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Abstract 

Characterizing human movement is essential for understanding movement disorders, evaluating progress in rehabili‑
tation, or even analyzing how a person adapts to the use of assistive devices. Thanks to the improvement of motion 
capture technology, recording human movement has become increasingly accessible and easier to conduct. Over 
the last few years, multiple methods have been proposed for characterizing inter‑joint coordination. Despite this, 
there is no real consensus regarding how these different inter‑joint coordination metrics should be applied when ana‑
lyzing the coordination of discrete movement from kinematic data. In this work, we consider 12 coordination met‑
rics identified from the literature and apply them to a simulated dataset based on reaching movements using two 
degrees of freedom. Each metric is evaluated according to eight criteria based on current understanding of human 
motor control physiology, i.e, each metric is graded on how well it fulfills each of these criteria. This comparative 
analysis highlights that no single inter‑joint coordination metric can be considered as ideal. Depending on the move‑
ment characteristics that one seeks to understand, one or several metrics among those reviewed here may be perti‑
nent in data analysis. We propose four main factors when choosing a metric (or a group of metrics): the importance 
of temporal vs. spatial coordination, the need for result explainability, the size of the dataset, and the computational 
resources. As a result, this study shows that extracting the relevant characteristics of inter‑joint coordination is a scien‑
tific challenge and requires a methodical choice. As this preliminary study is conducted on a limited dataset, a more 
comprehensive analysis, introducing more variability, could be complementary to these results.

Keywords Inter‑joint coordination, Discrete tasks, Kinematic measurement, Multiple joints, Upper‑limb coordination

Introduction
As a result of technological improvements over the last 
years (smaller, cheaper, more precise sensors), motion 
capture has become an accessible and data-rich tech-
nique. The kinematic analysis of human body movement 

is extensively used in numerous fundamental studies on 
the physiology of human motricity and various applied 
fields, in particular rehabilitation. However, most previ-
ous studies were devoted to lower limbs and gait, while 
upper-limb motion analysis was relatively overlooked. 
Furthermore, most studies in upper-limb motion analy-
sis are limited to end-point displacement (i.e., the hand 
or the tip of a finger) in space or qualitative descriptions. 
The lack of a relevant quantitative metric to analyze 
upper-limb movements hinders tracking the evolution 
of human subjects during learning, rehabilitation, or 
development. Therefore, the present study investigates 
the capacity of several metrics in evaluating inter-joint 
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coordination through a systematic review and experi-
mental study. The presentation and discussion of those 
metrics are first based on the fundamental knowledge of 
human motor control.

Origins of motion capture
The pioneering works by Marey [1] who invented chrono-
photography, allowed the temporal sampling of body 
posture snapshots and led to the precise description of 
human and animal bodily movements. These works were 
further developed by NA Bernstein who improved the 
recording techniques, to sample the movement in time 
as a succession of different points position linked to ana-
tomical markers. He theorized the physiology of motor 
control in the early 30 s’, lately translated into English [2]. 
According to Bernstein [3], movement organization is 
hierarchical. He distinguishes four levels: the task-related 
action level, the goal-oriented spatial level, the organiza-
tion of joint and muscle activity, and the tonus. Although 
this primitive description has been strongly questioned 
afterward, it presents a practical framework for under-
standing movement organization. Within the present 
article, we shall concentrate on the questions of inter-
joint coordination to generate a spatially oriented move-
ment of the upper limb.

End‑effector trajectory in space
Nowadays, motion capture systems allow the collection 
of big amounts of data on segments and joints during a 
movement using optical or non-optical (inertial, mag-
netic or stretch sensors) systems. Fundamental progress 
in human motor control is supported by theoretical 
approaches to computational control and robotic mod-
elling. Experimental studies on fast upper-limb goal-
directed movements lead to the agreement that they are 
characterized by a roughly straight trajectory of the end-
point of the kinematic chain (i.e, the tip of the finger or 
the end-effector of a manipulandum in a pointing task) 
with a smooth velocity profile [4]. This pattern, primar-
ily interpreted as an optimization [5], is now attributed to 
stochastic optimal control [6], (see also [7, 8] for review). 
Whatever the fundamental open questions, the endpoint 
kinematic variables (such as maximum speed, comple-
tion time, smoothness, length, and curvature of the tra-
jectory) are widely used as metrics to characterize human 
movement in many applicative fields. Indeed, end-point 
metrics are easy to record, compute, and interpret since 
they reduce the movement to one point moving in space 
and time. For example, they are commonly used to moni-
tor improvements in upper-limb motor function through 
the course of rehabilitation [9–12], the child develop-
ment (e.g. [13]) or the level of skill in sports (e.g. [14]).

Joint rotation contribution
However, due to the large redundancy of the human arm, 
different patterns of upper-limb joint contribution can 
be used to perform the same end-effector trajectory [2]. 
Redundancy, means that more degrees of freedom are 
available than necessary to achieve a task. Increasing the 
number of degrees of freedom for a task also increases 
the variability of possible coordination. This question is 
known as the ill-posed inverse kinematics problem in 
robotics and has prompted many experimental and the-
oretical work. Early experimental studies showed that 
the pattern of joint contribution is individual and quite 
reproducible for each target in space [15] but failed to 
find biomechanical correlates of joint contribution (e.g. 
[16, 17]). Optimal control modelling states that a unique 
solution to an ill-posed problem can be obtained corre-
sponding to a minimum of a cost function. However, the 
redundancy problem has rarely been modelled and only 
with additional restrictive conditions [6, 18].

Interjoint coordination
It is currently and subjectively admitted that “good” inter-
joint coordination is essential to upper-limb function. 
However, the multidisciplinary concept of inter-joint 
coordination needs clarification. As underlined by Shi-
rota et  al., inter-joint coordination remains a common 
term used in rehabilitation, engineering, and neurosci-
ence but “common agreement on what should be meas-
ured” is generally lacking [19]. Bernstein’s first definition 
describes inter-joint coordination as “mastering redun-
dant degrees of freedom of the moving organ” [2]. For 
Bernstein, inter-joint coordination is the ability to choose 
one possibility among all possible solutions to accom-
plish the task. Since the 2000  s and the development of 
precise sensors to measure joint position in space and 
time, several other definitions of inter-joint coordination 
have emerged. An analogous definition to Bernstein’s 
was elaborated by [20] as “the ability to produce complex 
movements involving several limbs and/or joints.”

Other authors motivated by the mathematics of 
dynamical complex systems focused on temporal coor-
dination (review in [21]). The idea of a spatiotemporal 
inter-joint organization is expressed as “coordination 
is not just matter in motion, rather, coordination is a 
functional spatio-temporal order” [22]. A more specific 
definition was presented for locomotor coordination 
by defining coordination as “an ability to maintain a 
context-dependent and phase-dependent cyclical rela-
tionship between different body segments or joints in 
both spatial and temporal domains” [23]. This last defi-
nition was then extended to all types of movements, and 
the idea of a goal-specific coordination was added as “A 
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spatio-temporal relationship between kinematic, kinetic 
and physiological variables of two or more limbs execut-
ing a motor task with a common goal” [19]. A similar 
definition has been suggested by [24] as “A goal-oriented 
process in which joint degrees of freedom are organized 
in spatial and temporal domains such that the end-point 
reaches a desired location in a context-dependent man-
ner”. The “location” designates both the position and the 
orientation of the end-point.

