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Abstract: The reaction between the ((E)-N′-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide)
(H2opch) ligand and the metallo-precursor [Dy(hfac)3]·2H2O led to the formation of an homometallic
coordination complex with the formula [Dy2(hfac)3(H2O)(Hopch)2][Dy(hfac)4] (1). In presence of both
[Dy(hfac)3] 2H2O and the Fe(II) salt, the heterobimetallic tetranuclear [FeDy3(hfac)8(H2O)2(opch)2] (2)
was isolated, while the addition of the co-ligand 1,2-Bis(2-hydroxy-3-methoxybenzylidene) hydrazine
(H2bmh) led to the formation of two heterobimetallic tetranuclear complexes with the formula
[Fe3Dy(hfac)6(opch)2(H2bmh)] C6H14 (3) C6H14 and [Fe2Dy2(hfac)7(opch)2(H2bmh)] 0.5C7H16 (4)
0.5C7H16. Single crystal X-ray diffraction and dc magnetic investigation demonstrated that 3 and
4 involved the iron center in the +II and +III oxidation states. Dynamic magnetic measurements
highlighted the single-molecule magnet behavior of 1 and 2 in a zero applied dc field primarily due
to the ferromagnetic interactions taking place in these compounds.

Keywords: dysprosium; iron; hydrazone; hydrazine; single-molecule magnet

1. Introduction

Since the discovery of a Mn12 cluster [1] which displayed the first single-molecule
magnet (SMM) behavior thirty years ago, the molecular magnetism field is still very active.
Its activity was enhanced by the observation a decade later of similar slow magnetic
relaxation for a mononuclear lanthanide complex [2]. After these two pioneer works, the
community developed several chemical strategies to enhance the magnetic performances
of the lanthanide-based SMMs to make them suitable candidates for applications in high-
density data storage [3]. Thus, the lanthanide ions, such as Dy(III) and Tb(III), were
associated with stable organic radicals to establish significant 2p4f magnetic exchange
interactions, allowing the observation of blocking temperatures up to 30 K [4,5]. A few
years later, theoretical work demonstrated that two coordinate dysprosium complexes with
linear geometry are perfect to maximize the Ising magnetic anisotropy and the energy
barrier value [6]. Such complexes with pseudo-linear coordination geometry were designed
by chemists using organometallic chemistry [7–9], leading to an increase in the blocking
temperature of up to 80 K [10]. Recently, the role of lanthanide—lanthanide bonds in
the observation of huge coercive fields was reported [11]. The main drawback of these
previously mentioned strategies is the poor stability in air and regarding the temperature.
Consequently, chemists are also exploring the possibility of combining 3d and 4f elements
in hetero-bimetallic complexes to exploit the strong magnetic anisotropy of the 4f ions
and to establish significant 3d4f magnetic interactions, which can significantly lessen the
quantum tunneling of magnetization (QTM) and improve the energy barrier [12]. The
3d ion can itself bring new physical properties, such as spin-crossover behavior. In this
context, the combination of Fe(II) or Fe(III) with Ln(III) is of particular interest and it already
permitted the design of 3d4f SMMs [13–18].
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The two ((E)-N′-(2-hybroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide)
(H2opch) (Scheme 1) and 1,2-Bis(2-hydroxy-3-methoxybenzylidene) hydrazine (H2bmh)
(Scheme 1) ligands were selected because they were used to design lanthanide SMMs [19–22]
and Fe(III) spin-crossover complexes [23].
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Scheme 1. Molecular structures of the H2opch, Hopch−, opch2− and H2bmh ligands.

