbert series of the Z ≥0 filtered algebra A = n∈Z ≥0 A(n) is the Hilbert series of the associated graded algebra G (A).

As L Σg,r is acted on by U q (sl 2 ) we can also decompose it into its weight spaces to obtain its character. Definition 8.3. Let V be a vector space acted on by U q (sl 2 ) and let V k denote the q k -weight space of V where k ∈ Z. The character of V is the formal power series

ch V (u) = k∈Z dim V k u k .
Using both the decomposition into graded parts and into weight spaces simultaneously gives the graded character.

6 Let A be a filtered algebra with generators {x i } to which we assign degrees |x i | ∈ Z >0 . Then the degree of an element f ∈ A is the smallest degree of any polynomial in the {x i } which represents f . Note that we have degree(f g) ≤ degree(f ) degree(g) rather than equality.

Definition 8.4. Let V = n V [n] be a graded vector space acted on by U q (sl 2 ). The graded character of

V is h V (u, t) := n ch V [n] (u)t n = n,k dim V [n] k u k t n , where V [n] k is the q k -weight space of V [n]. If V is filtered rather than graded the graded character of V h V (u, t) is h G (V ) (u, t)
, the graded character of associated graded vector space G (V ).

As the Alekseev moduli algebra L Σg,r is simply multiple copies of the reflection equation algebra O q (SL 2 ) tensored together its graded character is easy to determine: Proposition 8.5. The graded character of L Σg,r is

h A (u, t) = (1 + t) (1 -t)(1 -u 2 t)(1 -u -2 t) 2g+r-1 .
Proof. From [Coo20, Proposition A.6.] we have that the graded character of O q (SL 2 ) is

h Oq(SL2) (u, t) = (1 + t) (1 -t)(1 -u 2 t)(1 -u -2 t)
.

and as L Σg,r ∼ = (O q (SL 2 ) ⊗O q (SL 2 )) ⊗g ⊗O q (SL 2 ) ⊗r-1 this gives the result.

This can now be used to compute the Hilbert series of its U q (sl 2 ) invariant subalgebra:

Theorem 8.6. The Hilbert series of L

Uq(sl2) Σg,r is h(t) = (1 + t) n-2 (1 -t) n (1 -t 2 ) 2n-3 n-2 k=0 n -2 k 2 t 2k - n-3 k=0 n -2 k n -2 k + 1 t 2k+1
where n = 2g + r -1.

Proof. As we have filtered isomorphisms is sufficient to prove this result for L Uq(sl2) Σg,r

. We have that

(1 -ax) -n = ∞ k=0 n k a k x k ,
where

n k := n + k -1 k .
Appling this to the graded character of A = L Σg,r from Proposition 8.5

gives:

h A (u, t) = 1 + t 1 -t n 1 (1 -u 2 t) n (1 -u -2 t) n = 1 + t 1 -t n ∞ k=0 n k u 2k t k ∞ l=0 n l u -2l t l = 1 + t 1 -t n k+l=m n k n l u 2(k-l) t m
Similarly to in [START_REF] Cooke | Kauffman skein algebras and quantum Teichmüller spaces via factorization homology[END_REF] the Hilbert series h

A (t) of A = L Uq(sl2) Σg,r is determined by the u coefficient of (u -u -1 )h A (u, t). The u coefficient is h A (t) = 1 + t 1 -t n   k+l=m,k-l=0 n k n l t m - k+l=m,k-l=1 n k n l t m   = 1 + t 1 -t n ∞ m=0 n m 2 t 2m - ∞ m=0 n m n m + 1 t 2m+1 .
Using [Cra+21b, (6.10)], we have

1 (1 -t) n ∞ m=0 n m 2 t 2m - ∞ m=0 n m n m + 1 t 2m+1 = (1 + t) n-2 (1 -t 2 ) 3(n-1) n-2 k=0 n -2 k 2 t 2k - n-3 k=0 n -2 k n -2 k + 1 t 2k+1 ,
which gives the expected formula after multiplying by (1 + t) n .

Using the isomorphisms

L Uq(sl2) Σg,r → Sk q (Σ g,r ) : -∆ (k-1) (tr q (K)) i → s A and L Uq(sl2)
Σ0,n+1 → AW(n) : ∆ (k-1) (tr q (K)) i → Λ A from Section 4 and Section 5 we can induce a filtered structure on Sk q (Σ g,r ) such that s A has degree |A| and a filtered structure on AW(n) such that Λ A has degree |A|.

Corollary 8.7. The Hilbert series of the skein algebra Sk q (Σ g,r ) and the higher rank Askey-Wilson algebra AW(n) is

h(t) = (1 + t) n-2 (1 -t) n (1 -t 2 ) 2n-3 n-2 k=0 n -2 k 2 t 2k - n-3 k=0 n -2 k n -2 k + 1 t 2k+1
where n = 2g + r -1.

Remark 8.8. In [Cra+21b, Section 6.2], it is shown that the polynomial (1-t) n h(t) is the Hilbert series of the centraliser of the diagonal action U (sl 2 ) in U sl ⊗2 2 and that the numerator has positive coefficients. The term 1 (1-t) n is from counting the n simple loops s 1 , . . . , s n which are central and have no relations with any other loops so that Sk q (Σ 0,n+1 ) is free over the subalgebra generated by them.

Remark 8.9. This Hilbert series can also be written in terms of the hypergeometric function as follows:

h(t) = (1 + t) n (1 -t) n 2 F 1 (n, n; 1; t 2 ) -nt 2 F 1 (n, n + 1; 2; t 2 )
9. Presentation of the Skein Algebra of the Five-Punctured Sphere

In this section we shall use the isomorphisms between the Askey-Wilson algebra AW(n), the U q (sl 2 )invariants of the Alekseev moduli algebra and the skein algebra Sk q (Σ 0,n+1 ) together with the Hilbert series computed in the previous section to obtain a presentation for Sk q (Σ 0,5 ) and therefore also for AW(4). This case represents the lowest of the higher-rank Askey-Wilson algebras and was the case considered by Post and Walker.

