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d Multi-resolution models generalize across institutes and

patients’ ancestries

d Multi-resolution models focus on similar features used in the

clinic
Oner et al., 2022, Patterns 3, 100642
December 9, 2022 ª 2022 The Author(s).
https://doi.org/10.1016/j.patter.2022.100642
Authors

Mustafa Umit Oner, Mei Ying Ng,

Danilo Medina Giron, ...,

Wing-Kin Sung, Chin Fong Wong,

Hwee Kuan Lee

Correspondence
mustafaumit.oner@eng.bau.edu.tr

In brief

Diagnosis of prostate cancer in low-grade

and low-volume cases is a challenging

task for pathologists. They may miss a

few malignant components within the

tissue, resulting in repeat biopsies or

missed therapeutic opportunities. This

study developed a multi-resolution

pipeline to assist pathologists in such

cases. An external validation study

demonstrated the generalizability of the

multi-resolution approach across

institutes and patients’ ancestries.

Besides, the analysis of models revealed

their focus in their predictions.
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THE BIGGER PICTURE Deep-learning-based assistive tools are becoming an integral part of pathology
clinics. They promise to reduce pathologists’ workloads and improve patients’ outcomes. This study fo-
cuses on a challenging task rather than an easy one to enhance these promises. It develops a deep-
learning-based pipeline detecting low-grade and low-volume prostate cancer that can be easily over-
looked, potentially resulting in missed therapeutic opportunities. The pipeline detects the few low-grade
cancerous components within a low volume of prostate tissue and highlights high-risk regions for detailed
analysis by pathologists. It can help early diagnosis of prostate cancer and effective use of other therapeutic
tools at early stages, like active surveillance, rather than aggressive treatments eligible at later stages. Be-
sides, this study conducts an external validation on data of patients from different ancestries, which can be
a critical factor in the success of deep-learning-based assistive tools.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Pathologists diagnose prostate cancer by core needle biopsy. In low-grade and low-volume cases, they look
for a few malignant glands out of hundreds within a core. They may miss a few malignant glands, resulting in
repeat biopsies or missed therapeutic opportunities. This study developed a multi-resolution deep-learning
pipeline to assist pathologists in detecting malignant glands in core needle biopsies of low-grade and low-
volume cases. Analyzing a gland at multiple resolutions, our model exploited morphology and neighborhood
information, which were crucial in prostate gland classification. We developed and tested our pipeline on the
slides of a local cohort of 99 patients in Singapore. Besides, we made the images publicly available,
becoming the first digital histopathology dataset of patients of Asian ancestry with prostatic carcinoma.
Our multi-resolution classification model achieved an area under the receiver operating characteristic curve
(AUROC) value of 0.992 (95% confidence interval [CI]: 0.985–0.997) in the external validation study, showing
the generalizability of our multi-resolution approach.
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INTRODUCTION

Prostate cancer is the second most common cancer diagnosed

in men worldwide.3 It is diagnosed by core needle biopsy anal-

ysis, involving a collection of about 12 cores from different

parts of the prostate. Pathologists analyze individual prostate

glands on the slides of the collected cores for malignancy.

For low-grade and low-volume cases, pathologists have to

carefully examine hundreds of glands in each core to avoid

missing any malignant glands. This is a tedious and time-

consuming process that is prone to errors and inter-observer

variability. Besides, increasing incident rates and decreasing

number of actively working pathologists escalate the workload

per pathologist.4

Prostatic carcinoma is graded based on Gleason patterns

(GPs) from 1 to 5 (although GP1 and GP2 are not routinely re-

ported in the clinic). The sum of the two most common patterns

inside the slide (for biopsy slides, the highest grade is reported as

the second pattern if it is >5%) is the Gleason score (GS) and is

used as the grade of prostatic carcinoma. Recently, the 2014 In-

ternational Society of Urological Pathology (ISUP) Consensus

Conference on Gleason Grading of Prostatic Carcinoma up-

dated the definitions of GPs and introduced a new grading sys-

tem.5 There are five prognostically different grade groups from

GG1 to GG5 (from the most favorable to the least favorable),

which are based on the modified GS groups: GG1 (GS % 6),

GG2 (GS 3 + 4 = 7), GG3 (GS 4 + 3 = 7), GG4 (GS 8), and GG5

(GS 9–10). It is vital to diagnose cancer at low grades for a better

prognosis and patient life quality.

