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Theability to control the location of a spacecraft atmospheric interface reentryhas been traditionally accomplished

using propulsion. A novel technique is presented here where a predefined point of atmospheric interface reentry is

achieved by adjusting the aerodynamic drag of a spacecraft in a circular orbit. If this method is employed at a

sufficiently high starting altitude, any ground-track point accessible by the orbit can be targeted. This method can be

broken up into two different parts. The first consists of finding the decay profile that achieves the desired reentry

location. The second consists of keeping the spacecraft within this nominal decay trajectory, given the atmospheric

uncertainty and other perturbations. The two parts of thismethod are presented here in detail. Finally, a case study is

provided to demonstrate how thismethod couldwork in a realistic scenario and to evaluate its performance. The case

study shows that a reentry point can be targetedwith a 3σ error of less than 200 km, using a typicalGlobal Positioning

System for navigation. Finally, a discussion of potential applications is provided.

Nomenclature

Aref = spacecraft’s reference area, m2

a = semimajor axis, m
aD = acceleration due to drag, m∕s2
CB = ballistic coefficient, m2∕kg
CD = drag coefficient
H = atmospheric scale height, m
h = altitude, m
i = orbit inclination, rad
J2 = Earth’s oblateness coefficient
m = spacecraft mass, kg
n = mean motion, rad∕s
q = dynamic pressure, N∕m2

t = time, s
u = argument of latitude, rad
V = relative velocity of the flow, m∕s
x = state vector
λ = longitude, rad
μ = gravitational constant of the Earth, m3∕s2
ρ = atmospheric density, kg∕m3

Φ = state transition function
ϕ = latitude, rad
Ω = right ascension of the ascending node, rad

I. Introduction

T HE aerodynamic forces experienced by spacecraft orbiting in
low Earth orbit are usually considered perturbations that need to

be avoided or compensated. Although this is generally the case, these
aerodynamic forces can be controlled and exploited to achieve a
useful purpose. Research has already been conducted to use aerody-
namic drag to perform an aerocapture, control a spacecraft orbit,
rendezvous with another vehicle, do formation flight, and do
constellationmaintenance [1–8]. Also, the use of aerodynamic forces
has also been studied to control the attitude of a spacecraft [9–11].

Here a novel method is presented where the aerodynamic drag is
used to target the atmospheric interface reentry point of a spacecraft’s
decaying orbit. The method presented here has been only applied to
circular orbits and its extension to eccentric orbits is left for future
studies. The assumption of circular orbits is not only applied to the
initial orbit, but is also enforced as the orbit decays. It is also
important to note that the method presented here only controls the
location of the atmospheric interface reentry point and not the landing
or impact point (if the spacecraft was to survive reentry). The
atmospheric interface reentry point, also known as the entry interface
in the literature, can be defined as the point where the interaction of
the spacecraft with the atmosphere is so great, in terms of
aerodynamic forces, that these forces completely dominate the flight
dynamics. The altitude when this occurs depends on the vehicle
aerodynamic properties and the atmospheric conditions, but it is
usually set between 120–90 km [12]. Here an intermediate altitude of
100 km has been selected.
The control of the aerodynamic drag is assumed to be achieved

through the control over the ballistic coefficient. Therefore, the drag
is modulated to achieve the desired decay rate at all times. How to
control the ballistic coefficient of a spacecraft and its practical
considerations are outside the scope of this paper, but it is not difficult
to envision simple ways to do so. For example, changing the cross-
sectional area of the spacecraft by changing the attitude of the
spacecraft or by altering the geometry of a drag sail would do.
Changing the ballistic coefficient, by changing the cross-sectional

area, for example, is enough to alter the drag that the spacecraft creates,
but it is not enough to have knowledge of this drag. The knowledge of
the atmospheric properties (mainly density) is required to bridge the
gap between controlling the ballistic coefficient and controlling the
drag. This information of the atmospheric conditions can be obtained
by using atmospheric models (estimation) or by using in situ
measurements byonboard sensors.Adetailed analysis of how to obtain
this information has also been left outside the scope of this paper.
The idea of using drag to control certain parameters of the

