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SCHUR-WEYL DUALITY, VERMA MODULES, AND ROW
QUOTIENTS OF ARIKI-KOIKE ALGEBRAS

ABEL LACABANNE AND PEDRO VAZ

ABSTRACT. We prove a Schur-Weyl duality between the quantum enveloping algebra of
gl,, and certain quotient algebras of Ariki-Koike algebras, which we describe explicitly.
This duality involves several algebraically independent parameters and the module under-
lying it is a tensor product of a parabolic universal Verma module and a tensor power of
the standard representation of gl,,. We also give a new presentation by generators and
relations of the generalized blob algebras of Martin and Woodcock as well as an inter-
pretation in terms of Schur—Weyl duality by showing they occur as a special case of our
algebras.

1. INTRODUCTION

Schur-Weyl duality is a celebrated theorem connecting the finite-dimensional modules
over the general linear and the symmetric groups. It states that, over a field k that is
algebraically closed, the actions of GL,,(k) and &, on V = (k™)®" commute and form
double centralizers. Several variants of (quantum) Schur-Weyl duality are known, see for
example [4] [6, [5, 9, [16] 24] for such variants related to our paper. One particular family of
generalizations of interest for us uses a module akin to the one appearing in Schur-Weyl
duality, but with an infinite-dimensional module instead of V. For example, in [15] it
is established a Schur-Weyl duality between U,(slz) and the blob algebra of Martin and
Saleur [19] with the underlying module being a tensor product of a projective Verma module
with several copies of the standard representation of U,(sly). We should warn the reader
that in [15] the blob algebra was called the Temperley—Lieb algebra of type B (see [I§] for
further explanations).

1.1. In this paper. We consider the tensor product of a parabolic universal Verma module
with the m-folded tensor product of the standard representation for U,(gl,,) to establish
a Schur-Weyl duality with a quotient of Ariki-Koike algebras. Ariki-Koike algebras were
first considered by Cherednik in [10] as a cyclotomic quotient of the affine Hecke algebra
of type A. These algebras were later rediscovered and studied by Ariki and Koike [3] from
a representation theoretic point of view. Independently, Broué and Malle attached in [7] a
Hecke algebra to certain complex reflection groups, and Ariki-Koike algebras turn out to
be the Hecke algebras associated to the complex reflection groups G(d,1,n).

Recall that the Ariki-Koike algebra # (d,n) with parameters ¢ € k* and u = (uq, ..., uq) €
k? is the k-algebra with generators Ty, T}, ...T,_1, where T, ...T,_, generate a finite-
dimensional Hecke algebra of type A and Ty satisfies ToT\To17 = TV To 11Ty, ToT; = T; T for
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1> 1, and H?ZI(TO —u;) = 0. We consider the semisimple case, where the simple modules
V, of #(d,n) are indexed by d-partitions of n.

Let m = (mq,...,mq) be a d-tuple of positive integers and P be the set of all d-
partitions = (M, ..., u@) of n such that I(u@) < m; for all 1 <i<d.

In this paper we introduce the row-quotient algebra #,,(d,n), that depends on m as the
quotient of #(d,n) by the kernel of the surjection

%(d,n) - [ [ Endi (V).

HEPT,

Let MP(A) be a parabolic Verma module and V' the standard representation for U,(gl,,).
In our conventions, p is standard and has Levi factor [ = gl,, x---x gl , with m; > 1 and
mi+mo+---+my = m and A depends on d algebraically independent parameters Aq, ..., Ay
(see Section for more details). Thanks to the braided structure on the category of
integrable modules over U, (gl,,), we define a left action of #(d,n) on MP(A) ® V& in
Section 4l Our main result is:

Theorem A (Theorem 1.2l and Lemma [4.T]).

e The action of U,(gl,,) and of #(d,n) on MP(A) ® V®" commute with each other,
which endow MP(A) ® V& with a structure of #(d,n) ® U,(gl,,)-module.

e The algebra morphism # (d,n) — Endg, g ) (MP(A)@V®") is surjective and factors
through an isomorphism

Fn(d,n) — Endy, g (MP(A) @ V). (1)
e There is an isomorphism of #(d,n) ® U,(gl,,)-modules
MP(A)@VE ~ P V, @ MP(A, p),

ue@}i

where MP(A, ) is a simple module (see 3.2)).

The isomorphism in Equation (II) has several particular specializations (Corollaries
[4.7), some of them recovering well-known algebras:

o If p = gl,, and m > n, then Endy, g )(MP(A) ® V") is isomorphic to the Hecke
algebra of type A.

o If p = gl, and m = 2, then Endg, )(M"(A) ® V&) is isomorphic to the
Temperley—Lieb algebra of type A.

e For p such that m = nd and m; > n for all 1 < i < d, then Endy, g )(MP(A)@VE")
is isomorphic to the Ariki-Koike algebra #(d,n).

e If p is such that d = 2 and my, ms > n, then Endy, g (MP(A) ® V") is isomor-
phic to the Hecke algebra of type B with unequal and algebraically independent
parameters (see [14, Example 5.2.2; (c)]).