Presentations of the Kauffman bracket skein algebra in the punctured surface case are only known for a handful of the simplest cases: punctured spheres with up to four punctures and punctured tori with either one or two punctures. The Hilbert series of Sk q (Σ g,r ) only depends on n = 2g + r -1 and so the cases for which a presentation for Sk q (Σ g,r ) in known correspond to n = 1, 2, 3 whereas in this section we shall consider the five-punctured sphere which corresponds to n = 4. Applying Corollary 8.7 for n = 4 we get:

Corollary 9.1. The Hilbert series of Sk q (Σ 0,5 ) and AW(4) is

h(t) = (1 + t) 2 (1 -t) 4 (1 -t 2 ) 5 1 -2t + 2t 2 -2t 3 + t 4 = 1 + t 2 + 4t 3 + t 4 + t 6 (1 -t) 4 (1 -t 2 ) 5
The difficulty for finding presentations for more complex punctured surfaces is that the number of generators and relations required increases and also, whilst it is easy to find relations using diagrams and resolving crossings, it is difficult to prove that you have found all the relations. We are able to overcome this second difficulty using the above Hilbert series.

In order to find the relations we will first generalise the relations in the presentation for the fourpunctured sphere found by Bullock and Przytycki 7 before considering the additional relations which are of a genuinely different nature.

Let x 1 = s 12 , x 2 = s 23 and x 3 = s 13 and let s 4 denote the loop around the outside puncture (see Figure 3). If curve x i separates s i , s j from s k , s , let p i = s i s j + s k s . Explicitly,

p 1 = s 1 s 2 + s 3 s 4 , p 2 = s 2 s 3 + s 1 s 4 , p 3 = s 1 s 3 + s 2 s 4 Theorem 9.2 ([BP00]
). As an algebra over the polynomial ring R[s 1 , s 2 , s 3 , s 4 ], the Kauffman bracket skein algebra Sk q (Σ 0,4 ) has a presentation with generators x 1 , x 2 , x 3 and relations [x i , x i+1 ] q = q 2 -q -2 x i+2 + q -q -1 p i+2 (indices taken modulo 3); (9.1)

Ω K = q + q -1 2 -p 1 p 2 p 3 p 4 + p 2 1 + p 2 2 + p 2 3 + p 2 4 ; (9.2)
where we have used the following Casimir element: Figure 4. The leading terms for the four types of relations in Sk q (Σ 0,5 ) which are generalisations of the cubic relation in Sk q (Σ 0,4 ).

Ω K := -qx 1 x 2 x 3 + q 2 x 2 1 + q -2 x 2 2 + q 2 x 2 3 + qp 1 x 1 + q -1 p 2 x 2 + qp 3 x 3 . 1 2 3 4 x 1 x 2 x 3
The first set of relations (Equation (9.1)) are the commutators relations from Theorem 6.1 and we will also want the commutator relations from this theorem for our case. The second relation (Equation (9.2)) can be derived by taking x 1 x 2 x 3 and resolving all crossings. As there are four ways to embed three points into four points we will end up with four such cubic relations; that is we will have relations whose left-hand sides are s 12 s 23 s 13 , s 23 s 34 s 24 , s 34 s 14 s 13 and s 12 s 14 s 24 . We shall also have four cubic relations where one of the diagonal loops, s 13 or s 24 , has been replaced by a triple loop; these have left-hand sides s 12 s 23 s 134 , s 23 s 34 s 124 , s 34 s 14 s 123 and s 12 s 14 s 234 . Furthermore, instead of using three loops to create a closed loop, we can use four loops giving the quartic relation: s 12 s 23 s 34 s 14 = s 1 s 3 s 12 s 23 + s 2 s 4 s 12 s 14 + s 2 s 4 s 23 s 34 + s 1 s 3 s 34 s 14 + qs 3 s 12 + qs 2 s 13 + q -1 s 1 s 23 + s 123 + q -1 s 4 s 1234 + s 1 s 2 s 3 s 123 + qs 4 s 13 + qs 3 s 14 + q -1 s 1 s 34 + s 134 + q -1 s 2 s 1234 + s 1 s 3 s 4 s 134 7 We have corrected a sign error in the first relation which appears in the published version of the paper [START_REF] Bullock | Multiplicative structure of Kauffman bracket skein module quantizations[END_REF].

+ qs 4 s 12 + qs 2 s 14 + q -1 s 1 s 24 + s 124 + q -1 s 3 s 1234 + s 1 s 2 s 4 s 124 + q -2 q -1 s 4 s 23 + q -1 s 3 s 24 + q -1 s 2 s 34 + q -2 s 234 + q -1 s 1 s 1234 + 2 -q 2 s 2 s 3 s 4 s 234 + q 2 s 12 + q + q -1 s 1 s 2 + s 3 s 4 s 1234 s 12 + q -2 s 23 + q -1 s 2 s 3 + q -2 s 1 s 4 s 1234 s 23 + q 2 s 14 + q + q -1 s 1 s 4 + s 2 s 3 s 1234 s 14 + q -2 s 34 + q -1 s 3 s 4 + q -2 s 1 s 2 s 1234 s 34 + q -2 s 24 + (q -1 -q)s 2 s 4 + q -2 s 1 s 3 s 1234 s 24 + q 2 s 13 + s 2 s 4 s 1234 s 13

+ q -2 s 2 1234 -s 2 2 s 2 4 -s 2 1 s 2 3 + q -1 s 1 s 2 s 3 s 4 s 1234 + 2 + q -2 s 2 1 + s 2 2 + s 2 3 + s 2 4 -2q 2 -5 -4q -2 -q -4
or we can create a closed loop from two triple loops:

s 123 s 134 = s 12 s 14 + s 23 s 34 -s 3 s 234 -s 1 s 124 + s 1234 s 13 -q + q -1 s 24 -s 2 s 4 s 124 s 14 = s 14 s 124 Whenever two loops do not intersect they commute. In the case n = 3 this only happens when one of the loops either contains a single point or all the points. As these loops which contain a single point or all the points are all central this is encoded by adding these loops to the polynomial ring. In the case n = 4 we still have these central loops but we also have pairs of loops neither of which are central which commute. This happens when the points of one of the loops is a subset of the points of the other loop:

s A s B = s B s A for A ⊆ B;
or when the loops are simply in different parts of the surface: s 12 s 34 = s 34 s 12 and s 23 s 14 = s 14 s 23 .