atmospheric interface reentry location is not completely new. Some
work has been done to use a sudden drag increase in the last few hours
of the decay to reduce the uncertainty of the time and location of the
reentry interface [13]. The same approach is taken in [14] where a
sudden increase in drag in the last few orbits is used to make the
spacecraft reenter over an unpopulated area and reduce the risk to
population and property that any surviving parts that reach the ground
might pose. These twoworks, using the samemethod, only provide a
limited capability to change the atmospheric interface reentry
location in the along-track direction. Because this is done close to the
reentry interface, the accessible targets are limited to the locations
defined (approximately) by the last few orbits’ ground track (along
track). Themethod presented here starts modulating the drag at much
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higher altitudes and has cross-track targeting capabilities. The
combination of along- and cross-track targeting capabilities gives
more freedom to select the target and can also be used to achieve
global coverage (latitude limited only by the orbit’s inclination).
Research has also been conducted in using drag modulation to

achievemore precise landings and aerocaptures onMars [3,15]. Drag
modulation can also be used during the atmospheric reentry to reduce
the aerodynamic loads [16] and to simplify the control during the
descent [17]. The general drag modulation effects on flight dynamics
was first studied by Rose and Hayes in 1963 [18].
The method presented in this paper is an orbit-control technique

that aims to control the spacecraft’s decay (before reentry) such that
the spacecraft reenters over a predefined location. Such a method
could prove useful for drag-enhancing deorbit devices deorbiting
large spacecraft, where some components of the spacecraft are
expected to survive reentry. In this case, this technique could be used
to avoid reentering over populated areas. Thiswould be used as a risk-
reduction strategy compared with uncontrolled decays. Also, this
method could be applied to provide a passive method for small
reentry capsules to crudely target their landing area. When targeting
the atmospheric interface reentry location, the landing area of the
surviving capsule would be limited, although potentially still quite
large. If the capsule has a way to control its trajectory during its
atmospheric reentry, the landing area could be reduced.
The method presented here is an alternative to the traditional

approach of targeting the atmospheric interface reentry location by a
sudden orbit change caused by an impulsive burn (deorbit burn)
[19,20]. This traditional approach has been used to deorbit spacecraft
so that they burn up in the atmosphere (to avoid debris buildup or to
avoid uncontrolled reentries) and has also been used in vehicles that
survive reentry and land or impact in a predefined location. The
method presented here could provide some advantages over the
traditional approach on some specific scenarios.
During the atmospheric phase of the reentry, if the vehicle is

capable of surviving it, the trajectory can also be controlled using
aerodynamic forces. This is a discipline on its own [12,21]. The
control of the trajectory during atmospheric flight phase is outside of
the scope of this paper.

II. Problem Statement

The problem consists of making a spacecraft reentry interface
occur over a predesignated ground point by changing its ballistic
coefficient. The problem can be considered solved when a time
history of the ballistic coefficient that makes the spacecraft satisfy the
previous condition is provided.
To find an appropriate solution, the problem can be subdivided into

two independent problems that can be tackled independently:
1) Compute a nominal trajectory that would make the spacecraft

reenter over the designated point. To compute the nominal trajectory,
it is assumed that the atmospheric environment iswell known and that
the spacecraft ballistic coefficient can be perfectly controlled. This
step essentially delivers the nominal ballistic coefficient time history
that the spacecraft needs to follow.
2) Implement a control algorithm tomake the spacecraft follow the

nominal trajectory in the presence of the variations in the atmospheric
environment and the uncertainties of the ballistic coefficient.
It is important to reiterate that here the point that is targeted is the

atmospheric interface reentry point and not the impact/landing point.
This is an important difference. Because it is difficult to definewhere
the reentry starts, it is assumed that it starts when the spacecraft
decays below 100 km [12]. Although this definition is somewhat
arbitrary and the 100 km altitude will need to be adjusted depending
on each case, it does not change the approach or the methodology
presented here. A small change in this altitude has also a negligible
impact on the accuracy of the method.