In this article, we proposed to engage these two ligands in coordination reactions
with [Dy(hfac)3]·2H2O (hfac− = 1,1,1,5,5,5-hexafluororacetylacetonate) and the Fe(II) salt.
The homometallic trinuclear complex [Dy2(hfac)3(H2O)(Hopch)2][Dy(hfac)4] (1) as well
as the three hetero-bimetallic tetranuclear complexes [FeDy3(hfac)8(H2O)2(opch)2] (2),
[Fe3Dy(hfac)6(opch)2(H2bmh)]·C6H14 (3)·C6H14 and [Fe2Dy2(hfac)7(opch)2(H2bmh)]·0.5C7H16
(4)·0.5C7H16, were isolated and characterized by single crystal X-ray diffraction. Both dc
and ac magnetic properties were investigated and the role of the magnetic interaction
was emphasized.

2. Results and Discussion
2.1. X-ray Structures

[Dy2(hfac)3(H2O)(Hopch)2]·[Dy(hfac)4] (1). 1 crystallizes in the monoclinic space
group P21/n (N◦14) (Figure 1, Supplementary Materials Figure S1, Table S1). The asymmet-
ric unit is composed of one mono-cationic dinuclear complex, [Dy2(hfac)3(H2O)(Hopch)2]+,
and one mono-anionic mononuclear complex, [Dy(hfac)4]−.
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The Dy(III) center of the cation (Dy1) is coordinated with eight oxygen atoms coming
from four hfac- ancillary ligands. The Dy-O bond lengths are similar and range from
2.335(13) to 2.373(12) Å. The two Dy2 and Dy3 of the dimeric cation are coordinated to
two deprotonated keto forms (Hopch−) (Scheme 1) of the ligand H2opch. Dy2 is linked to
two Hopch− ligands through the bischelating methoxyphenol moiety and its coordination
sphere is filled by two hfac− ancillary ligands and one bridging water molecule leading
to a DyO9 surrounding. Furthermore, the Dy-O bond lengths range from 2.303(9) to
2.607(11) Å, and the Dy2-O distances involving a negatively charged oxygen atom are
shorter (2.340 Å) than Dy2-O distances involving neutral oxygen atom (2.597 Å). The third
Dy(III) (Dy3) is also coordinated to the two Hopch− ligands through the trischelating
coordination site [22] and its coordination sphere is filled with one hfac- ancillary ligand
and the bridging water molecule leading to a DyN2O7 surrounding. The Dy3-X bond
lengths range from 2.308(9) to 2.540(11) Å. As expected, both Dy3-O involving neutral
oxygen atoms and Dy3-N distances are longer than Dy3-O involving negatively charged
oxygen atoms. The intra-molecular Dy2···Dy3 distance is 3.652 Å. The crystal packing
highlighted the formation of a H-bond network (Figure S1) between the bridging H2O and
the pyrazine (O37w···N89 = 2.681 Å) and the amido groups and the hfac− anions of the
[Dy(hfac)4]− fragment (O7···N62 = 3.320 Å, O5···N62 = 3.339 Å and O1···N82 = 3.361 Å).
The shortest inter-molecular Dy···Dy distance was found between Dy1 and Dy3 (7.990 Å).

[FeDy3(hfac)8(H2O)2(opch)2] (2). 2 crystallized in the monoclinic space group C2/c
(N◦15) (Figures 2 and S2, Table S1). The asymmetric unit is composed of one heterobimetal-
lic 3d4f tetranuclear complex with the formula [FeDy3(hfac)8(H2O)2(opch)2].
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Figure 2. Experimental molecular structure of 2. Hydrogen atoms are omitted for clarity. Code color:
grey, C; blue, N; green, F; red, oxygen; orange, iron; dark blue, dysprosium.