e If the parabolic subalgebra p coincides with the standard Borel subalgebra of
U,(gl,,) then Endy, g (MP(A) ® V") is isomorphic to Martin-Woodcock’s [20]
generalized blob algebra %B(d, n). This generalizes the case of U, (sly) covered in [15].
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In the last case, this gives a new interpretation of the generalized blob algebras %(d, n)
in terms of Schur-Weyl duality. We also give a new presentation of %B(d,n) as a quotient
of Ariki-Koike algebras:

Theorem B (Theorem [2ZT5]). Suppose that 7 (d, n) is semisimple and that for every i, j, k
we have (1 4+ ¢ ?)ug # u; + uj. The generalized blob algebra %(d, n) is isomorphic to the
quotient of # (d,n) by the two-sided ideal generated by the element

= 1 [m-a(n-a ) g

1<i<j<d

1.2. Connection to other works. The idea of writing this note originated when we
started thinking of possible extensions of our work in [I8] to more general Kac-Moody
algebras and were not able to find the appropriate generalizations of [15] in the literature.
When we were finishing writing this note Peng Shan informed us about [23], whose re-
sults are far beyond the ambitions of this article. Nevertheless, we expect our results to
be connected to [23, §8] using a braided equivalence of categories between a category of
modules for the quantum group U,(gl,,) and a category of modules over the affine Lie

algebra gA[m, which is due to Kazhdan and Lusztig [17]. However, the explicit description
of the endomorphism algebra of M*(A) ® V®", which was our first motivation towards
categorification later on, does not seem to appear anywhere in [23] except in the particular
case of our Corollary

Another motivation for the results presented here resides in the potential applications
to low-dimensional topology, as indicated in [22]. We find that it would be also interesting
to investigate the use of several Verma modules in a tensor product as suggested in [I1].

Acknowledgments. We would like to thank Steen Ryom-Hansen for comments on an
earlier version of this paper. The authors would also like to thank the referee for his/her

numerous, detailed, and helpful comments. The authors were supported by the Fonds de
la Recherche Scientifique - FNRS under Grant no. MIS-F.4536.19.

2. ARIKI-KOIKE ALGEBRAS, ROW QUOTIENTS AND GENERALIZED BLOB ALGEBRAS

We recall the definition of Ariki-Koike algebras and define some quotients which will
appear as endomorphism algebras of modules over a quantum group. As a particular case
we recover the generalized blob algebras of Martin and Woodcock [20] and we obtain a
presentation of these blob algebras that seems to be new.

2.1. Reminders on Ariki—Koike algebras. Fix once and for all a field k and two pos-
itive integers d and n and choose elements ¢ € k* and wuy,...,uq € k. We recall the
definition of the Ariki-Koike algebra introduced in [3], which we view as a quotient of the
group algebra of the Artin—Tits braid group of type B.

Definition 2.1. The Ariki-Koike algebra #(d,n) with parameters ¢ € k* and u =
(u1,...,uy) € k?is the k-algebra with generators Ty, Ty, ... T,_1, the relation

(T;—a)(T; +q7") =0,
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the cyclotomic relation
d

[ [(To —w) =0,
and the braid relations -
T;T; = TiT; if i — j| > 1, 1T, =Tig TiTiy for 1<i<n—2,
Ty Ty, = TYTo T T.
Remark 2.2. We use different conventions than [3]. In order to recover their definition,
one should replace ¢q by ¢, Ty by a;, and ¢7;_; by a;.

As in the type A Hecke algebra, for any w € &,, we can define unambiguously T, by
choosing any reduced expression of w.

It is shown in [3] that the algebra # (d, n) is of dimension d"n! and a basis is given in terms
of Jucys—Murphy elements, which are recursively defined by X; = Ty and X;,1 = T; X;T;.

Theorem 2.3 ([3, Theorem 3.10, Theorem 3.20]). A basis of #(d,n) is given by the set
(XX, |0<r <dwe G}
Moreover, the center of #(d,n) is generated by the symmetric polynomials in Xy, ..., X,.

We end this section with a semisimplicity criterion due to Ariki [2], which in our con-
ventions takes the following form.

Theorem 2.4 (|2, Main Theorem]). The algebra % (d,n) is semisimple if and only if

1_[ (¢*'u; — ;) ( 1_[ I+¢@+q" +...+ qQ(i_l))> # 0.

—n<l<n 1<i<n
1<i<j<d

2.2. Modules over Ariki—Koike algebras. In this section, we suppose that the algebra
7 (d,n) is semisimple. In [3], Ariki and Koike gave a construction of the simple #(d, n)-
modules, using the combinatorics of multipartitions.

2.2.1. d-partitions and the Young lattice. A partition u of n of length I(x) = k is a non-
increasing sequence pi; = fig = -+ = py > 0 of integers summing to |u| = n. A d-partition
of n is a d-tuple of partitions p = (uM, ..., u@) such that 3% [u®| = n. Given a
d-partition p its Young diagram is the set

(1] = {(a,b,c) eNx Nx {1,....d} | 1 <a<l(u),l <b<pu?},
whose elements are called boxes. We usually represents a Young diagram as a d-tuple of

sequences of left-aligned boxes, with ,u((f) boxes in the a-th row of the ¢-th component.

Example 2.5. The Young diagram of the 3-partition ((2,1), &, (3)) of 6 is

7@7 )'
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A box 7y of [u] is said to be removable if [u]\{7} is the Young diagram of a d-partition
v, and in this case the box v is said to be addable to v.

