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Abstract

We study the asymptotic behaviour of the electric field in the transverse magnetic
(TM) mode, propagating in a material composed of a two-dimensional object surrounded
by a thin layer of non-constant thickness and embedded in an ambient medium. Using an
asymptotic expansion of the solution uε to the Helmholtz problem, we derive Ventcel-type
transmission conditions on the limit interface Γ modelling the effect of the thin layer with
accuracy up to O(ε2).
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1 Introduction

In physics, a thin layer is a structure formed by applying a very thin coating, which is signif-
icantly smaller in thickness compared to the size of the domain being considered. Thin layers
find extensive applications in optics, electronics, chemistry, materials science, and many other
fields. They are used in the production of flat screens, solar cells, sensors, anti-reflective coat-
ings, hard disks, integrated circuits, and catalysts. They can be deposited on various substrates
such as glass, metals, or semiconductors using techniques like sputtering, vacuum evaporation,
or epitaxial growth. They are used to modify the optical, electronic, or mechanical proper-
ties of the substrate, protect materials against oxidation, or create interfaces between different
materials.
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The numerical resolution of problems defined in domains with thin layers, like finite element
method or finite difference method, sometimes leads to numerical instabilities and significant
computation time: a sufficiently fine discretization at the scale of the thin layer is necessary,
which leads to systems with a conditioning number that increases considerably as the thickness
of the thin layer tends to 0.

To overcome these difficulties, asymptotic methods are developed to replace the effect of
the thin layer with approximate transmission conditions called impedance transmission condi-
tions or Ventcel-type transmission conditions involving tangential differential operators of order
greater than or equal to that of the interior differential operator. These last years, a significant
amount of literature has been devoted to the modelling of thin layers. We refer the reader to
[1, 2, 4, 12, 14, 15, 17, 18, 23], and references therein.

In this paper, we study the asymptotic behavior of the solution to the Helmholtz problem in
a two-dimensional domain separated by a thin layer with a non-constant thickness intended to
tend to 0. We present approximate transmission conditions that take into account the effect of
the thin layer. These conditions can be useful for computing an approximation of the solution
to the Helmholtz problem using finite elements because they avoid meshing the thin layer,
which can be a very expensive task.

Let us give precise notations. Let Ωε
− an open bounded smooth domain of R2 with connected

boundary Γε− surrounded by a thin layer Ωε
m,2 of non-constant thickness with boundary Γε−∪Γε+

and which the curve Γε− is parametrized by its curvilinear coordinate:

Γε− =
{
γε−(t), t ∈ (0, lΓε

−
)
}
,

where lΓε
−

is the length of Γε− and t is the arc lentgh of γε−. The curve Γε+ is defined by

Γε+ =
{
γε−(t) + εf(t)n−, t ∈ (0, lΓε

−
)
}
,

where n− is the unit normal vector Γε−, ε is a small parameter destined to tend to 0 and f is
a smooth, positive function such that ∃m,M > 0; 0 < m ≤ f(t) < M, ∀t ∈ (0, lΓε

−
). We also

denote by Ωε
+ the exterior domain of R2 defined by Ωε

+ = R2 \
(
Ωε
− ∪ Ωε

m,2

)
(cf. Fig. 1).

Ωε
−

Ωε
+ Ωε

m,2

Γε
−

Γε
+ −→n−

−→n+

Figure 1: Geometry of the problem
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Let αε et kε be two piecewise strictly positive constant functions defined by

αε(x) =


α+ if x ∈ Ωε

+,
1 if x ∈ Ωε

m,2,
α− if x ∈ Ωε

−,
and kε(x) =


k+ if x ∈ Ωε

+,
km if x ∈ Ωε

m,2,
k− if x ∈ Ωε

−.
(1)

In (1), αε and kε describe respectively the contrast and the refractive properties of the media
Ωε
− and Ωε

m,2 relative to the exterior domain Ωε
+. We assume that all the constants α±, k± and

km are independent of ε and α± < 1 < α∓. Our aim is to study the asymptotic behaviour as
ε→ 0 of the solution uε to the following problem∆uε + k2

εu
ε = 0, in Ωε

− ∪ Ωε
m,2 ∪ Ωε

+, (2a)

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

) (
uε+ − uinc

)
= 0, (2b)

with transmission conditions on the interfaces Γε+ and Γε−{
uεm,2 = uε±, on Γε±, (2c)

∂n±u
ε
m,2 = α±∂n±u

ε
±, on Γε±, (2d)

where ∂n+ and ∂n− denote the derivatives in the direction of the unit normal vectors n+ and
n− to Γε+ and Γε− respectively (Fig. 1); uε+, uεm,2 and uε− are the restrictions of uε respectively

to the domains Ωε
+, Ωε

m,2, Ωε
− and uinc is the incident wave defined by uinc = eik+(x·d), with d

being a unit vector of R2 giving the direction of the plane wave uinc.
This work is a continuation of a series of two papers [9, 10] in which the authors studied a

similar problem defined in a domain with a uniform thin layer.
Especially, in [10] , the authors considered the case α± ∈ ]1,+∞[ or α± ∈ ]0, 1[ and

determined a third-order model to take into account the effect of the thin layer by Ventcel-type
transmission conditions defined on an interface Γ parallel to Γε+ and Γε− located inside the thin
layer Ωε

m,2. However, the well-posedness of the approximate problem has only been proven in
the case α± ∈ ]1,+∞[ or α± ∈ ]0, 1[ .

Our goal is twofold. We consider in this work the case of a non-uniform thin layer and treat
the case where α± < 1 < α∓. We use a multiscale expansion of the solution in powers of ε
to derive, in the case of the non-uniform layer, an equivalent model of order 2 with Ventcel-
type transmission conditions involving tangential differential operators of order 2 defined on
a parallel interface Γ to Γε+ and Γε− located outside the thin layer Ωε

m,2. We also derive an
equivalent model of order 3 in the particular case where f ≡ 1, i.e., a uniform thin layer.

The outline of the paper is the following. In the next section, we give precisely the statement
of the considered model problem. In section 3, we recall suitable notations and definitions from
differential geometry on curves. Section 4 contains asymptotic analysis of the solution of our
problem. We calculate the first three terms of a formal asymptotic expansion of the solution and
give a convergence theorem justifying the ansatz. The main result of this paper is presented
in section 5. We begin by establishing an approximate model of order 2 with Ventcel-type
transmission conditions for the case of a non-uniform thin layer. We prove a uniform estimate
(Theorem 5) in order to establish the uniqueness of the solution of the approximate problem.
Next, we present an equivalent system of pseudo-differential equations to prove the existence
result (Theorem 8). Finally, we provide an estimate of the modeling error (Theorem 9).In the
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second part of section 5, we address the case of a uniform thin layer and provide an approximate
model of order 3 with Ventcel-type transmission conditions. In this case, the uniqueness of the
solution is shown (Theorem 12) using the Rellich lemma ([19]). We leave the proof of the
existence of the solution and the error estimate to the reader, as they are practically the same
as those in Theorem 8 and Theorem 9.

2 Problem setting

We would like to use the same technique as that used in [10], where the authors derived Ventcel-
type transmission conditions on an interface Γ separating the thin layer into two subdomains.
However, it is not suitable for the problem studied in this paper. Therefore, we adopt similar
approach to that used in [8]; we consider a parallel interface Γ to Γε− dividing Ωε

− into two
subdomains: a bounded domain Ω− and a thin layer Ωε

m,1 of thickness dε where d is a positif
real number independent of ε (see Fig. 2).

Γε−

Γε+

Ωε
−

Ωε
m,2

Ωε
+

fε

Γε−

Γ

Γε+

Ωε
m,1Ω−

Ωε
m,2

Ωε
+

fεdε

Figure 2: A zoom on the thin layer, with and without the interface Γ

Then problem (2) is equivalent to the following problem



∆uε+ + k2
+u

ε
+ = 0, in Ωε

+, (3a)

∆uεm,2 + k2
m,2u

ε
m,2 = 0, in Ωε

m,2, (3b)

∆uεm,1 + k2
−u

ε
m,1 = 0, in Ωε

m,1, (3c)

∆uε− + k2
−u

ε
− = 0, in Ω−, (3d)

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

) (
uε+ − uinc

)
= 0, (3e)
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with transmission conditions

uεm,2 = uε+, on Γε+, (3f)

uεm,1 = uεm,2, on Γε−, (3g)

uε− = uεm,1, on Γ, (3h)

∂n+u
ε
m,2 = α+∂n+u

ε
+, on Γε+, (3i)

α−∂nu
ε
m,1 = ∂n−u

ε
m,2, on Γε−, (3j)

∂nu
ε
− = ∂nu

ε
m,1, on Γ, (3k)

where ∂n denotes the derivative in the direction of the unit normal vectors n to Γ and uεm,1
is the restriction of uε to the domains Ωε

m,1.
We derive an asymptotic expansion of the solution uε with respect to the thickness ε up to

any order. We then provide Ventcel-type approximate transmission conditions on the interface
Γ modelling the effect of the thin layer and we discuss according to the parameter d the existence
and the uniqueness of the approximate solution.

We start by the following theorem in which we state the existence and the uniqueness result
and give a uniform estimate of the solution uε with respect to ε, for which a proof can be found
in [9, 7].

Theorem 1 If uinc is a plane wave, then Problem (3) admits a unique solution uε in H1
loc(R2).

Furthermore, there exists a constant c independent of ε such that

‖uε‖H1(Ω) ≤ c,

where Ω is a bounded smooth domain with boundary Γ∞ enclosing the domain Ωε
− as well as

the thin layer Ωε
m,2 (cf. Fig. 3).

Γ∞

Ωε
−

Ωε
m,2

Γε
−

Γε
+ −→n−
−→n+

Figure 3: The domain Ω

5



3 Geometrical tools - Notations

The goal of this section is to define and to collect the main features of differential geometry to
formulate our problem in a fixed domain (independent of ε). This technique is a key tool to
determine the asymptotic expansion of the solution uε.

3.1 Parameterization of Γ

Let Γ be a regular parameterized closed curve through the C∞ map γ defined by

γ : (0, lΓ) −→ Γ ⊂ R2

t −→ γ(t) = (γ1(t), γ2(t)) ,

where lΓ is the length of Γ and t is the arc length of γ. The tangent and normal unit vectors
τ(t) and n(t) to Γ at γ(t) are given by

τ(t) :=
dγ(t)

dt
= (n2(t),−n1(t)) , n(t) := (n1(t), n2(t)) .

We recall Frénet’s formulas defining the curvature c(t) of Γ at point γ(t) (cf. [13])

dτ(t)

dt
= −c(t)n, dn(t)

dt
= c(t)τ.

3.2 Parameterization of Ωε
m

Let I1 = (0, d) and I2 = (0, 1). As well-known [13], if ε is small enough then the thin layer
Ωε
m,β, β ∈ {1, 2}, can be parameterized by the manifold (0, lΓ)× Iβ with coordinates (t, s):

Ωε
m,1 =

{
x = γ(t) + εsn(t) ∈ Ωε

m,1, (t, s) ∈ Ωm,1 := (0, lΓ)× I1

}
,

Ωε
m,2 =

{
x = γ(t) + ε(d+ sf(t))n(t) ∈ Ωε

m,2, (t, s) ∈ Ωm,2 := (0, lΓ)× I2

}
.

To each function vβ defined on Ωε
m,β, we associate the function Vβ defined on Ωm,β by

Vβ(t, s) := vβ(x), (t, s) ∈ (0, lΓ)× Iβ.