The Fe(III) ion is coordinated to two ligands in their enol forms (opch2−) (Scheme 1)
through the tris-chelating site leading to a FeO4N2 surrounding with average Fe-O and
Fe-N bond lengths of 1.999(7) Å and 2.118(9) Å, respectively. The two Dy(III) Dy1 and Dy2
adopted the same coordination sphere. They are coordinated to the bis-chelating site of
opch2− formed by the pyrazine and the hydrazone. The resulting DyO6N2 surrounding
is obtained by the coordination of three hfac- ancillary ligands. The third Dy(III) center
is coordinated to the phenol moiety already coordinated to the Fe(III). To assume the
neutrality of the tetranuclear complex, only two hfac- ancillary ligands are coordinated to
Dy3, while its coordination sphere is filled by two water molecules. Thus, the Dy3 adopted
a DyO8 coordination sphere. The Dy-O distances are similar (2.351(8) Å) but shorter than
the Dy-N distances (2.547(9) Å). Additionally, the shortest intramolecular Dy···Fe distance
has been found between the two metal centers, which share the phenol oxygen atoms
(3.542 Å), while the two other ones, Dy1···Fe (5.551 Å) and Dy2···Fe (5.576 Å), are longer
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because of the nature of the bridge. The crystal packing revealed the presence of hydrogen
bond between the coordinated water and the pyrazine (O105w···N24 = 3.011 Å) (Figure
S2). Moreover, the shortest inter-molecular Dy···Dy distance was found between the Dy2
(8.901 Å).

[Fe3Dy(hfac)6(opch)2(H2bmh)]·C6H14 (3)·C6H14. It crystallized in the triclinic space
group P-1 (N◦2) (Figures 3 and S3, Table S1). The asymmetric unit is composed of one
heterobimetallic 3d4f tetranuclear complex with the formula [Fe3Dy(hfac)6(opch)2(H2bmh)]
and one disordered n-hexane molecule of crystallization.
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are omitted for clarity. Code color: grey, C; blue, N; green, F; red, oxygen; orange, trivalent iron; light
green, divalent iron; dark blue, dysprosium.

As for compound 2, the Fe(III) is coordinated to two opch2− with a FeN2O4 sur-
rounding. The two nitrogen bis-chelating coordination sites are occupied by two neutral
[Fe(hfac)2] moieties, which are formed in situ during the coordination reaction. As ex-
pected, the Fe-O and Fe-N involving the Fe(II) ions (2.078(5) Å and 2.178(5) Å) are slightly
longer than those involving the Fe(III) center (1.991(5) Å and 2.126(5) Å). Furthermore, a
Dy(III) is coordinated to the two phenol groups and two hfac- anions. In addition, instead
of two water molecules (for 2), a 1,2-Bis(2-hydroxy-3-methoxybenzylidene) hydrazine
ligand (H2bmh) filled the coordination sphere of the Dy(III) ion, which adopts a DyO8
surrounding. Also, few intramolecular interactions take place, such as hydrogen bonds
(O3···N2 = 2.709 Å and O1···O9 = 2.913 Å and O1···N1 = 2.552 Å) and π-π stacking be-
tween one of the opch2− ligand and the H2bmh ligand. The shortest intramolecular Dy···Fe
distance (Dy1···Fe3 = 3.584 Å) is shorter than the one for Fe···Fe (Fe2···Fe3 = 5.135 Å).
The crystal packing also revealed intermolecular π-π stacking between the H2bmh lig-
ands leading to the formation of a pseudo-dimer composed of tetranuclear complexes
(Figure S3). These units interact through F···F and H···F contacts, and the shortest inter-
molecular Dy···Dy distance is 11.034 Å.

[Fe2Dy2(hfac)7(opch)2(H2bmh)]·0.5C7H16 (4)·0.5C7H16. It crystallized in the triclinic
space group P-1 (N◦2) (Figures 4 and S4, Table S1). The asymmetric unit is composed of
two heterobimetallic 3d4f tetranuclear complexes with the formula [Fe2Dy2(hfac)7(opch)2
(H2bmh)] and one n-heptane molecule of crystallization. Complex 4 has some similitudes
with 3. Indeed, the main difference is the coordination of one [Dy(hfac)3] unit for 4 instead
of one [Fe(hfac)2] for 3. Based on the information from single crystal X-ray diffraction
structures of 2 and 3, i.e., the oxidation state +III of the iron center coordinate to the
trischelating site of the opch2− ligand, and to guarantee the electro-neutrality of the system,