Example 2.6. The removable boxes of the 3-partition ((2,1), &, (3)) below are depicted

with a cross
X
) @7 X .
X

With respect to the above the definitions, we will also use the evident notions of adding
a box to a Young diagram or removing a box from a Young diagram.

We consider the Young lattice for d-partitions and some sublattices. It is a graph with
vertices consisting of d-partitions of any integers, and there is an edge between two d-
partitions if and only if one can be obtained from the other by adding or removing a
box.

Example 2.7. The beginning of the Young lattice for 2-partitions is the following:
M%)

( >/<@ \< )
(He) (9 OO @39 (He)

If we fix m = (my,...,mq) € N? we then define Py, as the set of d-partitions y such
that (1) < m;. We will also consider the corresponding sublattice of the Young lattice.

Example 2.8. For m; = 1 and my = 2, the beginning of the Young lattice for 2-partitions
p with 1(p®) < 1 and I(u®) < 2 is the following:

(T, D)
" Ten
N N
(e OO 139 (o)

We end this subsection with the notion of a standard tableau of shape p where p is a
d-partition of n. Such a standard tableau is a bijection t: [u] — {1,...,n} such that for all
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boxes v = (a,b,c) and 7' = (a’, V', ¢) we have t(y) < t(7/) if a = a’ and b < ¥ or a < a’ and
b =b'. Giving a standard tableau of shape p is equivalent to giving a path in the Young
lattice from the empty d-partition to the d-partition pu.

Example 2.9. The standard tableau

! 23
47@7

of shape ((1,1), &, (2)) correspond to the path

(@.2.2) — 029 — 020 — Oz — (Hem).

2.2.2. Constructing the simple modules. We present the construction of simple modules of
the Ariki-Koike algebra following [3), Section 3]. This construction is similar to the classical
construction of simple modules of the symmetric group, the Hecke algebra of type A or of
the complex reflection group G(d, 1,n). This construction describes explicitly the action
of the Ariki-Koike algebra on a vector space. For = (u, ..., u¥) a d-multipartition of

n, we set
V, = Dku,
t

where the sum is over all the standard tableaux of shape p. Ariki and Koike gave an
explicit action of the generators on the basis of V,, given by the standard tableaux. The
action of Tj is diagonal with respect to this basis:

Tove = Uy,

where ¢ is such that t(1,1,¢) = 1. The action of T} is more involved and depends on the
relative positions of the numbers 7 and ¢ + 1 in the tableau t:

(1) if ¢ and i + 1 are in the same row of the standard tableau t, then T;v, = quy,

(2) if i and i+ 1 are in the same column of the standard tableau t, then Tjv, = —q~ v,

(3) if ¢ and i + 1 neither appear in the same row nor the same column of the standard
tableau t, then T; will act on the two dimensional subspace generated by v and
vs, Where s is the standard tableau obtained from t by permuting the entries ¢ and
i+ 1. The explicit matrix is given in [3] and we will not need it.

Proposition 2.10 ([3, Theorem 3.7]). If pu is any d-multipartition of n, the space V,, is
a well-defined 7 (d,n)-module and it is absolutely simple. A set of isomorphism classes
of simple ¥ (d,n)-modules is moreover given by {V,},, for p running over the set of d-
partitions of n.

The action of the Jucys—-Murphy elements is also diagonal in the basis of standard
tableaux:

X, = ucq2(b @)y ‘, (2)
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where t(a,b,c) = i. A useful consequence of Proposition .10l is the following: if V' is a
simple # (d, n)-module and v € V' is a common eigenvector for X7, ..., X, with eigenvalues
as in (2)) for some standard tableau t of shape p, then V' is isomorphic to V,.

From the explicit description of the modules V), using the standard inclusion % (n, d) —
#(n +1,d), it is easy to see that for any d-partition of n + 1 we have

H(n+1,d
Res%,gn;) "V,) =~ PV,

where the sum is over all d-partition v of n whose Young diagram is obtained by deleting one
removable box from the Young diagram of ;. The branching rule of the inclusions # (1, d) <
#H(2,d) < --- < #(n,d) is therefore governed by the Young lattice of d-partitions.

2.3. Row quotients of #(d,n) and generalized blob algebras. We now define the
row quotients of #(d,n) which will appear later as endomorphism algebras of a tensor
product of modules for U,(gl,,,).

Definition 2.11. Let m = (my,...,my) € N¢ and recall that the algebra #(d,n) is
assumed to be semisimple, which implies that #(d,n) ~ [ | , Endy (V,,), the product being
over all d-partitions of n. Recall also that % is the set of d-partitions of n with ¢-th
component of length at most m;. N
The m-row quotient of #(d,n), denoted %,,(d,n), is the quotient of #(d,n) by the
kernel of the surjection
%(d,n) - [ ] Endi (V).

HEDPT,
Remark 2.12. If m; > n for all 1 < i < d then #,,(d,n) ~ #(d,n).

Similar to the case of # (d, n), we have inclusions #,,(1,d) € #,,(2,d) < - -- < H,n(n, d)
and the branching rule is governed by the corresponding truncation of the Young lattice
of d-partitions.