Recently, it has been shown that the assistance of machine-

learning systems significantly improves the diagnosis and

grading of prostate cancer by pathologists.6,7 A few studies

developed successful machine-learning systems for prostate

cancer diagnosis and grading to assist pathologists.8–17 They

covered a broad spectrum of grade groups. Nevertheless, it

is easier for an expert pathologist to diagnose high-grade can-

cers such as GG4 or GG5. On the other hand, it becomes a real

challenge to discriminate rare malignant glands among

numerous benign glands in low-grade cancers such as GG1

and GG2.18 Besides, undetected malignant glands may result

in repeat biopsies and missed therapeutic opportunities. There-

fore, this study concentrates on low-grade prostatic carcinoma

of GG1 and GG2. It develops a deep-learning pipeline detect-

ing rare malignant glands in core needle biopsy slides to help

pathologists quickly and accurately diagnose prostate cancer

in low-grade and low-volume cases. Given a core needle bi-

opsy slide, the pipeline produces a vivid heatmap highlighting

the malignant glands inside the slide to pathologists. Moreover,

contrary to previous studies’ single resolution and patch-based

methods, this study uses a multi-resolution and gland-based

classification approach, providing pathologists with individual

gland labels.

Our pipeline consists of two stages: gland segmentation using

a Mask R-CNN19 model and a multi-resolution gland classifica-

tion model (see experimental procedures and Figure 1). While

glands in biopsy cores were detected by the gland segmentation

model, each detected gland was classified into benign versus

malignant by the gland classification model. Our multi-resolution

gland classification model jointly analyzed a gland’s high-resolu-
2 Patterns 3, 100642, December 9, 2022
tion (403 and 203) and low-resolution (103 and 53) patches to

exploit morphology information (of nuclei and glands) and neigh-

borhood information (for architectural patterns), respectively

(see experimental procedures). The multi-resolution models

imitate pathologists’ comprehensive workflow of analyzing

both macro and micro structures inside the slides,20,21 and

even naive multi-resolution models obtained as ensembles

perform better than single-resolution models.8 The code is pub-

licly available.2

This study was conducted on a local cohort of 99 patients

collected in Singapore (see datasets and Table 1). Data collected

from each patient contained hundreds of glands for machine

learning. The data are publicly available,1 and this is the first dig-

ital histopathology dataset of patients of Asian ancestry with

prostatic carcinoma. The global research community can benefit

from this valuable dataset to develop and test machine-learning

models and ultimately improve patients’ outcomes.

The pipeline’s performance was evaluated on the data of held-

out patients in the test set. The performance metric was the area

under the receiver operating characteristic curve (AUROC) value

with a 95% confidence interval (CI) constructed using the

percentile bootstrap method.22 We obtained an AUROC value

of 0.997 (95%CI: 0.987–1.000) on benign versus malignant clas-

sification of core needle biopsy parts (81 parts: 50 benign and 31

malignant) in 16 slides of 16 patients in the test set. Furthermore,

we produced spatial malignancy maps with a gland-level resolu-

tion to assist pathologists in reading prostate core needle biopsy

slides (Figure 2D). Our pipeline can help pathologists detect

prostate cancer in core needle biopsy slides at early stages

and shorten turnaround times by presenting high-risk regions

via malignancy maps to pathologists.

An external validation study also showed that our multi-resolu-

tion classification model generalized across institutions that had

patients from different ancestries. A three-resolution classifica-

tion model was trained on the publicly available PANDA chal-

lenge dataset consisting of thousands of prostate core needle bi-

opsy slides of patients with European ancestry.18 Then, the

model was tested on our gland classification dataset, which con-

sisted of slides of patients with Asian ancestry. An AUROC value

of 0.992 (95% CI: 0.985–0.997) was obtained on benign versus

malignant classification of core needle biopsy parts (280 parts:

179 benign and 81 malignant) (Table 3).

RESULTS

We trained our models on the training set and chose the best set

of model weights based on validation set performance (see data-

sets and Tables 1 and S1). Finally, we evaluated the performance

of our trained models on the data of completely unseen patients

in the hold-out test set. Each patient in the test set was like a new

patient walking into the clinic.23

Mask R-CNN model successfully segmented prostate
glands
The Mask R-CNN model’s performance was evaluated on the

test set of gland segmentation dataset. Using an intersection

over union (IoU) threshold of 0.5, a recall of 0.945 and a pre-

cision of 0.830 were obtained at gland level. The low precision

(compared with recall) was due to glands appearing inside
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Figure 1. Malignant gland detection pipeline in prostate core needle biopsies

(A) Glands in collectedWSIs were annotated by drawing contours around each gland and assigning amalignant, benign, unknown, or artifact label. Then, patches

centered around a particular gland were cropped at different resolutions for each gland while preparing datasets for training machine-learning models. See also

Figure S1.

(B) A Mask R-CNN19 model was trained for gland segmentation on patch and mask pairs prepared at 203 resolution. A multi-resolution (four-resolution) deep-

learning model was trained for gland classification on patches (cropped at 53, 103, 203, and 403 resolutions) and label pairs.

