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Abstract

In this study, the hyper-viscoelastic behavior of elastomeric specimen is identified, from only one 
heterogeneous test. The test consists on stretching a cruciform specimen in two perpendicular directions 
and holding at the stretched level to characterize relaxation. The constitutive model is based on the 
Yeoh model and the Prony series to describe the hyperelastic and viscous behav-iors, respectively. In the 
first part of the paper, a sensitivity analysis is carried out, to optimize the displacement and 
displacement rate to be prescribed in the identification procedure in order to increase the identifiability 
of the constitutive parameters. The identification procedure is based on the Finite Element Model 
Updating (FEMU) technique. While the test induces heterogeneous kinematic fields, a residual to be 
minimized is built by considering only measured and predicted reaction forces at one branch end of the 
specimen. The minimization problem is solved by using the Inverse-PageRank-Particle Swarm 
Optimization (I-PR-PSO) algorithm. In the second part of the paper, the identification is carried out by 
applying the previously defined optimized loading con-ditions to the specimen. A numerical validation 
was first performed by simulating the relaxation test with different loading conditions. Then, the 
identification methodology was applied to a real test. The identified parameters were used to 
satisfactorily predict the mechanical response of the cruciform specimen under a different loading as the 
one used during the identification procedure.

Keywords: Inverse Identification, Hyperelasticity, Viscoelasticity, FEMU, Particle Swarm Optimization, 
Elastomer

1 Introduction

Elastomers are widely used in many engineering 
fields due to their high elasticity, high damp-ing 
and high elongation at failure. Some of these
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properties are acquired by adding fillers to the
rubber compound, typically carbon black aggre-
gates, silica or both. Fillers have a significant effect
on the main phenomena involved in mechanical
behavior: viscoeelasticity [1], the Mullins effect
[2, 3], the Payne (or Fletcher-Gent) effect [4, 5],
cavitation [6–8], the onset of stress-induced crys-
tallization and the crystallinity level [9–13], and
possible couplings between them. Concerning the
modeling of the mechanical behavior of rubbers
and more generally soft materials, the framework
of hyperelasticity is often chosen, for instance for
tissues [14–16], laminates [17, 18] and specimens
[19]. Hyperelastic models are classically identified
from several homogeneous tests, see [20] and [21]
for instance, since the values of their constitutive
parameters generally depend on the strain state
[22]. Three homogeneous tests are usually consid-
ered, namely the uniaxial tension (UT), the pure
shear (PS) and the equibiaxial tension (EQT), to
completely describe the domain of possible load-
ing paths [23–26]. A trade-off between the sets
of values obtained with these different tests has
therefore to be found to obtain parameters that
can reasonably be considered as intrinsic to the
mechanical behavior of the material. As explained
in [26] and [27], such identification approach
exhibits many disadvantages, among them (i) sev-
eral sample geometries (i.e. molds) and testing
devices are required, (ii) the elaboration process
can differ from one sample geometry to another
one (typically compression molding versus injec-
tion molding), and (iii) the equivalence of max-
imum stretch to apply for the different tests is
a debated issue when identifying the stabilized
behavior. This has a significant effect on the val-
ues of the identified constitutive parameters and
therefore on the predicted mechanical response
[28]. Moreover, the time needed to proceed the test
and to process the data is significant for identify-
ing the constitutive parameters for one material.
An alternative methodology consists in perform-
ing only one heterogeneous test by stretching a
3-branch [29] or a 4-branch (cruciform) [26, 30–32]
specimen. Such type of test induces a wide range
of very different stress/strain states in the sample
(typically from UT to EQT). The identification of
constitutive parameters is performed by using the
measured force(s), generally accompanied by mea-
sured kinematic fields [26, 29, 33, 34].
Another phenomenon strongly influences the

mechanical behavior; the time dependency of the
stress, which is generally assumed to be due to
viscosity [1, 35–38], even though this assump-
tion should not be applied systematically (see
for instance the discussion in [39]). Viscous (or
time-dependent) effects are classically character-
ized by using two types of additional tests, typi-
cally relaxation and creep tests, which are carried
out under homogeneous loadings, typically ten-
sion/compression. This increases significantly the
characterization time and the number of sam-
ples to be tested. One study proposed to identify
hyper-viscoelastic parameters from several uniax-
ial compression tests [40]. The authors used the
Mooney model [41] and a viscoelastic part based
on the generalized Maxwell model. Nevertheless,
the effect of multiaxiality was not investigated
in this study and several tests were required. It
should be noted that, in this study, the iden-
tification is performed with the Particle Swarm
Optimization (PSO) approach. This optimization
algorithm is well suitable for solving minimization
problems with a wide range of parameters [42–
47], which is typically the case of some elastomeric
materials exhibiting very complex behaviors, with
non-linear elasticity, time-dependency, permanent
set, stress softening, anisotropy, strain-induced
crystallization, to name a few (see for instance
[48]).