III. Nominal Trajectory

If a spacecraft maintains a constant ballistic coefficient CB during
all its decay, it will reenter over a certain point. This reentry interface

point is a function of the spacecraft’s initial position and velocity, its
ballistic coefficient, the Earth’s gravity field, the atmospheric
environment, and other forces (such as solar radiation pressure and
third-body perturbations). If one of the mentioned parameters
changes, then the reentry interface location will also change.
Therefore, assuming everything else remains constant, a simple
method to change the reentry interface locationwouldbe to change the
spacecraft ballistic coefficient to a different constant value. If this is
the case, and the spacecraft can adopt a range of different ballistic
coefficients that are to be maintained constant throughout its decay,
then the spacecraft can alter its reentry interface location, but only
along a line. Figure 1 shows how the reentry interface location moves
as the constant ballistic coefficient used during thedecay changes. The
figure has been produced considering an initial 70 deg inclination
circular orbit, decaying from 300 to 100 km altitude and with ballistic
coefficients ranging from CB1 � 0.0201 to CB2 � 0.0200 m2∕kg.
The line shown in Fig. 1 is the reentry interface point locus, and it
closely resembles the orbit ground track but is not the same.
The simple strategy to change the spacecraft ballistic coefficient to

a different constant value can be useful at the final stages of the decay
because it allows one to target a point along the reentry point locus
(only along track). This approach has been used in previous works
[13,14]. However, this simple strategy is not very useful if global
coverage is required, because it does not provide any cross-track
targeting capabilities. This strategy, of changing the ballistic
coefficient that is maintained constant during the decay, essentially
targets the argument of latitude of the reentry, and the time of reentry
is a by product of targeting the argument of latitude. Therefore, the
position of the spacecraft in the orbit plane when it reenters is
specified by the target argument of latitude, and the by product time
of reentry fixes the position of the Earth with respect to the orbit
plane. So, the argument of latitude fixes the latitude of the reentry
point and the time of reentry fixes its longitude. To get cross-track
capabilities, these two variables (time of reentry and argument of
latitude at reentry) need to be controlled independently.
Targeting the reentry time independently from the argument of

latitude can be achieved by changing the ballistic coefficient during
the orbital decay CB � f�t�. Having a time-varying ballistic
coefficient during the decay can be used to achieve different decay
profiles. Figure 2a shows the evolution of the altitude with respect to
the orbit count (argument of latitude), and Fig. 2b shows it with
respect to time, for three different ballistic coefficient profile
scenarios that share the same initial conditions and atmosphere.
These figures show that different ballistic coefficient profiles can
make the spacecraft reenter at the same argument of latitude (and
hence at the same latitude) but at different times (and hence at
different longitudes). The reentry time of these three trajectories can
be computed by adding the period of all their orbits and, because their
decay profiles are different, their reentry timewill be different (hence
reentering at different longitudes).
The three example trajectories shown in Fig. 2a can be classified

looking at their relative decay rates. The trajectory with a constant
ballistic coefficient throughout the decay CB � k will serve as a
reference. Then, CB � f1�t� shows a slower decay at the beginning
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Fig. 1 Atmospheric interface reentry points (not to be confused with a
ground track) applying different constant ballistic coefficients CB
throughout the decay.
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and a more rapid decay at the end (slow–rapid) and CB � f2�t�
shows a more rapid decay at the beginning and a slower decay at the
end (rapid–slow) when compared with the reference decay CB � k.
Therefore, the trajectory with a slow–rapid decay will spend more
orbits at a higher altitude (where the orbital period is longer) than the
reference trajectory (CB � k), and hence it will reenter at the same
argument of latitude (same latitude) but at a later time (westward
longitude). Also, the trajectory with a rapid–slow decay spends more
orbits at a lower altitude (where the period is shorter) than the
reference trajectory (CB � k), and hence it will reenter at the same
argument of latitude (same latitude) but at an earlier time (eastward
longitude). This technique to target independently the reentry time
and the reentry argument of latitude can be exploited to target the
reentry point latitude and longitude, thus achieving cross-track
targeting capabilities.
A convenient way to explore the dynamics of such a method is to

discretize the ballistic coefficient function so that the whole time
interval is composed of segments of constant ballistic coefficient.
Figure 3 shows the trajectory broken down into these discrete
segments. In this scenario, a state transition function can be defined as
in Eq. (1) so that it outputs the next state vector xn�1 from the current
state vector xn, assuming that the ballistic coefficient remains
constant in that interval. As is defined in Eq. (1), this state transition
function outputs the difference between two consecutive state vectors
so that, if the current state vector is known xn, the next state vector
xn�1 can be then computed:

xn�1 � Φn�xn; CB� � xn (1)

