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Introduction

Throughout fix n, l 1 , ..., l d ∈ Z ≥0 with d i=1 l i = n.

1A. Webs, Schur-Weyl and Howe duality. The so-called Schur-Weyl duality has played a key role ever since the early days of representation theory. It relates representations of the symmetric group S m and the general linear group GL n = GL n (C), and has been generalized in many ways. The representation used to related these two groups is (C n ) ⊗m . Let L = GL l 1 ×...×GL l d ⊆ GL n , and let us for simplicity stay over C for now. Two generalizations of Schur-Weyl duality are of crucial importance for this paper. Firstly, the Schur-Weyl duality of (Z/dZ) S m (that is, type G(d, 1, m)) and L from [START_REF] Ariki | Schur-Weyl reciprocity for the Hecke algebra of (Z/rZ) S n[END_REF], [START_REF] Sakamoto | Schur-Weyl reciprocity for Ariki-Koike algebras[END_REF] and [START_REF] Hu | Schur-Weyl reciprocity between quantum groups and Hecke algebras of type G(r, 1, n)[END_REF] (see also [START_REF] Mazorchuk | k, d)-modules via groupoids[END_REF] for a nice and self-contained discussion of this duality). Here the underlying representation is again (C n ) ⊗m . Second, skew (type A) Howe duality, see [START_REF] Howe | Remarks on classical invariant theory[END_REF] and [START_REF] Howe | Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond[END_REF], relating GL N and GL n via their action on • (C N ⊗ C n ).

As explained in [START_REF] Cautis | Webs and quantum skew Howe duality[END_REF], a diagrammatic interpretation of skew Howe duality is given by (exterior GL n ) webs. (The same diagrammatics goes under many names, including birdtracks [START_REF] Cvitanović | Group theory[END_REF] or spiders [START_REF] Kuperberg | Spiders for rank 2 Lie algebras[END_REF].) In some sense, in [START_REF] Cautis | Webs and quantum skew Howe duality[END_REF] skew Howe duality relating GL • and GL n takes the form of an equivalence between the category of webs and the category of GL n -representations generated by k C n k ∈ {1, ..., n} , with the web category being obtained by using all GL N for N ∈ Z ≥0 . After additive idempotent completion webs even give a diagrammatic interpretation of all finite dimensional GL n -representations.

In this paper we show that an explicit quotient of the category of annular (exterior GL n ) webs is equivalent to the category of L-representations generated by k C n k ∈ {1, ..., n} . As before, additive idempotent completion gives a description of all finite dimensional L-representations. This, in some sense, is a form of what could be called annular skew Howe duality (we avoid the notion affine as its meaning is context depending) or skew type G(d, 1, •) Howe duality.

1B. The main result and relation to other works. We now give a few details and change to the universal enveloping algebras. We consider a Levi subalgebra of the form = gl l 1 ⊕ ... ⊕ gl l d ⊆ gl n (in this paper we write instead of the usual notation l for readability). Let K q denote a field containing an element q ∈ K q that is not a root of unity and additional variables U = {u 1 , ..., u d }, and let further K 1 denote a field of characteristic zero containing U. With these ground fields the category of finite dimensional U q ( )-representations over K q respectively of finite dimensional U 1 ( )-representations over K 1 are semisimple. (The reader be warned: as explained in the main body of the text there are some nontrivial quantization issues and we carefully need to distinguish the two cases over K q and K 1 .)

In Section 4 we define a K q -linear category of annular webs AWeb q gl n as well as a quotient AWeb q by evaluating essential circles using the variables U. Similarly over K 1 , where we write AWeb 1 gl n and AWeb 1 . Let Fund q respectively Fund 1 denote the categories of U q ( )-and U 1 ( )-representations generated by the exterior powers of the vector representation. Our main result is Theorem 6B.1 showing that AWeb q is equivalent to Fund q and that AWeb 1 is pivotally equivalent to Fund 1 . The main ingredients in the proof of Theorem 6B.1 are the usual diagrammatic ideas, the Schur-Weyl type dualities from [START_REF] Sakamoto | Schur-Weyl reciprocity for Ariki-Koike algebras[END_REF] as well as the explosion trick, which utilizes the semisimplicity.

An almost direct consequence of Theorem 6B.1 is that the endomorphism algebras of annular webs corresponding to tensor products of the vector representation can be described explicitly. As we will see in Section 6D these are given by certain row quotients of Ariki-Koike algebras (Ariki-Koike algebras are Hecke algebras of (Z/dZ) S m , see for example [START_REF] Ariki | A Hecke algebra of (Z/rZ) S n and construction of its irreducible representations[END_REF], [START_REF] Broué | Zyklotomische Heckealgebren[END_REF], [START_REF] Cherednik | A new interpretation of Gelfand-Tzetlin bases[END_REF]) as studied in [START_REF] Lacabanne | Schur-Weyl duality, Verma modules, and row quotients of Ariki-Koike algebras[END_REF]. In the special case of two row quotients, which corresponds to = gl 1 ⊕ ... ⊕ gl 1 being the Cartan subalgebra, these algebras are Martin-Woodcock's generalized blob algebras [START_REF] Martin | Generalized blob algebras and alcove geometry[END_REF]. We thus obtain a web description of generalized blob algebras, see Section 6E for details. This web description allows us to answer a conjecture of Cautis-Kamnitzer [CK18, Conjectures 10.2 and 10.3] affirmatively, up to technicalities as detailed in Remark 6E.7.

Let us also mention that our work is inspired by [START_REF] Queffelec | Skein modules from skew Howe duality and affine extensions[END_REF] (which gives another, very honest, version of annular skew Howe duality), the aforementioned paper [START_REF] Cautis | Quantum K-theoretic geometric Satake: the SL n case[END_REF] and [START_REF] Queffelec | Extremal weight projectors II[END_REF] (which proves Theorem 6B.1 for K 1 = C and the special case of the Cartan subalgebra). With respect to [START_REF] Queffelec | Skein modules from skew Howe duality and affine extensions[END_REF] and [START_REF] Queffelec | Extremal weight projectors II[END_REF], which are partially motivated by Skein theory, the reader be warned that the monoidal structure on AWeb q coming from Skein theory and the one on Fund q coming from the Hopf algebra structure of U q ( ) do not seem to be compatible, see Section 6C for a discussion.
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Notations and conventions

We start by specifying our notations.

Notation 2.1. Recall that we fixed n, l 1 , ..., l d ∈ Z ≥0 with d i=1 l i = n. These will be used via the general linear Lie algebra gl n and a Levi subalgebra given by h ⊆ = gl l 1 ⊕ ... ⊕ gl l d ⊆ gl n . For l 1 = ... = l d = 1, so that = gl 1 ⊕ ... ⊕ gl 1 is the Cartan subalgebra, we will write h instead of . Notation 2.2. We now specify our underlying ground rings.

(a) For essential circles, see Section 4C below, we need extra polynomial elements (these can be ignored otherwise). We denote by

U = {u 1 , ..., u d } variables. (b) Let Z v = Z[v, v -1 , U, U -1 ] for some indeterminate v.
(c) We let K q denote a field containing U and U -1 and an element q which is not a root of unity.

Let also K 1 be a field of characteristic zero containing U and U -1 . (Note that char(K q ) is allowed to be a prime, but we assume that char(K 1 ) = 0.) (d) We also see K q as the specialization and scalar extension -⊗ Zv K q given by v → q, and K 1 as the specialization and scalar extension -⊗ Zv K 1 given by v → 1. We will apply scalar extension to Z v -linear categories, and since this will play an important role we will indicate the specialization accordingly. The two important specializations for K q and K 1 are distinguished by using q respectively 1 as a subscript.

(e) If not specified otherwise, then ⊗ denotes the tensor product over the ground ring, which is either Z v , K q or K 1 .

Not everything we do in this paper is be defined over Z v , and statements for K q are not strictly related to the ones for K 1 . If we use Z v , then we can specialize without problem. But if we do not work over Z v , then, to not double half of the text, we use the following crucial simplification: Notation 2.3. Throughout (on the diagrammatic and the representation theoretical sides) we always specify our conventions for K q and leave the analog conventions and lemmas for K 1 implicit; the ones for K 1 are always the q = 1 versions of the ones for K q . When lemmas etc. are the same for K q and K 1 , then we will use simply q (e.g. we write K q and not K q and K 1 ) to indicate this. We will stress whenever the statements for K q and K 1 are significantly different.