In this paper, we investigate to what extent
only one single heterogeneous relaxation test car-
ried out with a 4-branch specimen could be suffi-
cient to identify the hyper-viscoelastic constitutive
parameters of a model describing the behavior of
an engineering elastomeric material by using an
artificially smart population-based metaheuristic
optimization process. The minimization problem
is solved by using the Inverse-PageRank-Particle
Swarm Optimization (I-PR-PSO) algorithm [49].
In addition, in order to allow the widest possible
dissemination of the methodology, we also investi-
gate whether measuring the force only along one
direction of the cruciform specimen could be suffi-
cient for identification, i.e. without using full kine-
matic field measurements to build the objective
function. For that purpose, a sensitivity analy-
sis has been carried out in order to evaluate the
values of the displacement and displacement rate
that maximize the identifiability of all constitu-
tive parameters, that is maximizing the sensitivity
of the objective function to the considered design
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variables. Also, the analysis investigates the sensi-
tivity to the amount of experimental data (number
of force values) used as input data in the objective
function calculation.
In Section 2, the sensitivity analysis is presented
and the results highlight the loading conditions
to be prescribed to maximise the constitutive
parameters identifiability. Then, the identification
procedure based on the I-PR-PSO algorithm is
presented. A numerical validation of the method-
ology is performed.
In Section 3, the loading conditions previously
defined by the sensitivity analysis are applied to
a cruciform specimen, to identify the constitutive
parameters describing the behavior of its consti-
tutive material. Then, an experimental test with
a different loading from the one used for the iden-
tification is performed, to fully validate that the
material’s behavior is well predicted in different
loading conditions. The experimental setup is pre-
sented, as well as metrology considerations and
hardware specifications. In Section 4, the results
are presented. The constitutive parameters are
identified from the measured force versus time
curve, the corresponding constitutive parameters
are identified, and the results, in terms of errors
between effective and identified behaviors, are pre-
sented and discussed. Concluding remarks close
the paper.

2 A sensitivity analysis to
define the optimal boundary
conditions of the test

The aim of this part is to determine, by using a
sensitivity analysis procedure, the optimal bound-
ary conditions maximizing the identifiability of the
constitutive parameters of the considered hyper-
visco elastic model. The identifiability is defined
as the sensitivity of the objective function to the
design variables (here, the constitutive parame-
ters to be retrieved). In fine, the aim is to define
the displacement and displacement rate to be pre-
scribed during the experimental test to ensure
the best identifiability of the constitutive param-
eters. Moreover, the minimum experimental data
to be used within the identification process for a
successful identification has been investigated.

2.1 Definition of the Finite Element
(FE) model

The problem to be solved is the identification of
the hyper-viscoelastic behavior of an elastomeric
material. The geometry chosen is a four-branch
105 mm long and 2 mm thick cruciform speci-
men, as presented in Fig. 1. It should be noted
that this type of multibranch geometry has been
increasingly used in the literature [26, 29–32]. The
FE model is developed within the ANSYS APDL
environment [50], by considering plane stress state
and material incompressibility. The four-noded
PLANE182 element is used for the calculation.
The mesh is made of 9600 nodes and 9363 ele-
ments. The mechanical test consists in two phases;
the first one is an equibiaxial tensile loading phase,
denoted EQT in the following, the second one is a
relaxation phase keeping constant the maximum
grips displacement, denoted REL in the following.

Fig. 1 Geometry of the cruciform specimen. Dimensions
in mm.

The hyper-viscoelastic model implemented in
ANSYS software is the one due to the Simo
model [51]. Assuming pure elastic response in bulk
and incompressibility, the constitutive equation
for the Cauchy stress tensor is given as in following
Eq. (1), where dev (•) = (•)− 1

3 [I : (•)] I denotes
the deviator operator in the current configuration,
Ft(t

′) is the relative deformation gradient tensor
at time t′ with respect to the configuration at time
t, g(t) is the normalized shear relaxation function
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σ = σdo + dev

∫ t

0

∂g (t′)

∂t′
(
Ft
−1 (t− t′) σdo (t− t′) Ft−t (t− t′)

)
dt′ + pI , (1)

σo = 2B
∂ΨY (B)

∂B

WY = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3.

(2)

and p is an undetermined pressure due to incom-
pressibility. For sake of clarity, long equations will
be spanned over the page and displayed within
the next few pages. σdo = dev (σo) is the devi-
atoric part of the instantaneous elastic Cauchy
stress tensor σo derived from the Yeoh [52] instan-
taneous stored elastic energy density, which is
expressed in terms of the first invariant of the
left Cauchy-Green tensor B as given in following
Eq. (2).

The three constitutive parameters for the
hyperelastic part of the model to be identified
within the identification process are C10, C20 and
C30. The normalized shear relaxation function is
expressed as a Prony serie, a sum of decaying
exponential functions, as follows

g(t) = g∞ +

3∑
i

Ai exp(− t

Ti
). (3)

The parameters to be identified through the iden-
tification process for the viscoelatic part of the
model are the three time constants T1, T2 and T3

and their corresponding relaxation coefficients A1

A2 and A3. The long term relaxation coefficient
g∞ is deduced from equation (3) for the starting
time (t = 0). To be able to determine these con-
stitutive viscoelastic parameters, a creep test can
be used as well as a relaxation test.

In an ideal configuration, the initial loading
is applied instantaneously. Although, in real life,
limitations in the used testing machines limit the
loading rate, so the loading time is too long for the
results to be used. Then, only the data obtained
during the constant displacement or constant load
are used to determine the viscoelastic constitu-
tive parameters. In this work, the general Maxwell
model implies 3 branches, which implies 6 consti-
tutive parameters to be identified (A1, A2, A3, T1,
T2 and T3, by varying i from 1 to 3 in Eq. (3)).
The loading rate V [mm/min] and prescribed

displacement D [mm] constituting the boundary
conditions of the equibiaxial loading phase of the
test are considered as variables to be determined
for the identification calculation to be successful.