(C) After gland segmentation and classification models were successfully trained, a two-stage pipeline was constructed. The trained Mask R-CNN model de-

tected the glands in a WSI, and the trained multi-resolution model obtained the malignancy probability for each detected gland. Finally, a malignancy heatmap

was generated to support pathologists in prostate cancer diagnosis from core needle biopsy WSIs.
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dataset patches but which were not annotated since they

were partial glands at the edges of the biopsy cores

(Figure 2D).

Moreover, we compared the Mask R-CNN model’s perfor-

mance with other literature methods on a publicly available
gland segmentation dataset.24 We trained the model on the

provided training set and checked the trained model’s perfor-

mance on the hold-out test set. The Mask R-CNN model slightly

outperformed deep-learning-based segmentation methods (Ta-

ble 2). Besides, all the deep-learning-based methods vastly
Patterns 3, 100642, December 9, 2022 3



Table 1. Singapore data: The number of slides and patches in training, validation, and test sets for gland segmentation and

classification tasks

Gland segmentation

# slides # patches

Train Valid Test Total Train Valid Test Total

Prostatectomy 17 8 15 40 7,795 3,753 7,224 18,772

Biopsy 26 13 20 59 5,559 4,028 5,981 15,568

Total 43 21 35 99 13,354 7,781 13,205 34,340

Gland classification

# slides (3 + 3:3 + 4:4 + 3) # patches (benign:malignant)

Train Valid Test Total Train Valid Test Total

Biopsy 10:9:1 3:7:0 6:10:0 19:26:1 1,557:2,277 1,216:1,341 1,543:2,718 4,316:6,336

There is one H&E-stained WSI for each prostatectomy or core needle biopsy specimen. The gland classification datasets are subsets of the gland

segmentation datasets. See also Table S1.
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outperformed traditional image processing or machine-learning-

based methods.

The four-resolution model outperformed single-
resolution models in gland classification
The four-resolution deep neural network model incorporated in-

formation from different levels in gland classification task. While

403 and 203 patches provided detailed morphology of the

gland under consideration, 103 and 53 patches provided

spatial neighboring information. We also trained single-resolu-

tion models for comparison. The models were evaluated using

AUROC and average precision (AP) calculated over precision

versus recall curve. 95%CIs were constructed using the percen-

tile bootstrap method.22

The four-resolution model achieved an AUROC of 0.996 (95%

CI: 0.994–0.997) and an AP of 0.997 (95%CI: 0.994–0.998). While

the single-resolution models also produced satisfactory results,

the four-resolutionmodel outperformed them (Figures 2A and 2B).

Gland morphology and neighborhood information were
important in prostate gland classification
To assess the contribution of each resolution to the gland classi-

fication performance, we trained three-resolution models by

dropping a different resolution each time from the four-resolution

model. Then, the performance drop on the test set was used as a

metric for that particular resolution. The highest and second-

highest performance drops were observed in both AUROC and

AP when the resolutions of 103 and 403, respectively, were

excluded (Figures 2A and 2B). Our analysis showed that 103

and 403 patches provided valuable information for the four-res-

olution model. This also validated that both morphology (from

403) and neighborhood (from 103) information were important

in prostate gland classification.

The pathologist’s annotations served as landmarks and
guided the researcher in creating viable annotations for
machine learning
Having a pathologist annotate every single gland in a slide is

expensive and not feasible. Therefore, we followed a different

strategy (see Figure S1 for details). A senior pathologist anno-

tated only 10%of the glands in each slide. Based on these anno-

tations, a researcher annotated the rest of the glands.
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We checked the effectiveness of our annotation strategy. In

the training set of gland classification dataset, we trained two

four-resolution models: the first model using glands annotated

by the pathologist (modelP), and the second model using glands

annotated by the researcher (modelR). Then, in the test set of

gland classification dataset, each model’s performance was

calculated on only the glands annotated by the pathologist

(glandsP) and only the glands annotated by the researcher

(glandsR).

On the glandsP, while the modelP achieved an AUROC of

0.969 (95% CI: 0.950–0.985) and an AP of 0.950 (95% CI:

0.918–0.976), the modelR achieved an AUROC of 0.975 (95%

CI: 0.958–0.989) and an AP of 0.962 (95% CI: 0.933–0.986).

Similarly, on the glandsR, while the modelP achieved an

AUROC of 0.987 (95% CI: 0.983–0.991) and an AP of 0.988

(95% CI: 0.983–0.992), the modelR achieved an AUROC of

0.990 (95% CI: 0.987–0.994) and an AP of 0.991 (95% CI:

0.987–0.994). Obtaining a similar performance for both models

on each subset of the test set (see Figure S2 for details), we

concluded that the pathologist’s annotations served as land-

marks and guided the researcher in creating viable annotations

for machine learning.