Note that determining whether two loops do not intersect is not a simple as noting that A ∩ B = ∅ as we have s 13 s 24 = q -2 s 12 s 34 + q 2 s 23 s 14 + q -1 s 1 s 2 s 34 + q -1 s 3 s 4 s 12 + qs 1 s 4 s 23 + qs 2 s 3 s 14

+ s 1 s 234 + s 4 s 123 + s 3 s 124 + s 2 s 134 + s 1 s 2 s 3 s 4 + q + q -1 s 1234
We shall call this relation the crossing relation. Whilst in the case n = 4 we only have a single crossing relation, relations of this type are a general feature of Sk q (Σ 0,n+1 ) for higher n.

For the remaining relations we need to consider afresh the proof of Theorem 6.1. This considers two loops s A and s B which are simply linked; that is to say there intersection looks like the intersection of s 12 and s 23 . When the crossings of s A s B are resolved one of the resultant terms is not a simple loop as the loop goes around the outside of the punctures C = A ∩ B (see Figure 7 for examples of the non-simple loops you obtain). In the proof this term is eliminated using s B s A to yield the commutator relation. However, note that s 12 s 23 s 34 and s 123 s 234 both yield the same non-simple term s 1234 . Hence, we get a relation s 123 s 234 = qs 12 s 23 s 34 -qs 3 s 12 s 234 -q -1 s 2 s 34 s 123 -q 2 s 12 s 24 -s 34 s 13 + s 3 s 134 + q -2 s 2 s 124 + q -1 -q s 2 s 4 s 12 + s 1234 s 23 + q + q -1 s 14 + q -1 s 2 s 3 s 1234 + s 1 s 4 s 13 s 24 Figure 6. There are three types of relation in Sk q (Σ 0,5 ) which do not correspond to any relation in Sk q (Σ 0,4 ). On the left is the leading term of the cross relation, in the middle of a triple link relation and on the right a double and triple relation. and by symmetry similar relations with left hand sides s 234 s 134 , s 134 s 124 and s 124 s 123 . Finally, resolving the crossing of s 24 s 123 yields the terms s 4123 and s 1234 which can be obtained from s 14 s 123 and s 34 s 123 respectively. This gives the relation s 24 s 123 = q 2 s 12 s 234 + q -2 s 23 s 124 + qs 4 s 12 s 23 -qs 2 s 4 s 123 -q 3 + q -3 s 134 -q 2 s 1 s 34 -q -2 s 3 s 14 -q 2 s 4 s 13 + 1 -q 2 -q -2 s 2 s 1234 -qs 1 s 3 s 4 and by symmetry similar relations with left-hand sides s 13 s 234 , s 24 s 134 and s 13 s 124 . The remainder of this section will be dedicated to proving that this set of relations is complete.

Theorem 9.3. The Kauffman bracket skein algebra Sk q (Σ 0,5 ) of the five-punctured sphere with generic q has a presentation as an algebra over R given by the simple loops s A for all A ⊆ {1, 2, 3, 4} with commuting relations [s 1 , s 2 ] q = q -2 -q 2 s (A∪B)\(A∩B) + q -q -1 s A∩B s A∪B + s A\(A∪B) s B\(A∪B)

where A and B are set of points with conditions as stated in Theorem 6.1, and relations for the following terms (see Appendix for full list of relations) 

s
→ • • • → (y ↓ z) and z → • • • → (y ↓ z).
(3) It is confluent if for all y ← -. . . ← -x -→ . . . -→ z there exists an element y ↓ z ∈ A such that there are paths y → • • • → (y ↓ z) and z → • • • → (y ↓ z). In a terminating confluent abstract rewriting system an element a ∈ A will always reduce to a unique reduced expression regardless of the order of the reductions used.

The diamond lemma (or Newman's lemma) for abstract rewriting systems states that a terminating abstract rewriting system is confluent if and only if it is locally confluent. Bergman's diamond lemma is an application to ring theory of the diamond lemma for abstract rewriting systems. The definitions given in this section can be found [Ber78, Section 1].

Let R be a commutative ring with multiplicative identity and X be an alphabet (a set of symbols from which we form words).

Definition 9.6. A reduction system S consists of term rewriting rules σ : W σ → f σ where W σ ∈ X is a word in the alphabet X and f σ ∈ R X is a linear combination of words. A σ-reduction r σ (T ) of an expression T ∈ R X is formed by replacing an instance of W σ in T with f σ . A reduction is a σ-reduction for some σ ∈ S. If there are no possible reductions for an expression we say it is irreducible.

Definition 9.7. The five-tuple (σ, τ, A, B, C) with σ, τ ∈ S and A, B, C ∈ X is an overlap ambiguity if W σ = AB and W τ = BC and an inclusion ambiguity if W σ = B and W τ = ABC. These ambiguities are resolvable if reducing ABC by starting with a σ-reduction gives the same result as starting with a τ -reduction.

Example 9.8. Suppose we have an alphabet X = a, b and reduction system S = { σ : ab → ba, τ : ba → a }. Then r σ (T ) = aba + a is a σ-reduction of T = aab + a. We also have an overlap ambiguity (σ, τ, a, b, a) which is resolvable as aba rσ -→ ba 2 rτ -→ a 2 gives the same expression as aba rτ -→ a 2 . Definition 9.9. A semigroup partial ordering ≤ on X is a partial order such that B ≤ B implies that ABC ≤ AB C for all words A, B, B , C. It is compatible with the reduction system S if for all σ ∈ S the monomials in f σ are less than W σ .

Definition 9.10. A reduction system S satisfies the descending chain condition or is terminating if for any expression T ∈ R X any sequence of reductions terminates in a finite number of reductions with an irreducible expression.