2.2 Definition of the objective
function

The optimization process aims at determining the
constitutive parameters for the predicted data to
fit the experimental ones. Experimental data con-
sidered here are the reaction force at the branches’
ends at different displacement levels. The objec-
tive function is the sum of two parts, correspond-
ing to the two test phases. The first one is defined
to quantify the obtained error during the equibi-
axial tensile loading phase of the test, noted EQT
in the following. The error is modeled by a squared
relative difference between the experimental (exp)
and predicted (pred) forces, as follows:

EEQT =

n∑
i=1

(
Fexp,i − Fpred,i

Fexp,i
)2 (4)

where n is the number of points of the EQT
force-time curve used to calculate the objective
function. n is considered as a variable to be
determined, to minimize the data quantity to be
stored, while identifying the material’s behavior
with minimal errors. The second one quantifies
the obtained error during the relaxation phase of
the test, noted REL in the following. The error
is modeled to take the relative curve shape into
account without being penalized by the algorithm
relative success to retrieve the maximum force
value Fmax (at the beginning of the relaxation
phase). The error is then defined as a squared rela-
tive difference between the experimental (exp) and
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predicted (pred) forces, as follows:

EREL =

m∑
j=1

(
Fexp,j
Fexp,max

− Fpred,j
Fpred,max

)2 (5)

where m represents the number of points of the
REL force-time curve used to process the fitness
calculation. m is considered as a variable to be
determined.

Finally, the objective function used within the
sensitivity analysis and optimization process is
given as follows:

ETOT = EEQT + EREL (6)

The objective function given in Eq. (6) aims
at fitting the experimental force-time curve of the
whole test (EQT and REL), by determining the
constitutive parameters of the chosen constitutive
equations. n and m are considered as variables
to be determined, to investigate the effect of the
sampling on the identifiability of the constitutive
parameters to be retrieved.

2.3 Sensitivity analysis

In this section, the optimization variables are the
constitutive parameters of the material model, to
be identified within the identification process. The
sensitivity analysis aims at determining the effect
of the optimization variables on the objective func-
tion to be minimized, that is its sensitivity, while
determining the best boundary conditions of the
test (i.e. the prescribed displacement D and load-
ing rate V ) to be carried out to maximize this
sensitivity.

The sensitivity analysis methodology used is
based on the Morris method [53], which is a vari-
ant of the One-At-a-Time (OAT) method [54].
This method gives indicators (mean and standard
deviation (std) of the sensitivity for each param-
eter) allowing the qualitative classification of the
parameters within 3 classes:

• Class #1: those for which the effect on the
objective function is negligible (small mean and
small std),

• Class #2: those exhibiting a linear effect on the
objective function (large mean and small std),

• Class #3: those for which the effect on the
objective function is non-linear and/or that

exhibit interactions with other variables (large
std).

The methodology is described as follows. First
of all, each optimization variable, denoted vk in
the following, is defined on a research domain,
which is discretized into 5 sub-domains of size
∆vk. Then, a two-step process is applied:

• Step #1: a first random set of the optimization
variables is used in an initial objective function
calculation,

• Step #2: the design variables vk are modified,
one-at-a-time, of one step ±∆vk (the sign is ran-
domly defined) in their respective domain. For
each modified variable, the objective function
is calculated and the sensitivity svk of each of
them is determined as the finite difference cal-
culated as in following Eq. (7) where p is the
number of optimization variables.

As all variables are modified each time of one
step ∆vk in their respective domain - represent-
ing 1/5 of the domain - the sensitivity can be
normalized, meaning that the denominator can be
simplified, so that the sensitivity of each objec-
tive function due to the modification of each
variable vk is given as the objective function differ-
ence between two consecutive objective function
calculations, as given in following Eq. (8).

The whole process (steps #1 and #2) is
repeated N times by varying i in Eq. (8), for the
results to be statistically representative of the con-
sidered research domains. N different values of
sensitivity are then obtained, for each considered
optimization variable. The mean and standard
deviation of these sensitivities are calculated as
follows:

µvk =
1

N

N∑
i=1

(Svk)i (9)

Σvk =

√√√√ 1

N

N∑
i=1

((Svk)i − µvk)2 (10)

where µvk and Σvk are the mean and standard
deviation of the objective function sensitivity to
variable vk, respectively.

In practice, the optimization variables are dis-
cretized in their respective domain as given in
Table 1. Here, C20 is imposed to be negative
for the Yeoh model, in order to fairly predict
the shear modulus for all ranges of strain, as
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svk =
OF (v1, v2, . . . , vk ±∆vk, . . . , vp)−OF (v1, . . . , vp)

∆vk
(7)

(Svk)i = OFi(v1, v2, . . . , vk ±∆vk, . . . , vp)−OFi(v1, . . . , vp) (8)

explained in [52]. The stability criterion defined by
Drucker [55] is used within the FE code ANSYS
APDL in order to ensure the behavior law stabil-
ity.

