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A formula to evaluate type A webs and link polynomials

Introduction

The Reshetikhin-Turaev invariants of links [START_REF] Reshetikhin | Invariants of 3-manifolds via link polynomials and quantum groups[END_REF] are one of the most important family of link invariants in quantum topology and its ramifications.

In this note we focus on the subfamily of these invariants given by coloring the strands of links with exterior powers of the vector representation of quantum sl n or quantum gl n . We show that this family of polynomials can be computed by a closed formula that takes as input only combinatorial data associated to a fixed colored link diagram and root theoretic data associated to the type A Dynkin diagram. The formula works for all links, all coloring, and all ranks n.

Let us stress that, by its very nature, the closed formula we give is a Weyl-character-type formula: On the one hand, it is general, completely algorithmic and might reveal abstract properties of the family of exterior colored link polynomials. But on the other hand, the formula does not necessarily give an efficient way to compute these invariants, at least not without massaging it a bit.

The diagrammatic incarnation of this family of link invariants is given by (exterior sl n or gl n ) webs as shown in many works, see e.g. [START_REF] Rumer | Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten[END_REF], [START_REF] Kuperberg | Spiders for rank 2 Lie algebras[END_REF], [START_REF] Murakami | Homfly polynomial via an invariant of colored plane graphs[END_REF] or [START_REF] Cautis | Webs and quantum skew Howe duality[END_REF]. In fact, the aforementioned formula is an application of a closed evaluation formula for webs that we will also state and prove. This formula does not need any combinatorics on webs or tableaux; it in fact does not even need the webs at all. Moreover, another application of this formula is an easy to check criterion for webs to represent dual canonical basis elements.

The exposition in this note, including the statement of our main results, is mostly self-contained and explicit. For example, we included SageMath based code in the source file, cf. Remark 1.1 below, that can do computations using, for example, the online version of SageMath. The main proofs, that are not necessary to understand the rest of the paper, however use techniques from categorification as we elaborate on now.

In breakthrough work Hu-Shi [START_REF] Hu | Graded dimensions and monomial bases for the cyclotomic quiver Hecke algebras[END_REF] found a closed formula for the dimension of cyclotomic KLR algebra of any symmetrizable Kac-Moody type by using combinatorics of Fock spaces. Even more remarkable, their formula is a Weyl-character-type formula that can be computed without any prior knowledge of cyclotomic KLR algebras. A consequence of categorical skew Howe duality is that cyclotomic KLR algebras of type A and webs (web algebras to be precise -skew Howe duality itself it not enough to make the connection) are essentially the same object, see e.g. the pioneering works [START_REF] Brundan | Highest weight categories arising from Khovanov's diagram algebra I: cellularity[END_REF], [START_REF] Brundan | Highest weight categories arising from Khovanov's diagram algebra II: Koszulity[END_REF] and [START_REF] Brundan | Highest weight categories arising from Khovanov's diagram algebra III: category O. Represent[END_REF] for the sl 2 version of this result. See also [START_REF] Mackaay | The sl 3 -web algebra[END_REF] and [START_REF] Tubbenhauer | sl 3 -web bases, intermediate crystal bases and categorification[END_REF] for the sl 3 version, and [START_REF] Mackaay | The sl N -web algebras and dual canonical bases[END_REF] and [START_REF] Tubbenhauer | gl n -webs, categorification and Khovanov-Rozansky homologies[END_REF] for the general version of this relationship.

We now put both together and obtain the aforementioned closed formula for web evaluations and the computation of link polynomials.

Remark 1.1. The main formula in (4.3) is easy to compute via a machine, and so is its adjustment to the case of the link polynomials from (5.5). The reader may find SageMath code that can do the calculations here https://github.com/AndrewAtLarge/GradedDimKLR/blob/main/README.md, and commented at the end of the source file. All the examples given in this paper are available in that code.

Remark 1.2. To not distract the readers attention, we postpone all proofs to Section 6. This has the advantage that we can formulate the main formulas without any reference to categorical skew Howe duality or KLR algebras.