Lemma 9.11 (The Diamond Lemma [Ber78, Theorem 1.2]). Let S be a reduction system for R X and let ≤ be a semigroup partial ordering on X compatible with the reduction system S with the descending chain condition. The following are equivalent:

(1) All ambiguities in S are resolvable (S is locally confluent);

(2) Every element a ∈ R X can be reduced in a finite number of reductions to a unique expression r S (a) (S is confluent); (3) The algebra K = R X /I, where I is the two-sided ideal of R X generated by the elements (W σ -f σ ), can be identified with the R-algebra k X irr spanned by the S-irreducible monomials of X with multiplication given by a • b = r S (ab). These S-irreducible monomials are called a Poincare-Birkhoff-Witt basis of K. 9.2. Linear Basis for Sk q (Σ 0,5 ). In this subsection we will construct a locally consistant, terminating term rewriting system from the relations stated in Theorem 9.3 for Sk q (Σ 0,5 ). This will give a linear basis for Sk q (Σ 0,5 ) over the commutative ring R = R[s 1 , s 2 , s 3 , s 4 , s 1234 ] which we will then use to prove Theorem 9.3. The obvious approach would be to take each relation from Theorem 9.3 (except the first as this is implicit in our choice of base ring) and turn it into a rewriting rule. Whilst this approach works well for the relations whose left hand side is pairwise (is the product of two loops) adding the non-pairwise relations leads to an infinite TRWS which would be difficult to show that it was consistent 8 .

8 In [START_REF] Cooke | Kauffman skein algebras and quantum Teichmüller spaces via factorization homology[END_REF] the consistency of the resulting infinite system was proven by induction for the case fo Skq (Σ 0,4 ) however this method does not scale well.

Example 9.12. Assume we construct a TRWS with all the pairwise relations for Theorem 9.3 and the non-pairwise cubic relation for s 12 s 23 s 13 . One of the ambiguities for this TRW is the word s 23 s 12 s 23 s 13 which on the one hand can be reduced using the cubic relation and on the other hand using the commutator relation for s 23 s 12 . Using the commutator relation gives as its leading term s 12 s 2 23 s 13 which cannot be reduced further. However, the term s 12 s 2 23 s 13 does not arise if you start reducing with the cubic relation, and thus the system is not consistent. In order to make a consistent system you would need to add a rewriting rule for s 12 s 2 23 s 13 . Considering s 23 s 12 s 2 23 s 13 using the same argument as above leads to the conclusion you also need s 12 s 3 23 s 13 and indeed s 12 s n 23 s 13 for all n ∈ Z >0 in the TRWS: that is you end up with an infinite TRWS.

In order to avoid an infinite TRWS we add some extra generators so that all the relations are pairwise. In order to make the cubic relations pairwise we add the generators s 123 , s 234 , s 341 and s 412 and for the quartic relation we add the generators s 1234 , s 2341 , s 3142 and s 4123 . Finally, we also need the generators s 12,34 and s 23,14 which are just the products s 12 s 34 and s 12 s 34 respectively considered as a generator. We shall order these extended generators and place them into five groups as follows: I. : Using these generators the non-pairwise relations the cubic relations become s 123 s 13 = q -1 s 1 s 23 + qs 3 s 12 + s 1 s 2 s 3 + s 123 s 123 + q -1 s 2 s 3 + q -1 s 23 s 23 + q(s 1 s 2 + qs 12 )s 12 + s 2 1 + s 2 2 + s 2 3 -q + q -1 2 , s 123 s 134 = q -1 s 1 s 23 + qs 3 s 12 + s 1 s 2 s 3 + s 123 s 1234 + q(s 1 s 2 + qs 12 )s 124 + q -1 s 2 s 3 + q -1 s 23 s 234 + s 1 s 14 + s 2 s 24 + s 3 s 34 + q + q -1 s 4 , 9 In the handlebody decomposition of the surface, the handle associated to a double point will intersect the loop in two arcs.

s
and their symmetries, and the quartic relation becomes the two relations s 12 s 2341 = q -1 s 1 s 234 + qs 2 s 134 + s 1 s 2 s 34 + s 1234 s 1234 + q(s 1 s 34 + qs 134 )s 134 + q -1 s 2 s 34 s 234 + q -1 s 234 s 234 + s 2 1 + s 2 2 + s 2 34 -q + q -1 2 , s 23 s 3142 = qs 3 s 124 + q -1 s 2 s 134 + s 2 s 3 s 14 + s 1234 s 1234 + q(s 2 s 14 + qs 124 )s 124 + q -1 s 3 s 14 + q -1 s 134 s 134 + s 2 2 + s 2 3 + s 2 14 -q + q -1 2 . Unfortunately, adding extra generators massively increases the number of relations, but these extra relations can be generated from the original relations in a manner which will now be described.

Firstly we have the relations which relate the new generators to the simple generators which we shall call the generator generating relations. For the generators which consist of two disjoint loops these are trivial:

s 12 s 34 → s 12,34 s 23 s 14 → s 23,14

For the generators with a single double point the relations have the form:

s 12 s 23 → q -1 s 123 + qs 13 + s 1 s 3 + s 2 s 123
For the generators with two double points the relations have the form:

s 12 s 234 → q -1 s 1234 + s 1 s 4 + qp -1 s 34 s 13 -p -1 s 14 -s 1 s 4 -s 3 s 134 + p -1 s 2 s 34 s 123 -p -1 124 -s 4 s 12 -s 3 s 1234 s 12 s 23,14 → qs 13 s 14 + q -1 s 123 s 14 + s 2 s 123 s 14 + s 1 s 3 s 14 where p = q except when finding the coefficients for the symmetric relations it does not invert. For the full list of relations see the code After generating these new relations for all the original {bc → r bc } relations, iterate by the generating the relations where {bc → r bc } is one of these newly generated relations. This generates all the new relations including the extra generators apart from the commuting and commutator relations involving the extra generators. To generate these consider monomials ba where b > a, one of them is a new generator and ba is not reducible using the generator generating relations or any other relations we have generated so far. Consider the monomial b i a j where b i generates b and a j generates a as the leading term using the generator generating relations. We can generate a relation if:

• All the b i terms are larger than all the a j terms by considering x = b i a j • All the b i terms are smaller than all the a j terms by considering x = a j b i Take x and apply the generator generating relations to b i and a j separatly, then order the result using the commutator and commuting relations and rearrange the result to obtain a relation for ba. This generates a term rewriting system with 241 relations which we shall call S B we shall now show is confluent.