Table 1 Discretization of the design variables

Variable min max Step ∆vk

C10 0.1 1 0.18
C20 −0.015 −0.001 0.0028
C30 1E − 4 1E − 2 1.98E − 3
A1 1E − 4 0.2 3.998E − 2
A2 1E − 4 0.2 3.998E − 2
A3 1E − 4 0.2 3.998E − 2
T1 1E − 4 1 1.9998E − 1
T2 1.0001 10 1.79998
T3 10.0001 28 3.59998

As the sensitivity analysis aims at determining
the best loading conditions to be prescribed dur-
ing the tests to increase the identifiability of the
constitutive parameters, the displacement rate V
[mm/min] and prescribed displacement D [mm]
are discretized in their respective domains, by tak-
ing into account the experimental feasibility of the
experimental setup. Thus, the displacement rate
V [mm/min] is discretized from 100 to 500 mm/
min by step of 100 mm/min. The prescribed dis-
placement D is discretized from 10 to 70 mm,
by step of 20 mm. The whole sensitivity pro-
cess previously described is performed for each set
(V ; D).

To validate the methodology, the experimen-
tal force-time curve needed to calculate the
objective function previously given in Eq. (4) is
obtained numerically with the FE calculation pre-
viously described. The constitutive parameters of
this model are given in Table 2. The value of
the incompressibility parameter K−1 was set to
10−5MPa−1 for all the FE calculations proceeded,
which is low enough to model the material incom-
pressibility [56]. The number of points obtained
from the FE calculation on the force-time curve
are, for all the performed calculations: 20 points

evenly distributed during the equibiaxial tension
part of the test, 50 points evenly distributed dur-
ing the first half of the relaxation part of the test,
and 20 points evenly distributed during the second
half part of the relaxation part of the test.

Finally, the number of points used within the
objective function calculation (n and m in Eqs. (4)
and (5) respectively) has also been investigated.
Then, all these sensitivity calculations are per-
formed by considering five different cases for n
and m independently, as follows: 1 point over q
are used within the objective function calcula-
tion, ∀q ∈ [1; 5]. The global sensitivity calculation
algorithm is given in Alg. 1.

2.4 Results of the sensitivity
analysis

For each (V ; D) couple, a graphical representa-
tion of the influence of each design variable on the
objective function is plotted in Fig. 2, representing
the results obtained, by prescribing a displace-
ment from 10 to 70 mm, and for a displacement
rate from 100 to 500 mm/min (standard devi-
ation (std) as a function of the mean, for each
graph). To be able to easily identify the constitu-
tive parameters, their respective sensitivity has to
be of the same order of magnitude with respect
to each other. This order of magnitude, that is
the relative values of sensitivity compared to each
others, is the best indicator of the variables’ sen-
sitivity, instead of the variables’ values themselves
(the scale is not of importance in Fig. 2 [53]). Oth-
erwise, the variation of the objective function due
to the modification of the less important variables
will not be detected as the identification will be
going on. As one can see in Fig. 2, for small values
of V and D (bottom-left of Fig. 2), C10 exhibits
a much higher influence on the objective function
than the other constitutive parameters. Then, in
this case, the other constitutive parameters will
not be identifiable by the optimization process, as
their influence is small compared to C10 influence.
On the contrary, with higher values of V and D
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Table 2 Constitutive parameters of the numerical model, for its force-time curve to be used as an experimental one in
the objective function calculation

Variable C10 C20 C30 A1 A2 A3 T1 T2 T3

value 0.5 −0.02 0.005 0.09 0.08 0.07 0.2 2 20

Algorithm 1 Sensitivity analysis methodology

for each displacement rate V do
for each prescribed displacement D do

Calculate the reference force-time curve
for N times do

Define an initial random value for each design variable
Calculate the first initial objective function with equation (6)
while all the design variables have not been modified do

Choose a random design variable vk
Modify vk by random ±∆vk
Calculate the objective function with equation (6)
Calculate the sensitivity of the objective function with equation (8)

end while
end for
for each design variable vk do

Calculate the sensitivity mean with equation (9)
Calculate the sensitivity standard deviation with equation (10)

end for
end for

end for

(top-right of Fig. 2), the influence of all the design
variables are of the same order of magnitude, max-
imizing the chances for the optimization process
to detect their influence on the objective function,
and then maximizing their identifiability.

The data quantity used within the objective
function calculation has been investigated. Five
different cases have been studied, by using 1/q
points on the force-time EQT and REL curves,
with q ∈ [1; 5]. Fig. 3 shows the difference
of sensitivity by changing the number of points
used within the objective function calculation
for a given (V ; D) couple, here 500 mm/min
and 70 mm, respectively. One can note that the
relative sensitivity of all variables, in terms of
the distribution of the (standard deviation;mean)
plane is not sensitive to the data quantity. Then,
the data quantity to be stored and used within
the optimization process (variables n and m in
Eqs. (4)-(5) respectively) does not need to be too
large as no difference in terms of sensitivity dis-
tribution is observed. Then, using 17 points (4 for

the EQT phase (variable n in Eq. (4)), 14 for the
REL phase (variable m in Eq. (5))) is sufficient for
the optimization process to capture the influence
of design variables on the objective function.

To sum-up, this sensitivity analysis points out
the three main requirements to successfully carry
out the identification:

1. The objective function should normalize the
maximal value of effort reached at the end of
the equibiaxial part of the experimental test,
to be specifically taken into account within the
fitting process,

2. the boundary conditions to be used within the
experimental test should be a displacement
and a displacement rate respectively equal to
70 mm and 500 mm/min for the objective
function to be sufficiently sensitive to the vari-
ables variations,

3. the number of points on the force-time curve
can be very few. Here, with a minimum 1:5
sampling (corresponding to 17 data points), we
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Fig. 2 Evolution of the objective function sensitivity as a function of the loading rate and the prescribed displacement

found the same results as for a 5:5 sampling
(corresponding to 90 data points). In practice,
this means that it is not necessary to sample the
experimental test very precisely, as the num-
ber of points does not influence the obtained
results, as long as the maximum force reached
is measured and identified.