Deep-learning-based pipeline successfully classified
biopsy parts into negative and positive
There were multiple needle biopsy cores in a whole-slide im-

age (WSI), and these cores could be broken into parts during

slide preparation. Each core needle biopsy part within WSIs in

the test set of gland classification dataset was classified into

positive versus negative based on the manual annotations. A

part was assigned a positive label if it contained at least one

malignant gland and a negative label otherwise. Then, the

pipeline was tested end to end on the core needle biopsy

part classification task (81 parts in 16 slides of 16 patients

in the test set: 50 benign and 31 malignant). The glands in

each part were detected by the trained Mask R-CNN model.

For each detected gland, a malignancy probability was ob-

tained from the trained four-resolution model (see experi-

mental procedures). The maximum of the predicted malig-

nancy probabilities in a part was used as the part’s

malignancy probability. An AUROC value of 0.997 (95% CI:

0.987–1.000) was obtained.



A AUROC with 95% CI B AP with 95% CI

0.0 Benign

Malignant

0.5

1.0

C  Manual annotation D  Malignancy heatmap 

Figure 2. Performance evaluation on the test set of gland classification dataset and spatial malignancy map

(A and B) Area under receiver operating characteristics curve (AUROC) (A) and average precision (AP) (B) calculated over precision versus recall curve together

with 95% confidence intervals (obtained using the percentile bootstrap method22) are presented for the single-resolution models, three-resolution models, and a

four-resolution model.

(C and D) Example manual annotations and spatial malignancy map produced using a deep-learning-based pipeline, respectively. Arrow heads show tissue

components detected by the pipeline but not manually annotated.
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Furthermore, toassistpathologists in readingprostatecorenee-

dlebiopsyslides, a spatialmalignancymap for eachslidewascon-

structed using malignancy probabilities of detected glands ob-

tained from the trained four-resolution model (Figure 2D).

External validation demonstrated the generalizability of
our multi-resolution approach
To check the generalizability of our multi-resolution approach, we

trained a three-resolution benign versus malignant classification

model on the publicly available development set of the PANDA

challenge.18 The PANDA dataset consisted of 10,512 prostate bi-

opsy slides of different grade groups collected from two institutes

in Europe (see PANDA dataset for details). We randomly segre-

gated 10,512 slides into training (6,279 - benign [B]: 1,719 versus

malignant [M]: 4,560), validation (2,093 - B: 573 versus M: 1,520),

and test (2,140 - B: 580 versusM: 1,560) sets (see Table S1 for de-

tails). The model was trained on the training set for 327 epochs

with early stopping criteria on the validation set performance.
Then, besides checking the model’s slide classification perfor-

mance on the unseen test set of the PANDA dataset (see

Table S2), an external validation study was performed on the

Singapore (SG) gland classification dataset.

We obtainedmalignancy probability scores of patcheswithin a

core needle biopsy part from the trained model and used the

maximum of the scores as the part’s malignancy score. Then,

we performed a receiver operating characteristics curve analysis

for benign versus malignant classification on the SG gland clas-

sification dataset (280 cores from 46 patients - B: 179 versus

M: 81). An AUROC value of 0.992 (95% CI: 0.985–0.997) was

obtained (Table 3), showing the generalizability of our multi-res-

olution approach across institutions with patients of different an-

cestries. Moreover, the PANDA model achieved an AUROC

value of 0.980 (95% CI: 0.953–0.997) on the test set of the SG

gland classification dataset, which was similar to our pipeline’s

performance of 0.997 (95%CI: 0.987–1.000) in the previous sec-

tion (see Table S2).
Patterns 3, 100642, December 9, 2022 5



Table 2. Performances of different methods in prostate gland segmentation in terms of pixel-based metrics

Method Accuracy Precision Recall Dice

Farjam et al.25,a 0.6378 ± 0.1586 0.7183 ± 0.3034 0.4372 ± 0.1736 0.5070 ± 0.2059

Naik et al.26,a 0.7402 ± 0.1151 0.7958 ± 0.2021 0.5819 ± 0.2275 0.6357 ± 0.2105

Peng et al.27,a 0.7957 ± 0.1535 0.6508 ± 0.2568 0.9305 ± 0.1124 0.7334 ± 0.2198

Nguyen et al.28,a 0.7703 ± 0.1632 0.8260 ± 0.1588 0.7041 ± 0.2998 0.7145 ± 0.2556