A reminder on webs

Fix n ∈ Z ≥1 . We will now recall the description of (exterior gl n ) webs from [START_REF] Cautis | Webs and quantum skew Howe duality[END_REF] using the exposition from [START_REF] Lacabanne | Annular webs and Levi subalgebras[END_REF] and [START_REF] Latifi | Minimal presentations of gl n -web categories[END_REF]. Background on monoidal categories given by generatorsrelations can be found in e.g. [START_REF] Turaev | Monoidal categories and topological field theory[END_REF], and background on monoidal categories related to our setting can be found in e.g. [START_REF] Etingof | Tensor categories[END_REF].

We start with our reading and other conventions:

Notation 2.1. All categories we use are strict, and we read diagrams from bottom to top and left to right. The illustration

(1 • h g) • v (f • h 1) = •v •v • h • h ... ... ... ... f g = ... ... ... ... f g = •v •v • h • h ... ... ... ... g f = (f • h 1) • v (1 • h g),
summarizes our reading conventions. The identity on an object X is denoted by 1 X . The webs we will use below are certain labeled and oriented graphs. The labels and orientations arise in a predetermined way from few choices. Using this we tend to omit many of the labels and orientations.

Although the edges of webs are labeled with a ∈ Z ≥0 , we will allow labels a ∈ Z in formulas which is understood that the webs with negative labels are zero altogether.

We write 1 for the monoidal unit and ( -) * for the duality in a pivotal category. For webs 1 is the empty word and ( -) * is flipping pictures upside down and swaps orientation.

Let q be a generic parameter. For a ∈ Z and b ∈ Z ≥0 we let [0] q = 0, [0] q ! = 1 = a 0 q , [a] q = -[-a] q for a < 0 and otherwise [a] q = q a-1 + q a-3 + ... + q -a+3 + q -a+1 ,

[b] q ! = [b] q [b -1] q ...[1] q , a b q = [a] q [a -1] q ...[a -b + 1] q [b] q ! .
The web categories we study are:

Definition 2.2. The (exterior gl n ) web category W q gl n is the pivotal Z[q, q -1 ]-linear category with

• h -generating objects ↑ k and ↓ k , for k ∈ Z ≥0 , of categorical dimension n k q and ↓ k = (↑ k ) * .
The further assume that W q gl n has a given braid group action on upwards objects, meaning morphisms depicted over :

l l k k : ↑ k • h ↑ l →↑ l • h ↑ k , under : k k l l : ↑ k • h ↑ l →↑ l • h ↑ k
for each simple braid group generator that satisfy the braid relations. We call these (k, l)-crossings (overcrossings and undercrossings).

Finally, the • v -• h -generating morphisms are the ones coming from the pivotal structure and k l k+l

: ↑ k+l →↑ k • h ↑ l , k l k+l : ↓ k+l →↓ k • h ↓ l , k l k+l : ↑ k • h ↑ l →↑ k+l , k l k+l : ↓ k • h ↓ l →↓ k+l .
In these and similar pictures we tend to place the label under or over edges. The relations imposed on W q gl n are isotopies, the exterior relation, associativity, coassociativity, digon removal, and dumbbell-crossing relation together with invertibility of the left mates of the (k, l)-overcrossings: we take the quotient by the • v -• h -ideal generated by isotopies, invertibility and

>n >n = 0, k l m k+l+m = k l m k+l+m , k l m k+l+m = k l m k+l+m , k l k+l k+l = k + l k q • k+l k+l , k r l s = k-r=a-b q -(k-a)(l-b) • b a k r l s = k-r=a-b q (k-a)(l-b) • a b k r l s ,
together with their horizontally mirrored duals.

Notation 2.3. (a) We also write k for ↑ k and -k for ↓ k , where k ∈ Z ≥0 . In this notation a general object of

W q gl n is of the form k = (k 1 , ..., k r ) ∈ Z r for some r ∈ Z ≥0 . (b) A web is a • v -• h -composition of the generating morphisms, i.e. not a Z[q, q -1 ]-linear combi- nation.
(c) There is no harm in thinking of webs as topological objects, meaning as labeled oriented graphs embedded in two-space. We will sometimes use this to simplify drawings.

(d) The edges labeled n play a special role and we will illustrate them as

n = n , n = n .
We call them phantom edges. They should be thought of as nonexisting.