Hence the expression of the Laplacian in coordinates (t, s) is

∆v1 = ε−2

(
∂2
s −

N∑
j=1

εjA1,j + εN+1TN,1

)
V1, (4)

∆v2 = ε−2

[
1

f 2
∂2
s −

N∑
j=1

εjA2,j + εN+1TN,2

]
V2, (5)

where TN,β is a bounded operator with respect to ε. In particular

A1,1 = −c(t)∂s, (6)

A1,2 = sc2(t)∂s − ∂2
t , (7)
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A1,3 = −s2c3(t)∂s + 2sc(t)∂2
t + sc′(t)∂t, (8)

A2,1 = − c(t)
f(t)

∂s, (9)

A2,2 = 2sf ′−1(t)∂t∂s − s2f ′2(t)f−2(t)∂2
s − ∂2

t

−
[
2sf ′2(t)f−2(t)− sf ′′(t)f−1(t)− sc2(t)− dc2f−1

]
∂s, (10)

A2.3 =

(
2s3c(t)

f(t)
+

2s2dc(t)

f 2(t)

)
f ′2(t)∂2

s +

(
4s2c(t) +

4sdc(t)

f(t)

)
f ′(t)∂t∂s

+ (2sc(t)f(t) + 2dc(t)) ∂2
t − (d+ sf(t)) c′(t)∂t +

(
−s2c3(t)f(t)− 2sdc3(t)− dc3(t)

f(t)

− 2s2c(t)f ′′(t) +
4s2c(t)f ′2(t)

f(t)
− 2sdc(t)f ′′(t)

f(t)
+

4sdc(t)f ′2(t)

f 2(t)
− s2c′(t)f ′(t)

−sdc
′(t)f ′(t)

f(t)

)
∂s. (11)

The normal derivative on Γ ∪ Γε− ∪ Γε+ expands in power of ε as

∂nv1|Γ = ε−1∂sV1(t, 0), (12)

∂n−v1|Γε
−

= ε−1∂sV1(t, d), (13)

∂n−v2|Γε
−

= ε−1f−1∂sV2(t, 0), (14)

∂n+v2|Γε
+

=

[
ε−1f−1∂s + ε

(
1

2
f ′2f−1∂s − f ′∂t

)
+ · · ·

]
V2(t, 1). (15)

Otherwise, if v is a function defined on Ωε
m, which is parameterized with coordinates (t, η):

Ωε
m = {x = γ(t) + η(d+ f(t))n(t) ∈ Ωε

m, (t, η) ∈ Ωm := (0, lΓ)× (0, ε)} , (16)

then, using a Taylor expansion in the normal variable η, the normal derivative on Γε+ has
the expansion

∂n+v|Γε
+

= ∂nv|Γ + ε
[
(f + d) ∂2

nv|Γ − f ′∂tv|Γ
]

+ · · · . (17)

4 The asymptotic analysis

In this section, we derive a multiscale expansion for the solution uε of the model problem (2)
in power series of the small parameter ε. We present a hierarchy of equations defined in a fixed
domain (independent of ε). Then we give the first three terms of the asymptotic expansions
and the convergence theorem justifying our ansatz.

4.1 Hierarchy of equations

Due to boundary layer phenomena, the solution uε admits two asymptotic expansions: exterior
asymptotic expansions corresponding to the expansion of the solution uε restricted to Ωε

+ and
to Ω−, written in cartesian coordinates x = (x1, x2) (macroscopic scale) and given by the ansatz

uε+ =
∑
n≥0

εnun+ in Ωε
+, (18)
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uε− =
∑
n≥0

εnun− in Ω−, (19)

where the terms un− and un+ (n ∈ N) are independent of ε and respectively defined on Ω− and
on Ω+ := Ωε

+ ∪ Γε+ ∪ Ωε
m,2 ∪ Γε− ∪ Ωε

m,1. They satisfy
∆un+ + k2

+u
n
+ = 0 in Ω+,

∆un− + k2
−u

n
− = 0 in Ω−,

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

) (
un+ − δ0,nuinc

)
= 0,

(20)

in which δ0,n indicates the Kronecker symbol. And an interior expansion corresponding to the
asymptotic expansion of uε restricted to Ωε

m, written in local coordinates (t, s) (microscopic
scale) and defined by the ansatz

uεm,β(x1, x2) = U ε
m,β(t, s) =

∑
n≥0

εnUn
m,β(t, s) in Ωm,β, β = 1, 2, (21)

where Un
m,β are independent of ε.

Using a Taylor expansion in the normal variable and formula (16), transmission conditions
(3f)-(3h) become

U0
m,2(t, 1) + εU1

m,2(t, 1) + ε2U2
m,2(t, 1) + · · ·

= u0
+|Γ + ε

(
u1

+|Γ + (d+ f(t))∂nu
0
+|Γ
)

+ ε2

(
u2

+|Γ + (d+ f(t))∂nu
1
+|Γ +

(d+ f(t))2

2
∂2
nu

0
+|Γ
)

+ · · · , (22)

U0
m,1(t, d) + εU1

m,1(t, d) + ε2U2
m,1(t, d) + · · · = U0

m,2(t, 0) + εU1
m,2(t, 0) + ε2U2

m,2(t, 0) + · · · , (23)

U0
m,1(t, 0) + εU1

m,1(t, 0) + ε2U2
m,1(t, 0) + · · · = u0

−|Γ + εu1
−|Γ + ε2u2

−|Γ + · · · , (24)

Upon using (12)-(15) and condition (17), we get

ε−1

f(t)
∂sU

0
m,2(t, 1) +

1

f(t)
∂sU

1
m,2(t, 1) + ε

(
1

f(t)
∂sU

2
m,2(t, 1) +

f ′2(t)

2f(t)
∂sU

0
m,2(t, 1)

− f ′(t)∂tU
0
m,2(t, 1)

)
+ ε2

(
1

f(t)
∂sU

3
m,2(t, 1) +

f ′2(t)

2f(t)
∂sU

1
m,2(t, 1)

− f ′(t)∂tU1
m,2(t, 1)− cf ′2(t)

(
d

f(t)
+ 1

)
∂sU

0
m,2(t, 1)

+2c(t)f ′(t)(d+ f(t))∂tU
0
m,2(t, 1)

)
+ · · ·

= α+∂nu
0
+|Γ + ε

(
α+∂nu

1
+|Γ + (d+ f(t))α+∂

2
nu

0
+|Γ − f ′(t)α+∂tu

0
+|Γ
)

+ ε2

(
α+∂nu

2
+|Γ + (d+ f(t))α+∂

2
nu

1
+|Γ +

(d+ f(t))2

2
α+∂

3
nu

0
+|Γ

− f ′(t)∂tα+u
1
+|Γ +

f ′2(t)

2
α+∂nu

0
+|Γ + 2c(t)f ′(t)(d+ f(t))α+∂tu

0
+|Γ

−f ′(t)(d+ f(t))α+∂t∂nu
0
+|Γ
)

+ · · · , (25)
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ε−1α−∂sU
0
m,1(t, d) + α−∂sU

1
m,1(t, d) + εα−∂sU

2
m,1(t, d) + ε2α−∂sU

3
m,1(t, d) + · · ·

=
1

f(t)

(
ε−1∂sU

0
m,2(t, 0) + ∂sU

1
m,2(t, 0) + ε∂sU

2
m,2(t, 0) + ε2∂sU

3
m,2(t, 0)

)
+ · · · ,

(26)

ε−1∂sU
0
m,1(t, 0) + ∂sU

1
m,1(t, 0) + ε∂sU

2
m,1(t, 0) + ε2∂sU

3
m,1(t, 0) + · · ·

= ∂nu
0
−|Γ + ε∂nu

1
−|Γ + ε2∂nu

2
−|Γ + · · · . (27)

Now, inserting serie (21) in (3b) and (3c), using (4), (5) and matching the same powers of
ε, we get, for all (t, s) ∈ (0, lΓ)× Iβ, the following families of equations

∂2
sU

0
m,β = 0, (28)

∂2
sU

1
m,β = Aβ,1U

0
m,β, (29)

∂2
sU

2
m,1 = A1,1U

1
m,1 + A1,2U

0
m,1 − k2

−U
0
m,1, (30)

∂2
sU

2
m,2 = A2,1U

1
m,2 + A2,2U

0
m,2 − k2

mU
0
m,2, (31)

∂2
sU

3
m,1 = A1,1U

2
m,1 + A1,2U

1
m,1 + A1,3U

0
m,1 − k2

−U
1
m,1, (32)

∂2
sU

3
m,2 = A2,1U

2
m,2 + A2,2U

1
m,2 + A2,3U

0
m,2 − k2

mU
1
m,2. (33)

4.2 Calculation of the first terms

In this paragraph, we exhibit the first three terms of the asymptotic expansion of the solution
uε to problem (2). All the details and formal calculi are presented in Appendix A.

By resolving equations (28)-(33), with the help of transmission conditions (22)-(26), the
terms (un−, u

n
+) are solution of the following boundary-value problems

∆un+ + k2
+u

n
+ = 0 in Ω+,

∆un− + k2
−u

n
− = 0 in Ω−,

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

) (
un+ − δ0,nuinc

)
= 0,

with transmission conditions on Γ:
At order 0.

u0
+ − u0

− = 0, (34)

α+∂nu
0
+ − α−∂nu0

− = 0. (35)

At order 1.

u1
+ − u1

− =
f(t)α+α− + dα+ − (f(t) + d)α−

2α+α−

(
α+∂nu

0
+ + α−∂nu

0
−
)
, (36)

α+∂nu
1
+ − α−∂nu1

− = ϑ1

(
α+∂nu

0
+ + α−∂nu

0
−
)

+ ϑ2

(
u0

+ + u0
−
)
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+ϑ3

(
∂tu

0
+ + ∂tu

0
−
)

+ ϑ4

(
∂2
t u

0
+ + ∂2

t u
0
−
)
. (37)

where

ϑ1 =
1

2

(
f(t)− 1

f(t)

)
c(t),

ϑ2 =
1

2

(
(d+ f(t))α+k

2
+ −

1

f(t)
k2
m − dα−k2

−

)
,

ϑ3 =
1

2
(α+ − 1) f ′(t),

ϑ4 =
1

2

(
(d+ f)α+ −

1

f(t)
− dα−

)
.