2.3.1. Generalized blob algebras. In the particular case where m; = 1 for all 1 <1 < d, we

recover the definition of the generalized blob algebras [20, Equation (14)], which we denote

by A(d,n). Under a mild hypothesis on the parameters, we give a presentation of %B(d, n).
We consider the following element of #(d,n):

T [0 () o]

1<i<j<d

This element may look cumbersome, but can be better understood thanks to the following
lemma:

Lemma 2.13. The two-sided ideal of #(d,n) generated by T is equal to the two-sided ideal
generated by

(T —q) [ X1+ Xo—(w+uy).

1<i<j<d



8 ABEL LACABANNE AND PEDRO VAZ

Proof. A simple computation in # (d,n) shows that

U; + U
(1= ) (o= 255 ) (- ) = 0 (604 X = G ) (T3 = )
We therefore conclude using the fact that (T} — ¢)? = —(q + ¢ 1)(Ty — ¢) and that T}
commutes with X; + Xo. O

We now investigate which % (d, n)-modules V,, factor through the quotient by the two-
sided ideal generated by 7.

Proposition 2.14. The element T acts by zero on V, if and only if (™) < 1 for every
k such that (1 4+ q ?)ug # u; + u; for all i, j.

Proof. Suppose that p and k are such that {(u®) > 2 with (1 + ¢=2)uy, # u; + u; for all
1,7. Then there exist a tableau t of shape p such that 1 and 2 are in the first two columns
of the k-th component of the Young diagram of p. By definition of V), the generator
T, acts on vy by multiplication by —¢~!. The Jucys-Murphy element X; acts on v; by
multiplication by wu; whereas the Jucys—Murphy element X, acts on v; by multiplication
by ¢ 2uy. Therefore, thanks to Lemma 213 7 does not act by zero on V,,.

It remains to check that T acts by zero on V,, with (1) < 1 whenever (1 + ¢ 2)uy, #
u; + u; for all 4,7. Let t be a standard tableau of shape p. If 1 and 2 are in the same
component of the tableau t, then either 1 and 2 are in the same row and 77 acts on vy
by multiplication by ¢, either 1 and 2 are in the same column and X; + X, acts on t by
multiplication by (1 4+ ¢~%)uz. The second case is possible only if there exists i,j such
that (1 + ¢ ?)ux = u; + u; and then 7 acts by zero. If 1 and 2 are in two different Young
diagrams and X; + X, acts on t by ug + w;, where k (resp. 1) is such that t(1,1,k) = 1
(resp t(1,1,1) = 2). In both cases, T acts by zero. O

Theorem 2.15. Suppose that F(d,n) is semisimple and that for every i,j,k we have
(1 + ¢ ?)ug # u; +u;. The generalized blob algebra B(d,n) is isomorphic to the quotient
of #(d,n) by the two-sided ideal generated by T.

Proof. Recall that we supposed that m; = ... = myg = 1. Thanks to Proposition 214, the
element 7 is in the kernel of the surjection

%(d,n) - [ [ Endi (V).

HEDPT,

Therefore, we have a surjection # (d,n)/# (d,n)7# (d,n) — B(d,n). Once again, thanks
to Proposition 214, the simple modules of #(d,n)/% (d,n)T# (d,n) are exactly the V,
with p € &P, which shows that the above surjection is an isomorphism. U

3. QUANTUM gl,,, PARABOLIC VERMA MODULES AND TENSOR PRODUCTS

We recall the definition of the quantum enveloping algebra of gl ,, and we also recall
some basic properties of its modules, e.g. concerning parabolic Verma modules.
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3.1. The quantum enveloping algebra of gl ,. Let ¢ be an indeterminate. The fol-
lowing definition of U,(gl,,) is over the field Q(g), but, via scalar extension, we will also
consider it over a field containing Q(¢q) without further notice.

Definition 3.1. The quantum enveloping algebra U,(gl,,) is the Q(¢)-algebra with gen-
erators L', E; and F}, for 1 <i <m and 1 < j < m — 1 with the following relations:

LPLT =1, LiL; = L, L,
LZE] — q(;i,j*(gi,jJrlEjLi’ LZFJ — q*517j+5i7j+1F1jLi’
LiL7Y — Ly'L;
[EZ’FVJ] _ 52’,]’ i+1 _21 +1’
q—dq
and the quantum Serre relations
EBiEj = B if [i - j| > 1, ElEis1 — (q+q )EiEiw B + B E} =0,
FiFy = FyFif i = ] > 1, F?Fip1 — (¢ + ¢ YEFia Fy + Fi FP = 0.

We endow it with a structure of a Hopf algebra, with comultiplication A, counit € and
antipode S given on generators by the following:

A(Li) = L ® L, e(Li) =1, S(Li) = L7,
A(E) =E®1+ LiLi_Jrll ® Ei, e(E;) =0, S(E;) = _Li_lLi+lEi>
AF)=F,®L'Lis1 + 1®F, e(Fy) =0, S(F;) = —FL;L;},.