It follows from the defining relations that the phantom edge calculus is essentially trivial, i.e.:

Lemma 2.4. We have

n = 1, n n n n = n n n n , k n-k n n = n n k , n n k k = n n k k .
There are more relations of a similar flavor which we omit to illustrate.

Motivated by Lemma 2.4, we call webs consisting of only phantom edges trivial.

Remark 2.5. We will stay with W q gl n , which are webs for gl n , in this paper. We however stress that all results are valid for the respective sl n version, thus including the Temperley-Lieb calculus [RTW32], Kuperberg's sl 3 spiders [START_REF] Kuperberg | Spiders for rank 2 Lie algebras[END_REF] and Cautis-Kamnitzer-Morrison's sl n webs [START_REF] Cautis | Webs and quantum skew Howe duality[END_REF]. The (well-known) translation between these two pictures is a systematic identification of the form ↑ k ∼ =↓ n-k . This, representation theoretically, corresponds to the fact that k C n is dual to n-k C n as an sl n -module, but not as a gl n -module.

It will turn out to be useful to only allow upwards (pointing) webs:

Definition 2.6. Let W ↑ q gl n ⊂ W q gl n be the full subcategory monoidally generated by {↑ k |k ∈ Z ≥0 }.

We call webs in W ↑ q gl n upwards webs.

F-forms of webs

Let α i = (0, ..., 0, 1, -1, 0, ..., 0), the ith simple root, with the one in the ith entry.

Definition 3.1. In this definition we work in W ↑ q gl n only. For all a, i ∈ Z ≥0 we define the ath F-operator F (a) i to be the operator that takes 1 k , with k ∈ Z l ≥0 , and returns 1 k-aα i , and we define the ath E-operator E (a) i to be the operator that takes 1 k , with k ∈ Z l ≥0 , and returns 1 k+aα i given by

1 k-aα i F (a) i 1 k = k i+1 k i -a k i k i+1 +a , 1 k+aα i E (a) i 1 k = k i+1 k i +a k i k i+1 -a ,
and by the identity outside of these pictures. The associated webs are called ladder webs.

We will simplify notation using e.g.

1 k-aα i F (a) i 1 k = F (a) i 1 k = 1 k-aα i F (a)
i . Moreover, for all k ∈ {1, ..., n} we use ladders to define

n n k k = n n k k , n n k k = n n k k ,     note that n n n n = n n n n     .
We call these webs and all their mates phantom crossings. The following lemma allows us to use phantom crossings essentially without cost. Note that these are not the (n, k)-crossings coming from the braid group action on W q gl n , and in the picture above the strand "cross virtually".

Lemma 3.2. The phantom crossings satisfy all colored Reidemeister moves.

Definition 3.3. We call all operations of the form

k n -k n → 1 k k .
and all of its mates and mirrors forgetting phantom edges. This operations can be successively applied to webs and will relabel and reorient them.

By definition, webs are compositions of the generators of W q gl n , and we therefore can define:

Definition 3.4. An upwards-form of a web w is a web U (w) in W ↑ q gl n that is the same labeled oriented graph up to forgetting phantom edges. 

i k ...F (a 1 )
i 1 1 k of an upwards-pointing web w is a string of F -operators such that the graphs of w and F (w) are the same as labeled oriented graphs.

In general, an F-form of a web w is an F-form for its upwards form U (w).

Definition 3.7 is best understood by example:

Example 3.8. For n = 3, an F-form for w as below is:

w = 3 1 1 1 , F (w) = F 1 F 2 F 1 1 (3,0,0) = 0 0 3 1 1 1 F 1 F 2 F 1 .
Here and throughout, the horizontal slices are a visual aid only. Note that F-forms are not unique and F 3 F 1 F 2 F 1 1 (3,0,0,0) would be another F-form of w. ♦

We call objects of W ↑ q gl n of the form (n, ..., n, 0, ..., 0) = (n , 0, ..., 0) a level.

Lemma 3.9. Every web has at least one F-form in Hom W ↑ q gl n (Λ, k) for some level Λ.

Definition 3.10.

Let I = {i (a) |i ∈ Z ≥1 , a ∈ Z ≥0 }. Fix an F-form F (w) = F (ar) ir ...F (a 1 )
i 1 1 Λ of w. The residue sequence for a web w and its F-form is the tuple r u = (i

(a 1 ) 1 , ..., i (ar) r ) ∈ I r .
Note the reversed reading conventions when going from F (w) to its residue sequence.