We will use quantum numbers, factorials and binomials viewed as elements of Z v . That is, for a ∈ Z and b ∈ Z ≥0 we let [0] = 0, [0]! = 1 = a 0 , [a] = -[-a] for a < 0 and otherwise

[a] = v a-1 + v a-3 + ... + v -a+3 + v -a+1 , [b]! = [b][b -1]...[1], a b = [a][a -1]...[a -b + 1] [b]! .
The following will be used silently throughout.

Lemma 2.4. All quantum binomials are invertible in K q .

Proof. Easy and omitted.

Notation 2.5. We work with strict pivotal (thus, monoidal) categories, were we strictify categories if necessary (by the usual strictification theorems this restriction is for convenience only). We have two directions of composition, vertical • v and horizontal • h , as well as a duality * operation. The monoidal unit is denoted by 1, and identity morphisms are denoted by id. We will also distinguish objects and morphisms using different fonts, e.g. K and f. As we will see, e.g. in Section 6C below, it will turn out to be important to carefully distinguish the monoidal product on the various categories we consider. This will only play a role on the level of morphisms, and we use various symbols for monoidal products between morphisms if necessary.

Notation 2.6. We now summarize the diagrammatic conventions that we will use in this paper.

(a) The following illustration of the interchange law summarizes our reading conventions:

(id • h g) • v (f • h id) = •v •v • h • h ... ... ... ... f g = ... ... ... ... f g = •v •v • h • h ... ... ... ... g f = (f • h id) • v (id • h g).
That is, we read diagrams from bottom to top and left to right.

(b) As we will recall below, webs are certain types of labeled (with numbers a ∈ Z ≥0 ) and oriented graphs. Some labels and orientations are determined by others, and we will often omit orientations and labels that can be recovered from the given data to avoid clutter.

(c) If labels or orientation are omitted altogether, then the displayed webs are a shorthand for any web of the same shape and legal labels and orientations.

(d) We use webs with edges labeled by a ∈ Z, where we use the convention that edges of label 0 are omitted from the illustrations, and edges with label not in Z ≥0 set the web to zero. (We will use negative labels, but for objects and not for edges in webs.)

(e) We also use strands labeled by objects, i.e. for K = (k 1 , ..., k m )

K K = k 1 k 1 k m k m ...
to indicate an arbitrary (but finite) number of parallel strings.

Web categories in the plane

This section serves as a reminder on web categories and their basic properties. Details can be found in many books and papers, e.g. [START_REF] Turaev | Monoidal categories and topological field theory[END_REF] for general diagrammatics, and [START_REF] Cautis | Webs and quantum skew Howe duality[END_REF] or, closer to our conventions, [START_REF] Latifi | Minimal presentations of gl n -web categories[END_REF] and the references therein for web categories. The proofs of the statements below are easy or can be found in loc. cit. 3A. Preliminaries. Let R be a commutative ring with unit. Definition 3A.1. For the purpose of this section, a diagram category Dia is a pivotal R-linear category with objects • h -generated by ↑ k with ↓ k = (↑ k ) * for k ∈ Z ≥0 with 1 being the empty word, and a braid group action on upwards objects, meaning morphisms R k,l : ↑ k • h ↑ l →↑ l • h ↑ k for each simple braid group generator that satisfy the braid relations.

We also write K = (k 1 , ..., k m ) ∈ Z m for m ∈ Z ≥0 for the objects of Dia, where we use the notations k ↑ k and -k ↓ k for k > 0. We illustrate the (co)evaluation morphisms as

k -k : ↑ k • h ↓ k → 1, k -k : ↓ k • h ↑ k → 1, -k k : 1 →↓ k • h ↑ k , -k k : 1 →↑ k • h ↓ k ,
and the braid group action as (k, l)-crossings (overcrossings and undercrossings): over :

l l k k : ↑ k • h ↑ l →↑ l • h ↑ k , under : k k l l : ↑ k • h ↑ l →↑ l • h ↑ k . Definition 3A.2. A diagrammatic antiinvolution ( -) on a diagram category is defined on objects by (K • h L • h ...) = K * • h L * • h .
.. and on morphisms as in (3A.3) below. A diagrammatic involution ( -) ↔ on a monoidal diagram category is defined on objects by (K

• h L • h ...) ↔ = ... • h L • h K and on morphisms as in (3A.3) below. f = f , f ↔ = f . (3A.3)
Lemma 3A.4. The diagrammatic antiinvolution is an antiinvolution, and the diagrammatic involution is an involution.

Proof. Easy and omitted. Definition 3A.5. Mating in Dia is the process of applying (co)evaluation morphisms, for example

f mating ----→ f , l l k k left mate -----→ -l -l k k = -l -l k k .
Note that mating produces many morphisms from a given set of morphisms.

Lemma 3A.6. Suppose that End Dia (1) ∼ = End Dia (↑ k ) ∼ = R. If the left mate of the (k, l)-overcrossing is invertible, then all mates of the (k, l)-overcrossing and its inverse span a pivotal subcategory equivalent to R-linear (labeled) tangles. In general, if the left mate of the (k, l)-overcrossing is invertible, then all mates of the (k, l)-overcrossing and its inverse span a pivotal subcategory equivalent to Rlinear (labeled) framed tangles.

Proof. Note that the assumption End Dia (↑ k ) ∼ = R implies the Reidemeister I relation up to scalars, which is enough to copy the argument in [Kas95, Theorem X11.2.2]. The second claim follows similarly.

We say Hom Dia (K, L) is determined by Hom Dia (K , L ) if there exists an isomorphism of R-modules between them.

Lemma 3A.7. If the left mates of the (k, l)-overcrossings are invertible, then all hom-spaces in Dia are determined by upwards hom-spaces.

Proof. By Lemma 3A.6, the assumptions imply that Lemma 3A.9. If the left mates of the (k, l)-overcrossings are invertible and all explosion morphisms exist, then all hom-spaces in Dia are determined by end-spaces between objects of the form 1

• h k =↑ 1 • h ...• h ↑ 1 .
Proof. Turn all strands upwards using Lemma 3A.7, and then explode the strands inductively.

3B. Exterior gl n -webs. We now recall the category of exterior gl n webs.

Definition 3B.1. The (exterior

gl n ) web category Web v gl n is the diagram category for R = Z v with • h -generating objects of categorical dimension n k and • v -• h -generating morphisms k l k+l : ↑ k+l →↑ k • h ↑ l , -k -l -k-l : ↓ k+l →↓ k • h ↓ l , k l k+l : ↑ k • h ↑ l →↑ k+l , -k -l -k-l : ↓ k • h ↓ l →↓ k+l ,
such that the left mates of the (k, l)-overcrossing are invertible. The relations imposed on Web v gl n are isotopies (not displayed zigzag and trivalent-slide relations, see e.g. [LT21, Section 2] for details), the exterior relation, associativity, coassociativity, digon removal, and dumbbell-crossing relation.

That is, we take the quotient by the • v -• h -ideal generated by isotopies and

>n >n = 0, k l m k+l+m = k l m k+l+m , k l m k+l+m = k l m k+l+m , k l k+l k+l = k + l k • k+l k+l , k r l s = k-r=a-b v -(k-a)(l-b) b a k r l s = k-r=a-b v (k-a)(l-b) a b k r l s ,
together with their ( -) -duals.

We call morphisms in Web v gl n (exterior gl n ) webs.

It follows for example from [LT21, Sections 2 and 5] that there is a well-defined functor from the pivotal category of topological webs (where webs are defined as plane labeled oriented trivalent graphs up to planar isotopy) to Web v gl n which we will use to draw webs in a topological fashion.