The concept of synergy is closely related to that of 
coordination and has also been used to describe different 
phenomena. According to [2] synergies are fundamental 
building blocks of motor control, which combine several 
elements, sharing the same spatio-temporal properties 
and “work together” [25], further underlined that syner-
gies are not “hardwired” but task related combinations of 
elements. They are endowed with properties of flexibility 
and automatic compensation between elements in order 
to stabilize the important task-related variables. Those 
properties are formalized by the Uncontrolled Manifold 
(UCM) model [26]. The UCM algorithm decomposes 
the joint velocities into the controlled task-space and the 
uncontrolled null-space. Null-space velocities (or self 
motion) do not create end-effector motions but afford 
automatic compensation between joints.

Measuring versus evaluating
To date, inter-joint coordination metrics are much less 
used than end-effector metrics. Measuring human motor 
control during task performance generally infers, classi-
fying movements subjectively as “good” or “bad”. In this 
classification process, a “standard movement” is taken to 
be a “good movement” with relative success determined 
as the extent to which an individual is able to reproduce 
this configuration. In the absence of a clear definition, 
standard movement is usually defined by the behavior 
exhibited by a group of people considered “healthy” [27], 
this is the “normal” condition. Accordingly, movements 
which are found to deviate significantly from this refer-
ence movement might be considered as pathological. 
This way of proceeding has been repudiated by [28], who 
argued that a movement that differs from the majority 
should not be necessarily considered as pathological by 
reference to “normal” but rather as “atypical”. To them, 
this means that the Central Nervous System (CNS) has 
selected a solution that minimizes the costs of the move-
ment (i.e, the time cost, the energy cost, or the cost 
generated by impaired muscles). As a consequence, the 
selected movement is the optimal one for this person, at 
this moment.

In a clinical setting, inter-joint coordination should be 
carefully analyzed. For example, inter-joint coordina-
tion is drastically altered in stroke patients. They show a 

disruption of the usual, flexible shoulder-elbow coordi-
nation [29], tending to exhibit stereotypical patterns of 
joint coupling, often referred to as pathological fixed syn-
ergies [30–32]. In addition, they may exhibit new motor 
strategies with trunk flexion in order to compensate the 
impairment of shoulder flexion and elbow extension 
([33] review in [34]). Such compensatory movements are 
immediately efficient since they allow the patient to com-
plete the task (e.g. grasp objects and perform daily life 
activities). However, they are considered as “bad coor-
dination” by physicians and physiotherapists on a long-
term perspective since they may induce learned nonuse 
phenomenon [35, 36]. Trunk flexion to compensate 
elbow extension impairment is relatively easy to inter-
pret as a function of workspace amplitude but this is not 
the case when compensatory strategies are more compli-
cated, for example during daily life activity, or when the 
impairment is more complex. More generally, compensa-
tory movements may contribute to orthopedic or mus-
culoskeletal disorders, for example in amputees using 
a transradial prosthesis [37, 38]. In these cases, physi-
otherapists need to work with the patient, to help them 
to learn or relearn patterns of joint rotations to decrease 
the predictable constraints. There is a crucial need of 
metrics accepted by all in order to distinguish those fea-
tures directly linked to the impairment and those which 
are due to compensatory behavior, in order to properly 
manage and monitor rehabilitation exercises and to fol-
low-up recovery. Other applicative fields are also keen to 
use inter-joint metrics, for example to quantify the acqui-
sition of skilled gestures in sport [39–41], or to evaluate a 
robotic ergonomic assistance [42].

Delimitation of the case of study
The selected metrics that are presented here can be 
applied to upper-arm kinematic data of discrete move-
ments. Kinematic data describe a given movement (posi-
tion, velocity, acceleration) without considering the 
forces generating them [43]. They can be acquired via an 
optical motion capture system (camera, infrared camera, 
and markers) or accelerometers, electrogoniometers, etc. 
These different data acquisition methods have already 
been widely used to quantify the severity of move-
ment disorders [44]. These data are easy to record, and 
measurement systems are non-invasive. Metrics based 
on EMG or force signals are excluded from the present 
review.

Discrete movements are “bounded by distinct pos-
tures” [45]. For example, reaching an object, reach-
ing out to open a door, or shaking a hand are examples 
of discrete movements. These movements are opposed 
to cyclical or rhythmical movements (such as gait) that 
are generally more conducive to specific metrics that 
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evaluate recurrent aspects of movement, such as wave-
let decomposition [46], analysis of the power spectrum 
of the signal [47], Fourier phase [48] etc. that will not be 
considered here.

Method
A literature review has been conducted in order to 
extract the main inter-joint coordination metrics based 
on kinematic data for discrete movements. Subsequently, 
these metrics were applied to an experimental dataset to 
assess their efficacy in distinguishing various coordina-
tion strategies.

Review methodology
Scientific studies were selected from the PubMed, Sci-
enceDirect, and Google Scholar databases using the fol-
lowing keywords: inter-joint coordination, upper-limb 
coordination, spatial and temporal coordination, coordi-
nation metrics, joint angle organization. Interlimb coor-
dination has not been investigated here.

An initial selection was made from the results, while 
a manual search strategy using references from the 
retained articles provided additional studies for analy-
sis. Because this paper focuses on metrics for inter-joint 
coordination based on kinematic data, all papers which 
were exclusively based upon end-effector data, or other 
forms of biomechanical signals (EMGs, torque...) were 
excluded. Papers measuring coordination of cyclical tasks 
with metrics using specific characteristics of those tasks 
(such as frequency) were also removed. Some metrics, 
in the litterature, were used as well for upper-limb as for 
lower-limb, as long as they could characterize discrete 
kinematic movements, they were kept in the analysis.

In total, 67 studies were retained, all published before 
June 2022. A total of 12 different metrics were identified 
across these studies. While certain metrics were named 
differently across the literature, or presented with minor 
variations in their implementation between scientific 
studies, these techniques are categorised here based 
upon their common principles.

Experimental methodology for evaluation of retained 
metrics
To assess the metrics’ capability to differentiate distinct 
inter-joint coordination patterns, a dedicated dataset 
was generated. This dataset consists of reaching move-
ments executed using varied coordination strategies. 
Each metric was computed across these diverse datasets, 
and a comparative analysis was conducted to determine 
whether the metric outcomes appropriately captured 
the discrepancies in coordination strategies within the 
datasets.

Experimental setup
To record the different movements, a 4-DOF right arm 
robotic exoskeleton named ABLE was used [49]. It was 
designed by the CEA-LIST as a four active DOF robot, 
with 3-DOF at the shoulder (for abduction/adduction, 
internal/external rotation, and flexion/extension) and 
one at the elbow (for flexion/extension). Each joint is 
composed of an encoder and gravity and friction com-
pensation were coded in the control algorithms, so it can 
be used as a motion capture device.

A TV screen placed 4 m in front of the participant was 
used to display targets, and the participant’s end-effector 
height was also projected on the screen.

Three different targets were represented on the screen. 
The first one was approx. 20 cm above the resting posi-
tion (hand on the knee of the participant). Each target 
was placed 30 cm above (along the Z axis) the previous 
one (Fig. 1).

Data collection and processing
In order to build a simple dataset, the experimental task 
involved reaching to a predetermined height (1 Degree of 
Freedom (DoF) task) using only 2 DoF of the arm (flex-
ion/extension at the shoulder and elbow). The remaining 
rotational axes of shoulder and elbow joints were immo-
bilised in the exoskeleton while the wrist was fixed using 
a prefabricated splint. This task was designed such that 
the number of joints mobilised was reduced whilst still 
retaining redundant DoF for the specified task. 4 coordi-
nation strategies were defined in order to test the differ-
ent aspects of inter-joint coordination:

• Physiological (Fig.  2a), where a participant reached 
for targets with no specific constraints. This was con-
sidered as the baseline coordination strategy.

