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You Only Get One-Shot: Eavesdropping Input Images to Neural
Network by Spying SoC-FPGA Internal Buses

ABSTRACT
Deep learning is currently integrated into edge devices with strong
energy consumption and real-time constraints. To fulfill such re-
quirements, high hardware performances can be provided by hard-
ware acceleration of heterogeneous integrated circuits (IC) such
as System-on-Chip (SoC)-field programmable gate arrays (FPGAs).
With the rising popularity of hardware accelerators for artificial
intelligence (AI), more and more neural networks are employed
in a variety of domains, involving computer vision applications.
Autonomous driving, defence and medical domains are well-known
examples from which the latter two in particular require processing
sensitive and private data. Security issues of such systems should
be addressed to prevent the breach of privacy and unauthorised
exploitation of systems. In this paper, we demonstrate a confiden-
tiality vulnerability in a SoC-based FPGA binarized neural net-
work (BNN) accelerator implemented with a recent mainstream
framework, FINN, and successfully extract the secret BNN input
image by using an electromagnetic (EM) side-channel attack. Ex-
periments demonstrate that with the help of a near-field magnetic
probe, an attacker can, with only one inference, directly retrieve
sensitive information from EM emanations produced by the in-
ternal bus of the SoC-FPGA. Our attack reconstructs SoC-FPGA
internal images and recognizes a handwritten digit image with an
average accuracy of 89% using a non-retrained MNIST classifier.
Such vulnerability jeopardizes the confidentiality of SoC-FPGA em-
bedded AI systems by exploiting side-channels that withstand the
protection of chip I/Os through cryptographic methods.

CCS CONCEPTS
• Hardware Security → Side-channel Attacks; • Embedded
Systems→ System-on-chip Field Programmable Gate Array; • Elec-
tromagnetic → Near-field.
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Electromagnetic Side-Channel Attack, Binarized Neural Network,
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1 INTRODUCTION
Organizations and companies are storing most of their important
data in digital form [1], hence, solutions to prevent exploitation
of confidential internal information must be explored. The two
main aspects of securing systems involve software and hardware
security. While the main job of software security consists of pro-
tecting software applications and digital solutions from external
viruses and malware, the importance of hardware security should
also be equally considered. Among various types of hardware secu-
rity, one of the most popular and common in the state-of-the-art
is side-channel attack. A side-channel attack exploits unwanted
signal emanations from a victim system to jeopardize its data con-
fidentiality. Emitted signals can take many physical forms, from
execution time variations to consumed power variations or EM em-
anations. This paper demonstrates a new form of electromagnetic
side-channel attack on system internal buses. A security exploit
of such EM emanations when focusing on AI algorithm can target
different assets, e.g. sensitive data, secret algorithm parameters and
details about AI models.

SoC-FPGAs are gaining momentum as AI hardware accelera-
tors thanks to their capacity to exploit the embarrassingly parallel
nature of neural networks so as to provide energy-efficient and
computationally sufficient solutions [2]. This is true especially for
power hungry convolutional neural network (CNN) AI accelera-
tors which are commonly deployed in computer vision solutions,
and then applied to, for instance, medical and defence domains [3].
Jeopardizing the input image of a computer vision system gives
advanced information to the attacker, andwe demonstrate in this pa-
per that the very nature of the accelerator creates EM side-channels
that jeopardize image information. Our work aims to eavesdrop
the input image sent to the neural network for inference process
by making use of electromagnetic vulnerability in internal buses
of SoC-FPGA. The implemented attack in this paper is called "You
Only Get One-Shot", as data is retrieved from the observation of the
emanations during a unique inference, and in the rest of the paper
it will be referred to as YOGOS (abbrev. for You Only Get One-Shot).
The main contributions of this work are the following:

• We demonstrate that on-chip buses on SoC-FPGAs are vul-
nerable to EM side-channel attacks. Electromagnetic activ-
ities of these communication buses can be spied on using
near-field magnetic probes, which can lead to the extraction
of private data regardless of the application on FPGA.