Singh et al.29,a 0.6734 ± 0.1247 0.9001 ± 0.1743 0.3869 ± 0.2493 0.4931 ± 0.2557

Ren et al.30,b 0.8576 ± 0.1139 0.8199 ± 0.1638 0.8861 ± 0.1673 0.8308 ± 0.1495

Xu et al.31,b 0.8250 ± 0.1106 0.7407 ± 0.1597 0.9273 ± 0.1079 0.8079 ± 0.1264

Salvi et al.24,b 0.9325 ± 0.0684 0.8897 ± 0.1359 0.9356 ± 0.0964 0.9016 ± 0.1087

Mask R-CNN19,b,c 0.9410 ± 0.0010 0.9002 ± 0.0026 0.9468 ± 0.0011 0.9229 ± 0.0015

The performances were on the hold-out test set of Salvi et al.24 Note that accuracy values were the balanced accuracy values as in Salvi et al.,24 and all

performance values except the one for the Mask R-CNN model were collected from Salvi et al.24

aTraditional image processing or machine-learning-based methods.
bDeep-learning-based methods.
cStandard deviations were calculated using bootstrapping.22
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Post-hoc analysis revealed the focuses of the models in
their predictions
To obtain deeper insights into the four-resolution model trained

on the SG dataset (SG model) and the three-resolution model

trained on the PANDA dataset (PANDA model), we conducted

a post-hoc analysis on images in the test set of the SG gland

classification dataset. We used integrated gradients attribution

method32 to obtain the contribution of each element inside the

images of different resolutions (Figures 3A, S3, and S4). The

post-hoc analysis revealed that elements of images from

different resolutions contributed to the models’ predictions.

While the SG model exploited information from both high- and

low-resolution images, the PANDA model focused mostly on

low-resolution images.

We observed in SG model’s predictions that prominent

nucleoli in malignant glands (Figure 3A and S3) had high attribu-

tion scores, consistent with prostate cancer histology in the

clinic. Similarly, nuclei regions and lumen contours were high-

lighted in attribution maps of low-resolution images for both

models (Figures 3A and S3), showing the contribution of nuclear

morphology and arrangement in the models’ predictions.

Another interesting observation was that, beside nuclear areas,

cytoplasm of columnar epithelial cells in benign glands had

high attributions (Figure S4). This might be thought of as a crite-

rion of the machine-learning model similar to nucleus-cytoplasm

ratio used in the clinic.

To have a better understanding of the SG and PANDAmodels,

we inspected some patches annotated by the pathologist in the

test set of the SG gland classification dataset. Among patches

correctly classified by the models with high confidence (Fig-

ure 3B), there were malignant patches with both GP3 and GP4,

indicating that models learned to identify these patterns. Simi-

larly, there were benign glands with both cross-sectional and

tangential cuts. Besides, we observed that the PANDA model

made better predictions on the patches with infiltrating malig-

nant glands (Figure S5), which might be due to better generaliza-

tion from having more patient data. On the other hand, the SG

model’s performance was better on benign glands. One reason

could be that many of these benign glands were annotated by

the pathologist upon the researcher’s request since they were
6 Patterns 3, 100642, December 9, 2022
hard cases. Moreover, it is to be noted that the test set of the

SG gland classification dataset was an internal test set for the

SG model. However, it was an external test set for the PANDA

model. This could be another reason of the SG model’s slightly

better performance.

Grade group prediction using a multi-resolution GP
classifier was promising
To determine themulti-resolution GP classifier’s viability in grade

group prediction, our multi-resolution benign versus malignant

gland classification model was modified to classify a patch into

benign, pattern3, pattern4, or pattern5 (see supplemental exper-

imental procedures for details). We conducted our experiments

with this model on the Radboud dataset, a partition of the

PANDA dataset (Table S1). Of note, this was the only dataset

with pixel-level GP annotations. The annotations were generated

semi-automatically using a trained deep-learning model and

contained label noise.18

In the GP classification task, the model achieved a patch-level

accuracy of 0.864 on the test set of the Radboud dataset. As

seen in the confusion matrix (Figure S6), the model performed

well on benign patches. However, it had difficulty in discrimi-

nating malignant patches. Many pattern5 patches, for example,

were classified as pattern4. There were also malignant patches

classified as benign. To assess the severity of misclassification,

we conducted a benign versus malignant slide classification

experiment on slide malignancy scores obtained by aggregating

malignant classes (see supplemental experimental procedures

for details). An AUROC value of 0.960 (95% CI: 0.949–0.970)

was obtained (Figure S7), showing that these errors were not

severe.