Lemma 3B.2. In Web v gl n we have l l k k = (-1) kl b-a=k-l (-v) k-b k l l k b a , k k l l = (-1) kl b-a=k-l (-v) -k+b k l l k b a . (3B.3) Proof. This is explained in [LT21, Section 5]. For completeness, the k = l = 1 case of (3B.3) is 1 1 1 1 = v • 1 1 1 1 - 1 1 1 1 , 1 1 1 1 = v -1 • 1 1 1 1 - 1 1 1 1 . (3B.4) Lemma 3B.5. The following hold in Web v gl n .
(a) The crossings satisfy the Reidemeister II and III relations, and the Reidemeister I relation holds with scalar, that is, (c) Explosion holds for Web q gl n (but not in Web v gl n ), that is

k k = v k(-k+n+1) • k k = k k , k k = v k(k-n-1) • k k = k k , ( 3B 
k+l k+l = k + l k -1 • k l k+l k+l ,
together with its ( -) -dual. Moreover, the (k, l)-overcrossings satisfy explosion as well, i.e.

l l k k = [k]! -1 [l]! -1 • k l l k ... x ... ... ... , x = l strands k strands ... ... ... ... , (3B.7)
as well as a similar formula for the (k, l)-undercrossings.

Note that thus Lemma 3A.6 applies in Web q gl n . Let us also note that following, partially explaining why explosion works well in practice:

Lemma 3B.8. The additive idempotent completion of Web q gl n is semisimple.

Proof. By Lemma 3A.6 and the existence of certain projectors, see e.g. [START_REF] Rose | Symmetric webs, Jones-Wenzl recursions, and q-Howe duality[END_REF] or [TVW17, Section 2.3]. To be precise (and to fix notation for the rest of the paper), the projectors are

[k]! -1 • 1 1 k 1 1 ... ... , 1 1 k ... = 1 1 1 1 k ... ,
where the dots indicate an inductive construction as illustrated on the right (the order of how these are constructed is irrelevant due to (co)associativity).

Annular webs

This section discusses our main diagram categories of this paper. Similar constructions have appeared in many texts, e.g. [START_REF] Cautis | Quantum K-theoretic geometric Satake: the SL n case[END_REF] or [START_REF] Queffelec | Extremal weight projectors II[END_REF]. 

4A. The annular web category. The following definition does not use any

• h structure. Definition 4A.1. The (exterior gl n ) annular web category AWeb v gl n is the category obtained from Web v gl n by adding extra • v -generators ρ K = k 1 k 1 k 2 k 2 k m k m ... , ρ K = k 1 k 1 k 2 k 2 k m k m ... , for each K = (k 1 , ..., k m ) ∈ Z m to Web v gl n modulo the • v -ideal
K K = K K , (4A.3) K K = K K , (4A.4)
together with the ( -) -and ( -) ↔ -duals of the bottom two relations.

We call morphisms in AWeb v gl n annular (exterior gl n ) webs, and ρ K and ρ K are called coils.

Remark 4A.5. We think of the coils as crossings in front the annulus, e.g.

ρ (1,1) 1 1 1 1 .
This convention comes because we follow [START_REF] Sakamoto | Schur-Weyl reciprocity for Ariki-Koike algebras[END_REF] later on for computations. Using the inverse braiding compared to the definitions in [SS99, Theorem 3.2] translate to coils passing behind the annulus.

Remark 4A.6. The name annular webs comes from the interpretation of the pictures in Definition 4A.1 as embedded in an annulus. For example,

k k k k .
The following elements defined via Lagrange interpolation play a crucial role later on: Definition 4A.7. For i ∈ {1, ..., d} define

pr w i = i =j ρ 1 -u i u j -u i = i =j -u i u j -u i ∈ End AWebvgl n (1),
which we call web block projectors.

4B. Properties of annular webs. We can endow AWeb v gl n with a monoidal structure • A h as follows. On objects (a) We have an annular digon removal, that is

K• h K = K• A h K is just the concatenation, i.e. if K = (k 1 , ..., k r ) and K = (k 1 , ..., k s ), then K • h K = (k 1 , ..., k r , k 1 , ..., k s ). On morphisms • A h we use ... ... f • A h ...
k+l k l k+l l k K K = k + l k • k+l k+l K K ,
together with its ( -) -dual. Various other annular versions of the relations in Lemma 3B.5 hold as well (but are not stated since we do not use them).

(b) All half-slides of merges, splits, cups and caps, e.g.

K K = K K .
(c) Annular explosion holds for AWeb q gl n (but not in AWeb v gl n ), that is

k+l k+l K K = k + l k -1 • k+l k l k+l l k K K together with its ( -) -dual.
The thin coils suffice as • v -generators:

Lemma 4B.5. The morphisms ρ (k,K) and ρ (k,K) in AWeb q gl n (but not in AWeb v gl n ) can be defined inductively from ρ (±1,K) and ρ (±1,K) . Moreover, the morphisms ρ (-1,K) and ρ (-1,K) in AWeb v gl n can be defined from ρ (1,-1,K,-1) and ρ (1,-1,K,-1) .

Proof. The pictures

k k K K = [k]! -1 • k 1 1 k 1 1 K K ... ... , -1 -1 K K = -1 -1 K K ,
define the morphisms as claimed. Their inverses are the ( -) ↔ -duals of these pictures.

The 

c ← k = k = k , c → k = k = k .
We also say essential circles for short.

Note that essential circles are nontrivial endomorphism of 1. We want to evaluate them. To this end, let e k denote the kth elementary symmetric polynomial in n variables, i.e. e k = e k (Z 1 , ..., Z n ).

Definition 4C.2. The Levi evaluation for of the essential circles is defined to be

k -e k (v -1 u 1 , v -3 u 1 , ..., v -2l 1 +1 u 1 , ..., v -1 u d , v -3 u d , ..., v -2l d +1 u d ) • , k -e k (vu -1 1 , v 3 u -1 1 , ..., v 2l 1 -1 u -1 1 , ..., vu -1 d , v 3 u -1 d , ..., v 2l d -1 u -1 d ) • , (4C.3)
which are elements in End AWebvgl n (1).

The following quotient gives a diagrammatic description of quantum -representations. We call the kernel of the functor AΓ q from Section 6B the Levi ideal and denote it by I .

Lemma 4C.4. The Levi ideal I is a two-sided • v -ideal in AWeb q gl n .

Proof. The kernel is a two-sided • v -ideal. Thus, we get a well-defined category by: Definition 4C.5. Let AWeb q denote the quotient of AWeb q gl n by the Levi ideal I .

For K 1 it will turn out that I is the two-sided • v -• A h -ideal generated by the Levi evaluations (4C.3). Being careful with the underlying monoidal structure (details are given in Theorem 6B.1), the same holds for K q , hence the name.

Representation theory of Levi subalgebras

This section discusses the representation categories of this paper. The below is (partially) wellknown and we will be brief whenever appropriate. A lot of details and also background can be found in text such as [START_REF] Jantzen | Lectures on quantum groups[END_REF].

5A. The general linear representation category. We fix our notation regarding the general linear quantum algebra. Let U v (gl n ) be the divided power quantum enveloping algebra for gl n , where we use the conventions, excluding the Hopf algebra structure, from [START_REF] Andersen | Representations of quantum algebras[END_REF] in the special case of gl n (using

K ±1 i = L ±1 i L ∓1 i+1
). The algebra U v (gl n ) specializes to either the K q -algebra U q (gl n ) or the K 1 -algebra U 1 (gl n ) for which we now recall the relevant formulas.

The algebra U q (gl n ) is generated by L ±1 i for i ∈ {1, ..., n} (these are inverses) and E i , F i for i ∈ {1, ..., n -1} and the Hopf algebra structure used in this paper is

∆(E i ) = E i ⊗ L i L -1 i+1 + 1 ⊗ E i , (E i ) = 0, S(E i ) = -E i L -1 i L i+1 , ∆(F i ) = F i ⊗ 1 + L -1 i L i+1 ⊗ F i , (F i ) = 0, S(F i ) = -L i L -1 i+1 F i , with L ±1 i being group like.
The vector representation V q = V q (gl n ) of U q (gl n ) is the K q -vector space K q {v 1 , ..., v n } with action

L ±1 i v j = q ±δ i,j v j , E i v j = δ i,j v j-1 , F i v j = δ i,j v j+1 .
Let T V q be the tensor algebra. The kth quantum exterior power k q V q is defined as the degree k part (in the usual sense) of the quantum exterior algebra given by

• q V q = k∈Z ≥0 k q V q = T V q / v h ⊗ v h , v j ⊗ v i + q -1 v i ⊗ v j |i < j two-sided ⊗-ideal . (5A.1)
The exterior powers are U q (gl n )-representations by using the Hopf algebra structure, and so is 1 = K q itself and all the duals of the above, denoted by using negative powers: k q V q = ( -k q V q ) * for k ∈ Z <0 .