• Asynchronous (Fig.  2b), where the participant was 
asked to move their joints separately, firstly through 
shoulder flexion and secondly through elbow exten-
sion. This condition was used to test the ability of 

Fig. 1 Experimental set up. Participant is wearing the exoskeleton 
(in yellow) and can use shoulder flexion ( �1 ) and elbow flexion ( �2 ) 
to reach targets (in green) on the screen in front of him
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the different metrics’ ability to characterize temporal 
coordination.

• Single joint (2c) consisted in reaching the target only 
using one joint, here only shoulder flexion was used.

• Overuse of one joint (Fig. 2d) consisted in using one 
joint excessively. In this case, the shoulder is per-
forming the same movement as the Physiological 
condition, while the elbow is first performing a flex-
ion and then an extension to reach the target. These 
two last conditions were used to test the ability of 
metrics’ ability to characterize spatial coordination.

To record the data, one participant was installed in the 
4 DoF Able exoskeleton in a transparent mode (gravity 
balanced) with shoulder abduction and internal rota-
tion locked in a comfortable position for the subject. 
The screen in front of the subject displayed a slider cor-
responding to the projection of the subject’s hand height 
computed directly from the robot’s kinematics. The slider 
moved in upward and downward directions only (no lat-
eral movement). Rectangles projected onto the screen 
served as the target, and the starting position was defined 
as the position where the shoulder flexion angle was 0° 
and the elbow flexion angle was 90°. For each of the 4 
conditions, the participant reached 5 times towards each 
of the 3 targets.

Joint trajectories were recorded using the encoders 
integrated into the joints of the robotic exoskeleton. Data 
processing was conducted using Python. All recorded 
data were low pass filtered through a 1st-order Butter-
worth filter (cutoff = 10 Hz). The beginning and end of 

each movement were defined by 5% of the end-effector 
maximum velocity. The metrics sourced from the litera-
ture were implemented using Python, occasionally uti-
lizing available libraries like statistical libraries. These 
metrics were computed for each dataset.

This study was approved by the local ethics commit-
tee at Sorbonne University and each participant provided 
informed consent prior to their participation in this 
study.

Evaluation criteria
Here we examined the different coordination metrics 
using a 5-point scale for the following 7 criteria

• Dimensionality: How many indicators do we have to 
analyze?

• Sensibility: Is the metric able to distinguish 2 differ-
ent coordination strategies?

• Explainability: Can differences between gestures be 
explained in a physiological manner using the met-
ric’s output?

• Computational Simplicity : How easy is it to imple-
ment and compute the metric? A metric based on 
simple operations such as subtractions, additions, 
etc. are defined as simple to compute since they are 
straightforward and give quick results. Metrics that 
use matrix or statistical calculations are defined as 
more complex since the result is not straightforward 
and depending on the size of the dataset and the 
resources available in the used computer, those cal-
culations can also take some time to output a result.

• Coordination Pattern: Does the metric characterize 
spatial relations?

• Temporal Coordination: Does the metric characterize 
temporal relations?

• Robustness: Does the metric provide the same result 
regardless of task variability? Here, the task’s variabil-
ity is defined by the variation of the target location.

One last criterion was defined as the Type of Compari-
son. In effect, some metrics aim to extract features from 
1 joint trajectory, while others aim to compare 2 or more 
joints or segments, while others still aim to compare 
across different conditions. This criterion significantly 
influences the metric’s dimensionality. To elaborate, 
metrics that involve pairwise joint comparisons lead to 
an exponential increase in the number of plots to ana-
lyze with the inclusion of more joints. Conversely, met-
rics designed for condition comparisons often yield 
more condensed outcomes, encompassing the entirety 
of movement rather than individual joints. However, this 
approach can occasionally trade-off in terms of providing 
a comprehensive explanation.

Fig. 2 Different strategy of coordination with 2 joints. a Physiological 
coordination, b Asynchronous coordination, c Single‑joint 
coordination, d Overuse of one joint coordination. Shoulder flexion 
and extension is in blue ( θ1 ) and elbow flexion and extension 
is in orange ( θ2)
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Metrics literature review
Inter-joint coordination is a topic that has attracted an 
increasing number of studies in recent years (Fig.  3). 
When searching for “upper-limb inter-joint coordina-
tion” in Google Scholar, 2450 articles were presented, 
801 of them were published after 2018 and 319 after 
2021. Nevertheless, less than one third of these used 
metrics based on kinematic data from discrete move-
ments. A total of 12 metrics not including variants 
were drawn from existing literature and provide diverse 
methodologies for assessing inter-joint coordination. 
Certain metrics concentrate solely on particular time 
events, while others compare the complete trajectories 
of joints, and others examine overall conditions without 
delving extensively into joint specifics. This assortment 
of metrics can potentially emphasize distinct facets 
of inter-joint coordination. Of the 12 metrics used to 
measure inter-joint coordination, only two metrics are 
used in the majority of cases: Angle-Angle Cyclograms 
and Continuous Relative Phase (Fig. 4).

In the next sections, metrics are presented by order of 
use, and the following convention is used:

• θ ∈ R
n where n is the degree of freedom represents 

the joints trajectories,
• θ̇ ∈ R

n represents the joints velocities,
• t ∈ R

0+ is the time,
• ẋ ∈ R

3 is the end-effector velocity

Each metric is illustrated with a theoretical example.

Continuous relative phase
Definition CRP, alternatively known as “Temporal Coor-
dination Index” (TCI) [50], is one of the most applied 
metrics. CRP has been used to quantify inter-joint 
coordination since 1993 [51], firstly for the lower-limb, 
and only since the 2000s for the upper-arm [52].CRP 
extracts the phase angle of the relation between posi-
tion θ and velocity ω for each joint on the overall move-
ment, and then compares the obtained phase angle φ 
between different joints. As suggested by [51], “Quantifi-
cation of inter-joint coordination through the use of the 
relative phase angle provides information that cannot be 
obtained through conventional angular position vs time 
presentation and may lead to substantive differences in 
interpretation of kinematic data.” CRP transforms the 
data into a phase plane, enhancing the phase relationship 
between joints and enabling the determination of which 
joint takes the lead over the others.

CRP was historically referred to as “Relative Phase 
Angle” due to its computation involving the disparity 
between two phase angle signals. The term ”CRP” was 
introduced as a counterpart to “Discrete Relative Phase” 
(DRP), which calculates the phase angle between two 
joints at a specific instant in time, rather than tracking 
their evolution over the entire movement. DRP has often 
been used in gait analysis, leveraging readily identifi-
able time events such as foot placement [53]. However, 
such events are somewhat more challenging to capture 
in discrete upper-limb movements, and fail to provide a 
broader perspective of the entire motion. For these rea-
sons, only CRP is used in this study.

CRP computation is based on the phase angle, φ which 
is the angle between the position/velocity point and the 
null velocity axis (Fig. 5) of the normalized data.

Other techniques such as Hilbert transform can be used 
on sinusoidal signals to extract the phase angle of a data-
set [54].

(1)φi(t) = tan−1 ωi(t)

θi(t)
.

Fig. 3 Distribution in time of the articles considered in this review, 
showing an acceleration of the publication on the subject

Fig. 4 Distribution of the different metrics used in the articles 
considered in this review
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To compare 2 joints i and j their respective phase 
angles are subtracted (Fig. 5) as follows with i being the 
proximal joint, and j being the distal joint:

Analysis A constant relative phase means that the 
relation between the two joints is constant, while a pos-
itive or negative CRP means that one joint progressively 
goes out of phase with respect to the other joint (e.g. a 
negative CRP means that the proximal joint is lagging 
behind the distal joint and a positive CRP means that 
the proximal joint is leading the distal joint).