At order 2.

u2
+ − u2

− =
f(t)α+α− + dα+ − (d+ f(t))α−

2α+α−

(
α+∂nu

1
+ + α−∂nu

1
−
)

+

(
(−2f 2(t)f ′(t)− 2df 2(t)− f 3(t))α+α− + (d− d2f(t)− df 2(t))α+

4f(t)α+α−

−(d+ f(t) + d2f(t) + df 2(t))α−
4f(t)α+α−

)
c(t)

(
α+∂nu

0
+ + α−∂nu

0
−
)

+

(
−(d+ f(t))f 2(t)α2

+α− − df 2(t)α+α
2
− − df(t)(d+ f(t))(α2

+ − α2
−)

4f(t)α+α−

+
dα+ + (d+ f(t))α−

4f(t)α+α−

)(
∂2
t u

0
+ + ∂2

t u
0
−
)

+

(
−(d+ f(t))f 2(t)k2

+α
2
+α− − df 2(t)k2

−α+α
2
− − d(d+ f(t))f(t)(k2

+α
2
+ − k2

−α
2
−)

4f(t)α+α−

+
dk2

mα+ + (d+ f(t))k2
mα−

4f(t)α+α−

)(
u0

+ + u0
−
)

+
f(t)α2

+α− − dα2
+ − dα+α− + dα+ + (d+ f(t))α−

4α+α−
f ′(t)

(
∂tu

0
+ + ∂tu

0
−
)
, (38)

α+∂nu
2
+ − α−∂nu2

− = ϑ1

(
α+∂nu

1
+ + α−∂nu

1
−
)

+ ϑ2

(
u1

+ + u1
−
)

+ϑ3

(
∂tu

1
+ + ∂tu

1
−
)

+ ϑ4

(
∂2
t u

1
+ + ∂2

t u
1
−
)

+ϑ5

(
∂2
t u

0
+ + ∂2

t u
0
−
)

+ ϑ6

(
∂tu

0
+ + ∂tu

0
−
)

+ϑ7

(
u0

+ + u0
−
)

+ ϑ8

(
α+∂

2
t ∂nu

0
+ + ∂2

t α−∂nu
0
−
)

+ϑ9

(
α+∂t∂nu

0
+ + ∂tα−∂nu

0
−
)

+ϑ10

(
α+∂nu

0
+ + α−∂nu

0
−
)
,

where

ϑ5 =
3d2

4
α−c(t)−

c(t)

4f 2(t)
+

c(t)

2f(t)
(d+ f(t))α+

10



+
1

2
c(t) +

dc(t)

f(t)
− 3(d+ f(t))2

4
α+c(t)

+
1

2

(
f(t)− 1

f(t)

)
c(t)

[
(d+ f(t))f(t)α+ − df(t)α− − 1

2f(t)

]
+dc(t)

(d+ f(t))f(t)α+ − df(t)α− − 1

2f(t)
,

ϑ6 = −1

4
c′(t) +

d2

4
α−c

′(t)− c(t)

2f(t)
f ′(t) + α+

c(t)

2f(t)
f ′(t)− c(t)f ′(t)(d+ f(t)) (α+ − 1)

−(d+ f(t))2

4
α+c

′(t)− dc′(t)

2f(t)
+ dc(t)

f ′(t)(α+ − 1)

2

+
1

2

(
f(t)− 1

f(t)

)
c(t)

[
f ′(t)(α+ − 1)

2

]
,

ϑ7 =
d2

4
α−c(t)k

2
− −

c(t)

4f 2(t)
k2
m +

c(t)

2f(t)
(d+ f(t))α+k

2
+ −

(d+ f(t))2

4
α+c(t)k

2
+

+
1

2

(
f(t)− 1

f(t)

)
c(t)

[
(d+ f(t))f(t)k2

+α+ − df(t)k2
−α− − k2

m

2f(t)

]
+dc(t)

(d+ f(t))f(t)k2
+α+ − df(t)k2

−α− − k2
m

2f(t)
,

ϑ8 =
(d+ f(t))2 − d2 − 1

4
− 1

2

1

f(t)

(
d+ f(t)− f(t)α+

α+

)
+

1

2

(
(d+ f(t))α+ + dα− −

1

f(t)

)[
f(t)α+α− − (d+ f(t))α− + dα+

2α+α−

]
,

ϑ9 =
f ′(t) (α+ − 1)

f(t)α+

+
f ′(t) (d+ f(t)) (α+ − 1)

2α+

+
1

2
(α+ − 1) f ′(t)

f(t)α+α− − (d+ f(t))α− + dα+

2α+α−

+

(
(d+ f(t))α+ + dα− −

1

f(t)

)(
f ′(t)α+α− − (f ′(t))α−

2α+α−

)
,

ϑ10 = −d
2

4
k2
− +

1

2
d2c2(t) +

1

4
c2(t)− (f ′(t))2

2f 2(t)
− 1

2

1

f(t)

[
(f ′′(t)− f ′′(t)α+)

α+

]
+

1

2
dc2(t)f−1(t)− (f ′(t))2

2α+

+
1

2f(t)
c2(t) (d+ f(t))− (d+ f(t))2

4

(
2c2(t)− k2

+

)
−k2

m

(
d+ f(t)− f(t)α+

2α+f(t)

)
− c2(t)

4f 2(t)
+

(f ′(t))2

2f 2(t)
+ d

c2(t)(f 2(t)− 1)

2f(t)

−
(

1

f(t)
− f(t)

)
c2(t)

(f 2(t)− 1)

4f(t)
+

1

4α+

(1− α+)2 (f ′(t))
2 − 1

4
k2
m

−1

2

(
1

f(t)
k2
m − (d+ f)α+k

2
+ − dα−k2

−

)(
f(t)α+α− − (d+ f(t))α− + dα+

2α+α−

)
−1

2

(
1

f(t)
− (d+ f)α+ − dα−

)(
f ′′(t)α+α− − f ′′(t)α−

2α+α−

)
.
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And (Un
m,β)0≤n≤1 are determined by ∀(t, s) ∈ (0, lΓ)× Iβ

U0
m,β(t, s) = u0

−|Γ = u0
+|Γ, (39)

U1
m,1(t, s) = u1

−|Γ + s∂nu
0
−|Γ, (40)

U1
m,2(t, s) = u1

+|Γ + (f + d− f(t)α+ + sf(t)α+) ∂nu
0
+|Γ, (41)

U2
m,1(t, s) =

[
−c(t)∂nu0

−|Γ − ∂2
t u

0
−|Γ − k2

−u
0
−|Γ
] s2

2
+ ∂nu

1
−|Γs+ u2

−|Γ, (42)

U2
m,2(t, s) =

[
−c(t)α+∂nu

0
+|Γ − ∂2

t u
0
+|Γ − k2

mu
0
−|Γ
] s2 − 2s+ 1

2
+
[
f(t)α+∂nu

1
+|Γ

−c(t)f(t)f ′(t)α+∂nu
0
+|Γ + f(t)f ′(t)∂tu

0
+|Γ + (d+ f(t))f(t)α+∂

2
nu

0
+|Γ
]

(s− 1)

+ (d+ f(t)) ∂nu
1
+|Γ +

(d+ f(t))2

2
∂2
nu

0
+|Γ + u2

+|Γ. (43)

Remark 2 We note that by setting, in [10], d1 = −d and d2 = 1 + d, we formally obtain the
asymptotic expansions and the equivalent models presented here in the case of a uniform thin
layer where f = 1.

4.3 Convergence theorem

The goal of this paragraph is to validate the ansatz (18), (19) and (21) by providing an error
estimate made by approximating the exact solution of (2) by a truncated asymptotic expansion

at order N ∈ N. Let Ω̃ε
+ be a domain of R2 defined by Ω̃ε

+ := Ωε
+ ∩ Ω. We set

u
ε,(N)
− :=

N∑
n=0

εnun−, u
ε,(N)
+ :=

N∑
n=0

εnun+ and u
ε,(N)
m,β :=

N∑
n=0

εnunm,β,

where unm,β(x) := Un
m,β(t, s); ∀x = Φβ(t, s) ∈ Ωε

m,β. Then we have the following theorem.

Theorem 3 (Convergence Theorem) For all integers N , if uinc is a plane wave, then there
exists a constant c independent of ε such as∥∥∥uε− − uε,(N)

−

∥∥∥
H1(Ω−)

+ ε1/2
∥∥∥uεm,β − uε,(N)

m,1

∥∥∥
H1(Ωε

m,1)
+ ε1/2

∥∥∥uεm,2 − uε,(N)
m,2

∥∥∥
H1(Ωε

m,2)

+
∥∥∥uε+ − uε,(N)

+

∥∥∥
H1(Ω̃ε

+)
≤ cεN+1.

Proof. The existence and uniqueness of the series
(
un−
)
n
,
(
un+
)
n

and
(
Un
m,β

)
n

as well as the
error estimate follow the same lines as Theorem 13 in [9] and Theorem 5.1 in [7].

5 Approximate transmission conditions

In this section, we derive Ventcel-type transmission conditions and approximate models to
exact problem (2). We start with the case of a thin layer with a variable thickness. We show
the existence and the uniqueness of the solution and prove an error estimate to validate the
convergence of the equivalent conditions with accuracy up to O(ε2). In the next paragraph, we
deal with the case of a thin layer with a constant thickness. We determine approximate model
with Ventcel-type transmission conditions up to order 3.
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5.1 The case of a thin layer with a variable thickness

To obtain equivalent transmission conditions of order 2, we truncate the series (18) and (19)
up to a residual term in O(ε2). An approximation of the exact solution uε far from the thin
layer is solution uε,ap∞ := (uε,ap− , uε,ap+ ) of the following problem

∆uε,ap+ + k2
+u

ε,ap
+ = 0 in Ω+,

∆uε,ap− + k2
−u

ε,ap
− = 0 in Ω−,

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

)
(uε,ap+ − uinc) = 0,

(44a)

with transmission conditions on Γ(
[uε,ap∞ ]

[α∂nu
ε,ap
∞ ]

)
= ε

(
2C1Id 0

c(t)
(
f(t)− 1

f(t)

)
Id 2 (D1∂

2
t +D4∂t +D2Id)

)(
〈α∂nuε,ap∞ 〉
〈uε,ap∞ 〉

)
,

(44b)
in which

α(x) =

{
α+ if x ∈ Ω+,
α− if x ∈ Ω−,

[v] = v+|Γ − v−|Γ, 〈v〉 =
1

2

(
v+|Γ + v−|Γ

)
,

[α∂nv] = α+∂nv+|Γ − α−∂nv−|Γ, 〈α∂nv〉 =
1

2

(
α+∂nv+|Γ + α−∂nv−|Γ

)
,

and

C1 =
f(t)α+α− − (d+ f(t))α− + dα+

2α+α−
, (45)

D1 =
(d+ f(t))f(t)α+ − df(t)α− − 1

2f(t)
, (46)

D2 =
(d+ f(t))f(t)k2

+α+ − df(t)k2
−α− − k2

m

2f(t)
, (47)

D3 = c(t)
(f 2(t)− 1)α+α−

f(t) (f(t)α+α− − (d+ f(t))α− + dα+)
, (48)

D4 =
f ′(t) (α+ − 1)

2
. (49)

Note that C1 6= 0 since we have assumed that α± < 1 < α∓.

5.1.1 Uniform stability

We now prove ε-uniform a priori estimate for the solution of problem (44). This latter is
actually going to be useful for proving the unicity of the solution.

To do, we rewrite problem (44) in a truncated domain (see [5] for a similar reduction) in
order to give a suitable variational formulation of problem (44).
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We recall that Ω is a bounded smooth domain with boundary Γ∞ enclosing the domain Ωε
−

as well as the thin layer Ωε
m,2 (see Fig. 3) and let us denote by Ω̃∞ the exterior domain of R2

with boundary Γ∞ defined by Ω̃∞ = R2\Ω.
We introduce the DtN operator T (Dirichlet-to-Neumann) defined from H1/2(Γ∞) onto

H−1/2(Γ∞) by Tϕ := −∂n
Ω̃∞
ω, where nΩ̃∞

indicates the unit normal to Γ∞ outwardly directed
to Ω and ω is the unique solution to the following problem

Find ω ∈ H1
loc(Ω̃∞)

∆ω + k2
+ω = 0 in Ω̃∞,

ω = ϕ on Γ∞,

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

)
ω = 0.

(50)

The DtN operator T is a pseudodifferential operator of order one [5] and is linear continuous
from H1/2(Γ∞) to H−1/2(Γ∞). The next lemma, whose proof uses stardard elliptic regularity
(cf., e.g., [5]), gives some useful decomposition of the DtN operator.