Lemma 5A.2. For k ∈ Z ≥0 , the K q -vector space k q V q has a basis given by v

S = v i 1 ⊗ ... ⊗ v i k S = (i 1 < ... < i k ) for i j ∈ {1, ..., n} . If -k ∈ Z ≥0
, then the K q -vector space k q V q has a basis given by

v * S = v i -k ⊗ ... ⊗ v i 1 S = (i 1 < ... < i -k
) for i j ∈ {1, ..., n} . Proof. Easy and omitted.

Notation 5A.3. We also use the notation v S from Lemma 5A.2 more generally for any S = (i 1 , ..., i k ) for i j ∈ {1, ..., n}, and use the usual set operations on them. Recall that such expressions need to potentially be reordered using (5A.1) to match the basis of Lemma 5A.2.

We now consider so-called U q (gl n )-representations of type 1 which, as usual, is not a serious restriction, see e.g. [Jan96, Section 5.2] for details. Definition 5A.4. Let Rep q gl n denote the category of finite dimensional U q (gl n )-representations of type 1. We view Rep q gl n as pivotal using the above Hopf algebra structure on U q (gl n ). Let further Fund q gl n denote the full pivotal subcategory with objects of the form

K q V q = k 1 q V q ⊗ ... ⊗ km q V q for K = (k 1 , ..., k m ) ∈ Z m and m ∈ Z ≥0 .
We call Rep q gl n the representation category of U q (gl n ) and Fund q gl n its fundamental category. (We use the same terminology for defined below.) The following is crucial, but well-known, and will be used throughout. To state it let X + gl n ⊂ Z n denote the set of dominant integral gl n -weight, i.e. tuples λ = (λ 1 , ..., λ n ) such that λ 1 ≥ ... ≥ λ n . Lemma 5A.5. We have the following.

(a) The category Rep q gl n is semisimple, its simple objects are of the form L(λ) for λ ∈ X + and their characters are given by Weyl's character formula.

(b) The additive idempotent completion of Fund q gl n is pivotally equivalent to Rep q gl n .

Proof. Claim (a). See e.g. [Jan96, Theorems 5.15 and 5.17] or [APW91, Section 6]. Claim (b). By (a) classical theory applies, see e.g. [Jan96, Theorems 5.15 and 5.17] or [APW91, Section 6] for details.

Let us now list generating U q (gl n )-equivariant morphisms that will be mapped to the generators of Web q gl n . The notation is hopefully suggestive.

For tuples S, T as in Notation 5A.3 let

|S < T | = {(s, t) ∈ S × T | s < t} and |S, N | = |S < N | -|N < S| for N = (1, 2, ..., n).
Using such tuples and this notation we define (here k, l ∈ Z ≥0 ):

Y k+l k,l : k q V q ⊗ l q V q → k+l q V q , v S ⊗ v T → δ S∩T,∅ (-q) -|T <S| v S∪T , Y k,l k+l : k+l q V q → k q V q ⊗ l q V q , v U → (-1) kl S T =U,|S|=k (-q) |S<T | v S ⊗ v T , ∩ ← k : -k q V q ⊗ k q V q → K q , v * S ⊗ v T → δ S,T , ∩ → k : k q V q ⊗ -k q V q → K q , v S ⊗ v * T → q |S,N | δ S,T , ∪ ← k : K q → k q V q ⊗ -k q V q , 1 → |S|=k v S ⊗ v * S , ∪ → k : K q → -k q V q ⊗ k q V q , 1 → |S|=k q -|S,N | v * S ⊗ v S .
(5A.6)

Lemma 5A.7. The morphisms in (5A.6) are • v -⊗-generators of Fund q gl n .

Proof. A careful check of the relations shows that these maps are U q (gl n )-equivariant. That they generate follows from Lemma 5A.5 and classical theory.

We have an algebraic version of explosion:

Lemma 5A.8. Explosion holds for Fund q gl n , that is

id k+l = k+l k -1 Y k+l k,l Y k,l k+l . Proof. A direct computation.
We denote by Y 1,...,1 k and Y k 1,...,1 the successive explosion of k strands. We also have the (1, 1)-overcrossings and (1, 1)-undercrossings

R 1,1 = qid 1,1 -Y 1,1 2 Y 2 1,1 : V q ⊗ V q → V q ⊗ V q , v i ⊗ v j →      qv i ⊗ v i if i = j, v j ⊗ v i if i < j, v j ⊗ v i + (q -q -1 )v i ⊗ v j if i > j, R -1 1,1 = q -1 id 1,1 -Y 1,1 2 Y 2 1,1 : V q ⊗ V q → V q ⊗ V q , v i ⊗ v j →      q -1 v i ⊗ v i if i = j, v j ⊗ v i if i > j, v j ⊗ v i + (q -1 -q)v i ⊗ v j if i < j.
We also get crossings R ±1 k,l : k q V q ⊗ l q V q → l q V q ⊗ k q V q for all k, l ∈ Z by mimicking (3B.3) and mating.

Lemma 5A.9. The crossings satisfy the Reidemeister II and III relations and various naturality relations, and can be alternatively defined by explosion.

Proof. Well-known and omitted (for the explosion statement see Lemma 3B.5 imported via Theorem 6A.1).

5B. The Levi representation category. Recall that we have fixed = gl l 1 ⊕ ... ⊕ gl l d of which we think as being

=   gl l 1 0 0 0 . . . 0 0 0 gl l d   ⊂ gl n , generators in gl l i :        L i,1 E i,1 F i,1 . . . . . . . . . . . . E i,l i -1 F i,l i -1 L i,l i
where we reindex the elements L ± i , E i and F i as indicated. (Note that all L ± i appear in this reindexing, but not all E i and F i .)

Definition 5B.1. Let U v ( ) be the Z v -subalgebra of U v (gl n ) generated by L ± i,k , E i,k and F i,k
. We endow U v ( ) with the structure of a Hopf algebra by restricting the one for U v (gl n ).

The following gives us a block decomposition and will be used without further reference:

Lemma 5B.2. We have U v ( ) ∼ = U v (gl l 1 ) ⊗ ... ⊗ U v (gl l d ) as Z v -algebras.
Proof. By definition.

The representation theory of U q ( ) is easy (knowing the representation theory for U q (gl m )), but nevertheless we state a few lemmas that we will use. For starters, note that all U q (gl n )-representations restrict to U q ( )-representations. Note also that the vector representation V q (gl l i ) of U q (gl l i ) is a U q ( )-module with action inflated to U q ( ). The same holds for the exterior powers.

Lemma 5B.3. As a U q ( )-module we have k q V q ∼ = k q d i=1 V q (gl l i ) ∼ = k 1 +...+k d =k k 1 q V q (gl l 1 ) ⊗ ... ⊗ k d q V q (gl l d ). We also have V ⊗k q ∼ = k 1 +...+k d =k V q (gl l 1 ) ⊗k 1 ⊗ ... ⊗ V q (gl l d ) ⊗k d .
Note that Lemma 5B.3 implies that V q is not simple as a U q ( )-representation.

Proof. The case k = 1 is clear by e.g. using the usual diagrammatic description of V q (the actions of the L ±1 i are omitted in the following illustration):

v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 F 1,1 E 1,1 F 1,2 E 1,2 F 3 E 3 F 2,1 E 2,1 F 2,2 E 2,2 F 6 E 6 F 3,1 E 3,1
.

This illustrates the case l 1 = 3, l 2 = 3, l 3 = 2 and n = 8. The case of general k and the second isomorphism are similar and omitted.

We now reindex the basis of V q to {v 1,1 , ..., v 1,l 1 , ..., v d,1 , ..., v d,l d }, which then induces a reindexing of the basis of k q V q that we will use below.

Lemma 5B.4. As a U q ( )-module we have V ⊗k q ∼ = k q V q ⊕ W and no simple constituent of k q V q appears in W .