• By exploiting the electromagnetically induced signals emit-
ted by Advanced eXtensible Interface (AXI) bus, we propose
an attack against a neural network implemented on SoC-
FPGA without the knowledge of the neural network archi-
tecture or implementation details. Our attack can extract the
input images sent on the AXI bus to the FPGA device where
the inference of these images takes place.

• Our method does not require any other form of interaction
with the victim system, i.e., no need to trigger CNN inference
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of the victim. Synchronisation of each individual trace is pos-
sible just from analyzing the emanations in signal processing
stage.

• We propose YOGOS, a one-shot attack where a single acqui-
sition of one inference EM trace is sufficient to perform the
attack.

• An experimental setup for studying the YOGOS attack is
built and further proves that neural network (NN) input
images retrieved by this attack can be recognized with 89%
of average accuracy.

2 BACKGROUND
This section includes a brief explanation of the SoC-FPGAs and its
on-chip bus protocol, EM emanations and FINN framework used
in this experiment.

2.1 System-on-Chip and Bus Protocol
SoC-FPGAs combine a processing system (PS), usually embedding
ARM cores, and programmable logic (PL), embedding FPGA com-
puting resources, onto a single integrated device. PS and PL commu-
nicate through complex interconnects. A series of open-standard
on-chip interconnect protocols for the connection and manage-
ment of functional blocks in SoC designs is known as the advanced
micro-controller bus architecture (AMBA) [4]. One of the specifica-
tions of AMBA is AXI-4 which is the established protocol between
PS and PL of Zynq-7000 and usually comes with data widths of
32, 64 or 128 bits. Our attack focuses on AXI buses which provide
data access from the PL to the on-chip static random access mem-
ory (SRAM) in the PS, and to the external dynamic random access
memory (DRAM) connected to the PS side. They can be config-
urable as either 32-bit or 64-bit widths and use a FIFO controller
to connect to the memory interconnect [5]. In this paper, we show
that the AXI buses of Zynq-7000 SoC can compromise the security
of the system.

2.2 Electromagnetic Emanations
EM emanation of ICs are mainly attributed to numerous and simul-
taneous commutations of logic gates transistors [6]. These commu-
tations are responsible for voltage fluctuations between IC power
and ground planes, and for current loops. In case of a bus line,
current loops may be created in a complementary metal-oxide-
semiconductor (CMOS) inverter gate when, according to clock rate,
both p and n transistors are simultaneously conducting for a short
period of time. Moreover, charge or discharge of the bus line may
be responsible for current leakage due to parasitic capacitance. At
high-speed and high clock rate data bus (100 MHz or above), these
two phenomena are likely to occur giving more chance to pick up
the reactive near-field with an adequate, preferably magnetic probe.
EM emanations emitted from this behaviour of ICs may contain
confidential information and can be maliciously exploited.

2.3 FINN
FINN, developed by Xilinx, is a well supported experimental frame-
work to build fast and scalable BNN accelerators onto FPGAs [7]. It
supports weights quantization and reduction of memory footprint.

FINN provides a series of prototypes [8] that accelerate BNN infer-
ence on standard datasets: MNIST [9], CIFAR-10 and SVHN [10].
Using high-level synthesis (HLS), FINN allows automated imple-
mentation of pre-trained BNNmodels, exploiting FPGA capabilities
such as arbitrary data size manipulations [3]. FINN supports Pynq
Z1, Pynq Z2, Ultra96, ZCU102 and ZCU104 development boards.
The choice of the hardware platform relies on the size and com-
plexity of the NN. For instance, ZCU104 is recommended for FINN
dataflow-style accelerators trained with ImageNet-sized datasets
while Pynq Z1 is suggested for smaller networks.

3 RELATEDWORK
Additionally to being used to steal an encryption key from a cryp-
tographic algorithm, starting from the late 2010’s, side-channel
attacks (SCAs) are also being increasingly employed to expand the
attack capability to NNs implementations on FPGA [11]. Several
attempts have been made since 2018 to recover private data or im-
portant details about NN models (for e.g. input, model architecture)
implemented on FPGAs by exploiting different side-channels.