As CRP is a time series, it can be difficult to visually 
recognize differences between 2 CRP. In order to simplify 
CRP analysis, some studies focus on the Mean Abso-
lute Relative Phase (MARP) and Deviation Phase (DP, 
equivalent to the standard deviation) [55]. It is proposed 
that if MARP < 30◦ the joints are moving in phase. On 
the other hand, if MARP > 30◦ movement is considered 

(2)CRPi,j(t) = φi(t)− φj(t),

as out-of-phase. A small DP indicates that the relation 
between the 2 joints is stable.

Other articles have suggested different tools to ana-
lyze the CRP pattern, such as linear regression [56]. 
Some variants of the CRP have also been used as Dis-
crete Relative Phase (DRP), to evaluate the timing of 
key events in each of the angle profiles [53, 57]. How-
ever, such methods are more suitable for cyclic tasks 
since they compares the temporal dispersion of events.

Angle–angle plot or cyclograms
Definition The angle-angle plot is one of the old-
est inter-joint coordination metrics [58]. Also named 
angular covariation plots [59] or cyclograms [60]. 
Angle-angle plots are 2D or 3D plots [61] where each 
axis of the plot is one joint’s position or velocity (Fig. 6). 
Angle-angle plots emphasis the relative trends in 
angular displacement for each joint over time [58]. By 
exposing those relative patterns, alterations in inter-
joint coordination can be visually discerned. In certain 
instances, polar angle plots have also been employed to 
appraise joint coordinations [62].

Analysis If a coordination exists between the 2 vari-
ables, a relation should appear as a distribution of data 
points around the diagonal line or plane of the plot.

This simple representation for coordination has been 
widely used, but characterizing (geometrically) the 
coordination pattern can be quite difficult due to the 
large number of curves to analyze (number of curves 
grows quadratically ( n2)). In order to simplify the 
analysis of those plots, different characteristics can be 
extracted as: the global slope [63], the mean magnitude 
(mean distance between two consecutive points [56]), 
angular coefficient of correspondence (slope of two 
consecutive points [64, 65]) etc. Those measurements 
are also used as inter-joints coordination metrics.

Fig. 5 Continuous Relative Phase Computation. For 2 consecutive 
joints i (in blue) and j (in orange), position (first row) and velocity 
(second row) are computed and then plotted together (third row). 
Phase angles are extracted (fourth row) and subtracted (fifth row)

Fig. 6 Angle‑Angle Plot or Cyclogram. Two joints’ position (blue 
and orange) are plotted together (in green)
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Principal component analysis
Definition Principal Components Analysis (PCA) is a 
method used to reduce dimensionality of a dataset. First 
developed in the early 20th century [66, 67], the goal is 
to extract the main components of a multidimensional 
dataset, so it becomes easier to interpret since only inde-
pendent features are left. In human movement analysis, 
PCA is used to extract the main independent relations 
between a set of joint trajectories.

PCA is computed on position or velocity-centered 
data. From the covariance matrix of the dataset, eigen-
values and the corresponding eigenvectors are extracted. 
Each eigenvalue represents the amount of variance of 
its corresponding component, while the corresponding 
eigenvector indicates how much each variable is con-
tributing to the component. PCA can be computed both 
from the correlation matrix and from the covariance 
matrix. However, computing PCA on non-standardized 
data using the covariance matrix will remove data with 
a smaller range since they have less variability than data 
with a greater range. Alternatively, using the correlation 
matrix is equivalent to directly standardising the dataset 
(mean data is set to 0 and the standard deviation is set to 
1).

Extended versions of PCA such as functional Principal 
Components Analysis (fPCA) have also been explored 
[68] in order to consider temporal variation in the move-
ment (and not only postures, as is typically the case in 
PCA). Sparse Principal Component (SPCA) [69] is yet 
another variation of the PCA method that sets to 0 the 
variance of the variable that has a small variance, so they 
are not disturbing the interpretation of the main compo-
nents. Since PCA is a global method, it doesn’t require 
precise joint-angle measurements to be able to extract 
main components of the coordination strategy used. For 
example, [70] directly used the 3D coordinates of mark-
ers placed on the human body during walking as inputs.

Analysis PCA aims at extracting a common pattern in 
a dataset. The first step in the analysis of PCA results is 
to examine the percentage of variance explained by each 
Principal component (PC). The first component of the 
PCA represents the dimension of the data that has the 
largest possible variance in the data set, whereas the last 
components represent the data that have the smaller var-
iance. In the example Fig. 7, the first PC accounts for 90% 
of the variance. Then, inside each PC, the weight of each 
original variable can be examined [20]. Here, the first PC 
is mainly composed of the position of the ith joint. Other 
PC analysis techniques have been developed. [71] has 
reconstructed the PC evolution over time by summing all 
the variables weighted by their PC results. This PC evolu-
tion has been analyzed in [72], using a hierarchical clas-
sification algorithm to detect changes in coordination. 

However, this last method works with a dataset where the 
first PC contains more than 90% of the dataset variance. 
When the first PC represents less variance, the analysis 
must be extended to the other PC, increasing the dimen-
sionality of the results.

When comparing different PCA results, one hypoth-
esis is to say that the alteration of inter-joint coordination 
leads to different joint contributions. A loss of inter-joint 
coordination leads to a higher number of PCs to explain 
the variability of the movement, since joints are uncou-
pled. Another indicator to check is the weight of each 
variable inside each PC. Indeed, a loss of inter-joint 
coordination leads to more simple and less variable con-
tributions. For example, fewer PCs are needed to recon-
struct the movements of stroke patients than non-stroke 
patients [68].

One main point of attention when using PCA is the size 
of the dataset. Indeed, when a too small dataset is used, 
the results obtained with the PCA are unstable. There is 
no ’minimal size’ for a dataset on PCA, one way to verify 
that PCA can effectively be used in this case is to boot-
strap or cross-validate the PCA by deleting or exchanging 
some data in the dataset and computing the PCA again. If 
the result is similar to the result obtained with the origi-
nal dataset, the result is stable, PCA can be effectively 
used in this case. If results vary a lot with the modifica-
tion of the dataset, the result is unstable and should be 
used cautiously.

Cross correlation
Definition Cross Correlation is a signal processing 
method used to measure similarity of two series as a 
function of the displacement of one relative to the other 
(sliding dot product). When cross-correlation is used 
to measure coordination, usually only a zero time lag is 
considered [73], however recent studies have begun to 
explore the result of cross-correlation with different lags 

Fig. 7 Principal Component Analysis. Two joint positions (in blue 
and orange) are plotted together (in gray) in order to find a new 
vector basis (in green) that maximizes the variance of the dataset
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[74]. Cross-correlation is a metric that can be used on 
different types of temporal signals, for example [75] have 
computed cross-correlation based on CRP signals.

Analysis The higher the cross-correlation is, the more 
the 2 joints are coordinated since their signal is consid-
ered similar. However, in case of a large difference in 
movement amplitude, the cross-correlation can be high 
even if the joints are poorly coordinated. Joint position 
may be normalized to avoid this artifact.

Atypical kinematics
Definition Atypical kinematics is a metric suggested by 
[76]. The goal of atypical kinematics is to extract portions 
of time normalized movement sets where joints trajecto-
ries differ from a reference movement using a filter based 
on PCA. The result gives a normalized time period and 
the joint sets for which the trajectories differed most.