Lemma 4 Let φ ∈ H1/2(Γ∞) and ϕ0 ∈ H1(Ω̃∞) be the unique solution to the following coercive
scattering problem {

∆ϕ0 − ϕ0 = 0 in Ω̃∞
ϕ0 = φ on Γ∞.

Now let us consider T0φ = −∂n
Ω̃∞
ϕ0. Then T0 is bounded and coercive from H1/2 (Γ∞)

into H−1/2 (Γ∞). In addition, there exists a compact operator K acting from H1/2(Γ∞) into
H3/2(Γ∞) such that

T = T0 +K. (51)

We introduce the Hilbert space H1(Ω,Γ) defined by

H1(Ω,Γ) =
{
v = (v−, v+) ∈ H1(Ω−)×H1(Ω̃+); u±|Γ ∈ H1(Γ)

}
,

where Ω̃+ := Ω+ ∩ Ω. Then a variational formulation of (44) is given by

Find uε,ap∞ = (uε,ap− , uε,ap+ ) ∈ H1(Ω,Γ), ∀v ∈ H1(Ω,Γ)

aε (uε,ap∞ , v) := α−

∫
Ω−

∇uε,ap− · ∇v− dΩ− − α−k2
−

∫
Ω−

uε,ap− v− dΩ−

+α+

∫
Ω̃+
∇uε,ap+ · ∇v+ dΩ̃+ − α+k

2
+

∫
Ω̃+
uε,ap+ v+ dΩ̃+ +

∫
Γ

1
2εC1

[uε,ap∞ ] [v] dΓ

−2ε
∫

Γ
D1 〈∂tuε,ap∞ 〉 〈∂tv〉 dΓ + 2ε

∫
Γ
D2 〈uε,ap∞ 〉 〈v〉 dΓ

+
∫

Γ
D3 [uε,ap∞ ] 〈v〉 dΓ + 2ε

∫
Γ

(D4 −D′1) 〈∂tuε,ap∞ 〉 〈v〉 dΓ

+α+〈Tuε,ap+ , v+〉H−1/2(Γ∞)×H1/2(Γ∞) = l(v),

(52)

where 〈., .〉H−1/2(Γ∞)×H1/2(Γ∞) denotes the duality pairing between H−1/2(Γ∞) and H1/2(Γ∞)
and l is defined by

l(v) := α+

∫
Γ∞

(
∂n

Ω̃∞
+ T

)
uincv dσ.

We have the following theorem about the dependance of uε,ap∞ as ε goes to zero.
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Theorem 5 For all l in (H1(Ω,Γ))
′
, there exists a positive constant c, independent of ε, such

that the solution uε,ap∞ of problem (52) satisfy

‖uε,ap∞ ‖H1(Ω,Γ) ≤ cε−
1
2‖l‖(H1(Ω,Γ))′ .

Proof. We need to prove that the next estimate holds true

‖uε,ap∞ ‖H1(Ω,Γ) ≤ cε−
1
2 sup
v∈H1(Ω,Γ)

|aε (uε,ap∞ , v) |
‖v‖H1(Ω,Γ)

.

To do so, we proceed by contradiction hence assuming there exists sequences (εn)n∈N and
(uεn,ap∞ )n∈N (denoted by (un,ap∞ )n∈N) such that

lim
n→+∞

εn = 0, ‖
√
εnu

n,ap
∞ ‖H1(Ω,Γ) = 1,∀n ∈ N and lim

n→+∞
sup

‖ϕ‖H1(Ω,Γ)=1

|aεn (un,ap∞ , ϕ) | = 0.

From Rellich theorem, we can extract a subsequence (still denoted by (un,ap∞ )n∈N) such that{ √
εnu

n,ap
∞ → u0,ap

∞ in L2 (Ω) ,
√
εnu

n,ap
∞ ⇀ u0,ap

∞ in H1(Ω,Γ).

Otherwise, for all (v−, v+) ∈ C∞(Ω−)× C∞(Ω̃+), we have

lim
n→+∞

1

2εn

∫
Γ

√
εn
C1

[un,ap∞ ] [v] dΓ = lim
n→+∞

α−

∫
Ω−

√
εn∇un,ap− · ∇v− dΩ−

−α−k2
−

∫
Ω−

√
εnu

n,ap
− v− dΩ− + α+

∫
Ω̃+

√
εn∇un,ap+ · ∇v+ dΩ̃+ − α+k

2
+

∫
Ω̃+

√
εnu

n,ap
+ v+ dΩ̃+

−2εn

∫
Γ

D1

√
εn 〈∂tun,ap∞ 〉 〈∂tv〉 dΓ + 2εn

∫
Γ

D2

√
εn 〈un,ap∞ 〉 〈v〉 dΓ

+

∫
Γ

D3

√
εn [un,ap∞ ] 〈v〉 dΓ + 2εn

∫
Γ

(D4 −D′1)
√
εn 〈∂tun,ap∞ 〉 〈v〉 dΓ

−
√
εnaε(u

n,ap
+ , v) + α+〈

√
εnTu

n,ap
+ , v+〉H−1/2(Γ∞)×H1/2(Γ∞)

= α−

∫
Ω−

∇u0,ap
− · ∇v− dΩ− − α−k2

−

∫
Ω−

u0,ap
− v− dΩ− + α+

∫
Ω̃+

∇u0,ap
+ · ∇v+ dΩ̃+

−α+k
2
+

∫
Ω̃+

u0,ap
+ v+ dΩ̃+ +

∫
Γ

D3

[
u0,ap
∞
]
〈v〉 dΓ

+α+〈Tu0,ap
+ , v+〉H−1/2(Γ∞)×H1/2(Γ∞). (53)

The right-side term being independent of εn, it follows that, ∀(v−, v+) ∈ C∞(Ω−)× C∞(Ω̃+),

1

2εn

∫
Γ

√
εn
C1

[un,ap∞ ] [v] dΓ = O(1).

Using the fact that C∞(Ω−) × C∞(Ω̃+) is dense in H1(Ω,Γ) and C1 and 1
C1 are bounded in Γ,

we obtain for v = un,ap∞
‖ [un,ap∞ ] ‖L2(Γ) ≤ cε1/4

n . (54)
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As a consequence u0,ap
+ = u0,ap

− on Γ and for all v in H1(Ω,Γ), we have

lim
n→+∞

√
εnaεn(un,ap∞ , v) = α−

∫
Ω−

∇u0,ap
− · ∇v− dΩ− − α−k2

−

∫
Ω−

u0,ap
− v− dΩ−

+α+

∫
Ω̃+

∇u0,ap
+ · ∇v+ dΩ̃+ − α+k

2
+

∫
Ω̃+

u0,ap
+ v+ dΩ̃+

+α+〈Tu0,ap
+ , v+〉H−1/2(Γ∞)×H1/2(Γ∞) = 0. (55)

As a result, well-know properties of uniqueness of the solution of problem : Find u0,ap
∞ in

H1
(

Ω− ∪ Γ ∪ Ω̃+

)
satisfying (55), based on Rellich ([19]) lemma and the operator T imply

that u0,ap
∞ = 0.

To obtain the contradiction, we show that limn→+∞ ‖
√
εnu

n,ap
∞ ‖H1(Ω,Γ) = 0. Note that, since

u0,ap
∞ is uniquely determined, it is all the sequence (

√
εnu

n,ap
∞ )n∈N that converges to u0,ap

∞ . It only
remains to show that limn→+∞ ‖

√
εn∇un,ap∞ ‖L2(Ω) = 0. We have

‖
√
εn∇un,ap∞ ‖2

L2(Ω) ≤ cεn

(
α−

∫
Ω−

√
εn|∇un,ap− |2 dΩ− + α+

∫
Ω̃+

√
εn|∇un,ap+ |2 dΩ̃+

)
= c R

(
εnaεn(un,ap∞ , un,ap∞ ) + α−k

2
−

∫
Ω−

εn|un,ap− |2 dΩ− + α+k
2
+

∫
Ω̃+

εn|un,ap+ |2 dΩ̃+

−
∫

Γ

1

2C1

| [un,ap∞ ] |2 dΓ + 2ε2
n

∫
Γ

D1| 〈∂tun,ap∞ 〉 |2 dΓ

−2ε2
n

∫
Γ

D2| 〈un,ap∞ 〉 |2 dΓ− εn
∫

Γ

D3 [un,ap∞ ] 〈un,ap∞ 〉 dΓ

−2ε2
n

∫
Γ

(D4 −D′1) 〈∂tun,ap∞ 〉 〈u
n,ap
∞ 〉 dΓ

− εnα+〈Tun,ap+ , un,ap+ 〉H−1/2(Γ∞)×H1/2(Γ∞)

)
.

Using Lemma 4, we deduce

‖
√
εn∇un,ap∞ ‖2

L2(Ω) ≤ R
(
εnaεn(un,ap∞ , un,ap∞ ) + α−k

2
−

∫
Ω−

εn|un,ap− |2 dΩ− + α+k
2
+

∫
Ω̃+

εn|un,ap+ |2 dΩ̃+

−
∫

Γ

1

2C1

| [un,ap∞ ] |2 dΓ + 2ε2
n

∫
Γ

D1| 〈∂tun,ap∞ 〉 |2 dΓ

−2ε2
n

∫
Γ

D2| 〈un,ap∞ 〉 |2 dΓ− εn
∫

Γ

D3 ([un,ap∞ ]) 〈un,ap∞ 〉 dΓ

−2ε2
n

∫
Γ

(D4 −D′1) 〈∂tun,ap∞ 〉 〈u
n,ap
∞ 〉 dΓ

− εnα+〈Kun,ap+ , un,ap+ 〉H−1/2(Γ∞)×H1/2(Γ∞)

)
.

Since K is compact and
√
εnu

n,ap
∞ ⇀ 0 in H1(Ω,Γ), we obtain

〈
√
εnKu

n,ap
+ ,
√
εnu

n,ap
+ 〉H−1/2(Γ∞)×H1/2(Γ∞) −→ 0.

Finally, the hypothesis limn→+∞R
[
aεn(un,ap∞ ,

√
εnu

n,ap
∞ )

]
= 0 and (54) yield ‖√εn∇un,ap∞ ‖L2(Ω) =

0, contradicting ‖√εnun,ap∞ ‖H1(Ω,Γ) = 1.
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5.1.2 Existence and uniqueness

To show the existence of the solution uε,ap∞ = (uε,ap− , uε,ap+ ), we introduce the Steklov-Poincaré
operators (cf., e.g., [5]) (called also Dirichlet-to-Neumann operators) T− and T+ defined from
H1/2(Γ) onto H−1/2(Γ) by T−ϕ := α−∂nu−|Γ, where u− is the solution to the boundary-value
problem {

∆u− + k2
−u− = 0 in Ω−,

u− = ϕ on Γ,

and by T+ψ := α+∂−nu+|Γ, where u+ is the solution to the boundary-value problem
∆u+ + k2

+u+ = 0 in Ω+,

u+ = ψ on Γ,

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

)
u+ = 0,

The Dirichlet-to-Neumann operators T− and T+ are elliptic pseudodifferential operators (cf.,
e.g., [20, 21, 22, 11]) of real symbol of order 1.

Remark 6 The function u− is defined only in the case where the constant k2
− does not belong to

the spectrum of the closed operator (−∆, H1
0 (Ω−)). We will therefore assume that this condition

holds.