3.1 Non Electromagnetic Side-Channel Attacks
Among various types of SCAs which have been demonstrated in the
literature, power SCAs are the most common, observing variations
on power consumption from the device. In [12], the authors focus on
spying on the secret neural network image inputs by first detecting
the background pixels in an image-generated signal from captured
power traces. Then, as for the foreground pixels, a power template
is generated so that the collected power traces can be compared to
it in order to deduce each original pixel value of the input image.
Similarly, authors of [13] developed the first remote power SCA
to recover input images to the BNN accelerator, implemented on
multi-tenant FPGAs by making use of the power-related traces
obtained from time-to-digital converters (TDCs). It has been shown
in [14] that weights values of an FPGA-implemented NN can also
be retrieved by the attackers using chain correlation power analysis.
In the case of [15], parameters specific to FINN implementation
(folded layers and number of neurons) are retrieved by analyzing
power side-channels from BNN accelerator with the help of TDCs.

3.2 Electromagnetic Side-Channel Attacks
As for the EM side-channel attacks, in [16], authors demonstrated
that EM traces captured from the FPGA surface, can be analyzed
to reveal active operating regions of the chip. Authors also pro-
pose methods to efficiently make EM imaging and cartography
on the chip which serves as a fundamental step in most EM side-
channel attacks. DeepEM [17] demonstrates that attackers can ac-
curately recover NN model hyper-parameters by exploiting EM
side-channel information from an FPGA-based SoC implementa-
tion. Moreover, [18] illustrates how EM traces emitted by a targeted
FPGA device may be utilized by an attacker to fully recover the
secret BNN weights used in the network.

However, to our knowledge, there is no work on eavesdropping
input images through EM emanations of the internal bus to compro-
mise SoC-FPGAs. We demonstrate in this work an EM side-channel
attack that exploits the vulnerability of SoC on-chip buses and pro-
posed a novel algorithm to retrieve the input image information.
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4 THREAT MODEL
YOGOS can be applied to real-life scenarios in both public and pri-
vate sectors. Deep learning-enabled surveillance cameras in public
places capture the real-time video frames which are then transmit-
ted to the accelerator part of the camera where the deep learning
algorithm executes. The algorithm then processes the videos frames
and classifies to determine what is being detected in the frame. In
order to perform this attack, EM traces have to be collected through
a near-field probe that can be put into the camera device by obtain-
ing physical access to the system. Given the small size of the probe
loop, spying components or hardware Trojans, as small as a grain
of rice, could be implemented during the fabrication of chips [19]
to allow the attacker to capture the EM signals at a distance, which
opens up ways to apply YOGOS attack at scale. Besides, the attack
can also be implemented by an insider of a device supply chain. A
malicious individual who has access to a surveillance camera in
a restricted zone (e.g., laboratory, warehouse) can tag the spying
component to steal the confidential information. This is in particu-
lar threatening for medical and defense related companies in which
the information of the production and new research data can be
leaked.
Knowledge: The attacker requires a general idea of the encod-
ing of image (raster pixel scan, color planes). The attacker has no
knowledge of the system running on the targeted hardware, i.e.
neither the architecture of BNN nor its parameters. Image size can
be deduced from the signal shape over time by counting the number
of observed peaks.
Capability: The attacker is required to collect EM traces of the
targeted system while it is operating. This requirement can be met
in internet of things (IoT) devices such as smart cameras, sensors,
etc, where the device is physically available to the attacker. The
near-field access can also be obtained through a hardware Trojan
inserted in the package of the device during the manufacturing
process as explained above. On the other hand, the attacker does
not need to control the inputs, nor interact with the BNN, nor trig-
ger the inference. Hence, the inference inputs, weights, layers, and
neurons of the BNN are unknown to the attacker.
Goal: The objective of the proposed attack is to infer the secret
inputs to the BNN-based SoC-FPGA accelerator without the need of
any knowledge on the system architecture, parameters or hardware
implementation design of the BNN.

5 METHODOLOGY OF THE PROPOSED
ATTACK

In this section, the different steps necessary for performing the
attack are presented.