After obtaining pattern predictions for all patches in a slide, we

obtained the slide’s grade group based on the pattern percent-

ages within the slide (see supplemental experimental proced-

ures for details). To check the agreement between predicted

grade groups and reference grade groups in the dataset, we

used quadratically weighted Cohen’s k.33 A k value of 0.707

(95% CI: 0.665–0.748) was obtained. Besides, many of the

wrong predictions were within one grade group (Figure S8).

Although the model’s performance was not as high as the



Table 3. External validation set performance of algorithms in prostate cancer detection

Study External dataset (B: benign, M: malignant) AUROC (95% CI)

Campanella et al.8 12,727 core needle biopsy slides (B = 314, M = 12,413) 0.932 (0.911–0.952)a

Pantanowitz et al.13 355 parts with multiple slides (B = 225, M = 130) 0.991 (0.979–1.000)b

Ström et al.14 330 core needle biopsy slides (B = 108, M = 222) 0.986 (0.972–0.996)

Bulten et al.15 245 tissue microarray cores (B = 10, M = 235) 0.988 (0.984–1.000)

Current study 280 core needle biopsy parts (B = 179, M = 81) 0.992 (0.985–0.997)

AUROC, area under receiver operating characteristics curve; CI, confidence interval. See also Table S2.
aCI was obtained on provided predictions in the paper using the percentile bootstrap method.22

bModel was fine-tuned on 44 parts from the external site. Average of four slides per part.
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performance of the PANDA challengemodels,18 it was promising

for further exploration. One of the main reasons for this perfor-

mance gap could be the label noise in pixel-level annotations.

All the reported models were multiple-instance-learning-

based models trained directly on slide-level reference grade

groups and avoided noisy pixel-level annotations.18 Hence, we

concluded that grade group prediction based on our multi-reso-

lution GP predictor was promising. It could help us interpret the

prediction by providing pattern percentages and their distribu-

tion over the slide (Figures S9 and S10). However, to improve

the performance, we needed more reliable pixel-level annota-

tions, which was kept as future work.

DISCUSSION

Manual reading of core needle biopsy slides by pathologists is

the gold standard in the prostate cancer diagnosis in the clinic.

However, it requires the analysis of around 12 (6–18) biopsy

cores, including hundreds of glands. Especially for low-grade

and low-volume prostate cancer (GS 3 + 3 and 3 + 4), identi-

fying the few malignant glands among vastly benign glands is

a tedious and challenging task. These few malignant glands

can be easily overlooked, potentially resulting in missed thera-

peutic opportunities. This study developed a deep-learning-

based pipeline to detect malignant glands in core needle bi-

opsy slides of patients with low-grade prostate cancer. The

pipeline can help early diagnosis of prostate cancer and effec-

tive use of other therapeutic tools at early stages, like active

surveillance, rather than aggressive prostatectomy eligible for

later stages. Moreover, the pipeline can reduce pathologists’

workload as an assistive tool.

Deep-learning-based pipeline can assist pathologists
Our pipeline successfully classified biopsy cores as negative or

positive. It can be deployed as a pre-analysis stratification tool

and help pathologists effectively manage their time on each bi-

opsy core. For instance, they can spend less time validating

negative cores while devoting more time to positive cores. Be-

sides, spatial malignancy maps can help them concentrate on

high-risk regions and decide if further cuts are required (for

example, in the regions with a malignancy probability of 0.5) to

make a diagnosis.

Furthermore, our pipeline can be deployed as a second-read

system. The system can generate a flag for a second opinion

in case of a contradiction between the pathologist’s diagnosis

and the system’s classification. This can help reduce
false negatives and false positives, which potentially result in

missed therapeutic opportunities and aggressive treatment,

respectively.
Challenges of gland-level annotation
Gland-level manual annotation is a challenging task, especially in

core needle biopsies. A tissue core starts drying out from the sur-

face after excision. If the core is not put into formalin buffer

immediately, the morphology of the glands at the edges be-

comes distorted, making benign versus malignant classification

more challenging. Besides, the glands at the edges are usually

partial, and partial glands are not used for diagnosis in the clinical

routine. If all glands within the core are partial, pathologists usu-

ally make a diagnosis based on other viable cores. Moreover,

most glandular structures inside the cores are tangential cuts,

which are hard to annotate. They are considered secondary for

diagnosis and mostly require deeper cuts to reveal the glandular

structure for diagnosis.

Furthermore, artifacts occur during the sample preparation,

such as detached glands, folded tissue, uneven cuts, and

poor preservation. These also make the annotation of each

gland challenging. Another challenge appears in identifying

the boundaries of the glands. It can be difficult to draw the

boundaries of branching glands and fused glands during

manual annotation.