Molecules 2023, 28, 6359 5 of 12

Fe1 and Fe2 centers have been associated to the +III and +II oxidation states, respectively.
The crystal packing is not significantly affected by the same formation of pseudo-dimer of
tetranuclear complexes (Figure S4). The shortest intermolecular Dy···Dy distance is also
slightly shorter (9.495 Å) than for (3)·C6H14.
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2.2. Magnetic Properties
2.2.1. Static Magnetic Measurements

The temperature dependence of χMT for samples 1–4 is represented in Figure 5. The
room temperature values are 40.49 cm3·K·mol−1, 47.33 cm3·K·mol−1, 25.15 cm3·K·mol−1

and 34.87 cm3·K·mol−1 for 1–4, respectively.
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Such values are in agreement with expected values of 42.51 cm3·K·mol−1 (for three
Dy(III) with a 6H15/2 ground state (GS) and gJ = 4/3), 46.89 cm3·K·mol−1 (for three Dy(III),
6H15/2 GS, gJ = 4/3 and one high spin state (HS) Fe(III)), 24.55 cm3·K·mol−1 (for one Dy(III),
6H15/2 GS, gJ = 4/3; one HS Fe(III) and two HS Fe(II)) and 35.72 cm3 K mol−1 (for two
Dy(III), 6H15/2 GS, gJ = 4/3; one HS Fe(III) and one HS Fe(II)) [24,25]. In addition, upon
cooling, χMT decreases monotonically down to 8.36 cm3·K·mol−1 and 18.74 cm3 K mol−1

at 2 K for 3 and 4, respectively. Such a decrease could be attributed to both thermal
depopulation of the MJ states of the Dy(III) ion and antiferromagnetic interactions between



Molecules 2023, 28, 6359 6 of 12

the different spin carriers. For 1, the χMT slightly decreases until the temperature reaches
12 K due to the crystal field effect, while, for lower temperatures, the χMT slightly increases
the sign of the ferromagnetic interaction. Finally, 2 displays a continuous increase at low
temperatures, reaching the value of 69.79 cm3·K·mol−1, which indicates the presence of
significant ferromagnetic interactions. Magnetization for 1–4 is depicted in Figure S5 with
experimental values of 14.84 Nβ at 50 kOe, 22.33 Nβ at 70 kOe, 8.42 Nβ at 70 kOe and
9.42 Nβ at 50 kOe, respectively.

2.2.2. Dynamic Magnetic Measurements

The dynamic magnetic behavior was probed by measuring the in-phase (χM
′) and out-

of-phase (χM
′′) components of the ac susceptibility for compounds 1–4. Such measurements

were carried out using immobilized selected and crunched single crystals. Moreover, in the
1 Hz–10 kHz frequency range, no out-of-phase signal of the magnetic susceptibility was
detected in the zero and the applied magnetic fields for both compounds 3 and 4.

On the contrary, the two compounds 1 and 2 displayed a slow magnetic relaxation
in the zero applied dc field (Figures 6a and 7a). One of the possible explanations for the
difference in magnetic behavior between 1 and 2 and 3 and 4 might be the lack of ferromag-
netic interactions in 3 and 4. A frequency dependence of the magnetic susceptibility in the
temperature range of 2–8 K in the 100 Hz–10 kHz frequency window of the oscillating field
was also observed at zero dc magnetic field for 1 (Figures 6c and S6). An extended Debye
model was used to extract the relaxation time (τ) [26–28] (Table S2), fitting simultaneously
the two in-phase (χM

′) and out-of-phase (χM
′′) components of the magnetic susceptibility.