Evaluation of webs

We now define a pairing on Hom Wqgl n (1, k), which we call the evaluation pairing: Definition 4.1. Given two webs u, w ∈ Hom Wqgl n (1, k) we let (u, w) ∈ End Wqgl n (1) be the element given by (u, w) = w * • v u.

Our main goal is to give a closed formula for (u, w). To this end, we need some preparation. We also let [r u ] q ! = [a 1 ] q !...[a r ] q !. We will use q d

[ru]q![rw]q! which we call scaling, where

d = d( k) = -1 2 n(n -1) -m i=1 k i (k i -1) is a shift. (b)
We let S r = Aut({1, ..., r}) denote the symmetric group with unit e. For r u , r w ∈ I r we let S rw ru = {σ ∈ S r |σ r u = r w } be the set of possible crossings where σ r u is the permutation of the entries of r u determined by σ.

(c) Recall the simple roots α i and let α i , α j = a ij with be the usual Cartan pairing (so a ii = 2, a ij = -1 for |i -j| = 1 and a ij = 0 else) which we will use as indicated. Let J <t σ = {1 ≤ j ≤ t|σ(j) < σ(t)}. We define the count weights before:

N Λ (σ, r w , t) = Λ - j∈J <t σ α (rw) j , α (rw)t .
We also write N (σ, t) = N Λ (σ, r w , t) for short.

(d) We write X σ = r t=1 [N Λ (σ, r u , t)] q q N Λ (e,ru,t)-1 . We let

χ(u, w) = q d [ru]q![rw]q! • σ∈S rw ru X σ . (4.3)
Theorem 4.4. For webs u, w ∈ Hom Wqgl n (1, k) we have that χ(u, w) is independent of all choices involved, and

(u, w) = χ(u, w) ∈ Z ≥0 [q, q -1 ].
Example 4.5. The reader is encouraged to look at the SageMath code as in Remark 1.1: all the computations below can be found in the code.

(a

) Let n = 2. Let u = w ∈ Hom Wqgl n (1, (-1, 1)) be, so that (u, u) = [2] q : u = 1 1 , (u, u) = u * • v u = = 2 1 q = [2] q .
As illustrated below, an F-form of u is F (u) = F 1 1 (2,0) , and an F-form of u * • v u is

F (u * • v u) = F 1 F 1 1 (2,0
) . We will also use the trivial web with F-form F (∅) = F

(2) 1 1 (2,0) .

F (u) = 0 1 2 1 F 1 , F (u * • v u) = 0 2 0 2 F 1 F 1 , F (∅) = 0 0 2 2 F (2) 1
.

The residue sequences from left to right are (1), (1, 1) and (1 (2) ), and in all cases Λ = (2, 0), and = 1, while k = (1, 1) for F (u) and k = (0, 2) for the other two cases.

The main formula can be applied to either the pair (u, u) or to (∅, u * • v u), giving the same result. That is, for (u, u) we have r = 1, S rw ru = {e} and σ = e : X σ =

[2] q q

[N (e,1)]qq N (e,1)-1

= 1 + q 2 .
Moreover, d = -1, no explosion was needed and scaling by q -1 gives χ(u, u) = [2] q . For (∅, u * • v u) we have r = 2, S rw ru = {e, (1, 2)} and σ = e : X σ = 0, σ = (1, 2) : X σ = [2] q q

[N ((1,2),1)]qq N (e,1)-1

[N ((1,2),2)]qq N (e,2)-1

[2] q q -1 = [2] 2 q .

This time we need to scale by [2] -1 q since we exploded (1 (2) ) to (1, 1) during this computation and d = 0. The result is the same.

(b) Let n = 3. We consider the following two webs u, w ∈ Hom Wqgl n (1, (-1, 1, -1, 1)):

u = 1 1 1 1 , w = 1 1 1 1 .
We, of course, immediately get

(u, w) = w * • v u = = 3 1 q = [3] q .
We get the same result from the main formula as follows. First, F -forms of u and w are

F (u) = 0 0 3 3 1 2 2 1 F 2 F 3 F (2) 2 F 1 , F (w) = 0 0 3 3 2 2 1 1 F 2 F 3 F 1 F (2) 2
.