2.5 Identification strategy

Once the experimental boundary conditions have
been determined by the sensitivity analysis, a
metaheuristic optimization algorithm has been
used to identify the constitutive parameters.
Inverse-PageRank-PSO (I-PR-PSO) is based both
on the Particle Swarm Optimization (PSO) [42,
45, 57] and the PageRank [58, 59] algorithms.
By ranking the particles in a smart way, defined
by an inverse PageRank strategy [49, 60], this
algorithm is strongly decreasing the number of
iterations, and so the number of fitness calculation

calls needed to obtain an optimized solution. In I-
PR-PSO, as well as in the classical version of PSO,
particles are defined, that are each representing
a potential solution to the considered objective
function. Then, these particles are flying through
the research domain, by following each other in a
smart way, to converge together to the global opti-
mum of the considered objective function. To do
so, the way the particles are influencing each other
is considered as a Markov chain. In this way, the
probability matrix defining the way the particles
are influncing each other, can be deduced from the
relative success of each particle at each iteration
of the optimization process (for more details, see
[49]). Then, the links between particles, is smartly
evolving as the calculation is going on, for the best
particles to be the most influent upon the swarm.
So, at each iteration k+1 of the optimization pro-
cess, the speed V k+1

i and position Xk+1
i of every

particle i have to be recalculated, by using Eq. (11)
where ω is weighing the influence of previous speed
on the new one, i.e. is representing the inertia of
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Fig. 3 Evolution of the objective function sensitivity, as a function of the force-time curve sampling

{
V k+1
i = ω × V k

i + rand1 × (P k
i,best −Xk

i ) + rand2 ×
∑n

j=1Cij ×
[
P k
j,best −Xk

i

]
Xk+1
i = Xk

i + V k+1
i

(11)

particles during their movement in the research
domain, rand1 and rand2 and random numbers
in [0; 1] bestowing the heuristic characteristics of
the algorithm, P k

i,best represents the best personal
position of particle i found so far. Cij is the proba-
bility transition matrix containing the coefficients
weighing the influence of all the particles on the
others, based on their relative success among the
swarm (for more details, see [49]).

In our case, consisting of the identification
of the constitutive parameters of an hyper-
viscoelastic law, each particle is a vector contain-
ing some values of the constitutive parameters
that are going to be tested among the fitness
calculation.

2.6 Numerical validation

In this section, the proposed identification
methodology is applied to the force-time curve
obtained from FE simulation of the biaxial exper-
iment with the prescribed displacement and dis-
placement rate identified by the sensitivity anal-
ysis. The constitutive parameters for the hyper-
viscoelastic model used in this Section, i.e. that
are to be retrieved by the identification pro-
cess, are reported in Table 2. Hence, a numer-
ical simulation using these parameters and the
previously defined optimal loading conditions is
carried out and used as input data to the iden-
tification methodology. Its output data is the
identified parameters. The ability of the method-
ology to retrieve the constitutive parameters is
then assessed by comparing the force-time curves
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obtained with the reference and identified param-
eters as well as the kinematic fields, namely the in-
plane maximum and minimum principal stretches,
by using the same loading conditions.
The optimization loop has been launched by con-
sidering the error objective function previously
presented in equation (6).

The identified parameters are reported in
Table 3. By comparing these values with the con-
stitutive parameters used to launch the theoritical
calculation, previously given in Table 2, one can
see that all the parameters are quite well retrieved,
except for variables T1 and T2 for which the error
is superior to 100%. The force-time curves for both
reference and identified parameters and the cor-
responding relative error are reported in Fig. 4.
One can see that the material behavior is well
predicted, even if the variables T1 and T2 were
not retrieved. This is explained by the insignifi-
cant sensitivity of the objective function to these
two variables (compared to the other ones), as
previously presented in Figs. 2 and 3.

In order to validate the identification proce-
dure, an additional biaxial experiment, which was
not used for identifying the constitutive param-
eters, was used. It consists in applying a biaxial
tensile loading with two different displacement
rates following the two directions, followed by a
relaxation of at least 60 s at a displacement of
70 mm. The two displacement rates considered
here were 50 and 500 mm.min−1 in the horizontal
and vertical directions, respectively. The compar-
ison of the kinematic fields at each node of the FE
model is shown in Fig. 5 in terms of the relative
error over the maximum and minimum in-plane
principal stretches.

The relative error of the global reaction force
lays between −1.3 % and 1.8 %, which corre-
sponds to an objective function value (Eq. (6)) of
6.84 10−3. Note that the mean error over the whole
test is under 1 %. On the other hand, from a local
stand point, the relative errors of both kinematic
fields were under 1 % for the maximum displace-
ment applied at the beginning and end of the
relaxation phase. For the maximum in-plane prin-
cipal stretch, this error is maximum for the zones
of equi-biaxial tension, followed by the pure shear
and the uniaxial tension. These errors can differ
of one order of magnitude for these loading cases.
Contrarily, this error is maximum in the zones cor-
responding to a state of pure shear, followed by
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(a) Comparison of the reference and identified force-time curves

0 10 20 30 40 50 60 70

Time (s)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

R
e
la

ti
v

e
 e

r
r
o

r

Force error

(b) Relative error of the force

Fig. 4 Comparison of force-time curves between identified
and reference parameters

the zones of equi-biaxial tension and uniaxial ten-
sion, respectively. Its maximum value is about 8
times its minimum one. These values of the rel-
ative errors of both global forces and kinematic
fields are very satisfactory.