Furthermore, the Argand plot confirms that the observed slow magnetic relaxation corre-
sponds to more than 90% of the sample (Figure S7). The corresponding thermal variation
of the log(τ) is depicted in Figure 6d and could be fitted using the following equation
(Equation (1)) for which the Orbach contribution was neglected:

τ−1 = CTn︸︷︷︸
Raman

+ τ−1
0 exp

(
− ∆

KT

)
︸ ︷︷ ︸

Orbach

+ τ−1
TI︸︷︷︸

QTM

(1)

The best-fitted curves are represented in Figure 6d for C = 246.2(74) K−n s−1 with
n = 3.11(16) and τTI = 6.62(35) × 10−5 s, where C and n are constant parameters for the
Raman relaxation process and τTI is the thermal independent relaxation time of the QTM.
One could notice that the n constant parameter is lower than the expected n value for
Kramers’ ions. Indeed, such a parameter value should be nine [29], but it is well known
that, for molecular systems, lower values comprised between 2 and 7 could be found in the
presence of both acoustic and optical phonons [30–32]. In order to enhance the magnetic
performance of 1, the QTM could be cancelled by applying an external dc field [33]. Thus,
the field dependence of the magnetic susceptibility is studied (Figures 6a,b and S8) and the
relaxation time is extracted using the extended Debye model (Table S3). The application
of a small magnetic field (<1000 Oe) led to the increase of the magnetic relaxation time (τ)
(Figure 6b) due to the cancelling of the QTM, while, for a higher magnetic field value, τ
decreases due to the direct process activation. To keep a significant χM

′′ signal intensity, an
800 Oe value was selected. Under an applied field of H = 800 Oe, 1 highlighted a frequency
dependence of the magnetization (Figures 6e and S9). Both in-phase and out-of-phase
signals of the magnetic susceptibility can be analyzed in the framework of the extended
Debye model [26–28]. The temperature dependence of the relaxation time is plotted and
depicted in Figure 6d (Table S4). At H = 800 Oe, it was determined by analyzing the
normalized Argand (Figure S10) that more than 90% of the sample was involved in the
slow magnetic relaxation. The thermal variation of the relaxation time could also be fitted
considering a combination of Orbach and Raman processes. The best fit was obtained with
τ0 = 1.50(16) × 10−7 s, ∆ = 32.1(7) K and C = 496.3(26) K−n s−1 with n = 1.83(6), where
τ0 and ∆ are the relaxation time and the energy barrier of the Orbach relaxation process
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(Figure 6d). One could remark that the 800 Oe external applied dc field cancelled efficiently
the QTM and both Raman processes in 0 (light blue dashed line) and 800 Oe (dark blue
dashed line) are similar as expected since such a process is field independent. It is also
worth noticing that the Orbach process might be involved in the zero applied dc field but
is almost negligible compared to the Raman and QTM processes, making it difficult to
determine the relevant parameters for it.
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2 K in the field range of 0–3000 Oe for 1. (b) Field dependence of the magnetic relaxation time at 2 K
in the field range of 0–3000 Oe for 1. (c) Out-of-phase component of the ac magnetic susceptibility
data for 1 in zero fields in the temperature range of 2–8 K; (d) thermal dependence of the magnetic
relaxation time for 1 in zero (open black circles) and 800 Oe (full black circles) applied magnetic
fields in the 2–7 K temperature range. Full red lines are the best-fitted curves (see text), while the
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(e) Out-of-phase component of the ac magnetic susceptibility data for 1 in 800 Oe in the temperature
range of 2–8 K.
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Figure 7. (a) Field dependence of the out-of-phase component of the magnetic susceptibility (χM
′′) at

2 K in the field range of 0–3000 Oe for 2. (b) Field dependence of the magnetic relaxation time at 2 K
in the field range of 0–3000 Oe for 2. (c) Out-of-phase component of the ac magnetic susceptibility
data for 2 in zero field in the temperature range of 2–20 K. (d) Thermal dependence of the magnetic
relaxation time for 2 in zero applied magnetic field in the 2–5 K and 2–20 K temperature ranges for
HF and LF contributions, respectively. Full red lines are the best-fitted curves (see text), while the
dashed black lines are the Orbach processes.