Set U, (gl,,)° as the subalgebra generated by (L;)1<i<m, and U,(gl,,)>° as the subalgebra
generated by (L;, E;) 1<i<m -

1<j<m—1

We denote by P = é—BZl Ze; the weight lattice of gl,, with Z-basis given by the fun-
damental weights (w;)i1<i<m Where w; = €1 + -+ 4+ ;. We denote by @ the root lattice
with Z-basis given by the simple roots (o;)i1<i<q—1 Where o; = &; — g;,1. Denote by &+
the set of positive roots, by P* the set of dominant weights for gl,,, that is u = > | p1;6;
with g1 = pe = -+ = p,. We also endow P with the standard non-degenerate bilinear
form: (e;,&;) = 0; ;. The symmetric group &,, acts on P by permuting the coordinates
and leaves the bilinear form (-, ) invariant. Finally, let p be the half-sum of the positive
roots.

We will often work with extensions Z[f1, . .., Or| ®z P, where the f3;’s are indeterminates
and we also extend the bilinear form (-, -) to Z[f1, ..., Bk ®z P.

3.2. Weights and parabolic Verma modules. Suppose that our field k contains the
field Q(q) and let M be an U,(gl,,)-module over the ground field k. An element v € M is
said to be a weight vector if L;v = ¢(g;)v, where p: P — k is the corresponding weight.
The module M is said to be a weight module if the action of the elements Lq,..., L,, is
simultaneously diagonalizable. A highest weight module is a weight module M such that
M = U,(gl,)v, where v is a weight vector such that E;v =0 for 1 <i<m— 1.
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It is well-known that finite dimensional weight U,(gl,,)-modules of type 1 are parame-
terized by the set P of dominant weights.

In this paper, we will be interested in modules over the field Q(q, \1,. .., Ax), where
\; = ¢% is an indeterminate (recall that ¢ is formal and so ¢ is also formal). Moreover,
we only consider type 1 modules, where the weights are of the form

p(v) = ¢4,

for some p € Z[f1, ..., Bk] ®z P and for all v € P.

We now turn to parabolic Verma modules. Let p be a standard parabolic subalgebra of
gl,, with Levi factor [ = gl,, x ---x gl , where m; > 1 and Zlemi = m. Denote by [
the set {m; | 1 <i < d— 1}, where m; = my+...+m;, so that U,(l) is generated by L;, E;
and F; for 1 <i < m and j ¢ I and U,(p) is generated by L;, E; and Fj, for 1 < i < m,
1<j<m-—1andk¢ I. Denoteby P the set of dominant weights for gl,,,. We identify
the set P;" x --- x PJ with the dominant weights P of [ by the following map

(:u(l)v’ c Z (Z ru’] S 1+]> :

i=1

For a dominant weight u € P, we have an simple integrable finite dimensional U,()-
module V'(A, 1) of highest weight

d m;

=3 (S i)

i—1

Indeed, one can check that (A,, ;) € N for any ¢ ¢ I. We turn this U, (I)-module into a
U,(p)-module by setting E;V'(A, ) = 0 for all i € I. Then the parabolic Verma module

MP(A, p) is

MP(A, ) = Uqg(gl,) @, V(A ).
It is a highest weight module of highest weight A,. If 1 = 0, then we will simply denote
this module by MP?(A) and its highest weight by A.

Lemma 3.2. For any p € P, the parabolic Verma module M* (A, u) is simple.

Proof. Since for any i € I the scalar product (A, a;) is not an integer, as one easily checks,
the claim follows. OJ

Remark 3.3. If the parabolic subalgebra p is the Borel subalgebra b of upper triangular
matrices, we have U,(p) = U,(gl,,)”° and the parabolic Verma module M°(A) is the
universal Verma module. The adjective universal means that any parabolic Verma module
can be obtained from M°(A) by specialization of the parameters.

In the rest of this article, all dominant weights © € P will satisfy u,(%)i > 0 for all
1 <4 < d, and it will be convenient to identify such a weight 1 with the corresponding
d-partition in P". We will use the same notation p to denote the d-partition or the
corresponding dominant weight.
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We also denote by V' the standard representation of gl,, of dimension m. Explicitly,
this is a highest weight module with highest weight 1, it has as a basis vy, ..., v,, and the
action of U,(gl,,) is given by

5
Li ‘U = (¢ Z'JU]', Ez “ V= 5i+1,jvjfl and Fz "V = (SZ’J’UjJrl.

3.3. Tensor products and branching rule. As U,(¢gl,,) is a Hopf algebra, its category
of modules can be endowed with a tensor product. Explicitly, given M and N two mod-
ules over a ground ring R, the action of the generators on M ®g N is given using the
comultiplication: for all v € M and w € N, one have

Li-(vQw) =L; v® L; - w, Ei-(v®w)=EZ--1)®w+LZ-LZ-_+11-U®EZ--w
and F-(v@uw)=F-vQL 'L, w+v®F; - w.

We will write ® instead of ®g to simplify the notations. Since we will be interested in
the endomorphism algebra of MP(A) ® V®", we start by understanding the decomposition
of this module.

Proposition 3.4. For any p e PP, there is an isomorphism of U,(gl,,)-modules

MAWOYV ~ @ M(A),

n+1
VEP,

where the sum is over all v € P whose Young diagram is obtained from the Young
diagram of p by adding one addable boz.