A significant difference is found between the
two in-plane principal stretches λmax and λmin
in terms of the relative error. More especially,
the field of λmin exhibits a larger relative error
in the ring shape zone around the specimen’s
centre. This is explained by the fact that this
zone is under pure shear loading. This is demon-
strated by mapping the biaxiality coefficient (this
is not presented here because it can be found in
recent previous studies [26, 27, 33]), for which the
minimum in-plane principal stretch is close to 1,
meaning that any variation leads to a significant
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Table 3 Identified Constitutive parameters from simulated data

Variable C10 C20 C30 A1 A2 A3 T1 T2 T3

value 0.496 −0.0246 5.667 10−3 0.104 0.0767 0.064 0.422 6.434 18.487
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(a) Relative error of λmax at the beginning of relaxation
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(b) Relative error of λmin at the beginning of relaxation
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(c) Relative error of λmax at the end of relaxation
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(d) Relative error of λmin at the end of relaxation

Fig. 5 Relative error of the in-plane maximum and minimum principal stretches obtained from reference and identified
parameters

relative error. Moreover, from an experimental
point of view, the relative error in this zone will
be even more amplified by the measurement noise.
This is the reason why the experimental kinematic
field of λmin will not be presented in the following.

Furthermore, in order to fully validate the
identification procedure, an attempt to predict the
mechanical response in terms of the global force
and the kinematic fields obtained, with a test
that does not serve for the identification, is per-
formed. The test consisted in applying a load up
to 70 mm at each branch of the specimen with

two different displacement rates of 500 mm.min−1

and 50 mm.min−1 for the vertical and horizontal
directions, respectively. The force-time curves for
both reference and identified parameters and the
corresponding relative error are reported in Fig. 6.

The relative error of the global reaction force
varies between −2.9 % and 1.4 %, which is very
close to what was obtained for the identification
test (between −1.3 % and 1.8 %). The mean error
over the whole test is under 1.6 % for the vertical
force and 1.5 % for the horizontal one. Moreover,
as the material is assumed to be isotropic, at the
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Fig. 6 Comparison of force-time curves between identified
and reference parameters

end of the test, the relaxed horizontal and vertical
forces are the same for a given calculation (the
reference one or the predicted one). The relative
error between the reference and predicted relaxed
forces is inferior to 1 %, whatever the direction
considered.

The results obtained in terms of the relative
error in the in-plane principal stretch values at any
point of the full-kinematic fields are reported in
Fig. 7. The relative error of both kinematic fields
were always inferior to 1 %, which is not more
than the results obtained during the identifica-
tion procedure. This is therefore a very promising
result, validating, by the way, the experimental
test conditions defined for the identification of the
constitutive parameters by the sensitivity analy-
sis previously presented in Section 2. The relative

error fields can be interpreted similarly to the pre-
vious ones, they are therefore not further discussed
in this Section.

In this Section, we have demonstrated, from
the numerical validation of the method, that if
the constitutive model is well adapted to describe
the material’s behavior (that is, if its constitu-
tive parameters are well chosen for the predicted
force-time curve to fit the experimental one), the
kinematic fields are well predicted as well even
though they are not used in the objective func-
tion calculation. This confirms the challenging
motivation of the present study, i.e. identifying
hyper-viscoelastic parameters from the measured
reaction force only. This is fully addressed in the
next Section.

3 Application to experimental
data

In this Section, the identification of the consti-
tutive parameters describing the behavior of a
real-life engineering elastomeric material is first
carried out and validated. Then, another exper-
imental test, not used within the identification
procedure, is proceeded, to fully validate that the
material’s behavior is well predicted in different
loading conditions.

3.1 Material and specimen geometry

The material used in this study is a carbon black
filled natural rubber. It has the same dimen-
sion as the one used for the numerical simulation
previously presented in Fig. 1.

3.2 Loading conditions

The experimental set-up is presented in Fig. 8. It is
composed of a home-made biaxial testing machine
and a digital CCD camera. The testing machine
is composed of four independent electrical actua-
tors controlled by an in-house LabVIEW program.
It is equipped with two load cells with a capac-
ity of 1094 N , measuring the force variation in
the two perpendicular directions. In this work, an
equibiaxial load was applied to the cruciform spec-
imen. A displacement of 70 mm was applied to
each branch at a loading rate of 500 mm/min and
the maximum displacement was kept constant for
60 s. It should be noted that the specimen was
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(a) Relative error of λmax at the beginning of relax-
ation phase for the vertical direction
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(b) Relative error of λmin at the beginning of relax-
ation phase in the vertical direction
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(c) Relative error of λmax at the beginning of relax-
ation phase for the horizontal direction
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(d) Relative error of λmin at the beginning of relax-
ation phase in the horizontal direction
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(e) Relative error of λmax at the end of relaxation
phase
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(f) Relative error of λmin at the end of relaxation
phase

Fig. 7 Relative error of the in-plane maximum and minimum principal stretches obtained from reference and identified
parameters

beforehand accommodated by three cycles at the
same maximum displacement and a loading rate
of 500 mm/min. The maximum applied displace-
ment corresponds to a global stretch λglob (that is

the ratio between the final and the initial lengths
of the specimen in a given direction) of 2.33.
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Fig. 8 Overview of the experimental set-up