If this state transition function could be computed, the effects of an
arbitrary ballistic coefficient time function could be evaluated. The
construction of such functions can be done using numerical pro-
agators, but their results lack the insight provided by an analytical
approach. If the dynamics of the problem are sufficiently simplified,
analytical expressions of this state transition function can be found,
therefore providing an insight into the dynamics of the problem.
With the analytical expressions, solutions can be easily found. These
solutions can then be used as first guesses in the numerical
algorithms.
In the sections that follow, a method to construct the nominal

trajectory is provided. First, to provide an insight into the problem,
the nominal trajectory will be constructed analytically (using
simplified dynamic models) and then some comments will be made
when using numerical propagators (with accurate dynamic models).

A. Analytical Approach Using Simplified Dynamic Models

The main simplifications that will be assumed are that there will
be only two forces shaping the orbit. First, the gravitational pull of
the Earth is modeled as a point mass with the contribution due to
the Earth’s oblateness J2. The second force considered is the
aerodynamic drag caused by the interaction of the spacecraft with an
exponential atmosphere. Under these assumptions, the orbit of a
spacecraft can be considered Keplerian but with secular variations on
its orbital parameters. Also, the physical body of the Earth will be
modeled as a sphere with a radius of R�, and finally, it will be
assumed that the orbits are circular throughout the decay.Under these
assumptions, a good representation of the state vector can be the
orbital parameters describing a circular orbit:

x � � t; u; a; Ω; i � (2)

where t refers to the time, a is the semimajor axis,u is the argument of
latitude,Ω is the right ascension of the ascending node (RAAN), and i
is the orbit’s inclination. At this point, it is pertinent to explicitly state
that, under the current assumptions, the orbit’s altitude h can be
related to the orbit’s semimajor axis a by h � a − R�, and so their
role as state vector variables is interchangeable. Here, the semimajor
axis is used, but the altitude will appear in the figures to make their
interpretation easier.
The general effect of drag is tomake orbits decay and to circularize

them [22]. Therefore, if the initial orbit is circular, it will remain
circular during the entire decay. The only way for an orbit that is
initially circular and that decays due to aerodynamic drag to become
eccentric is if the drag force was variable in the short term and its
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frequency would make it resonate with the orbital period. For
example, if a significantly larger drag was experienced always at the
same true anomaly, then the orbit would become eccentric with this
particular true anomaly becoming the apogee. Because this method
does not attempt to create such resonances, it can be safely assumed
that the orbit remains quasi circular during the entire decay.

1. State Transition Function

In a decaying orbit, the state vector parameters will change during
the decay. The objective of this section is to obtain a function that can
interrelate the state variable changes during the decay to one of the
state variables that will serve as a reference. This function is the state
transition function.
Here, all the state variables will be written in terms of the

semimajor axis as t; u;Ω; i � f�a�. Therefore, the discretization
shown in Fig. 3 will be defined by the semimajor axis at the segment
limits.
The process to obtain the state transition function can start with the

inclination, the simplest case, because an orbit subject to aerodynamic
drag will decay with a constant inclination. This assumption holds
when only J2 and aerodynamic drag effects from a stationary
atmosphere are considered [22] (these are the assumptions made).
Therefore, i is a constant during the decay andhence is not a function of
a. This can be easily written as

in�1 � in � i0 (3)

The only secular change in the semimajor axis will be produced by the
aerodynamic drag (J2 produces only a periodic change). The time
elapsed with respect to a semimajor axis change when subject to
aerodynamic drag in a circular orbit can be written as in Eq. (4),
extracted from [23] (already simplified for circular orbits):

dt

da
� −

n

2aD
(4)

where aD is the acceleration due to drag, and n �
�����������
μ∕a3

p
is the mean

motion, with μ being the gravitational constant of the Earth. Then, the
acceleration due to drag can be written as

aD � qCB (5)

q � 1

2
ρV2 (6)

where q is the dynamic pressure that is a function of the atmospheric
density ρ and the relative velocity of the spacecraft with respect to the
flow V. Although the atmosphere corotates with the Earth [24] and
there are atmospheric winds [25], here a stationary atmosphere has
been assumed, and hence V can be assumed as the spacecraft orbital
velocity. The ballistic coefficient CB is defined in Eq. (7) and is a
function of the spacecraft’s reference areaAref , its drag coefficientCD,
and its massm [26]:

CB �
ArefCD
m

(7)

By grouping all the constant terms in Eq. (5) in the constant
K1 � CB∕2, the drag acceleration expression can be simplified as
follows:

aD � K1ρV
2 (8)

As already mentioned in the assumptions, the density will be modeled
according to an exponential atmosphere, thus

ρ�a� � ρ0 exp

�
−
a − ao
H

�
(9)

where ρ0 is the density at semimajor axis a0, and whereH represents
the scale height.Also, ifwe assume that the velocity relative to the flow
is the orbital velocity and apply the assumption that the orbit will be
quasi circular throughout the decay, then

V �
���
μ

a

r
(10)

Combining Eq. (8) with Eqs. (9) and (10), the change in the semimajor
axis can be rewritten as

dt

da
� 1

K2

���
a
p

e−a∕H
� c1 (11)

where K2 is a compact representation of the constant terms:

K2 � −2K1

���
μ
p

ρ0e
a0∕H � −CB

���
μ
p

ρ0e
a0∕H (12)

Making use of the following variable time transformation t � u∕n,
then Eq. (11) can be written in terms of argument of latitude.
Multiplying Eq. (11) by n � du∕dt yields

du

da
� 1

K3a
2e−a∕H

� c2 (13)

again, with the constant terms included in K3:

K3 �
K2���
μ
p � −CBρ0ea0∕H (14)

Integrating Eq. (11) results in (where erfi is the imaginary error
function)

ft�a� �
Z

1

K2

���
a
p

e−a∕H
da �

���
π
p �����

H
p

erfi�
����������
a∕H

p
�

K2

� c1 (15)

Integrating Eq. (13) results in (where Ei is the exponential integral)

fu�a� �
Z

1

K3a
2e−a∕H

da � aEi�a∕H� −He
a∕H

K3Ha
� c2 (16)

The c1 and c2 terms in Eqs. (15) and (16) are constants resulting from
the integration process of the indefinite integrals. A similar expression
for RAAN Ω can be obtained by looking at the change in RAAN
produced by the Earth’s oblateness [23]:

dΩ
dt
� −

3nR2
�J2

2a2
cos i � K4a

−7∕2 (17)

K4 � −
3R2
�J2 cos i

���
μ
p

2
(18)

This expression can be written, in terms of dΩ∕da, if it is combined
with Eq. (11) as

dΩ
da
� K5a

−4ea∕H (19)

K5 �
K4

K2

� 3R2
�J2 cos i

2CBρ0e
a0∕H

(20)

Integrating Eq. (19) results in (with c3 being a constant)
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fΩ�a� �
Z
K5a

−4ea∕H da

� K5�a3Ei�a∕H� −Hea∕H�2H2 �Ha� a2��
6H3a3

� c3 (21)

Then, functions ft, fu, and fΩ can be used to compute the state vector
at any semimajor axis (altitude) during a decay, provided that the
ballistic coefficient remains constant. These functions can also be used
then to compute the state vector at the different segment limits as
follows:

tn − tn−1 � Δtn � ft�an; CBn� − ft�an−1; CBn� (22)

un − un−1 � Δun � fu�an; CBn� − fu�an−1; CBn� (23)

Ωn − Ωn−1 � ΔΩn � fΩ�an; CBn� − fΩ�an−1; CBn� (24)

in�1 − in � Δin � 0 (25)

The state transition function can then be written as

Φn �

2
66664

ft�an; CBn� − ft�an−1; CBn�
fu�an; CBn� − fu�an−1; CBn�

an − an−1
fΩ�an; CBn� − fΩ�an−1; CBn�

0

3
77775 (26)

Therefore, if an initial set of conditions are set x0, all the subsequent
state vectors up until reentry x0; x1; ...; xn; ...; xr−1; xr can be
computed using the formulas provided in this section. This can be
written in a function format as follows:

xn �

2
64
tn
un
an
Ωn

3
75 � �x0 �Φ1 � : : : �Φn� � Fxn

0
@ x0

a0; : : : ; an
CB1; : : : ; CBn

1
A

(27)

This last function Fxn can be used to compute the state vector at
any semimajor axis (altitude) during a decay, providing that the
ballistic coefficient can be discretized as a function of the
semimajor axis.