5.1 Leakage Detection
First, the attacker explores the EM emanations of the SoC-FPGA
to locate the zones presenting notable EM leakage. In our case, we
want to locate the internal bus. For this step, the attacker is required
to have access to a similar SoC-FPGA to identify the location of
the bus independently of what is implemented in the FPGA. By
scanning the surface of the SoC with a near field magnetic probe,
during data transfers, the attacker can identify the specific energy
leakage pattern on the SoC. The latter can be easily inspected as it

presents high activity visible through significant peaks on the signal
compared to noise floor. After careful observation of this energy
leakage pattern, it can be expected that when the buses are idle, the
EM signals are at the lowest and are very close to the noise floor.
However, signals with substantial peaks appear whenever there is
data activity on the AXI bus. The difference between these two EM
behaviors can be visually spotted, as shown in Fig. 1. In other words,
the detected energy pattern represents the data leakages from the
embedded AXI internal buses during its communication between
PS and PL. This process of finding the exact location of bus leakage
through the real-time EM emanations can also be automated.
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Figure 1: Idle vs. data activity state in the EM signal observed
from the near-field probe.

5.2 Acquisition and Synchronization
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Figure 2: Zoom-in on observed traces when data activity is
present on the AXI bus, i.e. when bus lines transitions from
0 to 1 and from 1 to 0 due to the AXI write data channel
carrying information.

EM signal obtained from the leakage zone must be dealt with to
ensure the correct reconstruction of the input image in the end. For
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this single shot attack, the recorded trace must be synchronized to
ensure identification of the exact part of the trace that is correlated
to the input data. Unlike the majority of attacks, synchronization
step in our work can be achieved without interacting with the
victim system as it has been found that the acquired near field EM
signal, seen in Fig. 2, can be divided into three parts: Pre-amble,
Data Trace and Post-amble. The pre-amble and post-amble are two
data independent signals that frame the data trace. Pre-amble signal
defines the beginning of the bus data transmission, and hence,
allowing the attacker to precisely synchronize the traces every
single time. Similarly, post-amble signal marks the end of the data
transfer on the bus which, by combining with pre-amble signals, can
be interpreted as the total length of the data series. The data trace in
between pre- and post-amble is utilized in the image reconstruction
algorithm.

5.3 Image Reconstruction
The reconstruction of images from the EM side-channel traces
requires several steps.

5.3.1 Hamming Distance. The number of input pixels P, which
can be sent concurrently at a single clock cycle, is determined by
the data width of the AXI bus. Hamming Distance (HD) between
two groups of P pixels, transferred between two consecutive clock
cycles, is the number of bit positions at which the corresponding
bit has flipped (from 0 → 1, or from 1 → 0). The HD provides
crucial knowledge regarding the transmission of data, which can
be exploited in this case. If the victim bus data width is 32 bits, a
group of pixels comprises 𝑃 = 4 pixels.

5.3.2 Threshold. In order to define significant EM leaks in the col-
lected traces, a positive and a negative threshold is required to
detect the peaks. In our experiments, these thresholds are deter-
mined from the noise floor level, keeping a security margin to avoid
false positives.

5.3.3 Peak Analysis. The peaks, positive or negative, in EM trace
represent the HD between two continuous groups of P pixels sent
on the AXI bus. The higher the magnitude of the peak, the bigger
the HD value. Additionally, the two signs of the peaks, positive or
negative, indicate the nature of the bit transition between the pixels
group (0 → 1 for ascending and 1 → 0 for descending).

Therefore, if the bit values of the current pixel group sent in
cycle t is higher than the bit values of the previous pixel group
t-1, it will induce a positive peak which represents the ascending
transition among the P bits sent. Likewise, if the bit values of the
previous pixel group sent at t-1 is higher than the bit values of the
current pixel group at t, a negative peak will be formed in the trace
which can be translated as a descending transition.