Proof. We start by showing that MP?(A, 1) ® V' has a filtration given by the MP(A,v) as in
the statement. First, we have the following tensor identity:

(CU’Q(g[m) ®°uq(p) V[(Au :u)) ® V> %Q(g[m> ®Cuq(P) (V[(A, :U’) X V)

Noticing that L — U,(gl,,) ®au, ) L is an exact functor from the category of finite dimen-
sional U,(p)-modules to the category of U,(gl,,)-modules, it remains to show that

VI )@V~ @ V(A vw),

n+1
VEP,

where the sum is over all v € 95[“1 whose Young diagram is obtained from the Young
diagram of p by adding one addable box. This follows from the usual branching rule for
Uq(gl,,,)-modules.

To show that the sum is direct, we use arguments from the infinite-dimensional represen-
tation theory of Lie algebras. We consider the usual category O for U,(gl,,) [21, Chapter
4]. We then show that each M*(A,v) lie in a different block of the category O, which then
implies that the sum is direct.

First, as M*(A,v) is a quotient of the universal Verma module M°(A, ), these two mod-
ules share the same central character. Therefore MP(A,v) and P(A,r') are in the same
block if and only if the central characters afforded by M®(A,) and M®(A,/) are the same.
But these central characters are equal if and only if A, and A,/ are in the same orbit for
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the dot action of the symmetric group, which is the usual action of the symmetric group
shifted by the sum of simple roots p.

We obtain that MP?(A,v) and MP(A, 1) are in the same block if and only if there exists

w € G, such that
w - A,, = A,,I.

Now, suppose that MP(A,v) and MP(A, ') are in the same block. Since the dot action
satisfies w-(n+7v) = w-n+w(7y), we deduce that w(A) = A so that w lies in 6m1 X By,
Then, writing w = (w1, ..., wy), we find that w; - v@ = /@) for every 1 < d Since
both ¥ and /) are dominant weights, we deduce that v® = /@ for every 1 <1 < d.
Indeed, each orbit for the dot action contains a unique dominant weight.

Hence if v # v/, the parabolic Verma modules M?(A,v) and MP?(A,1') are in different
blocks of the category 6. 0J

Using the previous proposition and induction, one shows the following corollary.

Corollary 3.5. There is an tsomorphism
MP(A)@VE ~ @ M(A, p)™
HEPP
where n, is the number of paths from the empty d-partition to p in the Young lattice of
d-multipartitions.

3.4. Braiding and an action of the Artin-Tits group of type B. The quantized
enveloping algebra (or rather a completion of the tensor product with itself) contains an
element, called the quasi- R-matrix, which is a crucial tool in defining a braiding on a
subcategory of the U,(gl,,)-modules. Since there are several possible braidings, we make
our choice explicit and refer to [8, 10.1.D] for more details.

In a completion of U, (gl,,) ® U,(gl,,), we define an element O by

1 o 1\n

o=1] (Z epple e N E"@F”)
aedt \n=0 [n]

where [n]! = [, ‘f]i__qq:f and E,, F, being the root vectors associated to a positive

root a. If M and N are two U,(gl,,) type 1 weight modules over the ground ring

Q(q, A1, ..., Ag_1) where U,(gl,,)”" act locally nilpotently, © induces an isomorphism of

vector spaces Oy ny: M @ N — M ® N. We then define a morphism of U, (gl,,)-modules
CM,N: M@N—> N@M,

by

cuN =TOo foOuyn,
where 7 is the flip v @ w — w® v and f is the map v @ w — ¢¢“"’v @ w if v and w are of
respective weights p and v. This endows the category of type 1 weight modules on which
U, (gl,,)7° acts locally nilpotently with a braiding. In particular, we have the hexagon
equation:

cromn = (coy®1Idy) o (Idp ®cprv) and  cppen = (Idy ®cp ) o (o @ Idy).
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Let %,, be the Artin-Tits braid group of type B,. It has the following presentation in
terms of generators and relations:

ToT1ToT1 = T1T0T170,
B = T0,T1y- s Tno1| TiTj = T;Ti, if |i — j| > 1, .

TiTis1Ti = Tig1TiTip1, for 1 <i<n—2
Using the braiding, we define the following endomorphisms of M ® N®":

RO = (CN,M o CM,N) ® IdN®n71,

R; = Idygnei-1 @cn y @ Idyen—i-1, for 1 <i<n—1.

Pictorially, one can represent these endomorphisms as

; \
Ry = | and R, =

Proposition 3.6. The assignment 7; — R; defines an action of B,, on the module MQN®"
which commutes with the U,(gl,,) action.

Proof. The fact that R; is a U,(gl,,)-morphism follows by definition of R;. The fact that
the defining relations of 9,, are satisfied follows from the embedding of the braid group of
type B, into the braid group of type 4,1 [15l Lemma 2.1]. O

Finally, we end this section with a lemma due to Drinfeld [I3| Proposition 5.1 and
Remark 4) below] computing the action of the double braiding on highest weight modules,
which is related with the action of the ribbon element.

Lemma 3.7. Let L, M and N be highest weight modules of respective highest weight X,
and v such that L € M @ N. Then the double braiding cy o carn restricted to N acts by
multiplication by the scalar

q</\7A+2p>—<u7u+2p>—<V7V+2p>.

4. THE ENDOMORPHISM ALGEBRA OF MP*(A)® Ve

The aim of this section is to prove the main result of this paper. We first explain why
MP(A) ® V" inherits an action of the Ariki-Koike algebra from the action of the braid
group of type B,. It is a classical result that the eigenvalues of R; are ¢ and —¢~': the
action of the braiding on V ® V' is

qu; @ v; ifi =7,
v, ®V; — v QU if i > 7,
Uj®vi+ (q—q_l)vi@)vj if 4 <j
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Moreover, using Lemma 3.7, we easily compute the eigenvalues of the endomorphism R
in order to show that the action of 9, factors through the Ariki-Koike algebra.