We also assume that

d >
1−m2α+

m(α+ − α−)
or d <

1−M2α+

M(α+ − α−)
, (56)

if α+ > α− and

d >
M2α+ − 1

m(α− − α+)
or d <

m2α+ − 1

M(α− − α+)
, (57)

if α− > α+, where m = min
t∈Γ

f(t) and M = max
t∈Γ

f(t).

Remark 7 Note that if m2α+ > 1 when α+ > α− or M2α+ < 1 when α− > α+ then the
hypotheses (56)-(57) are superfluous.

Using the definition of The Steklov-Poincaré operators, we rewrite Problem (44) into an
equivalent system of boundary equations: Find (ω,κ) ∈ H1/2(Γ)×H1/2(Γ), such that:{

Λ11ω + Λ12κ = εC1h,

Λ21ω + Λ22κ = −h,
(58)

where ω and κ are the traces of uε,ap+ and uε,ap− on Γ respectively, h = T+ (uinc|Γ) + α+∂nuinc|Γ,
and (Λij)1≤i,j≤2 are pseudodifferential operators defined by

Λ11 = I + εC1T+,

Λ12 = −I − εC1T−,

Λ21 = (−D3 − εD1 − εD2)I − T+ + εD1(I − ∂2
t )− εD4∂t,

Λ22 = (D3 − εD1 − εD2)I − T− + εD1(I − ∂2
t )− εD4∂t.

We are now in position to state the existence theorem. We have:
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Theorem 8 For any integer k ≥ 1, if uinc is a plane wave, h ∈ Hk− 3
2 (Γ) and

−1

ε
/∈ σ (C1T+) , (59)

then Problem (44) admits a unique solution (uε,ap− , uε,ap+ ) ∈ Hk (Ω−)×Hk
loc

(
Ω+

)
.

Proof. Let k be a positive integer. In view of (59), Λ−1
11 is a well-defined pseudodifferential

operator of order −1. Thus, from the first equation of System (58) we get

ω = −Λ−1
11 Λ12κ + εΛ−1

11 C1h,

so [
Λ21Λ−1

11 Λ12 − Λ22

]
κ =

[
I + εΛ21Λ−1

11 C1

]
h.

The operator I − ∂2
t is an elliptic self-adjoint semibounded from bellow pseudodifferential op-

erator of order 2 (cf. [6]), it is Fredholm with zero index and maps Hs(Γ) to Hs−2(Γ), for
any s ∈ R. In view of (56)-(57), D1 6= 0, then the operator D1(I − ∂2

t ) : Hs(Γ) → Hs−2(Γ)
is Fredholm with zero index. Since ∂t, T+, and T− are pseudodifferential operators of order 1,
they map Hs(Γ) to Hs−1(Γ), and since the injection Hs−1(Γ) ↪→ Hs−2(Γ) is compact,

(∓D3 − εD1− εD2)I − T± − εD4∂t, Λ11 and Λ12 : Hs(Γ)→ Hs−2(Γ)

are compact operators. Then the operator Λ21Λ−1
11 Λ12 − Λ22 is a compact perturbation of

εD1(I−∂2
t )
(
Λ−1

11 Λ12 − I
)
. It follows that to show that the operator Λ21Λ−1

11 Λ12−Λ22 is Fredholm
with zero index, it remains to prove that the operator Λ11 − Λ12 = εC1 (T+ + T−) + 2I defined
from Hk−1/2(Γ) to Hk−3/2(Γ) is invertible. Therefore, we consider the equation(

T+ + T− +
2

εC1

I

)
ϕ = ψ, ψ ∈ Hk−3/2(Γ), k ≥ 1. (60)

The definition of the operators T+ and T− shows that equation (60) is equivalent to the following
boundary-value problem

∆u+ + k2
+u+ = 0 in Ω+,

∆u− + k2
−u− = 0 in Ω−,

u− = u+ on Γ,

α−∂nu− − α+∂nu+ +
2

εC1

u+ = ψ on Γ,

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

)
u+ = 0,

(61)

where ϕ = u−|Γ = u+|Γ. Standard arguments based on Rellich’s lemma and the Fredholm alter-
native show that, for all k in N∗, if ψ ∈ Hk−3/2 (Γ), then problem (61) admits a unique solution
(u−, u+) in Hk (Ω−)×Hk

loc

(
Ω+

)
, and hence there exists a unique Dirichlet trace ϕ ∈ Hk−1/2 (Γ).

As a consequence, the operator T+ +T−+
2

εC1

I, defined from Hk−1/2 (Γ) to Hk−3/2 (Γ), is invert-

ible, so Λ21Λ−1
11 Λ12−Λ22 is Fredholm with index 0. The equivalence of System (58) to Problem

(44) and Theorem 5 shows that the uniqueness of (uε,ap− , uε,ap+ ) implies that for any integer k ≥ 1,

if (εC1h,−h) ∈ Hk− 3
2 (Γ)×Hk− 3

2 (Γ), there exists a unique solution (ω,κ) ∈ Hk− 1
2 (Γ)×Hk− 1

2 (Γ)
of (58) which leads to the existence of a unique solution (uε,ap− , uε,ap+ ) ∈ Hk (Ω−)×Hk

loc

(
Ω+

)
, as

we wished.
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5.1.3 Error estimate

In this paragraph, we define an approximate solution uε,ap of the exact solution uε and prove
ε-uniform a priori estimate of the convergence of uε,ap to uε. Using uε,ap∞ , the solution of (44),
we define uε,ap by

uε,ap =


uε,ap+ in Ωε

+,

uε,apm,β in Ωε
m,β,

uε,ap− in Ω−,

where uε,apm,β is obtained from (39)-(41) by adding and subtracting a term of order 1 in ε and
neglecting all terms in O(ε2). It is defined, for all (t, s) in Ωε

m,β, by

uε,apm,1 (x) := U ε,ap
m,1 (t, s) := uε,ap−|Γ + sε∂nu

ε,ap
−|Γ , (62)

uε,apm,2 (x) := U ε,ap
m,2 (t, s) := uε,ap+|Γ + ε (f(t) + d− f(t)α+ + sf(t)α+) ∂nu

ε,ap
+|Γ . (63)

We have the following error estimate :

Theorem 9 If uinc is a plane wave, then there exists a constant c independent of ε such that,
for ε small enough, we have

‖uε−−u
ε,ap
− ‖H1(Ω−)+ε

1/2‖uεm,1−u
ε,ap
m,1‖H1(Ωε

m,1)+ε
1/2‖uεm,2−u

ε,ap
m,2‖H1(Ωε

m,2)+‖uε+−u
ε,ap
+ ‖H1(Ω̃ε

+) ≤ cε2.

.

Before starting the proof of Theorem 9, we need a stability result. Let H1 (Ω) be the Hilbert
space defined by

H1 (Ω) :=
{
v = (v−, v+) ∈ H1 (Ω−)×H1

(
Ω̃+

)}
,

and bε (., .) be the bilinear form on H1 (Ω) defined by

bε (u, v) := α−

∫
Ω−

∇u− · ∇v− dΩ− − α−k2
−

∫
Ω−

u−v− dΩ−

+ α+

∫
Ω̃+

∇u+ · ∇v+ dΩ̃+ − α+k
2
+

∫
Ω̃+

u+v+ dΩ̃+

− 1

2
λε

∫
Γ

[u] [v] dΓ

+ α+ 〈Tu+, v+〉H−1/2(Γ∞)×H1/2(Γ∞) ,

where λε = O(ε−1). We have the following lemma, which proof is very close to that of Theorem
5 and can be founded in [7].

Lemma 10 For all hε ∈ (H1(Ω))
′
, there exists a positive constant c independent of ε such that

the solution to the variational problem{
Find u ∈ H1(Ω), ∀v ∈ H1(Ω),
bε(u, v) = hε(v),

satisfies
‖u‖H1(Ω) ≤ cε−1/2‖hε‖(H1(Ω))′ .

19



Proof of Theorem 9. According to∥∥∥U ε,ap
m,1 − U

ε,(1)
m,1

∥∥∥
H1(Ωm,1)

≤ c
(
‖uε,ap− − uε,(1)

− ‖H1(Ω−) + ε2‖u1
−‖H1(Ω−)

)
,

and ∥∥∥U ε,ap
m,2 − U

ε,(1)
m,2

∥∥∥
H1(Ωm,2)

≤ c
(
‖uε,ap+ − uε,(1)

+ ‖H1(Ω+) + ε2‖u1
+‖H1(Ω+)

)
,

where c is a constant independent of ε, and convergence Theorem (Theorem 3), it suffices

to estimate ‖uε,ap− − u
ε,(1)
− ‖H1(Ω−) and ‖uε,ap+ − u

ε,(1)
+ ‖H1(Ω+). As in [9], we derive asymptotic

expansions for uε,ap− and uε,ap+ through the ansatz

uε,ap− =
∑
n≥0

εnwn− and uε,ap+ =
∑
n≥0

εnwn+, (64)

where the terms wn− and wn+ are independent of ε. Inserting (64) in Problem (44) and identifying
the same powers of ε, we get the following hierarchy of boundary-value problems

∆wn+ + k2
+w

n
+ = 0 in Ω+,

∆wn− + k2
−w

n
− = 0 in Ω−,

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

) (
wn+ − δ0,nuinc

)
= 0,

with transmission conditions on Γ(
[wn]

[α∂nw
n]

)
=

(
2C1Id 0

c(t)
(
f(t)− 1

f(t)

)
Id 2 (D1∂

2
t +D4∂t +D2Id)

)(
〈α∂nwn−1〉
〈wn−1〉

)
,

in which (C1) and (Di)1≤i≤4 are defined by formulas (45)-(49) with the convention that w−1
− =

w−1
+ = 0. A simple calculation shows that the terms

(
wn−, w

n
+

)
coincide with

(
un−, u

n
+

)
, for

n ∈ {0, 1}. Furthermore, each term in (64) is bounded in H1(Ω) (cf., e.g., [9, Theorem 4.1]).
Let Rw be the remainder obtained by truncating the asymptotic expansions (64) at order 3

Rw|Ω− = Rw− = uε,ap− − w0
− − εw1

− − ε2w2
− − ε3w3

−,

Rw|Ω+ = Rw+ = uε,ap+ − w0
+ − εw1

+ − ε2w2
+ − ε3w3

+.

Hence Rw is the solution of the following problem
∆Rw+ + k2

+Rw+ = 0 in Ω+,

∆Rw− + k2
−Rw− = 0 in Ω−,

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

)
Rw+ = 0,

with transmission conditions on Γ

Rw+ −Rw− = εC1(α+∂nRw+ + α−∂nRw−) + ε4C1(α+∂nw
3
+ + α−∂nw

3
−),

α+∂nRw+ − α−∂nRw− = εD1

(
∂2
tRw+ + ∂2

tRw−

)
+ εD2

(
Rw+ +Rw−

)
20



+ D3

(
Rw+ −Rw−

)
+ εD4

(
∂tRw+ + ∂tRw−

)
+ D1ε

4(∂2
tw

3
+ + ∂2

tw
3
−) +D2ε

4(w3
+ + w3

−)

+ D4ε
4(∂tw

3
+ + ∂tw

3
−).