Here Λ = (3 2 , 0, 0) and = 2. Using the associated residue sequences (2, 3, 2 (2) , 1) and (2, 3, 1, 2 (2) ) we get the same result: Firstly, the exploded sequences are (2, 3, 2, 2, 1) and (2, 3, 1, 2, 2) so we remember that we have to multiply in the end by q -2 [2] -2 q . We compute S rw ru = {(3, 4, 5), (1, 4)(3, 5), (1, 5, 3, 4), (3, 5), (1, 4, 5, 3), (1, 5, 3)} where we use the usual notation for permutations. The six relevant summands are then σ = (1, 4, 5, 3) : X σ = 0, σ = (1, 4, 5, 3) : X σ = q 4 [2] 2 q [3] q = (1 + q 2 ) 2 (1 + q 2 + q 4 ).

Thus, scaling by q -4 [2] -2 q gives the desired result. Here we explode twice, so we get [2] -2 q and d = -4.

As in (a), we could also use an F-form for w * • v u, e.g. (2, 3, 2 (2) , 1, 2, 1 (2) , 3 (2) , 2 (2) ), which we pair with the trivial web (2 (3) , 3 (3) , 1 (3) , 2 (3) ). Applying the formula for the exploded residue sequences (2, 3, 2, 2, 1, 2, 1, 1, 3, 3, 2, 2) and (2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2) gives the same result.

For completeness, let (n , 0, ..., 0) have symbols n and m-symbols 0. In general a residue sequence of the trivial web see as a web in Hom Wqgl n (n , 0, ..., 0), (0, ..., 0, n ) is given by the residue sequence

( (n) , ..., (m -1) (n) , ( -1) (n) , ..., (m -2) (n) , ..

.). ♦

Due to their relation to invariant tensors, the space Hom Wqgl n (1, k) has an important basis known as Lusztig-Kashiwara's dual canonical basis. (For details see e.g. [START_REF] Khovanov | Web bases for sl(3) are not dual canonical[END_REF] or [Tub20, Section 4.1.5].) We can thus ask whether a fixed w ∈ Hom Wqgl n (1, k) corresponds to a dual canonical basis element, and Theorem 4.4 gives a complete and computable answer:

Proposition 4.6. A w ∈ Hom Wqgl n (1, k) is dual canonical if and only if q -d χ(w, w) ∈ 1 + qZ ≥0 [q].

Evaluation of link polynomials

In order to compute link polynomials using F-forms we first need to explain how to interpret crossings. To this end, note that, by construction of the category W q gl n , there are no sideways or downwards crossings in the sense that these are compositions of upwards-pointing crossings and the generators of W q gl n . For example:

k k l l = k k l l .
We consider framed oriented colored links L c in R 3 , whose components are colored by c ∈ Z r ≥0 where r ∈ Z ≥0 is the number of components. We associate F-forms to their diagrams D c : and obtain a linear combinations of webs a 1 w 1 + ... + a s w s where a i ∈ Z[q, q -1 ];

(c) Replace all w i by a choice of F-form F (w i );

(d) The associated F-form of D c is F (D c ) = a 1 F (w 1 ) + ... + a s F (w s ).
Lemma 5.3. Every colored link diagram has at least one F-form.

Definition 5.4. Let L c be a framed oriented colored link and let F (D c ) = a 1 F (w 1 ) + ... + a s F (w s ) be any F-form of any of its diagrams.

χ(L c ) = s i=1 a i χ(w i ) ∈ Z[q, q -1 ].
(5.5) Remark 5.6. The reader who wants to work with links and not framed links can get rid of this assumption by shifting the invariant in Definition 5.4 using that a k-colored Reidemeister I move gives the scalars q ±(k(-k+n+1)) (plus for the overcrossing and minus for the undercrossing).

Example 5.7. This example can also be found in the SageMath code as in Remark 1.1.