Proof. By looking at highest weight vectors and classical theory, this follows directly from the first and the second decomposition in Lemma 5B.3. Definition 5B.5. Let Rep q denote the category of finite dimensional U q ( )-representations of type 1. We view Rep q as pivotal using the above Hopf algebra structure on U q (gl n ). Let further Fund q denote the full pivotal subcategory with objects of the form K q V q for K = (k 1 , ..., k m ) ∈ Z m and m ∈ Z ≥0 .

We write • h for the monoidal structure on Rep q and Fund q on the morphism level, and • h on the object level. With contrast to (4B.1), a picture for the monoidal structure on Fund q is ... Lemma 5B.8. We have the following.

(a) The category Rep q is semisimple, and its simple objects are of the form L(λ 1 ) ⊗ ... ⊗ L(λ d ) with the factors being simple objects of Rep q gl l i .

(b) The additive idempotent completion of Fund q is pivotally equivalent to Rep q .

Proof. Lemma 5A.5 applies componentwise.

We define the Levi (1, 1)-overcrossings and Levi (1, 1)-undercrossing to be R 1,1 :

V q ⊗ V q → V q ⊗ V q , v i,j ⊗ v k,l → R 1,1 (v i,j ⊗ v i,l ) if i = k, v k,l ⊗ v i,j else, (R 1,1 ) -1 : V q ⊗ V q → V q ⊗ V q , v i,j ⊗ v k,l → (R 1,1 ) -1 (v i,j ⊗ v i,l ) if i = k, v k,l ⊗ v i,j else.
In words, R 1,1 is the respective gl l i braiding within one block, and the swap map otherwise, and similarly for its inverse.

Definition 5B.9. For k, l ∈ Z ≥0 define R k,l as the composition

k q V q ⊗ l q V q i - → V ⊗(k+l) q x -→ V ⊗(k+l) q p -→ l q V q ⊗ k q V q
, where are i and p are inclusion and projection, respectively, and x is defined as in (3B.7) but with Levi crossings. Define (R k,l ) -1 similarly.

We also get various mates of which we think as rotated versions of the ones in Definition 5B.9.

Lemma 5B.10. The Levi crossings are U q ( )-equivariant, satisfy the Reidemeister II and III relations and various naturality relations.

5C. Levi crossings. The Levi crossings are not U q (gl n )-equivariant in general, and there is no planar web picture for it. However, it will be helpful to have the following diagrammatic notation. For the Levi (k, l)-overcrossings and the Levi (k, l)-undercrossings we use:

over : R k,l l l k k , under : (R k,l ) -1 k k l l .
We also use rotated pictures for their mates.

By Lemma 5B.10, we have the Reidemeister II and III relations, e.g. = , = .

We can use this to define Levi braids associated to any braid word. Of particular importance will be the (positive) Levi full twist on k strands (denote by a box notation). By definition, this map is the square of the positive lift, using Levi overcrossings, of the longest word in the symmetric group on {1, ..., k}. For example, for k = 4 this full twist is

ft =               2 .
We also have various naturality relations such as

= or = ,
including the various ( -) and ( -) ↔ -duals. However, we need to be careful with the Reidemeister I relation as k q V q needs not to be simple, see Lemma 5B.3. Nevertheless, we still have: Lemma 5C.1. The Levi crossings are diagonal matrices in the basis given the decomposition of k q V q from Lemma 5B.3.

Proof. Note that the decomposition of k q V q from Lemma 5B.3 is multiplicity free, and Schur's lemma applies. (Note that Schur's lemma in this setting does not need the underlying field to be algebraically closed, see e.g. [APW91, Corollary 7.4] or [AT17, Remark 2.29].) One can check that the diagonal entries mentioned in Lemma 5C.1 are given by products of the Reidemeister I scalars in (3B.6).

The equivalence

We now state and prove our main result.

6A. A reminder on the gl n story. We first recall the relationship between gl n webs and the representation theory of U q (gl n ). Define a functor Γ q = Γ ext q (gl n ) : Web q gl n → Fund q gl n sending the object K to K q V q and the generating morphisms of Web q gl n as follows:

k l k+l → Y k,l k+l , k l k+l → Y k+l k,l , k -k → ∩ → k , k -k → ∩ ← k , -k k → ∪ → k , -k k → ∪ ← k .
Theorem 6A.1. The functor Γ q is an equivalence of pivotal categories, and it induces an equivalence of pivotal categories between the additive idempotent completion of Web q gl n and Rep q gl n .

Proof. The fact that Γ q is fully faithful is [CKM14, Theorem 3.3.1] and the fact that the relevant hom-spaces stay of the same dimension when restricting from gl n to sl n . The second claim follows from Lemma 5A.5.(b), or [CKM14, Theorem 3.3.1] and flatness of restriction from gl n to sl n .

6B. The statement. We now extend the functor Γ q into a functor AΓ q = AΓ ext q ( ) : AWeb q gl n → Fund q . On objects and the generators of Web q gl n the functor AΓ q is defined to be Γ q . We define AΓ q on the two coils ρ K and ρ K by

1 1 k 2 k 2 k m k m ... → r 1,K , 1 1 k 2 k 2 k m k m ... → r 1,K .
Theorem 6B.1. Let AdId( -) denote additive idempotent completion.

(a) We have the commuting diagram of categories

AWeb q gl n AWeb q AdId(AWeb q ) Fund q Rep q . AΓq (4C.3) AdId( -) ∼ = AΓ q AdId(AΓ q ) ∼ = AdId( -)
The Levi ideal I is the two-sided • v -• h -ideal generated by the Levi evaluations. Here • h is the pullback of the monoidal structure from Fund q to AWeb q gl n .

(b) We have the commuting diagram of pivotal categories

AWeb 1 gl n AWeb 1 AdId(AWeb 1 ) Fund 1 Rep 1 . AΓ 1 (4C.3) AdId( -) ∼ = AΓ 1 AdId(AΓ 1 ) ∼ = AdId( -)
The Levi ideal I is the two-sided • v -• A h -ideal generated by the Levi evaluations.

The proof of Theorem 6B.1 is postponed to Section 7, since we want to focus on applications of this theorem first. For the rest of the section we assume that Theorem 6B.1 holds (with the exception of the next subsection where we only assume that AΓ q is well-defined).

6C. Monoidal behavior of the main functor. The categories AWeb q gl n and Rep q are endowed with monoidal structures that are natural from two different perspectives, as explained in Remark 4B.2. However, as we will elaborate now, these need not to be the same under the equivalence Theorem 6B.1. Lemma 6C.1. Assume that the functor AΓ q is well-defined.

(a) The functor AΓ 1 is pivotal.

(b) The functor AΓ q is not monoidal (and thus not pivotal).

Proof. (a). Let us consider q = 1. In this case the braiding on Rep 1 is given by permutation. Comparing (4B.1) and (5B.6), and observing that coils in Rep 1 are permutations, up to diagonal entries of the form u i on blocks, shows that the functor AΓ 1 is monoidal. Pivotality is clear, and the final claim follows since AΓ 1 is monoidal.

(b). For q = 1, one can check that the images under AΓ q of (4B.1) is not the same as (5B.6). Explicitly, taking K = L = (1), f = ρ K and g = id L verifies that AΓ q is not monoidal.

Remark 6C.2. We note that Lemma 6C.1 shows that the choice which side goes over or under in (4B.1) matters and gives different results on the representation theoretical side. This indicates that one might need to use the notion of module categories rather then monoidal categories to describe the representation theory associated to AWeb q gl n . This is similar as in, for example, [START_REF] Sartori | Webs and q-Howe dualities in types BCD[END_REF] or [START_REF] Ehrig | Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality[END_REF] (via [MS16, Remark 12]), so coideal subalgebras might play a role. Remark 6C.3. One could use the equivalence in Theorem 6B.1 to pullback the monoidal structure of Rep q , resulting in a monoidal structure on AWeb q that is distinct from the one we give in Lemma 4B.3 above. This pullback monoidal structure would not satisfy the conditions in [MS21, (2.11)], which are necessary for it to be unique, see [MS21, Proposition 2.5]. Conversely, one could push the monoidal structure from AWeb q to Rep q , resulting in a monoidal structure on Rep q satisfying [MS21, (2.11)]. 6D. Ariki-Koike algebras and annular webs. The Ariki-Koike algebra H m,d q from [AK94], [START_REF] Broué | Zyklotomische Heckealgebren[END_REF], [START_REF] Cherednik | A new interpretation of Gelfand-Tzetlin bases[END_REF], using different conventions, is: Definition 6D.1. Fix m ∈ Z ≥0 , the number of strands, and let H m,d v denote the Z v -algebra with algebra generators T 0 , T 1 , ..., T m-1 modulo the two-sided ideal generated by

d k=1 (T 0 -u k ), T 0 T 1 T 0 T 1 -T 1 T 0 T 1 T 0 , (T i -q)(T i + q -1 ) if |i -j| = 0, T i T j T i -T j T i T j if |i -j| = 1, T i T j -T j T i if |i -j| > 1,
where i, j ∈ {1, ..., m -1}.