So for all v = (v−, v+) ∈ H1(Ω), we get

α−

∫
Ω−

∇Rw− · ∇v− dΩ− − α−k2
−

∫
Ω−

Rw−v− dΩ− + α+

∫
Ω̃+

∇Rw+ · ∇v+ dΩ̃+

− α+k
2
+

∫
Ω̃+

Rw+v+ dΩ̃+ +

∫
Γ

1

2C1ε
[Rw] [v] dΓ

+ α+〈TRw+ , v+〉H−1/2(Γ∞)×H1/2(Γ∞) = hε(v),

where

hε (v) = −2ε

∫
Γ

D1

〈
∂2
tRw

〉
〈v〉 dΓ− 2ε

∫
Γ

D2 〈Rw〉 〈v〉 dΓ

− 2ε

∫
Γ

D4 〈∂tRw〉 〈v〉 dΓ− 2ε

∫
Γ

C1D3 〈α∂nRw〉 〈v〉 dΓ

− 2ε4

∫
Γ

D1

〈
∂2
tw

3
〉
〈v〉 dΓ− 2ε4

∫
Γ

D2

〈
w3
〉
〈v〉 dΓ

− 2ε

∫
Γ

C1D3

〈
α∂nw

3
〉
〈v〉 dΓ− 2ε4

∫
Γ

D4

〈
∂tw

3
〉
〈v〉 dΓ

+ ε3

∫
Γ

〈
α∂nw

3
〉

[v] dΓ.

By using Lemma 10, we obtain

‖Rw‖H1(Ω) ≤ cε−1/2
[
ε ‖Rw‖H1(Ω) + ε3 ‖w3‖H1(Ω)

]
,

where c is a positive constant independent of ε. Therefore

‖Rw‖H1(Ω) ≤
cε5/2

1− cε1/2
‖w3‖H1(Ω) .

Since ε is very small, it follows that

‖Rw‖H1(Ω) ≤ cε2 ‖w3‖H1(Ω) ,

as we wished.

Remark 11 In Section 4.2, we explicitly calculated the first three terms of the asymptotic
expansions (18), (19) and (21). This should have led us to determine a third-order model for a
non-uniform thin layer. However, this was not achieved because we do not have a result on the
existence and uniqueness of the solution for the third-order model, but this could be the subject
of future work.

The calculation of the first three terms in Section 4.2 will be used in the next section where
a third-order model will be determined for a uniform thin layer.
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5.2 The case of a thin layer with a constant thickness

In this paragraph, we consider the case where the thickness of the thin layer is constant, i.e.,
f ≡ 1. We will derive approximate transmission conditions of order 3 and prove ε-uniform a
priori estimate of the convergence of uε,ap to uε.

Once again, as in the previous paragraph, we define the approximate solution uε,ap by

uε,ap =


uε,ap+ in Ωε

+,

uε,apm,β in Ωε
m,β,

uε,ap− in Ω−,

where uε,apm,β is obtained from (39)-(43) by adding and subtracting a term of order 2 in ε and
neglecting all terms in O(ε3) and defined, for all x = Φβ(t, s) ∈ Ωε

m,β, by

uε,apm,1 (x) := U ε,ap
m,1 (t, s) := uε,ap− |Γ + sε∂nu

ε,ap
− |Γ −

s2k2
−

2
ε2uε,ap− |Γ −

s2

2
ε2∂2

t u
ε,ap
− |Γ

− s2

2
ε2c(t)∂nu

ε,ap
− |Γ, (65)

uε,apm,2 (x) := U ε,ap
m,2 (t, s) := uε,ap+ |Γ + ε ((1 + d)(1− α+) + sα+) ∂nu

ε,ap
+ |Γ

−
2(s− 1− d)(1 + d)k2

+α+ + (1 + d)2k2
+ + (s− 1− d)2k2

m

2
ε2uε,ap+ |Γ

− 2(s− 1− d)(1 + d)α+ + (1 + d)2 + (s− 1− d)2

2
ε2∂2

t u
ε,ap
+ |Γ

− 2(s− 1− d)(1 + d)α+ + (1 + d)2 + (s− 1− d)2α+

2
ε2c(t)∂nu

ε,ap
+ |Γ, (66)

and uε,ap∞ := (uε,ap− , uε,ap+ ) is the solution to the following problem
∆uε,ap+ + k2

+u
ε,ap
+ = 0 in Ω+,

∆uε,ap− + k2
−u

ε,ap
− = 0 in Ω−,

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

)
(uε,ap+ − uinc) = 0,

(67a)

with transmission conditions on Γ

uε,ap+ − uε,ap− = εA1(α+∂nu
ε,ap
+ + α−∂nu

ε,ap
− ) + ε2A2(∂2

t u
ε,ap
+ + ∂2

t u
ε,ap
− )

+ εA3(uε,ap+ − uε,ap− ) + ε2A4(uε,ap+ + uε,ap− ), (67b)

α+∂nu
ε,ap
+ − α−∂nuε,ap− =

(
εB1 + ε2B2

) (
∂2
t u

ε,ap
+ + ∂2

t u
ε,ap
−
)

+
(
εB3 + ε2B4

)
(uε,ap+ + uε,ap− ) + εB5 (uε,ap+ − uε,ap− )

+ ε2B6 (∂tu
ε,ap
+ + ∂tu

ε,ap
− ) + εB7

(
∂2
t u

ε,ap
+ − ∂2

t u
ε,ap
−
)
, (67c)

in which

A1 =
α+α− − (1 + d)α− + dα+

2α+α−
, (68)
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A2 =
−(1 + d)α2

+α− − dα+α
2
− − d(1 + d)α2

+ + d(1 + d)α2
− + dα+ + (1 + d)α−

4α+α−
, (69)

A3 = c(t)
(−1− 2d)α+α− + (1 + d)2α− − d2α+

2(α+α− − (1 + d)α− + dα+)
, (70)

A4 =

(
−(1 + d)k2

+α
2
+α− − dk2

−α+α
2
− − d(1 + d)k2

+α
2
+ + d(1 + d)k2

−α
2
− + dk2

mα+

4α+α+

+
(1 + d)k2

mα−
4α+α+

)
, (71)

B1 =
(1 + d)α+ − dα− − 1

2
, (72)

B2 = c(t)
d2α− − (1 + d)2α+ − 2d− 1

4
, (73)

B3 =
(1 + d)k2

+α+ − dk2
−α− − k2

m

2
, (74)

B4 = c(t)
(1 + d)2k2

+α+ − d2k2
−α− − (1 + 2d)k2

m

4
, (75)

B5 =

(
(1 + d)k2

+α
2
+α− + dk2

−α+α
2
− + d(1 + d)k2

+α
2
+ − d(1 + d)k2

−α
2
− − dk2

mα+

2(α+α− − (1 + d)α− + dα+)

− (1 + d)k2
mα−

2(α+α− − (1 + d)α− + dα+)

)
= −A4

A1

, (76)

B6 = c′(t)
d2α− − (1 + d)2α+ − 2d− 1

4
= ∂tB2, (77)

B7 =
(1 + d)α2

+α− + dα+α
2
− + d(1 + d)α2

+ − d(1 + d)α2
− − dα+ − (1 + d)α−

2(α+α− − (1 + d)α− + dα+)
= −A2

A1

.(78)

Note that A1 6= 0 since we have assumed that α± < 1 < α∓.

5.2.1 Existence, Uniqueness and error estimate

The uniqueness of the solution of problem (67) is obtained in a different way to that of problem
(44). It is based on standard arguments of the solution of this type of problems (cf., eg., [16])
and Rellich’s lemma. However, the existence of the solution and error estimate are obtained in
a similar way. We focus then on the proof of the uniqueness of the solution, Theorem 12 below,
and we leave the existence theorem and uniform estimate for the reader.

Theorem 12 If uinc is a plane wave, then Problem (67) admits at most one solution.

Proof. Let us consider the homogeneous problem associated with Problem (67):
∆uε,ap+ + k2

+u
ε,ap
+ = 0 in Ω+, (79)

∆uε,ap− + k2
−u

ε,ap
− = 0 in Ω−, (80)

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

)
uε,ap+ = 0, (81)
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with transmission conditions on Γ

uε,ap+ − uε,ap− = εA1(α+∂nu
ε,ap
+ + α−∂nu

ε,ap
− ) + ε2A2(∂2

t u
ε,ap
+ + ∂2

t u
ε,ap
− )

+ εA3(uε,ap+ − uε,ap− ) + ε2A4(uε,ap+ + uε,ap− ), (82)

α+∂nu
ε,ap
+ − α−∂nuε,ap− =

(
εB1 + ε2B2

) (
∂2
t u

ε,ap
+ + ∂2

t u
ε,ap
−
)

+
(
εB3 + ε2B4

)
(uε,ap+ + uε,ap− ) + εB5 (uε,ap+ − uε,ap− )

+ ε2B6 (∂tu
ε,ap
+ + ∂tu

ε,ap
− ) + εB7

(
∂2
t u

ε,ap
+ − ∂2

t u
ε,ap
−
)
. (83)

Standard regularity results for elliptic problems (cf., e.g., [3]) ensure that (uε,ap− , uε,ap+ ) ∈ C∞
(
Ω−
)
×

C∞
(
Ω+

)
. Let BR be the ball with centre O and radius R sufficiently large to enclose Ω− and

let ΩR be the domain of R2 defined by ΩR := BR∩Ω+. Multiplying Eqs. (79) and (80) by uε,ap+

and uε,ap− respectively and using Green’s formula, we get

α−

∫
Ω−

|∇uε,ap− |
2 dΩ− − α−k2

−

∫
Ω−

|uε,ap− |
2 dΩ− + α+

∫
ΩR

|∇uε,ap+ |
2 dΩR

− α+k
2
+

∫
ΩR

|uε,ap+ |
2 dΩR −

∫
Γ

εA3 − 1

2εA1

|[uε,ap]|2 dΓ

+ 2

∫
Γ

(
εB3 + ε2B4

)
|〈uε,ap〉|2 dΓ− 2

∫
Γ

(
εB1 + ε2B2

)
|〈∂tuε,ap〉|2 dΓ

+ εB5

∫
Γ

(
|uε,ap+ |

2 − |uε,ap− |
2
)
dΓ− εB7

∫
Γ

(
|∂tuε,ap+ |

2 − |∂tuε,ap− |
2
)
dΓ

= α+

∫
SR

∂Ru
ε,ap
+ uε,ap+ dSR, (84)

where SR denotes the circle with centre O and radius R. Taking the imaginary part of (84),
we obtain

=
(∫

SR

∂Ru
ε,ap
+ uε,ap+ dSR

)
= 0.

It follows from radiation condition (81) and Rellich’s lemma [19] that uε,ap+ = 0 in Ω+.
Problem (79)-(83) is thus reduced to

∆uε,ap− + k2
−u

ε,ap
− = 0 in Ω−,

with the following transmission conditions on Γ

uε,ap− = −εA1(α−∂nu
ε,ap
− )− ε2A2(∂2

t u
ε,ap
− ) + εA3(uε,ap− )− ε2A4(uε,ap− ),

α−∂nu
ε,ap
− = − (εB1 + ε2B2)

(
∂2
t u

ε,ap
−
)
−
(
εB3 + ε2B4

)
(uε,ap− ) + εB5 (uε,ap− )

− ε2B6∂tu
ε,ap
− + εB7

(
∂2
t u

ε,ap
−
)
.

This implies that∫
Γ

(
1

A1

− εA3

A1

− ε2B3 − ε3B4

)
|uε,ap− |

2 dΓ +

∫
Γ

(ε2B1 + ε3B2) |∂tuε,ap− |
2 dΓ = 0. (85)
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As α± < 1 < α∓, then A1B1 > 0, and since ε is small enough, there exists a positive constant
C such as

C
(
‖uε,ap− ‖

2
L2(Γ) + ‖∂tuε,ap− ‖

2
L2(Γ)

)
≤

∫ ∣∣∣∣ 1

A1

− εA3

A1

− ε2B3 − ε3B4

∣∣∣∣ |uε,ap− |2 dΓ

+ ε2

∫
Γ

|B1 + εB2| |∂tuε,ap− |
2 dΓ

= 0.