Note that a positive and negative bit transition on a bus corre-
sponds to the charging and discharging of output gate capacitance
or the parasitic capacitance of the bus line. For grayscale images
used in this work, this ascending or descending nature of the bit
transition determines whether the upcoming group of P pixels is
likely to become lighter, or darker, than the current group. EM
emanations induced by these transitions, 0 → 1 and 1 → 0, are
additive and signed, leading to a form of signed HD. This signed HD
is sensitive to variations in between two successive pixel groups

and not to actual pixel values directly, thus, information is lost in
the interception process. Moreover, transitions on least significant
bits have the same physical effect than transitions on most signif-
icant bits. This method of analyzing the peak’s nature of the EM
footprint to infer the input pixels, which are sent through AXI for
inference process inside the FPGA is called Peak Analysis.

5.3.4 Reconstruction Algorithm. We propose here a method to re-
construct a binarized version of the original image from the EM
traces acquired. Since the transitions on least significant bits cannot
be distinguished from transitions on most significant bits, binariza-
tion is hypothesized to be the best solution to extract a decent
amount of information for limited complexity. To start reconstruct-
ing the binary version of the secret input image, an image matrix
is set to the background color (e.g., black in our experiment). The
dimension of this matrix is deduced by the attacker as the size of
input images is a public knowledge. The regeneration of the image
is sequentially done, i.e., pixel by pixel, until the whole image matrix
is obtained. Let P be the number of pixels which can be transmitted
simultaneously on AXI bus 5.3.1. For e.g., the value of P is 4 for 32
bit bus and 8 for 64 bit bus. Starting off, the voltage values of the
trace at each individual time instance is steadily scanned. When
the scanned voltage value reaches positive threshold, the pixel at
that certain time instance, as well as the upcoming P-1 pixels in
the scanning order, will be assigned to white. Now the current
white pixel value is maintained for the rest of the following pixels
until a negative threshold is triggered. Similarly, once the negative
threshold is reached during the scan, the corresponding pixel at
the detected time instance and its following P-1 pixels are assigned
to black until the detection of another positive peak. This process
is repeated continuously for the entire length of EM trace signal
while every pixel value inside image matrix is being assigned to
either black or white.

6 EVALUATION AND RESULTS

Figure 3: Hardware setup of the experiment
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Figure 4: Victim system, YOGOS attack and validation process of recovered images with a CNN classification

6.1 Hardware Setup
We implement our proposed methodology using Pynq Z1 as it owns
the advantage of having Zynq-7000, which is a SoC-FPGA with on-
chip AXI buses. Pynq Z1 is equipped with FINN generated LeNet-5
BNN, pretrained on MNIST dataset. The targeted board is placed
on a positioning surface with LANGER RF-R 3-2 attached to its
arm for stability. A low noise amplifier with 100 MHz - 12 GHz
bandwidth and 30 dB gain is attached to amplify the input signal.
The oscilloscope with 20 GS/s and 6 GHz bandwidth, is used to
observe the signal. The described setup can be found in Fig. 3.

6.2 Attack Implementation
According to 5.1, we sniff around the whole surface area of the
Zynq-7000 SoC to find out where the EM leakages take place. After
a promising leakage zone has been detected, we fix the probe to
that certain position in order to capture EM side-channel traces.
The exploration of real-time EM traces are done in two orthogonal
orientation of the probe, 0° and 90° with a spatial resolution of
0.5 mm. It is found that the probe is more sensitive to magnetic flux
on the horizontal, 0° direction where the peaks are significantly
larger than the noise floor. Advanced details about identification of
EM leakage zones are provided in [20].

It is important to notice that only one acquisition of EM trace,
produced by the transmission of input image through AXI buses
is sufficient to successfully exploit the channel and reconstruct
the input image of the BNN. This is possible thanks to the data
independent pre-amble pattern which lets us know the beginning
of data transfer on the buses as explained in Section 5.2. Due to
this phenomenon, we are able to detect the data related EM trace
in every single acquisition. The collected one-shot EM signal will
be used to reconstruct the original input image.

According to Section 5.3.2, a positive and a negative threshold
must be defined initially to distinguish the nature of the peaks
present in EM trace signal. In this experiment, the thresholds are
set as 25% of the respective peak values. These thresholds decisions
empirically ensure accurate discrimination of data signal from noise
and reduce the risk of incorrect detection. After the thresholds have
been determined, the images are extracted out of the EM traces
by employing peak analysis method and reconstruction algorithm,
mentioned in Sections 5.3.3 and 5.3.