Moving on, 2 displayed a non-zero χM
′′ component sign of slow magnetic relaxation

in a zero applied dc field at 2 K (Figure 7a). As soon as a dc field was applied, the maxima
of the χM

′′(ν) curve shifted to a higher frequency, as attested by the τ vs. H plot (Figure 7b).
The τ values of the latter plot were extracted by fitting only the LF contribution of the
magnetic susceptibility. The acceleration of the relaxation time of the magnetization could
be due to the suppression of the ferromagnetic interaction under the applied dc field [12,34]
and/or the appearance of a direct process. Since the best magnetic performances for 2
are observed under a zero applied dc field, the magnetic investigation was carried out
only in such conditions. The thermal dependence of the magnetic susceptibility in a zero
applied field showed two contributions with different intensities (Figures 7c and S12).
Such behavior might be attributed to the two Dy(III) centers with different surroundings
i.e., one Dy(III) in a O8 environment, while the two others adopted a O6N2 environment.
Thus, an extended Debye model considering two τ (see Supporting Information) was used
(Table S6) for 2. The temperature dependence of the relaxation time is plotted and depicted
in Figure 7d for both low frequency (LF) and high frequency (HF) contributions.

The best fit of the thermal variation of the relaxation time for the HF contribution was
obtained for an Orbach process only with τHF

0 = 2.01(11) × 10−6 s and ∆HF = 8.0(2) K,
while two Orbach processes were needed to fit the log(τ) vs. T plot for the LF contribution
with τ1

0 = 6.63(32) × 10−5 s and ∆1 = 9.0(2) K, τ2
0 = 6.55(44) × 10−10 s and ∆2 = 184.4(12)

K. The presence of two Orbach processes was already observed for a few SMMs involving
Dy(III) in a N2O6 environment [35]. Moreover, such behavior was recently explained as
a graphical problem for which the low temperature regime is close to a linear thermal
dependence but, in fact, should correspond to a Raman process [36]. The absence of QTM
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in zero fields could also be attributed to the ferromagnetic interaction which has been
identified in this complex.

3. Materials and Methods
3.1. Synthesis: General Procedures and Materials

The precursor Dy(hfac)3·2H2O (hfac− = 1,1,1,5,5,5-hexafluoroacetonate anion), the
1,2-Bis(2-hydroxy-3-methoxybenzylidene) hydrazine (H2bmh) and ((E)-N′-(2-hyborxy-3-
methoxybenzylidene)pyrazine-2-carbohydrazide) (H2opch) were synthesized following
previously reported methods [19,20,37]. All other reagents were commercially available
and used without further purification.

3.2. Synthesis of Complex [Dy2(hfac)3(H2O)(Hopch)2]·[Dy(hfac)4] (1)

To start, 82 mg of Dy(hfac)3·2H2O (0.1 mmol) and 27.1 mg of H2opch (0.1 mmol) were
dissolved in 10 mL of CH2Cl2 and stirred at room temperature for 1 h. n-heptane was
layered at room temperature in the dark. Slow diffusion leads to light yellow single crystals
of (1), which are suitable for X-ray studies. The following measurements were reported:
yield (determined from isolated single crystals) = 104.9 mg (42%). Anal. Calcd (%) for
C61H31Dy3F42N8O21—C = 29.31, H = 1.24, N = 4.48; found—C = 29.09, H = 1.32, N = 4.41.

3.3. Synthesis of Complex [FeDy3(hfac)8(H2O)2(opch)2] (2)

For synthesis of complex 2, 27.1 mg of H2opch (0.1 mmol) and 19.9 mg of FeCl2·4H2O
(0.01 mmol) were dissolved in 20 mL of CH3CN. The solution turned dark brown after
the addition of the iron salt. Then, a solution of 10 mL of CH2Cl2 containing 82 mg of
Dy(hfac)3·2H2O (0.1 mmol) was added. The reaction was stirred for 1 h at room temperature
and solvents evaporated under vacuum. Subsequently, 15 mL of CH2Cl2 was added to
the residue. After filtration, diffusion of n-heptane to the filtrate led to the formation of
dark brown single crystals suitable for X-ray studies. The following measurements were
reported: yield (determined from isolated single crystals) = 85.9 mg (31%). Anal. Calcd
(%) for C66H28Dy3F48N8O24—C = 28.57, H = 1.01, N = 4.04; found—C = 28.77, H = 1.09,
N = 4.01.