This leads to uε,ap− |Γ = 0. Then, we obtain
∆uε,ap− + k2

−u
ε,ap
− = 0 in Ω−,

uε,ap− = 0 on Γ,

∂nu
ε,ap
− = 0 on Γ.

Well-know arguments of uniqueness of the solution of this type of problems (cf. [16]) leads to
uε,ap− = 0 in Ω−, which proves the uniqueness of the solution (uε,ap− , uε,ap+ ).

Finally, we have ε-uniform estimate of the convergence of the approximate solution uε,ap to
uε which proof follows the same lines as the one of Theorem 9.

Theorem 13 If uinc is a plane wave, then there exists a constant c independent of ε such that

‖uε−−u
ε,ap
− ‖H1(Ω−)+ε

1/2‖uεm,1−u
ε,ap
m,1‖H1(Ωε

m,1)+ε
1/2‖uεm,2−u

ε,ap
m,2‖H1(Ωε

m,2)+‖uε+−u
ε,ap
+ ‖H1(Ω̃ε

+) ≤ cε3.

6 Conclusion and perspectives

In this work, we have derived and justified an asymptotic expansion of the exact solution of
problem (3) defined in a domain of R2 with a thin layer having a variable thickness. We
have also modeled the effect of the thin layer with Ventcel-type transmission conditions in two
different situations: first, the case with a thin layer with a variable thickness with accuracy up
to O(ε2) and the second, with a constant thickness with accuracy up to O(ε3).

Interesting aspects left open in this work, might be considered in forthcoming publications.
First, there is the question of confirming our results obtained here by numerical simulations.
Then, investigating Ventcel-type transmission conditions for others problems like the Maxwell
or elasticity equations and elasto-acoustic couplings.

A Calculation of the first three terms of the asymptotic

expansion

A.1 Term of order 0

Eq. (28) and conditions (25) and (27) give

∂sU
0
m,β = 0, β ∈ {1, 2} .
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Using (22), (23) and (24), we get ∀(t, s) ∈ Ωm,β

U0
m,β(t, s) = u0

−|Γ = u0
+|Γ. (86)

Eq.(29) implies
∂2
sU

1
m,β = Aβ,1U

0
m,β = 0.

Using (25), (26) and (27), we obtain ∀(t, s) ∈ Ωm,β

∂sU
1
m,2(t, s) = f(t)α+∂nu

0
+|Γ, ∂sU1

m,1(t, s) = ∂nu
0
−|Γ and α+∂nu

0
+|Γ = α−∂nu

0
−|Γ. (87)

A.2 Term of order 1

Relation (87) with conditions (22) and (24) yield ∀(t, s) ∈ Ωm,β

U1
m,1(t, s) = u1

−|Γ +
(
∂nu

0
−|Γ
)
s,

U1
m,2(t, s) = u1

+|Γ + (d+ f(t)− f(t)α+ + sf(t)α+) ∂nu
0
+|Γ.

So (23) gives

u1
+|Γ − u1

−|Γ =
f(t)α+α− − (d+ f(t))α− + dα+

2α+α−
(α+∂nu

0
+|Γ + α−∂nu

0
−|Γ). (88)

From (30) and (31), we have

∂2
sU

2
m,1 = A1,1U

1
m,1 + A1,2U

0
m,1 − k2

−U
0
m,1 = −c(t)∂nu0

−|Γ − ∂2
t u

0
−|Γ − k2

−u
0
−|Γ.

∂2
sU

2
m,2 = A1U

1
m,2 + A2U

0
m,2 − k2

mU
0
m,2 = −c(t)α+∂nu

0
+|Γ − ∂2

t u
0
+|Γ − k2

mu
0
+|Γ.

Using (25) and (27) , we obtain ∀(t, s) ∈ Ωm,β

∂sU
2
m,1(t, s) =

[
−c(t)∂nu0

−|Γ − ∂2
t u

0
−|Γ − k2

−u
0
−|Γ
]
s+ ∂nu

1
−|Γ. (89)

∂sU
2
m,2(t, s) =

[
−c(t)α+∂nu

0
+|Γ − ∂2

t u
0
+|Γ − k2

mu
0
−|Γ
]

(s− 1) + f(t)α+∂nu
1
+|Γ

−c(t)f(t)f ′(t)α+∂nu
0
+|Γ + f(t)f ′(t)∂tu

0
+|Γ + (d+ f(t))f(t)α+∂

2
nu

0
+|Γ. (90)

Now, from Condition (26) at order 1, we get

α+∂nu
1
+|Γ − α−∂nu1

−|Γ =
c(t)(f ′(t)− df(t)− 1)

f(t)
α+∂nu

0
+|Γ −

df(t)α− + 1

f(t)
∂2
t u

0
+|Γ

−
dk2
−α− + k2

m

f(t)
u0

+|Γ − f ′(t)∂tu0
+|Γ − (d+ f(t))α+∂

2
nu

0
+|Γ. (91)

As

4u+ =

[
(1 + ηc(t)(d+ f(t))2 + η2f ′2(t)

(d+ f(t))2(1 + ηc(t)(d+ f(t))2
∂2
η −

2ηf ′(t)

(d+ f(t))(1 + ηc(t)(d+ f(t))2
∂t∂η

+
1

(1 + ηc(t)(d+ f(t))2
∂2
t −

εdc′(t) + ηc′(t)f(t)

(1 + ηc(t)(d+ f(t))3
∂t +

(
c(t)

(d+ f(t))(1 + ηc(t)(d+ f(t))
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+
η(−f(t)f”(t) + 2f ′2(t))

(d+ f(t))2(1 + ηc(t)(d+ f(t))2
+
ηεdc′(t)f(t)f ′(t) + η2c′(t)f 2(t)f ′(t)

(d+ f(t))f 2(1 + ηc(t)(d+ f(t))3

)
∂η

]
ũ+.

and
∂ηu+(t, η)|η=0 = (d+ f(t))∂nu+|Γ,

it follows by taking the limit η → 0, we obtain

∂2
t u+|η=0 +

c(t)

d+ f(t)
∂ηu

n
+|η=0 +

1

(d+ f(t))2
∂2
ηu

n
+|η=0 + k2

+u+|η=0 = 0,

i.e.
∂2
nu+|Γ = −∂2

t u+|Γ − c(t)∂nu+|Γ − k2
+u+|Γ. (92)

So (91) becomes

α+∂nu
1
+ − α−∂nu1

− =
(d+ f(t))f(t)α+ − df(t)α− − 1

2f(t)

(
∂2
t u

0
+ + ∂2

t u
0
−
)

+
(d+ f(t))f(t)k2

+α+ − df(t)k2
−α− − k2

m

2f(t)

(
u0

+ + u0
−
)

+
c(t)(f 2(t)− 1)

2f(t)

(
α+∂nu

0
+ + α−∂nu

0
−
)

+
f ′(t)(α+ − 1)

2

(
∂tu

0
+ + ∂tu

0
−
)
. (93)

A.3 Term of order 2

Relations (89) and (90) with conditions (22) and (24) yield ∀(t, s) ∈ Ωm,β

U2
m,1(t, s) =

[
−c(t)∂nu0

−|Γ − ∂2
t u

0
−|Γ − k2

−u
0
−|Γ
] s2

2
+ ∂nu

1
−|Γs+ u2

−|Γ. (94)

U2
m,2(t, s) =

[
−c(t)α+∂nu

0
+|Γ − ∂2

t u
0
+|Γ − k2

mu
0
−|Γ
] s2 − 2s+ 1

2
+
[
f(t)α+∂nu

1
+|Γ

−c(t)f(t)f ′(t)α+∂nu
0
+|Γ + f(t)f ′(t)∂tu

0
+|Γ + (d+ f(t))f(t)α+∂

2
nu

0
+|Γ
]

(s− 1)

+ (d+ f(t)) ∂nu
1
+|Γ +

(d+ f(t))2

2
∂2
nu

0
+|Γ + u2

+|Γ. (95)

So (23) with (92) and (93) we get

u2
+|Γ − u2

−|Γ = −1

2

[
−c(t)α+∂nu

0
+|Γ − ∂2

t u
0
+|Γ − k2

mu
0
−|Γ
]

+
[
f(t)α+∂nu

1
+|Γ

−c(t)f(t)f ′(t)α+∂nu
0
+|Γ + f(t)f ′(t)∂tu

0
+|Γ + (d+ f(t))f(t)α+∂

2
nu

0
+|Γ
]

− (d+ f(t)) ∂nu
1
+|Γ −

(d+ f(t))2

2
∂2
nu

0
+|Γ +

[
−c(t)∂nu0

−|Γ − ∂2
t u

0
−|Γ

−k2
−u

0
−|Γ
] d2

2
+ d∂nu

1
−|Γ. (96)
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u2
+|Γ − u2

−|Γ =
f(t)α+α− + dα+ − (d+ f(t))α−

α+α−
α+∂nu

1
+|Γ

+

(
(f(t)− 2f 2(t)f ′(t)− 2df 2(t)− 2f 3(t))α+α− − (d2f(t) + 2df 2(t)− 2d)α+

2f(t)α+α−

+
(d+ f(t))2f(t)α−

2f(t)α+α−

)
c(t)α+∂nu

0
+|Γ +

(
−2(d+ f(t))f 2(t)α2

+α−
2f(t)α+α−

+
−2d(d+ f(t))f(t)α2

+ + (f(t) + 2d2f(t) + f 3(t) + 2df 2(t))α+α− + 2dα+

2f(t)α+α−

)
×∂2

t u
0
+|Γ +

(
−2(d+ f(t))f 2(t)k2

+α
2
+α− − 2d(d+ f(t))f(t)k2

+α
2
+

2f(t)α+α−

+
+[k2

m + d2k2
− + (d+ f(t))2k2

+]f(t)α+α− + 2dk2
mα+

2f(t)α+α−

)
u0

+|Γ

+
f(t)α+α− − dα2

+ + dα+

α+α−
f ′(t)∂tu

0
+|Γ. (97)

Using (93) we get

u2
+|Γ − u2

−|Γ =
f(t)α+α− + dα+ − (d+ f(t))α−

α+α−
α−∂nu

1
−|Γ

+

(
(−f(t)− 2f 2(t)f ′(t)− 2df 2(t))α+α− + (−f 3(t) + d2f(t) + 2f(t) + 2d)α−

2f(t)α+α−

− d2f(t)α+

2f(t)α+α−

)
c(t)α+∂nu

0
+|Γ + +

(
−2df 2(t)α+α

2
− + 2df(t)(d+ f(t))α2

−

2f(t)α+α−

+
−(f(t) + 2d2f(t) + f 3(t) + 2df 2(t))α+α− + 2(d+ f(t))α−

2f(t)α+α−

)
∂2
t u

0
+|Γ

+

(
−2df 2(t)k2

−α+α
2
− + 2d(d+ f(t))f(t)k2

−α
2
−

2f(t)α+α−

+
−[k2

m + d2k2
− + (d+ f(t))2k2

+]f(t)α+α− + 2(d+ f(t))k2
mα−

2f(t)α+α−

)
u0

+|Γ

+
f(t)α2

+α− − (d+ f(t))α+α− + (d+ f(t))α−
α+α−

f ′(t)∂tu
0
+|Γ. (98)