3.3 Full-field kinematic
measurement

Full-field kinematic measurements are used, as
well as the measured force, for validating the
identification procedure. We recall here that they
do not appear in the expression of the objec-
tive function because the aim is to propose a
method employing as few measurements as pos-
sible. Moreover, we have demonstrated in the
numerical validation of the method, that if the
constitutive model is well adapted to the material
behavior, the kinematic fields are well predicted
(all the relative errors on the kinematic fields were
under 1 %), even if they were not included in the
objective function calculation (see Fig. 5). The
full-kinematic field at the surface of the stretched
specimen was determined by using the Digital
Image Correlation (DIC) technique [61]. The cor-
relation process was achieved with the SeptD
software [62]. During the experiments, images of
the specimen surface were stored at a frequency
of 5 Hz using an IDS CCD camera of 1920×1200
joined pixels equipped with a 55 mm telecen-
tric objective. Before the test, the specimen was
sprayed by a white paint in order to improve the
image contrast and during the test, a home-made
LED lighting system appearing in Fig. 8 is used
to obtain a uniform cold lighting from the small-
est to the highest reached strains. As the test is
symmetrical, a rectangular region on one branch
of the cruciform specimen is sufficient to apply the
identification procedure previously described. The
rectangular ROI is represented in Fig. 9. It cor-
responds to a zone from the sample center to the
cylinder at the end of its branch. The gauge block

shown in Fig. 9 is used for converting pixels to
millimeters.

Fig. 9 Region Of Interest (ROI) composed of Zones Of
Interest of 30 by 30 pixels ZOIs

Following the recommendation of the DIC
guide [63], both DIC hardware and analysis
parameters are given in Tables 4 and 5 respec-
tively.

4 Results

The experimental and predicted force-time curves
and their corresponding relative errors are
reported in Fig. 10.

First of all, the maximum force reached is well
predicted (the relative error is inferior to 1 %).
Similarly, the curve shape for the relaxation phase
is predicted with a maximum relative error inferior
to 1.5 %.

The results obtained in terms of the relative
error in the in-plane maximum principal stretch
values at any point of the full-kinematic fields are
reported in Fig. 11.

The maximum relative error obtained was
found in the central zone, where the in-plane max-
imum principal stretch is the lowest, and equates
to 12 %. The maximum of the mean error is 5.2 %.

The fact that the maximum relative error
obtained for the kinematic field is superior in
the experimental study than in the numerical one
can be easily explained by several experimental
considerations:
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Table 4 DIC hardware parameters

Camera IDS UI-3160CP Rev. 2
Image Resolution 1920× 1200 pixels2

Lens 55 mm C-mount partially telecentric.Constant
magnification over a range of working distances
± 12.5 mm of object movement before 1 % error

image scale occurs
Aperture f/5.6

Field-of-View 139.4× 87.1 mm
Image Scale 14 pixels / mm

Stand-off Distance 1100 mm
Image Acquisition Rate 5 Hz
Patterning Technique White spray on black sample

Pattern Feature Size (Approximation) 6 pixels

Table 5 DIC Analysis parameters

DIC Software 7D©

Image Filtering None
Subset Size 30 pixels / 2.53 mm
Step Size 4 pixels / 0.33 mm

Subset Shape Function Affine
Matching Criterion Normalized Cross Correlation

Interpolant Bi-cubic
Strain Window 5 data points

Virtual Strain Gauge Size 54 pixels / 4.56 mm
Strain Formulation Logarithmic

Post-Filtering of Strains None
Displacement Noise-Floor 0.036 pixels / 3.04µm

Strain Noise-Floor 6.1 mm/m

• the noise in the displacement field measure-
ments (it was not evaluated here, as it should
not be the main cause of error),

• the positioning of coordinates origin for the
experimental fields. It corresponds to the
motionless point of the ROI. It is quite chal-
lenging to precisely determine its position, as
heterogeneities in the material, the accuracy
of the displacement measurement and relative
spatial resolution of the displacement field com-
pared to the FE grid can make difficult its
identification,

• the hyperelastic part of the used model does
not perfectly represent the non-linearity of the
experimental stress-strain relationship. This is
supported by the high value of the relative error

reached during the EQT loading phase (around
7 %).

Regarding the accuracy of the predicted force
and full-kinematic fields, the latter being not
used for the parameters identification, this is a
promising result to validate the proposed identifi-
cation methodology. This validation will be fully
addressed in the next Section.

4.1 Validation

Similarly to the numerical study, the validation is
carried out with a new experimental test that was
not used for the experimental identification. It is
the same as the one used for the numerical valida-
tion, i.e. a load up to 70 mm at each branch of the
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Fig. 10 Comparison of force-time curves between experi-
mental and predicted data

cruciform specimen with two different displace-
ment rates of 500 mm.min−1 and 50 mm.min−1

for the vertical and horizontal directions, respec-
tively. Fig. 12 presents the results obtained, in
terms of experimental and predicted forces versus
time (Fig. 12(a)) and the corresponding relative
errors (Fig. 12(b)). The maximum relative error is
obtained in the REL phase. It is inferior to 7 %
and 9 % for the force in the horizontal and the
vertical directions, respectively. These results are
very satisfactory considering that the numerical
study, for which the measurement noise had not
been simulated, led to relative errors lower than
3 %.