Proposition 9.14. All ambiguities in the term rewriting system S B are resolvable.

Proof. As all reductions in S B are pairwise, it is sufficient to check abc where a, b, c are basis elements such that { ab → r ab , bc → r bc } are reductions in S B . As there are 241 relations, there are a very large number of such ambiguities so we have used a computer to check these10 .

To use the diamond lemma for ring theory we now need to prove that the system S B terminates. We shall do this by constructing a partial order which is compatible with the term rewriting system. This partial order will be constructed by chaining together three different partial orders. The first ordering is ordering by reduced degree [Cas17, Section 15]: Definition 9.15. Give the letters of the finite alphabet X an ordering x 1 ≤ • • • ≤ x N . Any word W of length n can be written as W = x i1 . . . x in where x ij ∈ X. An inversion of W is a pair k ≤ l with x i k ≥ x i l i.e. a pair with letters in the incorrect order. The number of inversions of W is denoted |W |. Definition 9.16. Any expression T can be written as a linear combination of words T = c l W l . Define ρ n (T ) := length(W l )=n,c l =0 |W l |. The reduced degree of T is the largest n such that ρ n (T ) = 0. Definition 9.17. Under the reduced degree ordering, T ≤ S if

(1) The reduced degree of T is less than the reduced degree of S, or (2) The reduced degree of T and S are equal, but ρ n (T ) ≤ ρ n (S) for maximal nonzero n.

The second ordering is by total degree.

Definition 9.18. The total degree of T ∈ k < X > is the maximal degree of its monomials. Under the total degree ordering T ≤ S if the total degree of T is less than or equal to the total degree of S.

Definition 9.19. Let s be one of the extended generators. The degree of s is degree(s) = (number of points inside loop) + 2(number of double points), so for example s 123 has degree 4. The degree of a monomial is the sum of the degree of its terms.

The final partial order is a partial order based on the notion on how near are the loops that make up a monomial in the ordered list of loops. We now combine these three partial orders to obtain a single partial order of R X .

Definition 9.21. Let m, n ∈ R X . We define m ≤ n if one of the following conditions is satisfied:

(1) m < n with respect to the reduced degree ordering (2) m = n under the reduced degree ordering and m < n with respect to the total degree ordering (3) m = n under the reduced degree ordering, they have the same total degree and m < n with respect to the group distance ordering.

Lemma 9.22. The term rewriting system S B is compatible with the ordering defined in Definition 9.21.

Proof. This requires that for every rewriting rule {σ → r σ }, σ < m for all monomials m in r σ . This can easily be checked using the code 10 .

We can now apply the diamond lemma for ring theory.

Theorem 9.23. The term-rewriting system S B is confluent and hence the reduced monomials form a linear basis for the associated algebra B.

Proof. The ambiguities are resolvable by Proposition 9.14 and by Lemma 9.22 there is a compatible term rewriting system so the term rewriting system terminates and hence we can apply the diamond lemma for ring theory.

If we filter B by degree, we have a surjective filtered algebra homomorphism φ : B → Sk q (Σ 0,5 ) .

We now need to prove that φ is an isomorphism and thus that B is a presentation for Sk q (Σ 0,5 ). To do this we shall compute the Hilbert series of B and show it is the same as the Hilbert series for Sk q (Σ 0,5 ) which we have already computed in Theorem 8.6.

Proposition 9.24. The Hilbert series of B is

t 4 -2t 3 + 4t 2 -2t + 1 (1 -t 2 ) 3 (1 -t) 6
Proof. In order to compute the Hilbert series, we first consider what are the conditions on a monomial m = i∈I s i if it is reduced and therefore is in the vector space basis. Firstly, note that there is a relation yx for any y > x so the s i must be ordered. Furthermore, there is a relation xy between any two loops in the same group; hence, m = s α I s β II s γ III s δ IV s V where for example s I is a loop in group 1 and α, β, γ, δ, ∈ Z ≥0 . Also note that as all the relations are pairwise we only need to concern ourselves with neighbouring terms in the monomial.

The Hilbert series of

{ x m | m ∈ Z >0 , deg(x) = n } is t n 1-t n ,
so the Hilbert series when there is only a

s I loop is 1 + 4t 2 1 -t 2 .
Given a s II loop there are two possible choices for s I ; hence the Hilbert series for s

α I s β II is 1 + 4t 2 1 -t 2 + 6t 4 1 -t 4 1 + 2t 2 1 -t 2 = 1 + 4t 2 1 -t 2 + 6t 4 (1 -t 2 ) 2
Given a s III loop there are three choices of s II or if there is no s II loop there are three choices for s I ; hence the Hilbert series for s

α I s β II s γ III is 1 + 4t 2 1 -t 2 + 6t 4 (1 -t 2 ) 2 + 4t 6 1 -t 6 3t 4 (1 -t 2 ) 2 + 3t 2 1 -t 2 + 1 = 1 -t 8 (1 -t 2 ) 4
Given a s IV loop there are no choices for s III (the relations are derived from the cubic relation) and two choices for s V . There are four choices for s II and if there is no s II loop there is a free choice of s I ; hence the Hilbert series for

s α I s β II s γ III s IV s δ V assuming δ = 0 is 2t 2 1 -t 2 2t 3 1 -t 3 + 1 4t 4 (1 -t 2 ) 2 + 4t 2 1 -t 2 + 1
Finally, we assume there is no s IV loop but fix a s V loop. There are two choices for s III , if there is no s III loop there are five choices for s II and if there is only a s I loop then there is a free choice. Hence, the Hilbert series for s α I s β II s γ III s V assuming = 0 is 4t 3

1 -t 3 2t 6 (1 -t 2 ) 3 + 5t 4 (1 -t 2 ) 2 + 4t 2 1 -t 2 + 1 = 4t 3 1 -t 3 (1 -t 4 ) (1 -t 2 ) 4 .
Combining these cases gives a Hilbert series for B of

1 -t 8 (1 -t 2 ) 4 + 2t 2 1 -t 2 2t 3 1 -t 3 + 1 4t 2 (1 -t 2 ) 2 + 1 + 4t 3 1 -t 3 (1 -t 4 ) (1 -t 2 ) 4 = t 4 -2t 3 + 4t 2 -2t + 1 (1 -t 2 ) 3 (1 -t) 6
as required.