Atypical kinematics needs to be computed in three dis-
tinct steps. The first step is to build a typical movement 
filter. The typical movement filter is built from the prin-
cipal components extracted for each percent of the refer-
ence movement (from 0% to 100%). The second step is to 
filter all the data using this filter. To achieve this second 
step, each percent of the data to analyze are multiplied 
by the corresponding typical movement filter and then 
by the transposed of this filter. Finally, the last step is to 
define which part of the moment is atypical or not. To 
this purpose, error between the original and filtered data 
is computed for each percent of the movement. If the 
error is greater than 3 times the standard deviation of the 
reference movement, the movement is classified as atypi-
cal for this time period (Fig. 8).

Analysis The more atypical kinematics moments there 
are, the less the movement is coordinated [77]. The same 
considerations regarding the size of the dataset in PCA 
should be applied for atypical kinematics.

Inter‑joint coupling interval
Definition Inter-joint Coupling Interval (ICI) is a tempo-
ral metric used by [78]. This metric highlights relations 
between the end of the activation for each joint, also 
named settling time. This temporal delay provides insight 
into the sequence of joint deactivation and the duration 
for which one joint remains active after the cessation of 
movement in another. As is the case with many temporal 
metrics, ICI doesn’t provide comprehensive inter-joint 
coordination information spanning the entire movement 
but rather focuses solely on the distinct event of joint 
deactivation.

(3)corrθi ,θj (k) =
∞
∑

m=−∞
θi(m)θj(k −m).

The joint’s deactivation is defined as the moment 
where the joint’s velocity is lower than 5% of its maxi-
mum absolute velocity. For each pair of joints, their 
respective end of deactivation time is subtracted 
(Fig. 9).

Analysis If ICI is close to zero, and the standard devia-
tion of ICI for all movement is low, that means that the 2 
joints are well coordinated. The higher the ICI value is, 
and the higher the standard deviation of ICI is, the less 
the joints are coordinated in a temporal manner.

(4)ICIi,j = ts j − ts i.

Fig. 8 Atypical Kinematics. First Step (in orange), compute typical 
movement filter. Second step (in blue), filter the data. Third step (in 
purple), compute the error between the original and the filtered data

Fig. 9 Inter‑joint Coupling Interval. Inter‑joint coupling interval 
is the delay between 2 joint’s settling ( ts)
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It should be noted that even for healthy subjects, the 
average ICI might be slightly lower than zero, as a prox-
imal-to-distal sequence of joint activation is generally 
observed [28] in routine tasks.

Distance between PC
Definition This metric, developed by [79], computes 
the angle between subspaces defined by Principal Com-
ponents Analysis of the kinematic data obtained in 2 
different conditions. The result of this metric quanti-
fies the extent of disparity between two coordination 
strategies, rated on a scale from 0 to 1. However, details 
regarding this disparity are somewhat limited, as the 
specific joints with differing trajectories or the pre-
cise segment of movement exhibiting differences is not 
identified (Fig. 10).

Let U and V ∈ R
n be 2 subspaces defined by PCs of 

condition 1 and condition 2. The distance between U 
and V is defined as

With U and V being a set of unit vectors defining a sub-
space and smin the minimal singular value of UTV .

Analysis The higher the distance is, the more differ-
ent the two coordination strategies are [80]. However, 
this metric does not tell which joint of the coordination 
or part of the movement is coordinated differently.

(5)dist(U ,V ) =
√

1− s2min(U
TV ).

Correlation coefficient statistics
Definition The Pearson Correlation Coefficient [81] or 
Spearman Rank Coefficient [82] are statistical tools used 
to evaluate the strength of a linear or monotonic rela-
tion between two variables. The correlation between two 
joints offers insights into the extent to which these joints 
exhibit coordinated behavior, indicating whether they 
evolve together in a linear or monotonic manner. The 
result ranges between −1 and +1 and a p-value is associ-
ated to the result. A small p-value indicates that a signifi-
cant correlation exists between the 2 variables.

Analysis
The closer the Correlation Coefficient is to 1 or −1 , the 

stronger the linear relationship between the two joint 
angles. This result can be used only if the corresponding 
p-value is lower than 0.05 (5% significance level). If data 
are not filtered, strong correlation can emerge from noise 
inherent to the signals. A strong correlation can also be 
found if one joint moves only to a limited degree (due to 
the movement of the other joints or micro-movements 
for example), even if this behaviour might not fulfil the 
qualities expected of “coordinated movement”.

Angle ratio
Definition The Angle Ratio is another relatively sim-
ple measure that takes 2 joint trajectories, and for each 
timestamp computes the ratio of both angles. To simplify, 
only the ratio at the end-effector maximum velocity can 
be computed [83]. The angle ratio reveals which joint 
within a pair contributes the most to the overall move-
ment. Yet, this metric’s accuracy might be influenced by 
joints with varying overall ranges. As an illustration, the 
wrist commonly exhibits a smaller angle measurement 
compared to the shoulder.

Analysis If the range of motion of the 2 joints are dif-
ferent (i.e, wrist and shoulder), the data should be nor-
malized at their range before computing the angle ratio. 
Between 2 conditions, if the joint angle ratio is increas-
ing, that means that joint i is making a greater contribu-
tion to the movement. On the contrary, if the joint angle 
ratio decreases between 2 conditions that means that 
joint j is contributing the most.

Relative joint angle correlation
Definition Relative Joint Angle Correlation is a metric 
presented by [84] based on the analysis of the covari-
ance matrix between 2 relative joint angles. Relative 
joint angles are calculated from the segment’s vector, 
this indicates that the kinematic parametrization of 
the chain used to extract joint angles (i.e, International 

(6)ARi,j(t) =
θi(t)

θj(t)
.

Fig. 10 PCA distance. The distance between 2 subspaces defined 
by principal component analysis (in blue and red) is defined 
by the angle � between the 2 spaces
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Society of Biomechanics Convention for upper-limb 
[85], robot kinematic chain, etc.) does not affect the 
result. This metric in an indirect measure of inter-joint 
coordination based on kinematic data.

RJAC is a measurement of inter-limb synergy, and 
by extension the inter-limb synergies reflect the inter-
joint coordination strategy. Notably, RJAC values have 
been demonstrated to exhibit correlation with the Fugl-
Meyer Assessment of Sensorimotor Recovery After 
Stroke for Upper-Limb Extremity (FMA-UE) [84] which 
gauges motor abilities and joint amplitude. This asso-
ciation underscores how RJAC not only reflects motor 
skills but also provides insights into joint coordination.

Let i be the proximal segment and j the distal segment, 
defined as 3D vectors for each t timestamp (Fig. 11).
�θj(t) = arccos

(

i(t).j(t)
|i(t)||j(t)|

)

− arccos
(

i(t−1).j(t−1)

|i(t−1)||j(t−1)|

)

.
For the first joint, where there is no proximal seg-

ment, the relative angle is computed as follows:
�θi(t) = arccos

(

i(t−1).i(t)
|i(t−1)||i(t)|

)

.
Then RJAC is computed as:
RJAC(i, j) = C(�θi ,�θj)√

C(�θi ,�θi)C(�θj ,�θj)
.

Analysis To compare different datasets together, 
the absolute value of the RJAC matrix is considered. A 
lower value of the RJAC’s matrix determinant means 
that joints are less coordinated. Similar to other metrics 
that give only one final value for a whole condition, this 
metric provides insight into how different two data-
sets are. It does not provide insight on the origin of the 
difference.