Lemma 4.1. The eigenvalues uy, ..., uqg of Ry on MP(A)® V' are equal to

U; = ()\Z‘qimifl)%

Proof. Let A be the highest weight of M?(A). The decomposition of MP(A) ® V is given
in Proposition 3.4k
d
MP(A)®V ~ @ MP(A, ),
i=1
where p; is the d-partition of 1 whose only non-zero component is the i-th one and is equal
to (1). The highest weight of MP(A, ;) being A + e, , 11, the action of Ry on MP(A, ;)

is given by
q<A+E"hi71 +1.Mtem,; g1 +2p)—(A\,A+2p)—{e1,e1+2p)
)

and we check that
<A + Emi_1+1s A+ Emi_1+1 + 2p> — <A, A+ 2p> — <€1, e+ 2p> = Q(ﬁl — mi,l).
O

By the definition of the Ariki-Koike algebra, Proposition and the previous lemma

we thus get an action of the Ariki-Koike algebra for the parameters u; = (A\;g~"™1)? on

MP(A) ® V®". Therefore, the assignment T; — R; defines a morphism of algebras
% (d,n) — Endy, g (M (A) @ V).
Theorem 4.2.
e The algebra morphism % (d,n) — Endg, g y(MP(A)@V®™) is surjective and factors
through an isomorphism
Fn(d,n) — Endy, g (MP(A) @ V).
o There is an isomorphism of # (d,n) ® U,(gl,,)-module
MP(A)@VE ~ EI—) V, ® MP(A, ).

HEDP,

Proof. The first part of the theorem follows immediately from the second part and the
definition of the row-quotient #,,(d, n).
Using Corollary and the fact that #(d,n) acts on MP(A) ® V" by U,(gl,,)-linear
endomorphisms, we see that
MP(A)@VE ~ P V, @ MP(A, ),

HEP

for some % (d, n)-modules V,,. Since the multiplicity of M*(A, u) in M*(A) ® V& is given
by the number of paths in the Young lattice from the empty d-partition to the d-partition

i, we have dim(V,,) = dim(V,,). Showing that V), is a submodule of V,, will end the proof
of the second part of the theorem.
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Let t be a standard Young tableau of shape p and denote by (a;, bs;, ¢;) = t71(i). Denote
by p[i] the d-partition of ¢ obtained by adding the boxes labeled by 1 to ¢ in the chosen
standard tableau t to the empty d-partition. We now choose a highest weight vector
ve MP(A)® V" of weight A, such that for all 1 < i < n we have

ve MP(A, u[i]) @ VO < MP(A) @ VO

Using the branching rule, one see that such a vector exists and is unique up to a scalar.
Let us show that this vector v is a common eigenvector of the Jucys—-Murphy elements X;.
It is easy to see that the action of the Jucys—-Murphy element X; on MP(A)® V®" is given
by the double braiding (cVMp(A)@V@(H) o CMp(A)®V®(i71)7v) ® Idyem—«n. By Lemma [B.7], we
obtain that X; acts on v by multiplication by

q<Au[¢] Aufi+20)=(Apfi-11Aufi-1) +20)—(e1,1+20)

Indeed, v lies in the summand MP (A, pu[i]) @ VO < MP(A, ui — 1)) @ V @ V=9 of
MP(A) @ V™. But A, = Aui—1) + €k, where k; = ., , + a; so that

<Au[i]’ Au[z] + 2p> — <Au[i—1]’ Au[i—l] + 2p> — <€1, &1+ 2p> = 2<Au[i—1]> 8ki> + 2(1 — k’z)

since the component of A, 17 on €y, is B, + (b; — 1). Therefore, X; acts on v by multipli-
cation by

()\c-qbi_ki)2 — Uc-q2(bi_ai)-
Therefore, the % (d,n) submodule spanned by v is isomorphic to V, and then V, is a
submodule of V,. 0

4.1. Some particular cases. We finish by giving some special cases of Theorem in
order to recover various well-known algebras. The two first special cases involve the well-
known situation without a parabolic Verma module: it suffices to note that, if p = gl,,,
then MP(A) is the trivial module.

Corollary 4.3. If the parabolic subalgebra p is gl,, and m > n, then the endomorphism
algebra of MP(A) ® V®™ is isomorphic to Hecke algebra of type A.

Corollary 4.4. If the parabolic subalgebra p s gl,, and m = 2, then the endomorphism
algebra of MP(A) ® V& is isomorphic to Temperley—Lieb algebra of type A.

We now turn to special cases where p is a strict subalgebra of gl,,. The following corollary
follows from Remark 2.12]

Corollary 4.5. For p such that m = nd and m; = n for all 1 < i < d, the endomorphism
algebra of MP(A) @ VO™ is isomorphic to the Ariki-Koike algebra 7 (d,n).

The Hecke algebra of type B with unequal parameters appears when we work with a
standard parabolic subalgebra p with Levi factor gl,,, x gl,,,,.