The Ariki-Koike algebra acts on 1 • h m : Proposition 6D.2. We have a surjective K q -algebra homomorphism

π m,d : H m,d q End AWebqgl n (1 • h m ), T 0 → 1 1 • h (m-1) 1 • h (m-1) 1 , T i → 1 1 1 1 .
Proof. By Theorem 6B.1, this follows from [SS99, Theorem 4.2] after adjustment of conventions.

We define the usual Jucys-Murphy elements:

Definition 6D.3. Define elements of H m,d v by X 1 = T 0 and for i ∈ Z ≥1 recursively X i = T i X i-1 T i .
Let P (m, d) denote the set of d-partitions of m (which we identify with d-tuples of Young diagrams in the English convention), and for λ ∈ P (m, d) let Std(λ) denote the set of all standard d-tableaux of shape λ.

Lemma 6D.4. For all λ ∈ P (m, d) there exists a simple H m,d q -module V λ , and these form a complete and nonredundant set of simple H m,d q -representations. Moreover, we have an K q -algebra isomorphism

H m,d q ∼ = λ∈P (m,d) End Kq (V λ ). Finally, V λ can be given a K q -basis {v T | T ∈ Std(λ)} such that X i acts by X i v T = u a q 2b-2c v T , (6D.5)
where a is the component of the entry i in T , b is the column number where i appears and c is the row number of i.

Proof. Our assumptions on the involved parameters imply that H m,d q is semisimple and the lemma follows from [AK94, Theorem 3.7] and results in the same section, e.g. [AK94, Proposition 3.16].

Let I >l 1 ,...,>l d ⊂ H m,d q denote the two-sided ideal generated by the idempotents, realizing the Artin-Wedderburn decomposition in Lemma 6D.4, for d-partitions of m with strictly more than l i rows in the ith entry. The following definition appears in [LV21, Section 2C]: Definition 6D.6. Let B q be the algebra quotient of H m,d q by I >l 1 ,...,>l d .

Proposition 6D.7. The map π m,d from Proposition 6D.2 induces a K q -algebra isomorphism

π : B q ∼ = -→ End AWebq (1 • h m ).
Thus, the kernel of π m,d is ker(π m,d ) = I >l 1 ,...,>l d .

Proof. As in the proof of Proposition 6D.2. 6E. Cartan subalgebras and generalized blob algebras. We now consider the case of the Cartan subalgebra in detail.

Proposition 6E.1. The functor AΓ q descends to an equivalence of categories AΓ h q : AWeb q h → Fund q h, and it induces an equivalence of categories between the additive idempotent completion of AWeb q h and Rep q h. 

k = e (i-1) k + (q 2 -1)(X i-1 e (i-1) k-1 - X 2 i-1 e (i-1) k-2 + ... ± X k i-1
), and let J >1 ⊂ H m,d q denote the two-sided ideal generated by R i = X d ie

(i) 1 X d-1 i + ... ± e (i) d . Let J 2 ⊂ H m,d
q denote the two-sided ideal generated by R 2 .

Proposition 6E.6. The kernel of π m,d is alternatively given by ker(π m,d ) = J 2 = J >1 . The same holds for q = 1.

Proof. Claim 1. R 2 acts on V λ as zero if and only if the d-partition λ has at most one row per component.

Proof of the Claim 1. The case where λ has one node is easy, so assume that λ has at least two nodes. We use that V λ has a K q -basis given by v T for T a standard d-tableaux of shape λ on which X i acts by (6D.5). Using (6D.5), we can calculate the action of R 2 on the K q -basis given by the v T . There are three cases depending on the positions of 1 and 2 in T one needs to check: (i) : ..., 1 , ..., 2 , ... or vice versa, (ii) : ..., 1 2 , ... , (iii) : ..., 1 2 , ... .

All of these are annoying but straightforward calculations, and details are omitted. Claim 2. J 2 = J >1 . Proof of the Claim 2. To see this, we note that on v T ∈ V λ for λ a one row d-partition and T a standard d-tableau of shape λ we have

e (i) k v T = e k (q 2α 1 u 1 , ..., q 2α d u d )v T ,
where α r = |{s < i | s is in the rth component of T }|. Using this formula and (6D.5) one can recursively check that the above claim holds for R i for i ≥ 2, which implies that J >1 ⊂ J 2 , and the proof of the claim completes.

The first claim implies that J 2 = I 2 , and this together with the second claim and Proposition 6E.4 proves the lemma.

Remark 6E.7. By Lemma 4B.6, Proposition 6E.6 answers [CK18, Conjectures 10.2 and 10.3] affirmatively in the following sense. The category we consider in Proposition 6E.6 is defined using gl n webs, a quotient of AWeb q gl n by essential circles and has a field containing U as its ground field. This setting is mildly different from [START_REF] Cautis | Quantum K-theoretic geometric Satake: the SL n case[END_REF] as they consider sl n webs, take no quotient (these are both negligible differences, see e.g. [TVW17, Remark 1.1], discussing the first difference, and [CK18, Section 4.7] for the second difference) and work over a different ground ring. 6F. Working integrally. Note that our main result Theorem 6B.1 is not stated or proven over Z v , and we work over K q in which case AWeb q and Rep q are semisimple. Working integrally, that is, over (iv) Note that the blob algebra is not defined integrally, and it is also not clear from the definition how to work integrally. Let us however point out that the description of B m,d q from [LV21, Theorem 2.15] works integrally and might play a role in the integral story. We decided not to pursue this further in this work.

Z v or even Z[v, v -1 , U]

Proof

7A. Well-definedness. Recall that the images of the coils are defined by explosion. We define u : V ⊗k q → V ⊗k q as the map sending

v i 1 ,j 1 ⊗ • • • ⊗ v i k ,j k to u i 1 • • • u i k v i 1 ,j 1 ⊗ • • • ⊗ v i k ,j k . Lemma 7A.1. We have AΓ q (ρ (k,K) ) = [k]! -1 • K k ... ft u ... . Proof.
Using the Levi crossings introduced in Section 5C, we easily check that AΓ q sends the coil ρ (k,K) to the claimed picture. Lemma 7A.2. In Rep q we have

[k]! -1 [l]! -1 • k + l k l ft ... ... ... = [k + l]! -1 • k + l k l ft ... ... . Proof.
We first suppose that the strands are oriented upward. The image of Y 1,...,1 k k + l is an U q ( )submodule of V ⊗k+l q . The full twist ft is U q ( )-invariant, so this submodule remains invariant. But this submodule is isomorphic to k+l q V q and since the weight spaces of k+l q V q are of dimension one, we deduce that the image of a vector v S by ft

• Y 1,...,1 k k+l is a multiple of Y 1,...,1 k k+l(v S ), say λ S Y 1,...,1 k k+l(v S ). Hence, Y k,l k+l • Y k 1,...,1 k + l • ft • Y 1,...,1 k k+l sends v S to λ S Y k,l k+l • Y k 1,...,1 k+l • Y 1,...,1 k k+l(v S ) = λ S [k+l]!Y k,l k+l (v S ) and ( Y k 1,...,1 k ⊗ Y k 1,...,1 l) • ft • Y 1,...,1 k k+l sends v S to λ S ( Y k 1,...,1 k ⊗ Y k 1,...,1 l) • Y 1,...,1 k k+l(v S ) = λ S [k]![l]!Y k,l
k+l (v S ). The same arguments shows that the equality also holds with strands oriented downward.