3.4. Synthesis of Complex [Fe3Dy(hfac)6(opch)2(H2bmh)]·C6H14 (3)·C6H14

For synthesis of complex 3, 27.1 mg of H2opch (0.1 mmol), 30 mg of H2bmh (0.1
mmol) and 82 mg of Dy(hfac)3·2H2O (0.1 mmol) were dissolved in 10 mL of CH2Cl2.
Then, a solution of 10 mL of CH3OH containing 19.9 mg of FeCl2·4H2O (0.1 mmol) was
added. The solution turned dark brown after the addition of the iron salt. The reaction was
stirred for 1 h at room temperature and solvents evaporated under a vacuum. Following
this, 15 mL of CH2Cl2 was added to the residue. After filtration, diffusion of n-hexane
to the filtrate led to the formation of dark brown single crystals suitable for X-ray stud-
ies. The following measurements were reported: yield (determined from isolated single
crystals) = 72.4 mg (29%). Anal. Calcd (%) for C72H41DyF36Fe3N10O22—C = 35.82, H = 1.70,
N = 5.80; found—C = 35.89, H = 1.74, N = 5.88.

3.5. Synthesis of Complex [Fe2Dy2(hfac)7(opch)2(H2bmh)]·0.5C7H16 (4)·0.5C7H16

(4)·C7H16 was obtained from a protocol similar to (3)·C6H14, except that n-heptane
was used instead of n-hexane for the crystallization process. The following measurements
were reported: yield (determined from isolated single crystals) = 72.4 mg (21%). Anal.
Calcd (%) for C77H42Dy2F42Fe2N10O24—C = 33.91, H = 1.54, N = 5.14; found—C = 33.80,
H = 1.59, N = 5.18.

3.6. Crystallography

Single crystals of 1 and 2 were mounted on an APEXII Bruker-AXS diffractometer,
while single crystals of 3 and 4 were mounted on an APEXIII D8 VENTURE Bruker-AXS
diffractometer for data collection (MoKα radiation source, λ = 0.71073 Å) received from
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the Centre de Diffractométrie (CDIFX), Université de Rennes, France (Table S1). A direct
method using the SHELXT program [38] and a refined step with a full matrix least-squares
method on F2 using the SHELXL-14/7 program [39] were used to solve and refine the
structures. For structures containing large solvent accessible voids in which residual peaks
of diffraction were observed, a SQUEEZE procedure of PLATON [40] was performed.
Bond lengths, angles and atomic coordinates are included in CIF files for complete crystal
structure results. These files are deposited as Supporting Information. CCDC numbers are
2281070 for 1, 2281069 for 2, 2281071 for (3)·C6H14 and 2281072 for (4)·0.5C7H16.

3.7. Physical Measurements

The Centre Régional de Mesures Physiques de l’Ouest (Rennes) performed the ele-
mental analyses of the compounds. The dc magnetic susceptibility measurements were
performed on solid polycrystalline samples with a Quantum Design MPMS-XL SQUID
magnetometer between 2 and 300 K in applied magnetic fields of 200 Oe, 2000 Oe and
10,000 Oe for the 2–20, 20–80 K and 80–300 K temperature ranges, respectively. The mi-
crocrystallites are immobilized in a pellet made with Teflon tape. Quantum Design PPMS
magnetometers were used to measure the ac magnetic susceptibility for frequencies be-
tween 10 and 10 kHz. Finally, these measurements were all corrected for the diamagnetic
contribution, as calculated with Pascal’s constants.