Corollary 4.6. If the parabolic subalgebra p is such that d = 2, my = n and my = n, then
the endomorphism algebra of MP(A) ® V" is isomorphic to the Hecke algebra of type B
with unequal and algebraically independent parameters.
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Finally, the last special case is a generalization of the gl, case of [15], where we recover
the generalized blob algebra.

Corollary 4.7. If the parabolic subalgebra p is the standard Borel subalgebra b of gl,,, that
isd=m and m; = 1 for 1 < i < d, then the endomorphism algebra of M(A) ® V" is
isomorphic to the generalized blob algebra B(d,n).

5. SOME REMARKS ON THE NON-SEMISIMPLE CASE

This paper deals with the semisimple case, where the decomposition of MP(A) @ V& as
the sum of simple modules is a crucial tool to compute its endomorphism algebra. Non-
semisimple situations appear if g is no longer an indeterminate in the base field k but a root
of unity. If ¢ and the parameters A, ..., A\; appearing in the highest weight of MP?(A) are
no longer algebraically independent, a non-semisimple situation may also appear. Indeed,
the parabolic Verma module might not be simple anymore as it is readily seen from the case
of gl,. It is then natural to ask whether it is possible to extend the Schur-Weyl duality to
the non-semisimple case. Let us remark that if ¢ is not a root of unity and if )\Z)\j’l ¢ 7 for
all 1 < 4,5 < d then the behavior is similar to the one described in the previous sections.

In order to define the action, we use an “integral version” of the algebras U,(gl,) and
% (d,n) and of the module M*(A) ® V®", compatible with the specialization at a root of
unity.

We start with the Ariki-Koike algebra. The definition given in Section 2.1] is valid for
any field k and any choice of parameters. Concerning the algebra U,(gl,), we consider
Lusztig’s integral from U;*(gl,,) over Z|q, q '], see [8 Section 9.3]. It is also known that
the quasi-R-matrix © is an element of (a completion of) U*(gl,) @ U;*(gl,,). Then for a
base field k and any ¢ € k*, the quantum group Ue¢(gl,,) is defined as k ®zq 417 U;>(gl,),
where we see k as a Z[q, ¢"']-module via the morphism sending ¢ to .

The parabolic Verma module MP?(A) is a highest weight module and we choose v, a
highest weight vector. We then have at our disposal an integral version, which is the
submodule generated over U;*(gl,,) by the highest weight v,. Its specialization at ¢ = §
will still be denoted MP(A). Similarly, we have a version at ¢ = £ of the standard module
V', which has a well-known integral form.

Since the quasi- R-matrix © lies in the Lusztig’s integral form of the quantum group,
we can similarly use the braiding to define the endomorphisms Ry, Ri,..., R,_1 of the
Ue(gl,)-module MP(A) ® V. As in the semisimple case, we have:

Proposition 5.1. Letk be a field, g € k* and A1, ..., \g € k. Then the assignmentT; — R;
is a morphism of algebras from #(d,n) to Ende, g, )(MP(A) @ VE™). The parameters u;
of the Ariki-Koike algebra are still given by Lemma 4.1

It is more difficult to understand the image of map # (d, n) — Enduy, g, )(M*(A)@VE"),
or even better to describe the image and the kernel of the map. In [15] Iohara, Lehrer and
Zhang studied the particular case of gl, and p = b (this corresponds to n = 2 and d = 2)
and proved that if ¢ is an indeterminate in k and that M \;' = ¢! for [ € Z, [ > —1, then
the map #(d,n) — Endg, g (M (A) ® V) is surjective [15, Proposition 5.11].
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In order to extend the Schur-Weyl duality form the semisimple case to a non-semisimple
case, a classical strategy [12] [I] is to argue that the dimensions of the various algebras,
such as Endg, (g, ) (MP(A) ® V&) or #(d, n), are independent of the base field k.

Following the arguments of [I], a first step would be to determine whether the parabolic
Verma module M¥(A) is tilting in an appropriate category © of infinite dimensional U, (gl,, )-
modules. Since V is tilting and the tensor product of tilting modules is tilting, having
MP(A) being tilting would mean that M?(A) ® V®" is. Since the space of endomorphisms
of a tilting module is flat, its dimension does not depend on the base field k.

Concerning % (d, n), its definition is valid over the ring Z[q*!, uy, . .., u4] and it is known
that the basis given in is a basis over this ring. This implies that the dimension of the
algebra % (d,n) is independent of the field k and the choice of ¢ € k* and of uy, ..., u4 € k.

Therefore, if MP(A) is tilting in an appropriate category O of infinite dimensional
Uy (gl,)-modules, the map % (d,n) — Endg, g )(MP(A) ® V&) would be surjective for
any base field k.

If we want to consider the row-quotients #,,(d,n) of #(d,n), one must first give a
definition which does not rely on the semisimplicity of the algebra # (d, n) so that the map
% (d,n) — Endgy (g, (MP(A)@VE") factors through #,,(d, n) and then study the existence
of an integral basis of #,,(d,n).

Let us stress that these arguments depend heavily on MP(A) being tilting and on the
existence of an integral basis of #,,(d,n). One may need some extra assumptions on the
field k, as for example being infinite, or on the parameters of the parabolic Verma module.
This non-semisimple behavior deserves further study, which was outside the scope of this

paper.
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