This means we have an isomorphism φ : Sk q (Σ 0,5 ) → B and therefore we have a presentation for Sk q (Σ 0,5 ). Finally, we will remove the extra generators to reduce the presentation to that in Theorem 9.3 thus proving this theorem.

Proof of Theorem 9.3. We have that B is a presentation for Sk q (Σ 0,5 ) as the algebras are isomorphic.

Using generator generating relations we can eliminate the non-simple loop generators of B. The relations in B between simple loops are the same as in A and it is straightforward to check that the new cubic and quartic relations reduce (see code). The extra relations in B which were generated from these relations reduce by how they were defined. Hence, we can reduce the presentation B thus concluding the proof.

A. Appendix

In this appendix we list explicitly the full list of relations for the presentation Sk q (Σ 0,5 ) which is given in Theorem 9.3. s 12 s 14 s 234 = q 2 + 1 s 3 + qs 1 s 2 s 4 s 1234 -q 2 s 2 1 s 3 + s 4 s 1234 s 12 + qs 2 s 23 + qs 4 s 34 + q 2 s 2 s 1234 s 14 -q 3 s 1 s 13 + s 1 s 1234 s 24 + s 2 s 4 s 234 + qs 1234 + s 124 + s 1 s 12 s 23 + q -1 s 12 s 123 + q 2 s 1 s 34 s 14 + q 3 s 14 s 134 + q -1 s 24 s 234 s 34 s 14 s 123 = 1 + q -2 s 2 + 1 -q 2 -q -2 s 2 s 2 4 + q -1 s 1 s 3 s 4 s 1234 + q -1 s 1 s 12 + q -1 s 3 s 23 + s 1 s 1234 s 34 + q -2 s 3 s 1234 s 14 + s 4 s 1234 s 13 + -q 3 + q -1 -q -3 s 4 s 24 + s 1 s 3 s 123 + -q 2 + 1 s 3 s 4 s 234 + q -1 s 1234 s 134 + q -2 s 4 s 12 s 14 + q 2 s 4 s 23 s 34 + qs 34 s 234 + q -3 s 14 s 124 + qs 13 s 123 s 23 s 34 s 124 = q -1 s 2 s 3 s 4 s 1234 + 1 + q -2 s 1 + -q 2 s 1 s 2 3 + q -1 s 2 s 12 (q 2 + 1) + s 4 s 1234 s 23 + q -2 s 2 s 1234 s 34 + q -1 s 4 s 14 + -q 3 -q + q -1 s 3 s 13 + s 3 s 1234 s 24 + -q 2 + 1 s 2 s 3 s 123 + q -1 s 1234 s 234 + q -2 -1 s 3 s 4 s 134 + s 2 s 4 s 124 + q 2 s 3 s 12 s 23 + qs 23 s 123 + s 3 s 34 s 14 + q -3 s 34 s 134 + qs 24 s 124 s 12 s 23 s 134 = 1 + q -2 s 4 -s 2 2 s 4 + q -1 s 1 s 2 s 3 s 1234 + s 3 s 1234 s 12 + q -2 s 1 s 1234 s 23 + q -1 s 3 s 34 + q -1 s 1 s 14 + s 2 s 1234 s 13 -qs 2 s 24 + q -1 s 1234 s 123 + q -2 -1 s 2 s 3 s 234 + s 1 s 3 s 134 + s 2 s 12 s 14 + qs 12 s 124 + s 2 s 23 s 34 + q -3 s 23 s 234 + qs 13 s 134 A.5. Quartic Relation.

s 12 s 23 s 34 s 14 = s 1 s 3 s 12 s 23 + s 2 s 4 s 12 s 14 + s 2 s 4 s 23 s 34 + s 1 s 3 s 34 s 14 + qs 3 s 12 + qs 2 s 13 + q -1 s 1 s 23 + s 123 + q -1 s 4 s 1234 + s 1 s 2 s 3 s 123 + qs 4 s 13 + qs 3 s 14 + q -1 s 1 s 34 + s 134 + q -1 s 2 s 1234 + s 1 s 3 s 4 s 134 + qs 4 s 12 + qs 2 s 14 + q -1 s 1 s 24 + s 124 + q -1 s 3 s 1234 + s 1 s 2 s 4 s 124 + q -2 q -1 s 4 s 23 + q -1 s 3 s 24 + q -1 s 2 s 34 + q -2 s 234 + q -1 s 1 s 1234 + (2 -q 2 )s 2 s 3 s 4 s 234 + q 2 s 12 + q + q -1 s 1 s 2 + s 3 s 4 s 1234 s 12 + q -2 s 23 + q -1 s 2 s 3 + q -2 s 1 s 4 s 1234 s 23 + q 2 s 14 + q + q -1 s 1 s 4 + s 2 s 3 s 1234 s 14 + q -2 s 34 + q -1 s 3 s 4 + q -2 s 1 s 2 s 1234 s 34 + q -2 s 24 + q -1 -q s 2 s 4 + q -2 s 1 s 3 s 1234 s 24 + q 2 s 13 + s 2 s 4 s 1234 s 13 + q -2 s 2 1234 -s 2 2 s 2 4 -s 2 1 s 2 3 + q -1 s 1 s 2 s 3 s 4 s 1234 + 2 + q -2 s 2 1 + s 2 2 + s 2 3 + s 2 4 -2q 2 -5 -4q -2 -q -4 A.6. Loop Triple Relations.