4. Conclusions

The ligand ((E)-N′-(2-hyborxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide)
(H2opch) was used to design an homometallic Dy(III) dinuclear complex, [Dy2(hfac)3(H2O)
(Hopch)2]·[Dy(hfac)4] (1), and three heterobimetallic 3d4f complexes: [FeDy3(hfac)8(H2O)2
(opch)2] (2), [Fe3Dy(hfac)6(opch)2(H2bmh)] (3) and [Fe2Dy2(hfac)7(opch)2(H2bmh)] (4).
The four compounds have been characterized by single crystal X-ray diffraction. The
combination of dc magnetic investigations with the single-crystal X-ray diffraction struc-
tures allowed the identification of both Fe(II) and Fe(III) centers in the heterobimetallic
3d4f complexes 3 and 4. The two compounds 1 and 2 displayed single-molecule magnet
behavior in a zero applied dc field with magnetic relaxation occurring through thermally
activated processes, such as Orbach and Raman. To end, our efforts to design hetero-
bimetallic Fe(II/III)Dy(III) complexes with exciting magnetic properties, such as SMM and
spin-crossover behavior, are in progress.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28176359/s1, Figure S1. Crystal packing of 1 high-
lighting the hydrogen bonds (dashed lines) between the cationic fragment [Dy2(hfac)3(H2O)(Hopch)2]+

and anionic [Dy(hfac)4]− moieties. Figure S2. Crystal packing of 2 highlighting the hydrogen bonds
between the pyrazine ring and coordinated water molecules of the neighboring complex. Figure S3.
Crystal packing of 3 highlighting both intramolecular π-π stacking between the opch2− and H2bmh
ligands and intermolecular π-π stacking between the H2bmh ligands. Figure S4. Crystal packing
of 4 highlighting both intramolecular π-π stacking between the opch2− and H2bmh ligands and
intermolecular π-π stacking between the H2bmh ligands. Figure S5. Field dependence of the mag-
netization at 2 K for 1 (blue), 2 (black), 3 (green) and 4 (red). Figure S6. Frequency dependence of
the in-phase component of the magnetic susceptibility under zero applied magnetic field between
2 and 8 K for 1. Figure S7. Normalized Cole–Cole plot for 1 at several temperatures between 2
and 7 K in zero applied magnetic field. Black lines are the best-fitted curves. Figure S8. In-phase
component of the ac magnetic susceptibility for 1 at 2 K under a DC magnetic field from 0 to 3000 Oe.
Figure S9. Frequency dependence of the in-phase component of the magnetic susceptibility under an
applied magnetic field of 800 Oe between 2 and 8 K for 1. Figure S10. Normalized Cole–Cole plot
for 1 at several temperatures between 2 and 7 K under an applied magnetic field of 800 Oe. Black
lines are the best-fitted curves. Figure S11. In-phase component of the ac magnetic susceptibility
for 2 at 2 K under a DC magnetic field from 0 to 3000 Oe. Figure S12. Frequency dependence of the
in-phase component of the magnetic susceptibility in zero applied magnetic fields between 2 and
20 K for 2. Table S1: Summary of X-ray crystallographic data for 1, 2, (3)·C6H14 and (4)·0.5C7H16.
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Table S2: Best-fitted parameters (χT, χS, τ and α) with the extended Debye model for compound 1 at
0 Oe in the temperature range of 2–7 K. Table S3: Best-fitted parameters (χT, χS, τ and α) with the
extended Debye model for compound 1 at 2 K in the magnetic field range of 0–3000 Oe. Table S4.
Best-fitted parameters (χT, χS, τ and α) with the extended Debye model for compound 1 at 800 Oe in
the temperature range of 2–7 K. Table S5. Best-fitted parameters (χT, χS, τ and α) with the extended
Debye model for compound 1 at 2 K in the magnetic field range of 0–3000 Oe. Table S6. Best-fitted
parameters (χT,1, χS,1, τ1, α1), (χT,2, χS,2, τ2 and α2) with the extended Debye model for compound 2
at 0 Oe in the temperature range of 2–20 K for LF contribution and 2–5 K for the HF.
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