The proposed method, peak analysis, is enacted on 100 different
input images fromMNIST database, 10 per 0 to 9 digits. Fig. 5 shows
the original input images and the reconstructed image resulting
from YOGOS.

(a) Example of original MNIST images (first line) with highly accurate
recovered images through YOGOS attack (second line)

(b) Example of original MNIST images (first line) with less accurate
recovered images through YOGOS attack (second line)

Figure 5: Some examples of retrieved MNIST images with
YOGOS attack

6.3 Recognition Accuracy
The recovered images from YOGOS can be visually distinguished
as seen in Fig. 5. However, depending on the clarity of each input
MNIST image, the accuracy might change accordingly. Therefore,
for the purpose of evaluating the fair precision of our attack, we
used a third-party neural network classifier trained on MNIST, to
compute a recognition accuracy as the process shown in Fig 4. A
total of 100 randomly-chosen different input images, 10 per MNIST
digit, are retrieved by applying YOGOS attack. These 100 recovered
images resulting from the attack are fed into the classifier to deter-
mine the image recognition accuracy. The result is shown in Fig. 6
to compare the recognition accuracy between the original input
images from standard MNIST dataset, and the recovered images by
our YOGOS attack.
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Figure 6: White column: Recognition accuracy (in %) per
digit of the original MNIST images sent to the BNN inference.
Purple column: Recognition accuracy (in %) per digit of the
recovered images using YOGOS. The average accuracy for
YOGOS recovered images is 89% (vs. 94% with the original
images)

7 DISCUSSION
Since the concept of the YOGOS attack is based on exploiting the
signed HD between two 32-bit AXI bus transitions, and not the
original pixel values themselves, loss of information occurs during
the process. Therefore, it is also expected that information loss will
increase with the increase of bus width (e.g., to 64-bits). However,
even with this loss, our experiments on 32-bit bus proved to reach
decent image reconstruction in terms of retrieval quality.

Moreover, it has been found that some specific handwritten
number images have lower accuracy compared to the others. For in-
stance, in the case of 4, the classifier can misclassify as 9 depending
on the shape it is written. Another case would be the false detection
of peaks in the acquired EM trace. As our experiments are done in
open space and not in the noise free Faraday’s cage, noises occur.
Nevertheless, YOGOS successfully recovers the input digit with 89%
average accuracy.

8 CONCLUSION
This work has demonstrated that internal buses on SoC-FPGAs
are exposed to EM side-channel attacks and leak information that
can be maliciously exploited. Using a state-of-the-art AI frame-
works, specifically designed for easy and efficient implementation
of BNN accelerators on SoC-FPGAs, the buses, transferring clear
data between PL and PS, are vulnerable. By taking advantage of
this vulnerability, we have implemented an attack against FINN-
implemented BNN on a Pynq Z1 target. Experiments show that we
are able to successfully retrieve the secret input images in the form
of MNIST handwritten characters with only one-shot inference
observation. Indeed, character recognition of the BNN when fed
by eavesdropped images efficiently classifies the images with 89%
overall accuracy. Since our focus is on AXI on-chip communication
buses, YOGOS attack is likely not to be limited to Zynq-7000 and
may be applicable to other SoC platforms, as long as they contain
AXI or internal buses for data transmission. Countermeasures to
tackle the presented attack are not straightforward. Even if input
data is encrypted when sent to the system, e.g., through the net-
work, to reinforce the system security, once the data flows inside
the chip, it is decrypted and circulates as clear data in PS, before
being sent to PL through internal buses for AI inference process.
This means that the highlighted vulnerability and YOGOS proposed
in this paper still cause a threat when system I/Os are encrypted.

On the other hand, inference on encrypted data is being studied and
is a promising solution. However, it is still very costly as of now and
it not yet being used [21]. Future work will include implementing
the attack on different SoC hardware platforms to prove that the
vulnerability exists in a broad set of systems.
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