s 123 s 134 = -s 2 s 4 + s 1234 s 13 -q + q -1 s 24 -s 3 s 234 -s 1 s 124 + s 12 s 14 + s 23 s 34 s 134 s 123 = 1 -q 2 -q -2 s 2 s 4 + s 1234 s 13 -q 3 -q -3 s 24 -q 2 s 3 s 234 -q -2 s 1 s 124 + q -2 s 12 s 14 + q 2 s 23 s 34 s 234 s 124 = -q 2 s 1 s 3 -q 3 + q s 13 + s 1234 s 24 -q 2 s 2 s 123 -s 4 s 134 + q 2 s 12 s 23 + s 34 s 14 s 124 s 234 = -q 2 s 1 s 3 -q 3 + q s 13 + s 1234 s 24 -s 2 s 123 -q 2 s 4 s 134 + s 12 s 23 + q 2 s 34 s 14 A.7. Link Triple Relations.

s 123 s 234 = q -1 s 2 s 3 s 1234 + s 1 s 4 + q -1 -q s 2 s 4 s 12 + s 1234 s 23 + q + q -1 s 14 + s 3 s 134 + q -2 s 2 s 124 -q 2 s 12 s 24 -qs 3 s 12 s 234 -s 34 s 13 -q -1 s 2 s 34 s 123 + qs 12 s 23 s 34 s 234 s 123 = qs 2 s 3 s 1234 + s 1 s 4 + -q 3 + q s 2 s 4 s 12 + s 1234 s 23 + q + q -1 s 14 + q 2 s 3 s 134 + s 2 s 124 -q 4 s 12 s 24 -q 3 s 3 s 12 s 234 -q 2 s 34 s 13 -qs 2 s 34 s 123 + q 3 s 12 s 23 s 34 s 124 s 134 = s 2 s 3 + qs 1 s 4 s 1234 + q + q -1 s 23 + s 1234 s 14 + q 2 s 1 s 123 + s 4 s 234 -q 2 s 12 s 13 -qs 4 s 12 s 134 -s 34 s 24 -qs 1 s 34 s 124 + qs 12 s 34 s 14 s 134 s 124 = s 2 s 3 + q -1 s 1 s 4 s 1234 + q + q -1 s 23 + s 1234 s 14 + s 1 s 123 + q -2 s 4 s 234 -s 12 s 13 -q -1 s 4 s 12 s 134 -q -2 s 34 s 24 -q -1 s 1 s 34 s 124 + q -1 s 12 s 34 s 14 s 134 s 234 = qs 3 s 4 s 1234 + s 1 s 2 + q + q -1 s 12 + -q 3 + q s 1 s 3 s 23 + s 1234 s 34 + s 3 s 123 + q 2 s 4 s 124 -q 4 s 23 s 13 -q 3 s 4 s 23 s 134 -q 2 s 14 s 24 -qs 3 s 14 s 234 + q 3 s 23 s 34 s 14 s 234 s 134 = q -1 s 3 s 4 s 1234 + s 1 s 2 + q + q -1 s 12 + q -1 -q s 1 s 3 s 23 + s 1234 s 34 + q -2 s 3 s 123 + s 4 s 124 -q 2 s 23 s 13 -qs 4 s 23 s 134 -s 14 s 24 -q -1 s 3 s 14 s 234 + qs 23 s 34 s 14 s 124 s 123 = q 2 -q -2 + q -4 s 3 s 4 + 1 -q -1 + q -3 s 1 s 2 s 1234 + s 1234 s 12 + q -q -1 s 2 s 4 s 23 + q 3 + q -q -1 + q -5 s 34 + q -3 -q -1 s 1 s 3 s 14 + q 2 -q -2 + q -4 s 2 s 234 + q 2 -1 + q -4 s 1 s 134 -q -4 s 23 s 24 -q -3 s 1 s 23 s 124 -q 2 s 14 s 13 -qs 2 s 14 s 123 + q -1 s 12 s 23 s 14 s 123 s 124 = q 4 -q 2 + q -2 s 3 s 4 + q 3 -q + q -1 s 1 s 2 s 1234 + s 1234 s 12 + q 3 -q s 2 s 4 s 23 + q 5 -q + q -1 + q -3 s 34 + q -1 -q s 1 s 3 s 14 + q 4 -1 + q -2 s 2 s 234 + q 4 -q 2 + q -2 s 1 s 134 -q -2 s 23 s 24 -q -1 s 1 s 23 s 124 -q 4 s 14 s 13 -q 3 s 2 s 14 s 123 + qs 12 s 23 s 14

A.8. Crossing Relations.

s 13 s 24 = q + q -1 s 1234 + s 1 s 2 s 3 s 4 + q -1 s 3 s 4 s 12 + qs 1 s 4 s 23 + q -1 s 1 s 2 s 34 + qs 2 s 3 s 14 + s 4 s 123 + s 1 s 234 + s 2 s 134 + s 3 s 124 + q -2 s 12 s 34 + q 2 s 23 s 14 s 24 s 13 = q + q -1 s 1234 + s 1 s 2 s 3 s 4 + qs 3 s 4 s 12 + q -1 s 1 s 4 s 23 + qs 1 s 2 s 34 + q -1 s 2 s 3 s 14 + s 4 s 123 + s 1 s 234 + s 2 s 134 + s 3 s 124 + q 2 s 12 s 34 + q -2 s 23 s 14 A.9. Double and Triple Crossing Relations.