Let n = 2 and let H (1,1) denote the (1, 1)-colored Hopf link coming from the braid word with two positive crossings. The reader may convince themselves that an F-form of the standard diagram

D (1,1) of H (1,1) is F (D (1,1) ) = F 4 F 5 F 3 F 4 (q 2 F 2 F 3 F 1 F 2 -qF 2 F 3 F 2 F 1 -qF 3 F 2 F 1 F 2 + F 3 F 2 F 2 F 1 )F 4 F 3 F 5 F 4 F 2 F 3 F 1 F 2 1 (2,2,0,0,0,0) ,
which we compare to the trivial web with residue sequence (2 (2) , 3 (2) , 4 (2) , 5 (2) , 1 (2) , 2 (2) , 3 (2) , 4 (2) ). Using the main formula from Theorem 4.4 we get H (1,1) = q 2 (q + q -1 ) 2 -2q(q + q -1 ) + (q + q -1 ) 2 = q -1 [4] q , which is the expected result up to a power of q. (The precise power depends on the conventions one wants to compare the above to.) ♦ Theorem 5.8. The Laurent polynomial χ(L c ) is well-defined, i.e. it is an invariant of L c and independent of all choices involved. Moreover, up to an overall power of q 1/n , this invariant agrees with the Reshetikhin-Turaev exterior colored gl n link invariant.

The proofs

We now give all the proofs, sometimes collected into one proof.

Proof of "The phantom calculus is trivial, i.e. Lemma 2.4 and Lemma 3. and similarly for the other phantom crossings. (In the above picture note the difference between the honest (n, k)-crossings and the phantom crossings.) As a consequence of e.g. (the exterior version of) [LT21, Section 2], the honest (k, l)-crossings satisfy the Reidemeister relations, with Reidemeister I only up to the scalar q ±(k(-k+n+1)) (here k = l), and the other defining relations of the colored tangle category (see e.g. for an uncolored list of these relations). Thus, the statement of Lemma 3.2 follows from (6.1).

Proof of "F-forms exist, i.e. Lemma 3.6, Lemma 3.9 and Lemma 5.3". (Part a.) That every web, more precisely any expression in the • v -• h generators, has an upwards-form can be seen inductively: Let h ∈ Z ≥0 denote the number of Morse points. If h = 0 and the web we start with is already upwards-pointing, then there is nothing to show. If the starting web is downwards pointing, then we can just reverse all orientations. The analog for h = 1 is also easily verified. So assume h > 1. Pick any Morse point and perform either of

1 k k → k n -k n , 1 k k → k n -k n , 1 k k → k n -k n , 1 k k → k n -k n (6.2)
once, if h is odd, or twice (at two different Morse points), if h is even. Using phantom crossings we connected the dangling phantom strands in those pictures to anywhere point at the bottom and top, respectively. Relabeling and reorienting the result gives a legal web with smaller h by the combinatorics of oriented plane trivalent graphs (we can ignore the precise positions of the phantom edges by Lemma 3.2), so the claim of Lemma 3.6 follows.

(Part b.) This can be proven by using Lemma 3.6 and [Tub20, Lemma 4.9]. (Part c.) Lemma 5.3 follows directly from Lemma 3.9 via the Skein relations (5.2).

Proof of "The formulas work, i.e. Theorem 4.4 and Theorem 5.8". (Part a.) In the proof below we will use various statements about gl n web algebras, all of which, more or less explicitly, can be found in [START_REF] Mackaay | The sl N -web algebras and dual canonical bases[END_REF] or [START_REF] Tubbenhauer | gl n -webs, categorification and Khovanov-Rozansky homologies[END_REF], using a matrix factorization description. For u, w ∈ Hom Wqgl n (1, k) let W (u, w) denote the associated free Z[q, q -1 ]-module summand of the gl n web algebra, see [Tub20, Section 3.3.4] for details. More precisely, W (u, w) is the idempotent truncation of the gl n web algebra obtained by using the two webs u and w. By the construction of the gl n web algebra via gl n foams or gl n matrix factorizations, respectively, and the universal construction, we have that (u, w) = q d rank Z[q,q -1 ] W (u, w) (the graded rank) and we will use this throughout. Here the shift by q d comes simply from the desire to have the unit of the gl n web algebra sitting in degree zero, which corresponds to using Gaussians (e.g. 1 + q 2 ) instead of quantum numbers.