Lemma 7A.3. The relation (4A.2) is satisfied after applying the functor AΓ q .

Proof. Clear.

Lemma 7A.4. The relation (4A.3) is satisfied after applying the functor AΓ q .

Proof. Using the associativity of splits and merges and the fact that Levi crossings satisfy the Reidemeister III relation, it remains to prove

[k+l]! -1 • K k+l K k l ... ft ... = [k]! -1 [l]! -1 • K K k + l k l ft ... ... ...
, which follows immediately from Lemma 7A.2.

We can show similarly that merges slide through coils.

Lemma 7A.5. The relation (4A.4) is satisfied after applying the functor AΓ q .

Proof. The image of the right hand side of (4A.4) is given, up to the multiplication by elements of U that cancel out, by This equality follows from a repeated application of Lemma 7A.2 and from the digon removal relation.

[k]! -2 • k -k K K ..
The argument for the leftward oriented cap is similar and omitted.

We can show similarly that cups slide through coils.

Lemma 7A.6. The relations in (4C.3) are in the kernel of AΓ q .

Proof. The image of the leftward oriented essential circle with a strand of thickness k through AΓ q is given by . We easily check that the twist sends v i,j to q -n+2(l 1 +•••+l d ) v i,j and therefore the previous scalar is equal to

[k]! -1 • ... u ft ... = [k]! -2 • ... u ft ... = [k]! -
k 1 +•••+k d =k 1≤j 1,1 <•••<j 1,k 1 ≤l 1 ••• 1≤j d,1 <•••<j d,k d ≤l d u k 1 1 • • • u k d d d i=1 q -n+2(l 1 +•••+l d ))k i + k i r=1 (n+1-2(l 1 +•••+l i-1 +j i,r )) = k 1 +•••+k d =k 1≤j 1,1 <•••<j 1,k 1 ≤l 1 ••• 1≤j d,1 <•••<j d,k d ≤l d u k 1 1 • • • u k d d d i=1 q k i -k i r=1 2j i,r
=e k (q -1 u 1 , q -3 u 1 , ..., q -2l 1 +1 u 1 , ..., q -1 u d , q -3 u d , ..., q -2l d +1 u d ),

which is what we needed to show.

Lemma 7A.7. The functor AΓ q is well-defined and descends to the functor AΓ q . Moreover, for q = 1 the Levi ideal I contains the two-sided • v -ideal and right • A h -ideal generated by the Levi evaluations, while for q = 1 the Levi ideal I contains the two-sided • v -• A h -ideal generated by the Levi evaluations.

Proof. We need to check that the relations in Definition 4A.1 are satisfied and that the Levi evaluations from (4C.3) are in the kernel of AΓ q . This follows as a combination of Lemma 7A.5 and Lemma 7A.6. By Lemma 6C.1, the statement about the Levi ideal for q = 1 follows from that. To verify the claim for q = 1, we recall from Remark 4A.5 that the coils pass in front of the annulus. Now we observe that e.g.

• A h = , • A h = .
More generally, multiplying essential circles from the right (but not from the left) by any morphism f produces a picture with f not interfering with the essential circles.

For the remainder we assume Lemma 7A.7.

7B. Proof for q = 1. Recall the web block projectors from Definition 4A.7 respectively the Levi block projectors from Definition 5B.13. We use these to define a certain basis in the following definition, where S k is the symmetric group on {1, ..., k}:

Definition 7B.1. Fix k ∈ Z ≥0 . Let s = (s 1 , ..., s k ), t ∈ {1, ..., d} k and σ a colored permutation from s to t such that the longest word of S l i +1 ⊂ S k does not appear in the permutation of color i. (This condition is vacuous for l i ≥ k or if the color i does not appear strictly more than l i times.) Define ν 1 s,t,σ = σ • v (pr w s 1 • A h ... • A h pr w s d ), n 1 s,t,σ = σ • v (pr s 1 • h ... • h pr s d ), where we view σ as an element of AWeb 1 gl n and Fund 1 , respectively. The respective sets (collecting these elements for all k ∈ Z ≥0 ) of these are denoted by B(AWeb 1 ) and B(Fund 1 ). Lemma 7B.2. We have AΓ 1 B(AWeb 1 ) = B(Fund 1 ) and this set is a K 1 -linear independent set in k End Fund 1 (V ⊗k 1 ). Proof. We get AΓ 1 B(AWeb 1 ) = B(Fund 1 ) directly from the definition and Lemma 6C.1.

To prove faithfulness, let pr s = pr w s 1 • A h ... • A h pr w s d . By construction and Lemma 5B.14 we have n 1 s,t,σ • v pr s = pr t • v n 1 s,t,σ = n 1 s,t,σ and n 1 s,t,σ • v pr q = pr r • v n 1 s,t,σ = 0 for q = s and r = t. Thus, it suffices to show that (n 1 s,t,σ ) σ is K 1 -linear independent (that is, we can fix s and t). After sorting the colors of s and t, it remains to verify faithfulness within a block, i.e. for gl l i . Thus, classical theory applies: for gl l i and S k it is known that Schur-Weyl duality gives the generalized Temperley-Lieb algebra as the endomorphism algebra. This algebra admits a description in terms of a quotient of S k by the longest word of S l i +1 , see e.g. [Här99, Section 3], and the elements of B(Fund 1 ) describe the associated standard-type basis within each block.

Lemma 7B.3. The set B(AWeb 1 ) is a K 1 -linear spanning set of k End AWeb 1 (1 • h k ). Moreover, the set B(Fund 1 ) is a K 1 -linear spanning set of k End Fund 1 (V ⊗k 1 ). Proof. We first recall that the full antisymmetrizer is zero in Fund 1 , see e.g. [START_REF] Mazorchuk | k, d)-modules via groupoids[END_REF]Lemma 11]. Thus, the same holds in AWeb 1 by Lemma 7B.2. That is, in formulas we have  

σ∈S l i +1 (-1) l(σ) σ(pr i ) • h (l i +1) = 0   ⇒   σ∈S l i +1
(-1) l(σ) σ(pr w i )

• A h (l i +1) = 0   ,
and both hold.

To address the first statement of the lemma, observe that k End AWeb 1 (1 • h k ) is generated as a K 1 -algebra by crossings and coils since we can remove essential circles by Lemma 7A.7. Moreover, the sliding relations (4A.3) and (4A.4) imply that we have the usual K 1 -linear spanning set given by first coils and then crossings. Observe next that the web block projectors K 1 -linear span the subalgebra generated by coils, so it remains to see that the symmetric group part is K 1 -linear spanned by σ such that the longest word of S l i +1 does not appear in the permutation of color i. This however is a consequence of the vanishing of the antisymmetrizer.

For the second statement of the lemma we use Lemma 5B.3, Lemma 5B.14 and Schur's lemma. (As explained in the proof of Lemma 5C.1, Schur's lemma still holds in this setting although K 1 is not necessary algebraically closed.) Lemma 7B.4. The set B(AWeb 1 ) is a K 1 -basis of k End AWeb 1 (1 • h k ). Furthermore, the set B(Fund 1 ) is a K 1 -basis of k End Fund 1 (V ⊗k 1 ). Proof. Combine Lemma 7B.2 and Lemma 7B.3. (Note that Lemma 7B.2 also proves that B(AWeb 1 ) is a K 1 -linear independent set.) Proposition 7B.5. The functor AΓ 1 is fully faithful and the Levi ideal I is the two-sided • v -• A h -ideal generated by the Levi evaluations.

Proof. By Lemma 3A.9 we only need to show that k End AWeb 1 (1 • h k ) and k End Fund 1 (V ⊗k 1 ) are isomorphic K 1 -vector spaces with AΓ 1 inducing an isomorphism, and this follows from Lemma 7B.2 and Lemma 7B.4. The proof completes.