Despite these challenges, gland-level annotation provides a

fine-level resolution to identify individual glands as benign orma-

lignant. This helps us train machine-learning models with fewer

slides than we would need with slide-level annotations.
Limitations and future work
Gland-level annotation enabled us to train highly accurate ma-

chine-learning models. However, we had a limited number of an-

notated slides since manual annotation was tedious and time

consuming. It would have been better if we had more slides to

consolidate our model’s performance. Our external cohort study

showed the robustness of our model against inter-institution dif-

ferences. Yet, the coverage of our external cohort (our gland

classification dataset) was limited to 3 + 3 and 3 + 4 slides of

46 patients.

In the future, we wish to deploy our pipeline as a second-read

system in Singapore and check its performance in the real-world

clinical flow. Moreover, extending our Asian cohort to cover all

Gleason grade groups and adapting our multi-resolution

approach to predict grade group directly are kept as future work.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Mustafa Umit Oner (mustafaumit.oner@eng.

bau.edu.tr).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All images have been deposited at Zenodo under https://doi.org/10.

5281/zenodo.5971763 and are publicly available.1

d All original code has been deposited at Zenodo under https://doi.org/

10.5281/zenodo.5982397 and is publicly available.2 The repository pro-

vides a detailed step-by-step explanation, from training of gland seg-

mentation and classification models to inference with the trained

models.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.

Datasets

SG dataset

Digitized hematoxylin and eosin (H&E)-stained WSIs of 40 prostatectomy and

59 core needle biopsy specimens were collected from 99 patients with pros-

tate cancer at Tan Tock Seng Hospital, Singapore. There were 99WSIs in total

such that each specimen had one WSI. H&E-stained slides were scanned at

403 magnification (specimen-level pixel size 0.25 3 0.25 mm) using Aperio

AT2 Slide Scanner (Leica Biosystems).

We developed models for the gland segmentation and gland classification

tasks using the 99 WSIs. The 99 WSIs were randomly segregated into training

(43), validation (21), and test sets (35) at the patient level to avoid data leakage

while training the models.23 While all the slides were utilized in the gland seg-

mentation task, only a subset of the slides in each set (training: 20, validation:

10, and test: 16) was used in the gland classification task (Table 1). Themodels

were trained on the training sets. The best sets of model weights were chosen

on the validation sets using early stopping to avoid overfitting, and the best

models were evaluated on the test sets.

Prostateglandular structures incoreneedlebiopsyslidesweremanually anno-

tated and classified into four classes, benign, malignant, unknown, and artifact

(Figure1A),using theASAPannotation tool (https://computationalpathologygroup.

github.io/ASAP/). A senior pathologist reviewed 10% of the annotations in each

slide, ensuring that some reference annotations were provided to the researcher

at different regionsof thecore (seeFigureS1 for details). It is to benoted that partial

glands appearing at the edges of the biopsy cores were not annotated.

PANDA dataset

Publicly available development set of the PANDA challenge consisted of

10,616 prostate biopsy slides from two institutes (Radboud University Medical

Center, the Netherlands, and Karolinska Institutet, Sweden) in Europe.18 The

slides covered all range of GSs (see Table S1 for details). They were scanned

using different scanners, and the highest available resolution inside the slides

was 203 (z0.5 mm/pixel).

We dropped 104 slides because they were empty or did not have pixel-level

annotation masks. Then, we randomly segregated 10,512 slides into training

(6,279), validation (2,093), and test (2,140) sets to train a three-resolution

benign versus malignant classification model (see Table S1 for details). It is

to be noted that there weremultiple slides for a patient in the PANDA challenge

development set.18 However, the mapping between slides and patients was

not provided. Therefore, our segregation might suffer from data leakage.23

To avoid spurious results, we used European data only for training of our model

and conducted an external validation on Singapore data.
Figure 3. Post-hoc analysis using the trained SG and PANDA models

(A) Attribution maps obtained using integrated gradients32 with blurred images a

classification dataset. This sample is predicted correctly by the SG and PANDA

(B) Onemalignant patch and one benign patch with the highest correct class proba

gland classification dataset. Predictedmalignancy scores by the trained SG and P

are shown in black.
Ethics statement

This study complies with the ethical principles of the Declaration of Helsinki.

Institutional review board approval was obtained for this study (National

Healthcare Group, Domain Specific Review Board 2009/00144, Singapore).

Besides, we were granted a waiver of informed consent for this study.

All the data were de-identified. The slides were scanned by excluding the ID

tags. Then, digital slides were labeled with arbitrary file names in the form of

‘‘patient_RRRRRR_slide_01,’’ where ‘‘R’’ stands for a random digit (e.g., pa-

tient_040551_slide_01). There is no record of mapping between original pa-

tient IDs and arbitrary file names.
Prostate gland segmentation and classification pipeline

This study developed a deep-learning-based pipeline detecting malignant

glands in core needle biopsy slides of prostate tumors. The ultimate aim

was twofold: to improve patients’ outcomes by helping pathologists diagnose

prostate cancer in low-grade and low-volume cases and to reduce patholo-

gists’ workload by providing them with an assistive tool during diagnosis.