Let us first assume that we have fixed F-forms of u, w ∈ Hom W ↑ q gl n (Λ, k) for some level Λ. The result in [Tub20, Theorem 5.16] identifies W (u, w) as an idempotent truncation of a thick version of the cyclotomic KLR algebra of type A Z and level Λ. The idempotent truncation is exactly given by the images of the F-forms of u, w under the categorified skew Howe duality in terms of the gl n web algebra, see e.g. [Tub20, Section 3.3]. The thickening, as explained in [Tub20, Section 3.3] is just the KLR diagram version of the usual thick calculus from [START_REF] Khovanov | Extended graphical calculus for categorified quantum sl(2)[END_REF], and it is easy to see that explosion in this case corresponds to isomorphisms on both sides of categorified skew Howe duality.

As explained in [Tub20, Section 5] these various isomorphism patched together provide the factors [r u ] q ! and [r w ] q ! in the formula from (4.3). Otherwise, (4.3) is the type A Z version of [HS21, Theorem A], so we can use [START_REF] Tubbenhauer | gl n -webs, categorification and Khovanov-Rozansky homologies[END_REF]Theorem 5.16] to push it over to the gl n web algebra.

It remains to argue that choosing different F-forms does not change the result. If F (u) and F (u) are two F-forms for u that are equal as topological webs and similarly F (w) and F (w) are two F-forms for u that are equal as topological webs, then (F (u), F (w)) = (F (u) , F (w) ) using the topological invariance of the gl n web algebra. By the previous point we further know that (F (u), F (w)) = χ(u, w) and (F (u) , F (w) ) = χ(u, w) , with the prime indicating that we use the combinatorial ingredients coming from F (w) and F (w) in χ(u, w) . Thus, χ(u, w) = χ(u, w) and that is what we wanted to show.

We next claim that (u, w) stays the same under the moves in (6.2) and the consequent reorientation. Indeed, there is a bijection of the bases on either side since the counting of flows (another way to index rank Z[q,q -1 ] W (u, w) ) comes out to be the same. To see this, recall that a flow is a labeling of the edges of thickness k with a k element subset of {1, ..., n} such that locally e.g.

A B

A ∪ B , A, B ⊂ {1, ..., n}, holds. Then we first note that changing the orientation does not change the number of flows. The operations in (6.2) also do not change the flow, so the claim follows. Finally, we need to argue that the rank of the gl n web algebra does not change when using phantom edges and crossings freely. To this end, note that Lemma 3.2 implies that webs seen as objects in three space do not change under the usage of phantom crossings. In particular, the evaluation formula that gives (u, w) does not actually see them at all. 

,

  Example 3.5. Let n = 3. The web w has the illustrated upwards-form. ♦ Lemma 3.6. Every web has at least one upwards-form. Definition 3.7. An F-form F (w) = F (ar)

Definition 4. 2 .

 2 We define the following.(a) Assume that we have an F-formF (u) = F (ar) ir ...F (a 1 ) i 1 1 Λ of level Λ = (n , 0, ..., 0) that ends at k = (k 1 , ..., k m ). For r u = (i (a 1 ) 1 , ..., i (ar)r ) we use the exploded sequence r u = (i 1 , ..., i 1 a 1 times , ..., i r , ..., i r ar times ) of length r = a 1 + ... + a r .

Definition 5. 1 .

 1 Given an oriented link diagram D c . An F-form of D c is the linear combinations of webs obtained by: (a) Choosing a Morse positioning (in terms of the • v -• h generators, including upwards-pointing crossings) of D c ; (b) Replace all (k, l)-crossings by

  2". (Part a.) All of the relations displayed in Lemma 2.4 follow directly from the definitions except the right-hand equation for which we use [LT21, Lemma 2A.14]. (Part b.) It follows from (the exterior version of) [LT21, Section 5] that

(

  Part b.) By Theorem 4.4 we have that the formula in (4.3) matches the evaluation on webs. The latter, by [MOY98, Theorem 5.1] (strictly speaking we use different conventions but the arguments of [MOY98, Theorem 5.1] still apply in our conventions), is known to give a link invariant. That this invariant is, up to conventions again, the Reshetikhin-Turaev polynomial of interest follows then from [CKM14, Corollary 6.2.3]. Proof of "The dual canonical webs, i.e. Proposition 4.6". Directly from Theorem 4.4 and [Tub20, Theorem 4.19].
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