Proof of Theorem 6B.1.(b). Lemma 7A.7 shows that the functors AΓ 1 and AΓ 1 are well-defined and Lemma 6C.1 shows the statements involving the pivotal structure. Fully faithfulness follows from Proposition 7B.5, and Lemma 5B.8 ensures that we have that AdId(Fund 1 ) is equivalent to Rep 1 . These statements taken together complete the proof using the usual properties of the additive idempotent completion.

  isomorphism. This easily generalizes.Definition 3A.8. A left invertible morphism ↑ k+l →↑ k • h ↑ l is called explosion.Up to rescaling, explosion morphisms and their left inverses can be illustrated by

  .6) together with its ( -) -dual. Various naturality relations hold, see e.g. [LT21, Section 2]. (b) Square switches, see e.g. [LT21, Lemma 5.6]. Various other relation that we do not explicitly use, see e.g. [LT21, Section 2] also hold.

  using the (k, l)-crossings from (3B.3) and their mates so that f is in the front and g is in the back. Remark 4B.2. (4B.1) is a standard construction in Skein theory, see e.g. [PS98]. Lemma 4B.3. • A h and 1 = ∅ endow AWeb v gl n with the structure of a pivotal category. Proof. Easy and omitted. Lemma 4B.4. The following holds in AWeb v gl n .

  Remark 5B.7. (5B.6) is a standard construction in the theory of Hopf algebras, see e.g.[START_REF] Turaev | Monoidal categories and topological field theory[END_REF].

Proof.

  Directly from Theorem 6B.1 and Lemma 6C.1. Remark 6E.2. Proposition 6E.1 should be compared with [QW18, Corollary 43], and can be seen as a quantum version of that corollary. Now recall the so-called generalized blob algebra B m,d q in the sense of [MW03] (which is a special case of Definition 6D.6): Definition 6E.3. Let B m,d q be the algebra quotient of H m,d q by I >1,...,>1 . Proposition 6E.4. The map π m,d from Proposition 6D.2 induces a K q -algebra isomorphism π m,d : B m,d q ∼ = -→ End AWebqh (1 • h m ). Thus, the kernel of π m,d is ker(π m,d ) = I >1,...,>1 . Proof. By Proposition 6E.1, this follows from [ATY95, Theorem 3.1]. Recall from Section 4C that e k denotes the kth elementary symmetric polynomial in d variables. In the special case of the Cartan subalgebra we have d = n, and we let e k = e k (u 1 , ..., u d ). Definition 6E.5. Define e (1) k = e k and for i ∈ Z ≥1 recursively e (i)

  Lemma 4B.6. AWeb v gl n is equivalent as a diagram category to the affinization Aff (Web v gl n ) (in the sense of e.g. [MS21, Definition 2.1]) of Web v gl n .Proof. We will not use this statement explicitly, so we only sketch the proof. First, there is clearly an essentially surjective functor Γ from AWeb v gl n to Aff (Web v gl n ) that puts a plane web into the annulus. Next, Aff (Web v gl n ) is defined by adjoining more morphisms and relations to AWeb v gl n , namely one coil and its inverse for each K and relations [MS21, (2.5)]. But using the coils in Definition 4A.1 one can define these more general coils following [MS21, (2.5), left equation] which satisfy [MS21, (2.5), right equation], showing that Γ is full. Faithfulness of Γ can then be deduced from Theorem 6B.1 below, by showing that the functor therein factors through Aff (Web v gl n ) via Γ. 4C. Quotient by essential circles. We now define quotients of AWeb v gl n . The left and right essential k-circles are defined to be

	Definition 4C.1.

following compares AWeb v gl n to the construction in

[START_REF] Cautis | Quantum K-theoretic geometric Satake: the SL n case[END_REF]

:

  needs some nontrivial extra steps: (i) Theorem 6A.1 works over Z v , see [Eli15, Theorem 2.58], which uses the light ladder strategy from that paper and [AST18, Theorem 3.1]. Passing to an appropriate field (e.g. F p for a prime p) one gets an equivalence of pivotal categories between the additive idempotent completion of Web q gl n and Tilt v gl n , the latter being the category of tilting modules. Thus, it is tempting to conjecture that integral versions of Theorem 6B.1 and its consequences involve Tilt v , e.g. under appropriate assumptions on the underlying field the additive idempotent completion of AWeb v should be equivalent to Tilt v . However, there is a nontrivial catch: the quantization behaves not very well, see e.g. Section 6C or [CK18, Section 10].As sketched in Remark 6C.2, this might indicate that quantum groups are not the correct objects to use in this setting.

	(ii) The relation from diagram categories to tilting modules is a folk observation in the field,
	see e.g. [Eli15, Theorem 2.58], [AST18, Section 5A], [TW21, Proposition 2.28] or [Bod20,
	Theorem 1.1] for some examples.
	(iii)

  1 •

	Now, since				
	...			...	
	...	...	=	...	,
	...	...		ft -1 ...	...
	it remains to compute the following scalar:			
	[k]! -1 •	...		
				u	
				...	
					...
					...	...
					...	...
					ft
					u
					...

.

In this calculation the first equality is obtained from explosion of strands, and the last equality is obtained from Lemma 7A.2.

Proof. This follows from a calculation, Lemma 5B.2 and Lemma 5A.9.

Define now the following coil maps:

(5B.11) Note that r 1,K and r 1,K are inverses.

Lemma 5B.12. The morphisms in (5A.6) and (5B.11) are

Proof. The morphisms in (5A.6) are U q (gl n )-equivariant, so they are also U q ( )-equivariant, and one easily checks that the morphisms in (5B.11) are U q ( )-equivariant. That these generate follows from Lemma 5A.7 and Lemma 5B.3.

Definition 5B.13. For i ∈ {1, ..., d} define

which we call Levi block projectors.

Lemma 5B.14. We have pr i pr j = δ i,j pr i and id Vq = d i=1 pr i . These projectors realize the decomposition

Proof. Note that r 1 is given by multiplication by u i on v i,j . Thus, the formula for pr i is the usual Lagrange-type interpolation and the claims follow.

7C. Proof for q = 1. We start by: Lemma 7C.1. The functor AΓ q is full.

Proof. It is clear that the image of the crossings and the coils span. (Note that there is no issue with essential circles in Fund q .) For q = 1, we note that we can mimic Definition 7B.1 on the Levi side (the only difference is that we use a positive lift, in Levi crossings, of σ instead of σ itself) to define n q s,t,σ as well as B(Fund q ). Now we use that and Lemma 7C.1 to define ν q s,t,σ as well as B(AWeb q ) by pulling back the elements from n q s,t,σ by choosing a preimage. Lemma 7C.2. The set B(AWeb q ) is a K q -linear independent set of k End AWebq (1 • h k ). Moreover, the set B(Fund q ) is a K q -linear independent set of k End Fundq (V ⊗k q ). Proof. The claim on the Levi side can be proven verbatim as in Lemma 7B.2, so our focus is on the web side. However, by construction, the set B(AWeb q ) is then send to B(Fund q ), so B(AWeb q ) is K q -linear independent because B(Fund q ) is.

Lemma 7C.3. The set B(AWeb q ) is a K q -linear spanning set of k End AWebq (1 • h k ). Moreover, the set B(Fund q ) is a K q -linear spanning set of k End Fundq (V ⊗k q ). Proof. We can remove essential circles labeled by 1 by using

which is the classical Skein relation (that holds in our setting by using (3B.4)), and Lemma 7A.7 which removes essential circles labeled by 1 that are in the front of the cylinder. Using explosion, the rest of the argument is the same as in the proof of Lemma 7B.3 by using that the q = 1 basis agrees with B(AWeb 1 ) on the associated graded by filtration by number of crossings (using the Skein relations).

Lemma 7C.4. The set B(AWeb q ) is a K q -basis of k End AWebq (1 • h k ). Furthermore, the set B(Fund q ) is a K q -basis of k End Fundq (V ⊗k q ). Proof. By Lemma 7C.2 and Lemma 7C.3. Remark 7C.5. We do not have or need any explicitly description of the elements of B(AWeb q ) in terms of webs.

Proposition 7C.6. The functor AΓ q is fully faithful and the Levi ideal I is the two-sided • v -• h -ideal generated by the Levi evaluations. Here • h is the pullback of the monoidal structure from Fund q to AWeb q gl n .

Proof. As in the proof of Proposition 7B.5.

Proof of Theorem 6B.1.(a). Using the above statements, this can be proven verbatim as Theorem 6B.1.(b).