Temporal coordination
Definition Temporal Coordination is used by [86] and 
focuses on determining the delay between the activa-
tion time of the joints compared to the beginning of the 
movement. Similar to the inter-joint coupling interval 
(ICI) metric, this measure focuses on a single time delay 
between two specific time events. Here, it emphasizes the 
point at which a joint begins to engage in the movement. 
Among individuals without impairment, this delay is typ-
ically minimal and follows a proximal to distal sequence, 
indicating that proximal joints usually initiate movement 
before distal joints, showing effective coordination across 
all joints.

Joint activation is defined as the instant when joint 
velocity is greater than 5% of its maximum absolute 
velocity (Fig. 12).

Analysis As per the ICI, the smaller the TC is, the 
more the joints are coordinated from a temporal point of 
view.

Zero crossing time interval
Definition Zero-Crossing Time Interval is a metric that 
computes the time between the beginning of the move-
ment and the deactivation of the joint [87]. It is also a 

(7)TC(i) = tb i − tbm.

Fig. 11 Relative Joint Angle Correlation. RJAC is based on joint’s 
position � between consecutive timestamp

Fig. 12 Temporal Coordination and Zero Crossing Time Interval. 
Temporal Coordination is the delay between the beginning 
of the movement ( tbm ) and the start of the joint ( tb i ). Zero‑Crossing 
Time Delay is the delay between the start of the movement 
and the end of activation of the joint ( ts i)
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temporal metric, focusing exclusively on the temporal 
synchronization between the completion of joint angle 
variation and the beginning of the entire movement. Zero-
Crossing Time Interval quantifies how extended or delayed 
a joint’s involvement is in the overall movement. However, 
this metric does not provide insight into the distinction 
between the activation time and the duration of activation. 
To elucidate this aspect, a comparison with the Temporal 
Coordination metric is necessary.

The Joint’s deactivation corresponds to the instant when 
the joint’s velocity becomes lower than 5% of its absolute 
maximal velocity (Fig. 12). Then each Zero-Crossing Time 
Interval can be compared for different conditions.

Analysis If the Zero Crossing Time Interval is similar 
over different conditions, that means that the coordina-
tion is similar in different conditions.

(8)ZC(i) = ts i − tbm.

Experimental results
Quantitative comparison of the metrics
All metrics shown were computed based upon the data-
sets derived from the four different coordination strat-
egies described previously. Figure  13 displays typical 
graphs for three metrics: angle-angle, CRP, and PCA dis-
tance, across the four conditions (each represented by a 
distinct color). For these metrics, only visual analysis was 
conducted to distinguish between conditions, as con-
ducting statistical analysis would require extracting spe-
cific features (such as the mean slope of linear regressions 
for the angle-angle plot or the mean CRP), or involving 
more subjects per condition (to calculate the distance 
between PC for each subject in each condition and per-
form statistical analysis on the entire group).

All metrics presented above have been computed on 
the 4 different coordination strategies datasets. Figure 13 
presents typical graphics obtained for 3 metrics  : angle-
angle plots, CRP and PCA distance, for the 4 conditions 

Fig. 13 Typical graphics obtained for the 4 conditions for 3 inter‑joint coordination metrics, reduced to the observation of 2 DoF only: shoulder 
flexion as θ1 and elbow flexion as θ2 . A Angle‑angle plot. B Mean CRP curves, C) distance between PC subspace with the Physiological condition 
as reference
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(one color per condition). For the presented metrics, 
only a visual analysis has been done to differentiate the 
conditions and no statistical tests were carried out since 
the size of the illustrative dataset was limited. The results 
obtained have been summarized in the Table 1.

To simplify the overall analysis, a scale composed of 5 
colors was used to evaluate the metrics. For all criteria 
(except dimensionality) the color was attributed based on 
the ability of the metric to differentiate between condi-
tions.The green color is used when the result of the met-
ric for a specific criterion is good, whereas the dark red 
color is used when the metric is not meeting the condi-
tions for a criterion.

Table  1 presents the different results. In this table, 
metrics have been categorized by their type of compari-
sons. This categorization approach was adopted due to 
its direct influence on the dimensionality and the level 
of explainability needed. The first 2 metrics analyze 
each joint trajectory separately, resulting in metrics 
with relatively greater dimensionality. The second part 
of the table presents metrics that compare joints on a 

pairwise basis, which implies greater dimensionality. 
The different results in dimensionality for this group of 
metrics are due to metrics that also vary temporally or 
metrics that give results for the whole movement. The 
third group of metrics is composed of only one met-
ric: Relative Joint Angle Correlation. This metric com-
pares segments rather than joint angles on a pairwise 
basis, leading to fewer indicators to analyze since for 
the human arm (not considering the wrist), 4 joints 
angles are necessary to describe movement whereas the 
human arm is only composed of 2 segments (arm and 
forearm). Finally, the last group is composed of those 
metrics which evaluate a whole condition. These met-
rics are all based on PCA. Additionally, classifying met-
rics depending on the temporal or spatial analysis was 
rather complex since, for some metrics, it depends on 
the input data (i.e, position or velocity data).

Robustness can’t be measured on metrics using Prin-
cipal Components Analysis, since these methods needs 
a large amount of data to get a meaningful result. To 
compute PCA, the overall dataset has been considered, 

Table 1 Summary of inter‑joints coordination’s metrics

Scale

5/5 4/5 3/5 2/5 1/5

Dim. Sensib. Expl. Simpl. Coord.
Pattern Temporal Robust-

ness

Type of
compari-

son

Temporal Coordination 1 joint

Zero-Crossing Time
Interval 1 joint

Inter-joint Coupling
Interval 2 joints

Angle Ratio 2 joints

Angle-Angle Plot 2 joints

Continuous Relative
Phase 2 joints

Correlation Coefficient
Statistics 2 joints

Cross-Correlation 2 joints

Relative Joint Angle
Correlation 2 segments

Principal Component
Analysis - Conditions

Distance between PC - Conditions

Atypical Kinematics - Conditions
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not splitting data by target height, so robustness was not 
tested.

Detailed quantitative and qualitative analysis 
of the metrics
Time delay metrics Of the 12 metrics examined, 3 are 
based entirely on time delays between different events 
(Temporal Coordination, Zero-Crossing Time Inter-
val and Inter-joint Coupling Interval). Those metrics 
are easy to implement since they are based on subtrac-
tions and their interpretability is straightforward since 
the direction and extent of the delay offer direct insights. 
Nevertheless, these metrics are only capable of captur-
ing a fraction of the temporal dimension of inter-joint 
coordination.

Temporal coordination enhances when a joint starts 
participating in the movement with respect to the begin-
ning of the end-effector movement. Given that each 
joint’s starting time is considered, numerous Temporal 
Coordination results are generated - equivalent to the 
number of joints. This metric proves efficient at dis-
tinguishing the four coordination strategies if data of 
the exact same targets are compared. However, it can 
only explain one event within the overall movement. It’s 
important to note that this metric’s outcome varies sig-
nificantly based on target positions, rendering it sensitive 
and unreliable when target positions change substantially 
across repetitions.

Zero-Crossing Time delay, on the other hand, high-
lights when a joint stops participating in the movement, 
with respect to the beginning of the movement. Just as 
with Temporal Coordination, there’s one distinct time 
delay for each joint. However, this metric is highly sensi-
tive to minor movements and yields identical outcomes 
for the Physiological and One joint only coordination 
strategies, as well as for the Asynchronous and Overuse 
of a joint coordination strategies. Similar to the previous 
metric, it’s considerably influenced by target positions, 
making it valuable only when joint deactivation is the 
focal point of the study.