The pipeline consisted of two stages: gland segmentation and gland classifi-

cation models.

Gland segmentation using a mask R-CNN model

The first stage used a Mask R-CNN19 model to segment glands. The Mask

R-CNN had a ResNet5034 as its region proposal network. The box predictor

and mask predictor had two classes (gland versus background). The model

was trained end to end from scratch.

The dataset used in this stage consisted of cropped patches of size

5123 512 pixels at 203magnification fromWSIs such that an annotated gland

was centered at each patch (Figure 1B). The patch size and resolution were

selected such that both nuclei morphology and gland structure information

were available to be exploited by the Mask R-CNN model. For each patch, bi-

nary masks of all glands present in the patch, including incomplete glands at

the edges, were created as labels.

Data augmentation techniques, namely random horizontal and vertical flip,

color augmentation (contrast, brightness), and rotation, were applied to the

patches and binary masks at training. After augmentation, the patches were

cropped to 362 3 362 pixels around the center and passed as input to Mask

R-CNN.

Gland classification using a four-resolution model

The second stage used a four-resolution deep-learning model that emulates

pathologists’ workflow to perform gland classification. Patches of size

512 3 512 pixels were cropped from WSIs at resolutions 53, 103, 203, and

403 with an annotated gland centered at each patch. To predict whether

the center gland was benign or malignant, patches of these resolutions from

the same tissue region (around a particular gland) were passed into the

multi-resolution model simultaneously (Figure 1B).

Specifically, each patch of a different resolution was passed to a different

ResNet-1834 feature extractor. Extracted features from patches of all resolu-

tions were then summed and passed to a linear classifier to predict whether

the center gland was benign or malignant. The same data augmentation tech-

niques used in the first stage were applied during the training of the multi-res-

olution model. The model was trained end to end.
Training of deep-learning models

Models trained on SG datasets

The Mask R-CNN model was trained using the Adam optimizer with a batch

size of 4 for 142 epochs. The learning rate was initially set to 3e�4. After the

training loss plateaued at the end of epochs 60 and 110, it was reduced to

3e�5 and 3e�6, respectively. Similarly, the multi-resolutionmodel was trained

using the Adam optimizer with a learning rate of 5e�4 and a batch size of 32 for

76 epochs.
s baselines are presented for a malignant sample in the test set of SG gland

models. See also Figures S3 and S4.

bility scores (by the SGmodel) from nine different slides in the test set of the SG

ANDAmodels are presented under each image. See also Figure S5. Scale bars
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Mask-RCNN model trained on RINGS algorithm dataset

The Mask-RCNN model had the same architecture with the one used on SG

dataset. The model was trained end to end from scratch on the training set

of the RINGS algorithm dataset24 using the Adam optimizer with a learning

rate of 3e�5 for 50 epochs. Batch size was 2.

Three-resolution model trained on PANDA dataset

The three-resolution model was trained on the training set of the PANDA data-

set using the Adam optimizer with a learning rate of 5e�4 for 111 iterations and

then 5e�5 for 216 iterations. Batch size was 16.

Inference using trained pipeline

The trained pipeline accepted aWSI of prostate core needle biopsy as input. It

detected the glands within the slide and predicted whether each detected

gland was malignant or benign (Figure 1C).

Firstly, overlapping patches of size 512 3 512 pixels at 203 magnification

were cropped from the tissue regions inside the slide in a sliding window

fashion with stride 256 pixels. These patches were passed into the trained

Mask R-CNN model to segment glands present. Secondly, predicted masks

from the Mask R-CNN model were grayscale and converted to binary using

thresholding. Then, binary masks were post-processed to merge partial pre-

dictions and eliminate redundant predictions arising from overlapping patch

cropping (see supplemental experimental procedures for details). Finally, for

each detected gland (instance) in a slide, patches at multiple resolutions

were cropped from the slide. The trained multi-resolution model classified

each detected gland as benign or malignant.

Post-hoc analysis

A post-hoc analysis was conducted on images in the test set of the SG gland

classification dataset to gain deeper insights into the four-resolution model

trained on SG dataset (SG model) and the three-resolution model trained on

PANDA dataset (PANDAmodel). Integrated gradients attribution method32 im-

plemented in Captum package35 was used for the analysis. Blurred images

were used as baselines, and global attribution scores obtained by factoring

the model inputs’ multiplier were used while obtaining attribution maps.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100642.
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