It should be noted that both predicted forces
converge towards the same value at the end of the
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Fig. 11 Relative error of the predicted and measured in-
plane maximum principal stretch plotted in ROI taken in
the horizontal branch

REL phase. This is expected as the constitutive
model is isotropic. This is not the case for the
measured forces, suggesting that non negligible
anisotropic effects occur. Fig. 13 presents the rel-
ative error of the measured and predicted in-plane
maximum principal stretches.

5 Conclusion

In this study, a methodology to identify the con-
stitutive parameters of hyper-viscoelastic models
describing the behavior of engineering elastomeric
materials has been proposed. The aim of this
metodology is dual: (i) it is using only one het-
erogeneous test, and (ii) it is minimizing the data
quantity to be stored and processed, by using
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Fig. 12 Comparison of force-time curves between experi-
mental and identified data for the verification test

the reaction force measured during the test only,
to determine the solution’s quality. To this end,
an equibiaxial test is considered, composed of an
equibiaxial tension phase, followed by a relaxation
phase.

First, an objective function has been defined
to efficiently minimize the squared difference
between the experimental and predicted force-
time curves, during the two phases of the test. This
objective function has been calculated by compar-
ing the experimental force-time curves with the
one given by a FE analysis. In the FE analy-
sis, the constitutive model is based on the Yeoh
model and the Prony series to describe the hyper-
elastic and viscous behaviors, respectively. These
models provide 3 and 6 constitutive parameters

50 60 70 80 90 100

X (mm)

25

30

35

40

45

50

55

60

65

70

75

Y
 (

m
m

)

mean error: 5.0447%

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a) Relative error of λmax at the beginning of relaxation
phase for the vertical direction

60 80 100 120 140 160

X (mm)

10

20

30

40

50

60

70

80

90

100

Y
 (

m
m

)

mean error: 4.3127%

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) Relative error of λmax at the beginning of relaxation
phase for the horizontal direction

60 80 100 120 140 160

X (mm)

10

20

30

40

50

60

70

80

90

100

Y
 (

m
m

)

mean error: 4.8046%

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(c) Relative error of λmin at the end of relaxation phase

Fig. 13 Relative error of the measured and predicted in-
plane maximum principal stretches
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to be identified within the identification process,
respectively.

Then, a sensitivity analysis has been devel-
oped. This study aims at (i) determining the
experimental boundary conditions (displacement
rate and prescribed displacement) for the previ-
ously defined objective function to be sufficiently
sensitive to the considered design variables, and
(ii) determining the minimal data quantity (that
is the number of points on the force-time curve) to
be used for the following identification procedure
to be successful.

Next, the identification strategy has been
developed. It is based on the Inverse-PageRank-
PSO algorithm, which is a population-based meta-
heuristic optimization method, effectively useful
when dealing with minimization problems with
a wide range of design variables. This minimiza-
tion algorithm is coupled with a FEMU technique,
based on the using of the previously presented FE
model.

Finally, numerical and experimental investi-
gations have been performed. In the numerical
analysis, the proposed methodology is applied on
a case where the experimental data to be fitted is
replaced by a numerical one, for which the con-
stitutive parameters and the behavior curves are
known. The results show small errors on the force-
time curves, as well as on the full-kinematic fields
(even if they were not used to calculate the objec-
tive function during the identification procedure).
Another test has been performed, to fully vali-
date the fact that the predicted and experimental
behaviors were similar, even on a test where the
boundary conditions were different from the test
used during the identification procedure. Again,
this test were successful, validating numerically
the proposed methodology by providing very small
errors on the force-time curves and on the full-
kinematic fields. In the experimental analysis, the
force-time curves to be fitted have been obtained
experimentally. The proposed methodology was
then successful to retrieve the experimental force-
time curves, as well and the full-kinematic fields.
Again, a new experimental test has been per-
formed, in which the boundary conditions are
different from the one used during the identifi-
cation procedure. The methodlogy is then fully
validated, because the experimental and predicted

force-time curves and full-kinematic fields were
very close (a few % of error on each of them).

The main interests of the proposed identifica-
tion methodology can be summarized as follows:

• the test duration is reduced,
• only one heterogeneous relaxation test is

required,
• only one force measurement, i.e. one force cell,

is required,
• the use of the PSO in the optimization pro-

cess is well suitable to identify models with
a larger number of parameters, available in
FE codes, and by the way to account for
phenomena such as accommodation, strain-
inducedanisotropy, strong non-linearities at
large strains, a large number of viscous param-
eters, non-exhaustively.
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ssaint, E., Le Cam, J.-B., Balandraud, 
X., Hild, F.: Application of the Virtual 
Fields Method to Mechanical Characteri-
zation of Elastomeric Materials. Interna-
tional Journal of Solids and Structures 46, 
698–715 (2009). https://doi.org/10.1016/j. 
ijsolstr.2008.09.025

[27] Charlès, S., Le Cam, J.-B.: Inverse Identi-
fication from Heat Source Fields: a Local 
Approach Applied to Hyperelasticity. Strain 
(2020). https://doi.org/10.1111/str.12334

[28] Marckmann, G., Verron, E.: Comparison of

Hyperelastic Models for Rubber-like Materi-
als. Rubber Chemistry and Technology 79, 
835–858 (2006). https://doi.org/10.5254/1. 
3547969
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