Finally, inter-joint coupling interval enhances the delay 
between the end of use of two joints. The dimensionality 
of this metric is higher since it compares the joints pair-
wise. While it can differentiate some coordination strate-
gies, it doesn’t capture the disparity in all cases, such as 
the similarity in results between the Physiological and 
Over use of one joint strategies.

Yet, the three presented metrics provide no informa-
tion on how the joint’s trajectory evolves around these 
events. They are also easily influenced by micro-move-
ments, leading to the conclusion that joints are coordi-
nated even if one joint’s participation to the movement 
is negligible. Among those three temporal metrics, the 

most sensible and robust one appears to be the Temporal 
Coordination.

Joint trajectories comparison metrics Two met-
rics are based on direct comparison of joint trajecto-
ries, either by computing a ratio such as Angle ratio or 
by plotting them against each other, as is the case for the 
Angle-Angle plot. These metrics are efficient to distin-
guish both spatial and temporal coordination. Yet, their 
major problem is the dimensionality. These metrics are 
computed for each possible pair of joints, that means that 
for n joints, there are n!

2!(n−2)! indicators to analyze. When 
processing data with more than 3 degrees of freedom, it 
becomes difficult to obtain sufficient perspective regard-
ing the coordination strategy. Both metrics are great at 
differentiating the four coordination strategies and are 
really simple to compute. The angle ratio involves a some-
what trickier connection to physiological processes, as it 
necessitates converting the ratio back into joint behavior. 
However, the angle-angle plot gives results that are visu-
ally comparable between the natural and the overuse of 
the elbow condition. To discern distinct coordination 
strategies more accurately, supplementary indicators or 
tools like plot area coverage or linear regression slope 
are imperative. Furthermore, incorporating additional 
measures like the global slope not only aids in reducing 
dimensionality but also condenses temporal series data 
into a singular value.

Metrics combining position and velocity Continuous 
Relative Phase is the only metric based on both position 
and velocity data. This metric can differentiate visually 
the 4 coordination strategies, even though characterizing 
CRP curves using Mean Angular Relative Phase (MARP) 
or Deviation of Relative Phase (DRP) could be advan-
tageous in instances where CRP curves exhibit 
visual similarity. For instance, in our dataset, CRP gen-
erates outcomes that lack pronounced visual distinctions 
between the physiological and asynchronous conditions. 
Nevertheless, the introduction of MARP computation 
renders the differentiation between these two conditions 
more apparent. Furthermore, the mix of position and 
velocity makes it difficult when attempting to extrapolate 
into physiological terms.

Statistics Another group of metrics are the metrics 
based on statistics such as the Pearson Correlation 
Coefficient, Cross Correlation or Relative Joint Angle 
Correlation. They all have the disadvantages to be dif-
ficult to explain. Since they are based on complex cal-
culations, the physiological implications may be more 
difficult to appreciate. The insights gleaned from these 
metrics result in a binary analysis, categorizing the 
relationship between two joints or segments as either 
correlated or not. Nevertheless, their implementation 
is often straightforward, as many data processing tools 



Page 15 of 20Dubois et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:132  

provide pre-coded functions within their toolboxes to 
compute these correlations. It’s important to note that 
correlation coefficients, such as Pearson’s, lack the abil-
ity to differentiate between coordination strategies that 
evolve over time.

Metrics based on principal component analysis The 
last 3 metrics are based on principal component decom-
position. These metrics offer the key benefit of reduced 
dimensionality, facilitating the differentiation between 
various datasets. However, explaining the disparity 
between two movements using only PCA outcomes can 
be challenging. Metrics based on PCA also require a 
large amount of data and present complexity in computa-
tion, particularly in a crucial step: determining the requi-
site number of principal components, which depends on 
the dataset’s variance, the task’s dimension ect.

The Atypical Kinematics metric further amplifies com-
plexity due to its multi-step process involving the con-
struction of a filter based on PCA results and subsequent 
multiplication of datasets by this filter. In our dataset, 
encompassing a sole subject with five repetitions for each 
of the three targets, the atypical kinematics metric failed 
to yield dependable outcomes. This metric necessitates 
a larger dataset for accurate application (more than five 
repetitions per target) to derive meaningful averages and 
standard deviations essential for correctly calculating the 
error threshold.

In terms of interpretability, metrics like the distance 
between principal components offer a direct means 
to differentiate coordination strategies. However, the 
resulting value ranging between 0 and 1 provides limited 
insight into the physiological aspects of the movement.

The Distance between PCs metric affords an initial 
overview of the movements in question. Subsequently, 
delving into PCA and assessing the significance of each 
variable’s weight within the principal components can 
provide a pathway to gaining deeper insights into the 
movement.

Discussion
In conclusion, the selection of an appropriate inter-
joint coordination metric remains a challenge, given 
the absence of a universally flawless metric. The choice 
depends on the specific attributes to be emphasized, the 
interpretation of inter-joint coordination, and the met-
ric’s ease of implementation. As a result, one or a combi-
nation of these approaches may prove suitable based on 
the given context. Answering the 4 following questions 
can lead to the best metric(s) to use:

• Is the spatial or the temporal coordination the main 
feature to enhance?

• Is it important to be able to tell exactly what’s hap-
pening in the movement at the anatomical level, or is 
a global assessment sufficient?

• How fast do we need the metric to be computed?
• How large is the dataset?

Guided by the responses to these four questions, one 
or multiple metrics can be selected. For instance, if the 
study primarily revolves around the temporal dimen-
sion of coordination, metrics scoring 4/5 or higher in the 
Temporal category should be prioritized. Subsequently, 
if achieving a comprehensive understanding is crucial 
within the given context—perhaps for tailoring a more 
precise rehabilitation treatment plan—metrics with an 
explainability score of 4/5 or greater should be retained. 
Depending on the available computational resources, a 
decision can be made to retain metrics that demonstrate 
a high level of simplicity (with a high Simplicity score). 
Lastly, metrics reliant on PCA might be disregarded if the 
dataset is limited in size (with only a few repetitions of 
movements).

To provide concrete illustrations, let’s consider two dis-
tinct contexts: one related to rehabilitation, specifically 
post-stroke recovery, and the other focused on experi-
mental studies involving upper-limb exoskeletons. In the 
rehabilitation context, particularly after a stroke, both 
spatial and temporal coordination play vital roles. How-
ever, spatial coordination may receive relatively more 
emphasis, as one of the primary rehabilitation goals is 
to restore functional range of motion. In rehabilitation 
processes, it is crucial for metrics to offer a physiologi-
cal interpretation, be of simple use, and yield prompt 
results, considering that patients are waiting for guid-
ance. Moreover, the datasets tend to be relatively small 
(individual datasets), comprising only a few repetitions 
of specific movements. In this scenario, the most suit-
able metrics include the Angle-Angle plot and Tempo-
ral Coordination. On the other hand, in an experimental 
study involving exoskeletons, both temporal and spatial 
aspects of coordination hold equal importance. The need 
for providing a physiological explanation for the move-
ments is not as critical as in the rehabilitation setting. 
Additionally, there are usually no strict constraints on the 
computational speed or ease of metric implementation, 
since all processing occurs offline after the experiment. 
Furthermore, the datasets are typically larger, containing 
numerous repetitions of the same movements for multi-
ple participants. In this case, the most relevant metrics 
include CRP, PCA or the distance between Principal 
Components.

Once the pertinent metrics have been identified, the 
implementation process requires careful consideration. 
As each metric can be computed in distinct ways, Table 2 
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outlines practical recommendations for each metric, aim-
ing to extract the most significant results from each one.

Limitation and perspective
Given the different metrics and results obtained by test-
ing them, a few points can be underlined.

Limitations of present study
The methodology used for this study presents some 
limitations.