s 123 s 24 = -s 2 s 1234 -qs 1 s 3 s 4 -s 1 s 34 -s 3 s 14 -q 2 s 4 s 13 -qs 2 s 4 s 123 -q + q -1 s 134 + qs 4 s 12 s 23 + s 12 s 234 + s 23 s 124 s 234 s 13 = -s 3 s 1234 -qs 1 s 2 s 4 -s 4 s 12 -s 2 s 14 -q 2 s 1 s 24 -qs 1 s 3 s 234 -q + q -1 s 124 + qs 1 s 23 s 34 + s 23 s 134 + s 34 s 123 s 13 s 124 = -q -1 s 2 s 3 s 4 + 1 -q 2 -q -2 s 1 s 1234 -q 2 s 4 s 23 -q -2 s 2 s 34 -q -2 s 3 s 24 -q 3 -q -3 s 234 -q -1 s 1 s 3 s 124 + q -1 s 3 s 12 s 14 + q -2 s 12 s 134 + q 2 s 14 s 123 s 24 s 134 = 1 -q 2 -q -2 s 4 s 1234 -qs 1 s 2 s 3 -q 2 s 3 s 12 -q -2 s 1 s 23 -q 2 s 2 s 13 -q 3 -q -3 s 123 -qs 2 s 4 s 134 + qs 2 s 34 s 14 + q 2 s 34 s 124 + q -2 s 14 s 234 s 24 s 123 = 1 -q 2 -q -2 s 2 s 1234 -qs 1 s 3 s 4 -q 2 s 1 s 34 -q -2 s 3 s 14 -q 2 s 4 s 13 -qs 2 s 4 s 123 -q 3 -q -3 s 134 + qs 4 s 12 s 23 + q 2 s 12 s 234 + q -2 s 23 s 124 s 13 s 234 = 1 -q 2 -q -2 s 3 s 1234 -qs 1 s 2 s 4 -q -2 s 4 s 12 -q 2 s 2 s 14 -q 2 s 1 s 24 -qs 1 s 3 s 234 -q 3 -q -3 s 124 + qs 1 s 23 s 34 + q 2 s 23 s 134 + q -2 s 34 s 123 s 134 s 24 = -s 4 s 1234 -qs 1 s 2 s 3 -s 3 s 12 -s 1 s 23 -q 2 s 2 s 13 -q + q -1 s 123 -qs 2 s 4 s 134 + qs 2 s 34 s 14 + s 34 s 124 + s 14 s 234 s 124 s 13 = -q -1 s 2 s 3 s 4 -s 1 s 1234 -s 4 s 23 -s 2 s 34 -q -2 s 3 s 24 -q + q -1 s 234 -q -1 s 1 s 3 s 124 + q -1 s 3 s 12 s 14 + s 12 s 134 + s 14 s 123

  generalised to n = 4, and De Clercq, De Bie and Van de Vijer [De 19; DBDCV20] gave a definition for general n. The following definition is a slight rewriting of the definition of [De 19, Definition 2.3] with our conventions of coproduct.

Figure 2 .

 2 Figure 2. The bigon B shown in purple with its generators α(x, y) is embedded into Σ • 0,2 shown in blue with its generators β(x, y).

Figure 3 .

 3 Figure3. This figure shows the product x 1 x 2 x 3 , which is the leading term of the cubic relation, on the four-punctured sphere Σ • 0,4 .

Figure 5 .

 5 Figure 5. Loops commute when the points in one are a subset of the points in the other as in the left image or when the loops are in different parts of the surface as in the right image.

s

  A for |A| = 1 or 4 is central , (9.3) s A s 123 = s 123 s A for A ∈ {12, 23, 13}, (9.4) s 12 s 34 = s 34 s 12 and s 23 s 14 = s 14 s 23 , (9.5) commutator relations

Figure 7 .

 7 Figure7. Extra generators we add to make all the relations in Sk q (Σ 0,5 ) pairwise.

  10 . Now let {bc → r bc } be a relation in Theorem 9.3 excluding the commuting and the commutator relations, and let {ab → r ab } be a relation in the generator generating relations. Hence, we have an equality r ab c = abc = ar bc and furthermore r ab c contains a new generator multiplied by c on the right. Rearrange with respect to mc where m is the largest new generator in r ab and turn this equation into a reduction rule for mc.

Definition 9. 20 .

 20 Let group(s) denote the group (1-5) which the loop s is in. For a monomial m = i∈I s i we define nearness(m) = i,j∈I | group(s i ) -group(s j )|. Let {m i } and {n j } be the maximal total degree monomials of expressions T and S respectively. Under the group distance ordering T ≤ S if max i (number of distinct loops in m i ) < max j (number of distinct loops in m j ) or these maxima are equal and i nearness(m i ) > j nearness(n j ).

  12 s 23 s 13 s 23 s 34 s 24 s 34 s 14 s 13 s 12 s 14 s 24 (cubic relations) s 12 s 23 s 134 s 23 s 34 s 124 s 34 s 14 s 123 s 12 s 14 s 234 (cubic relations with triples) s 12 s 23 s 34 s 14Looking at the skein relations it is easy to see that given a relation for s A s B switching all the over crossing for under crossings gives a relation for s B s A which has the same terms with modified coefficients. Furthermore, given a relation reflecting all the terms in the vertical or horizontal plane and again modifying the coefficients will give another relation. An abstract rewriting system is a set A together with a binary relation → on A called the reduction relation or rewrite relation.(1) It is terminating if there are no infinite chains a 0 → a 1 → a 2 → . . ..(2) It is locally confluent if for all y ← -x -→ z there exists an element y ↓ z ∈ A such that there are paths y

			s 13 s 24		(quartic and cross relations)
		s 123 s 134	s 234 s 124		(triple loop relations)
	s 134 s 124	s 123 s 124	s 123 s 234	s 234 s 134	(triple link relations)
	s 13 s 234	s 13 s 124	s 24 s 123	s 24 s 134	(double and triple relations)
	Remark 9.4. 9.1. Term Rewriting Systems and the Diamond Lemma. In order to prove Theorem 9.3 we shall
	use a Term Rewriting System (TRWS).			
	Definition 9.5.				

  12 s 23 s 34 s 14 II. : s 123 s 234 s 341 s 412 s 12,34 s 23,14 III.: s 1234 , s 2341 , s 3142 IV.: s 13 s 24 V. : s 123 s 234 s 134 s 123

  A.1. Commuting. s 124 s 24 = s 24 s 124 s 124 s 14 = s 14 s 124 s 134 s 14 = s 14 s 134 A.4. Cubic Relations with Triples.

Our Askey-Wilson algebra AW(3) is the Special Askey-Wilson algebra saw(3) of [Cra+20].

Code available at https://github.com/jcooke848/Askey-Wilson-Algebras-as-Skein-Code.git
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