Then

u2
+|Γ − u2

−|Γ =
f(t)α+α− + dα+ − (d+ f(t))α−

2α+α−

(
α+∂nu

1
+|Γ + α−∂nu

1
−|Γ
)

+

(
(−2f 2(t)f ′(t)− 2df 2(t)− f 3(t))α+α− + (d− d2f(t)− df 2(t))α+

4f(t)α+α−

−(d+ f(t) + d2f(t) + df 2(t))α−
4f(t)α+α−

)
c(t)

(
α+∂nu

0
+|Γ + α−∂nu

0
−|Γ
)

+

(
−(d+ f(t))f 2(t)α2

+α− − df 2(t)α+α
2
− − df(t)(d+ f(t))(α2

+ − α2
−)

4f(t)α+α−
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+
dα+ + (d+ f(t))α−

4f(t)α+α−

)(
∂2
t u

0
+|Γ + ∂2

t u
0
−|Γ
)

+

(
−(d+ f(t))f 2(t)k2

+α
2
+α− − df 2(t)k2

−α+α
2
− − d(d+ f(t))f(t)(k2

+α
2
+ − k2

−α
2
−)

4f(t)α+α−

+
dk2

mα+ + (d+ f(t))k2
mα−

4f(t)α+α−

)(
u0

+|Γ + u0
−|Γ
)

+
f(t)α2

+α− − dα2
+ − dα+α− + dα+ + (d+ f(t))α−

4α+α−
f ′(t)

(
∂tu

0
+|Γ + ∂tu

0
−|Γ
)
. (99)

Equations (32) et (33) implie that, ∀(t, s) ∈ Ωm,β,

∂sU
3
m,1(t, s) =

[
c2∂nu

0
−|Γ + c∂2

t u
0
−|Γ + ck2

−u
0
−|Γ − k2

−
(
∂nu

0
−|Γ
)
− ∂2

t

(
∂nu

0
−|Γ
)] s2

2

+
[
c2
(
∂nu

0
−|Γ
)

+ 2c(t)∂2
t u

0
−|Γ + c′(t)∂tu

0
−|Γ
] s2

2
+
(
−∂2

t u
1
−|Γ − k2

−u
1
−|Γ − c∂nu1

−|Γ
)
s+ ∂sU

3
m,1 (t, 0) ,

∂sU
3
m,2(t, s) = − c(t)

f(t)

[
−c(t)α+∂nu

0
+|Γ − ∂2

t u
0
+|Γ − k2

mu
0
−|Γ
](1

2
s2 − s+

1

2

)
+
[
f ′(t)f−1(t)∂t

(
(f(t)α+) ∂nu

0
+|Γ
)

2− ∂2
t

[
(f(t)α+) ∂nu

0
+|Γ
]

−f ′2(t)f−2(t) (f(t)α+) ∂nu
0
+|Γ2 + f ′′(t)f−1(t) (f(t)α+) ∂nu

0
+|Γ + c2(t) (f(t)α+) ∂nu

0
+|Γ

+c(t)f(t)∂2
t u

0
+|Γ2− f(t)c′(t)∂tu

0
+|Γ − k2

m (f(t)α+) ∂nu
0
+|Γ
](1

2
s2 − 1

2

)
+
[
dc2f−1 (f(t)α+) ∂nu

0
+|Γ − ∂2

t u
1
+|Γ − ∂2

t

[
(d+ f(t)− f(t)α+) ∂nu

0
+|Γ
]

−c(t)α+∂nu
1
+|Γ − c(t)(d+ f(t))α+∂

2
nu

0
+|Γ + c(t)f ′(t)α+∂tu

0
+|Γ − c(t)f ′(t)∂tu0

+|Γ
+2dc(t)∂2

t u
0
+|Γ − k2

mu
1
+|Γ − k2

m (d+ f(t)− f(t)α+) ∂nu
0
+|Γ − dc′(t)∂tu0

+|Γ
]

(s− 1)

+∂sU
3
m,2(t, 1)

From Condition (27) at order 2, we get

∂sU
3
m,1(t, s) =

[
c2∂nu

0
−|Γ + c∂2

t u
0
−|Γ + ck2

−u
0
−|Γ − k2

−
(
∂nu

0
−|Γ
)
− ∂2

t

(
∂nu

0
−|Γ
)] s2

2

+
[
c2
(
∂nu

0
−|Γ
)

+ 2c(t)∂2
t u

0
−|Γ + c′(t)∂tu

0
−|Γ
] s2

2
+
(
−∂2

t u
1
−|Γ − k2

−u
1
−|Γ − c∂nu1

−|Γ
)
s+ ∂nu

2
−|Γ,

It follows from Transmission conditions (26) at order 2

d2

2
α−c

2∂nu
0
−|Γ +

d2

2
α−c∂

2
t u

0
−|Γ +

d2

2
α−ck

2
−u

0
−|Γ −

d2

2
α−k

2
−
(
∂nu

0
−|Γ
)
− d2

2
α−∂

2
t

(
∂nu

0
−|Γ
)

+
d2

2
α−c

2
(
∂nu

0
−|Γ
)

+ d2α−c(t)∂
2
t u

0
−|Γ +

d2

2
α−c

′(t)∂tu
0
−|Γ

−dα−∂2
t u

1
−|Γ − dα−k2

−u
1
−|Γ − dα−c∂nu1

−|Γ + α−∂nu
2
−|Γ
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=
c

2f 2
c(t)α+∂nu

0
+|Γ +

c

2f 2
∂2
t u

0
+|Γ +

c

2f 2
k2
mu

0
−|Γ

− 1

f
f ′(t)f−1(t)∂t

(
(f(t)α+) ∂nu

0
+|Γ
)

+
1

2

1

f
∂2
t

[
(f(t)α+) ∂nu

0
+|Γ
]

+
1

f
f ′2(t)f−2(t) (f(t)α+) ∂nu

0
+|Γ −

1

2
f ′′(t)f−1(t)α+∂nu

0
+|Γ −

1

2
c2(t)α+∂nu

0
+|Γ

−c(t)∂2
t u

0
+|Γ +

1

2
c′(t)∂tu

0
+|Γ +

1

2
k2
mα+∂nu

0
+|Γ

−dc2f−1α+∂nu
0
+|Γ +

1

f
∂2
t u

1
+|Γ +

1

f
∂2
t

[
(d+ f(t)− f(t)α+) ∂nu

0
+|Γ
]

+
1

f
c(t)α+∂nu

1
+|Γ +

1

f
c(t) (d+ f(t))α+∂

2
nu

0
+|Γ −

1

f
c(t)f ′(t)α+∂tu

0
+|Γ +

1

f
c(t)f ′(t)∂tu

0
+|Γ

− 1

f
2dc(t)∂2

t u
0
+|Γ +

1

f
k2
mu

1
+|Γ + k2

m (d+ f(t)− f(t)α+)
1

f
∂nu

0
+|Γ +

1

f
dc′(t)∂tu

0
+|Γ

+
1

f
∂sU

3
m,2(t, 1). (100)

Now calculate the term ∂sU
3
m,2(t, 1) in (100). From (25) at order 2, we have

1

f(t)
∂sU

3
m,2(t, 1)

= (f ′(t))
2
∂nu

0
+|Γ + 2c(t)f ′(t)(d+ f(t)) (α+ − 1) ∂tu

0
+|Γ

+α+∂nu
2
+|Γ + (1− α+) f ′(t)∂tu

1
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Recall that
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The partial derivative with respect to η leads to
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Taking the limit η → 0, we obtain
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Using Identity (92), Relation (102) becomes
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− ∂n∂
2
t u

n
+|Γ + c(t)k2

+u
n
+|Γ, ∀n ≥ 0.

Therefore, using (103) for n = 0 and (92) for n ∈ {0, 1}, Relation (101) leads to
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So (100) becomes

α+∂nu
2
+|Γ

= α−∂nu
2
−|Γ −

1

f(t)
c(t)α+∂nu

1
+|Γ + (d+ f(t))α+c(t)∂nu

1
+|Γ − dα−c(t)∂nu1

−|Γ − (1− α+) f ′(t)∂tu
1
+|Γ

− 1

f(t)
k2
mu

1
+|Γ + (d+ f(t))α+k

2
+u

1
+|Γ − dα−k2

−u
1
−|Γ −

1

f(t)
∂2
t u

1
+|Γ + (d+ f(t))α+∂

2
t u

1
+|Γ

−dα−∂2
t u

1
−|Γ +

d2

2
α−c

2(t)∂nu
0
−|Γ +

d2

2
α−c(t)∂

2
t u

0
−|Γ +

d2

2
α−c(t)k

2
−u

0
−|Γ

−d
2

2
α−k

2
−
(
∂nu

0
−|Γ
)
− d2

2
α−∂

2
t

(
∂nu

0
−|Γ
)

+
d2

2
α−c

2(t)∂nu
0
−|Γ + d2α−c(t)∂

2
t u

0
−|Γ

+
d2

2
α−c

′(t)∂tu
0
−|Γ −

1

2f 2(t)
c2(t)α+∂nu

0
+|Γ −

c(t)

2f 2(t)
∂2
t u

0
+|Γ −

c(t)

2f 2(t)
k2
mu

0
−|Γ

+
1

f 2(t)
f ′(t)∂t

(
(f(t)α+) ∂nu

0
+|Γ
)
− 1

2

1

f(t)
∂2
t

[
(f(t)α+) ∂nu

0
+|Γ
]
− f ′2(t)

f 2(t)
α+∂nu

0
+|Γ

+
1

2

f ′′(t)

f(t)
α+∂nu

0
+|Γ +

1

2
c2(t)α+∂nu

0
+|Γ + c(t)∂2

t u
0
+|Γ −

1

2
c′(t)∂tu

0
+|Γ −

1

2
k2
mα+∂nu

0
+|Γ

+dc2(t)
1

f(t)
α+∂nu

0
+|Γ −

1

f(t)
∂2
t

[
(d+ f(t)− f(t)α+) ∂nu

0
+|Γ
]

+
1

f(t)
c(t) (d+ f(t))α+∂

2
t u

0
+|Γ

+
1

f(t)
c2(t) (d+ f(t))α+∂nu

0
+|Γ +

1

f(t)
c(t) (d+ f(t))α+k

2
+u

0
+|Γ +

1

f(t)
c(t)f ′(t)α+∂tu

0
+|Γ

− 1

f(t)
c(t)f ′(t)∂tu

0
+|Γ +

1

f(t)
2dc(t)∂2

t u
0
+|Γ − k2

m (d+ f(t)− f(t)α+)
1

f(t)
∂nu

0
+|Γ

− 1

f(t)
dc′(t)∂tu

0
+|Γ − (f ′(t))

2
∂nu

0
+|Γ − 2c(t)f ′(t)(d+ f(t)) (α+ − 1) ∂tu

0
+|Γ

−(d+ f(t))2

2
α+c

′(t)∂tu
0
+|Γ − f ′(t) (d+ f(t)) (1− α+) ∂t∂nu

0
+|Γ −

(d+ f(t))2

2
α+3c(t)∂2

t u
0
+|Γ

−(d+ f(t))2

2
α+

(
2c2(t)− k2

+

)
∂nu

0
+|Γ +

(d+ f(t))2

2
α+∂n∂

2
t u

0
+|Γ −

(d+ f(t))2

2
α+c(t)k

2
+u

0
+|Γ (105)

31



Using again Transmission conditions (86), (87), (88) and (91), we obtain
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where (ϑi)1≤i≤10 are defined in Section 4.2.
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