Data collection methods A first point to discuss is 
the method used to collect data. The data set used was 
composed of simulated behaviors that are not repre-
sentative of daily-life movements. This was done in order 
to enhance each metric’s specificity separately in order, 
not to build a classification of the metrics, but to be able 
to choose cleverly the metric needed depending on the 
experiment and the hypotheses.

Simple dataset One of the main limitations of the 
results presented here is the simplicity of the data-
set used. Indeed, the dataset was composed of move-
ment with 2 DoF achieving a 1 DoF task. This is not 

representative of upper limb coordination in everyday life 
conditions where, on a segmental level, the human arm 
mobilises 7 DoF. In addition, the 2 DoF arm to 1 DoF task 
only allows 1 DoF redundancy, which limits the overall 
variability of the movement dataset.

Another means of increasing the dataset’s variability 
would have been to introduce noise so as to test the dif-
ferent metrics’ robustness.

Finally, the dataset was built upon 1 subject’s move-
ments only. Building a dataset with more subjects would 
have introduced more variability in the data. This data-
set was a first step into evaluating and understanding the 
different coordination metrics, but to build more reli-
able conclusions, the analyzed metrics should be tested 
on a dataset with more variability (number of DoFs and 
participants).

Perspective
Considering the task None of the metrics described here 
account for inherent task constraints. Unlike the Uncon-
trolled Manifold (UCM), the task’s goal is never speci-
fied in the listed metrics. In the UCM, joint velocities are 

Table 2 Recommendations for the use of metrics

Metrics Recommendations

Temporal coordination –

Zero‑crossing time interval –

Inter‑joint coupling interval –

Angle ratio –

 Angle–angle plot • Same limits on axis to avoid noise zooming

• Using position data enhances better spatial coordination strategy

• Using velocity data erases differences due to different starting positions

• The ratio of the widths of the point distributions highlights the coordination pattern strategy

• The area covered by the point shows the temporal coordination strategy

• Coupling this metric with other indicators (as the Angular Coefficient of Correspondence 
for example) helps to reduce its dimensionality

 Continuous relative phase • Normalize data at the range

• Unwrap the result to get a meaningful MARP

 Correlation coefficient statistics • Compute with data position

• Always check the p‑value, if too high, the result is not interpretable

• Spearman or Pearson Correlation Coefficient

• Use a low‑pass filter on data first

• Use a threshold on data’s velocity to remove micro‑movement (if the joint velocity 
is below the threshold, joint trajectory is considered constant)

 Cross‑correlation • To compute on velocity data

Really sensitive to targets’ position

Relative joint angle correlation –

Principal component analysis • To compute on velocity data

Distance between PC • To compute on velocity data

 Atypical kinematics • To compute on velocity data

• Needs a very large amount of data
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separated into the controlled task-space and the uncon-
trolled null-pace. The controlled task space is neces-
sary to complete the task, while the null-space contains 
joint velocities that contribute to the joint variability in 
the task (i.e, the different coordination strategies) with-
out affecting the end-effector trajectory (i.e, in reaching 
tasks, the swivel angle is usually in the null-space). Sepa-
rating the controlled spaces and uncontrolled spaces sim-
plifies the problem and gives a theoretical framework to 
explain how the central nervous system deals with multi-
ple and redundant degrees of freedom to perform a task. 
Recent studies have also suggested considering the task 
to compute inter-joint coordination metrics [88] as the 
task and its constraints directly affects the coordination 
strategy (i.e, different coordination strategies will be used 
if a glass must be placed upside down or right side up on 
a specific location).

Angle extraction joint sequence All the described 
metrics use joint angle trajectories that have been 
extracted from the different joints’ positions. In the 
tested dataset, joint angles correspond to the values 
recorded at the joint angles of the robotic exoskeleton, 
but according to the field in which the data will be used, 
they could have been extracted according to other spe-
cific joint sequences (International Society of Biome-
chanics (ISB) convention [85], external reference frame 
[89]...). The same movement but with angles extracted 
along different kinematic chain parametrization might 
yield different inter-joint coordination results. The result 
of the inter-joint coordination metric is dependent on the 
angle extraction kinematic chain, except for the Relative 
Joint Angle Correlation metric. With existing metrics, 
choosing carefully the kinematic chain from which angles 
will be extracted is a major point before measuring inter-
joint coordination.

Intrinsic rotation constraints As detailed in the pre-
vious paragraph, extracting the angles is a critical step 
to then compute metrics. Generally, Euler angles are 
used. Euler’s angles are a sequence of 3 rotation angles 
used to describe the orientation of a rigid body in space 
with respect to a fixed coordinate system. However, 
Euler angles present various limitations. The first one 
is the extraction sequence. Euler’s angles are depend-
ent on their rotation sequence, without this informa-
tion, extracted angles are not comparable. Secondly, one 
unique orientation can be reached with different rotation 
sequences, this means that one rotation sequence needs 
to be chosen among the different possibilities, but there is 
no “right” choice. Depending on this choice, the metric’s 
result will vary. Finally, one last solution is to use quater-
nions. Quaternions are a mathematical tool that over-
comes the different issues presented for Euler’s angles. 
However, from a physiological point of view quaternions 

are difficult to represent, and using quaternions add a 
level of complexity to the angle extraction process.

Variability of the inter-joint coordination The met-
rics listed here are trying to measure an inter-joint 
coordination pattern. Other metrics are measuring the 
variability of a relationship between joints [53, 90–92]. 
Combining measures of the inter-joint coordination 
with measures of the variability of the inter-joint coor-
dination would open the results to more representative 
conclusions.

Comparison with clinical data 
Comparing the results of metrics with clinical assess-

ments (such as Fulg-Meyer Motor Assessment...) has 
already been done in other studies [24, 93]. In order to 
extend the results presented here and understand better 
how correlated or not metrics are with clinical tests, a 
similar study should be conducted.

Metrics improvements Almost all metrics underline 
interesting features of inter-joint coordination. However, 
some metrics could be improved or extended in order to 
facilitate analysis. For example, angle-angle plots can be 
extended using the angular coefficient of correspondence 
(slope of two consecutive points [64]).

Working on the visualization tools for the different 
metrics might also serve to make their findings more 
intelligible. Time delay metrics such as TC, ZC and ICI 
could be represented as histograms or as bar plots indi-
cating mean and variance. When looking at 2 different 
conditions, the bar plot makes the comparison easier.

In order to make inter-joint coordination metrics more 
reliable, sensitive, and easier to interpret, combining sev-
eral metrics in order to combine advantages of different 
metrics is another possibility. For example, PC analysis 
could be run on CRP data.

Comparing metrics from different experiments One 
main issue with coordination metrics is that from one 
experiment to the other, it’s almost impossible to com-
pare the results obtained. By making the metrics more 
generic and dimensionless (using ratios and percentages, 
for example), it would be easier to compare the results 
between different experiments or tasks.

Creating meta-metrics could also be explored in order 
to be able to compare more easily inter-joint coordi-
nation. This would also facilitate comparison between 
metrics.

Conclusion
Addressing the question of inter-joint coordination is a 
critical question in motion analysis. This notion is used in 
various fields and several definitions have been identified. 
Over the years, different metrics of inter-joint coordina-
tion for discrete movement tasks have been developed, 
each metric, highlighting one or several characteristics 
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of inter-joint coordination. During this study, no singular 
metric set itself apart. Rather, depending on the phenom-
enon that needs to be observed, different metrics could 
be used. While no perfect metric for the analysis of inter-
joint coordination exists, using several metrics might be a 
good approach to capture different characteristics of any 
given movement.
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