2. Latitude and Longitude

The state vector is useful but it does not explicitly provide the
latitude ϕ and longitude λ where the spacecraft is located over the
Earth. The latitude can be computed using spherical trigonometry
with the following formula:

sin ϕ � sin u sin i (28)

The longitude can be computed as follows:

λ � λAN0 � �Ω −Ω0� � arcsin�tan ϕ sin i� − ω�t (29)

where λAN0 is the initial longitude of the ascending node, Ω0 is the
initial RAAN, andω� is the Earth’s angular velocity. The latitude and
longitude can be related to the orbit state vector (although some of the
state variables are not directly relevant to compute ϕ and λ) through
the following function:

�
ϕ
λ

�
�
�

arcsin�sin u sin i�
λ0 � �Ω − Ω0� � arcsin�tan ϕ sin i� − ω�t

�

� Fϕ;λ�t; u; a;Ω; i� (30)

Therefore, the functionGn defined in Eq. (31) can be used to compute
the latitude and longitude at any semimajor axis (altitude) during
a decay, providing that the ballistic coefficient can be discretized
as a function of the semimajor axis:

Gn � Fϕ;λ�Fxn� (31)

3. Strategy

It is clear that, to adjust the latitude and the longitude, only two
degrees of freedom are required. The strategy envisioned by the
authors assumes that the spacecraft can alter its ballistic coefficient
within a range �CB min; CB max� where a mean or nominal ballistic
coefficient can be defined as CBmean � �CB max � CB min�∕2. To
provide enough degrees of freedom, the spacecraft will maintain an
initial ballistic coefficient CB1 from its initial altitude a0 until it
reaches a transition altitude at where it will transition to a second
ballistic coefficient CB2, which will be maintained until reentry ar.
Assuming that the initial position cannot be chosen and that the
reentry altitude is fixed, this approach seems to have three degrees of
freedom (CB1,CB2, and at). To reduce this to the only two degrees of
freedom required, it will be assumed that both ballistic coefficients
are equidistant to the mean ballistic coefficient, but with one being
higher and the other being lower (CB1 � CBmean � ΔCB and
CB2 � CBmean − ΔCB). Note that ΔCB can be either positive or
negative and that, for this strategy to be successful,CB1 andCB2 need
to be within the achievable range (and potentially leave some control
authority for the onboard trajectory control). With this strategy, the
parameters are reduced to the transition altitude at and the ballistic
coefficient delta ΔCB. This arrangement is schematically shown
in Fig. 4.
Note that some margin of the �CB min; CB max� range is left for the

onboard control, ensuring that the spacecraft canmaintain the required
decay rate in the presence of uncertainty (mainly in the atmospheric
density, which is highly variable and difficult to forecast). The amount
ofmargin that needs to be left depends on several parameters and needs
to be evaluated on a case-by-case basis. Section IV covers how to
control the decay (using the available margin).
Then, away to explore the area that can be targeted is to setΔCB to

its maximum (so that the ballistic coefficients reach their maximum
and minimum) and move the transition semimajor axis at from a0 to
ar. This process will produce two lines (one for positive ΔCB and
another onewith negativeΔCB) that separately will resemble the one
shown in Fig. 1 and that, when plotted together, will enclose the area
that the spacecraft is capable to target. An exaggerated example of
this is shown in Fig. 5. The values used to produce this figure are
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Fig. 4 Outline of the proposed control strategy.
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h0 � 200 km, hf � 100 km, CB max � 0.0223 m2∕kg, CB min �
0.0222 m2∕kg, i� 70 deg,H � 55 km, ρ0� 6.66 × 10−12 kg∕m3,
and aρ0 � 350 km, with the longitude difference between the two
lines being exaggerated by a factor of 750. The centerline in Fig. 5 can
be obtained by setting a constant ballistic coefficient throughout the
decay and then scanning through all possible ballistic coefficients.
Note that the difference betweenCB max andCB min used in Fig. 5 is

very small. This small difference ensures that the points of reentry,
when using a constantCB max orCB min, are sufficiently close to each
other so that Fig. 5 is clear (no lines crossing each other as in Fig. 1).
Because of this small difference, the accessible area is also very small
and it has to be exaggerated to make visible in Fig. 5. When this
method is used in a real case, the difference between CB max and
CB min should be significantly larger, so that the accessible area is big
enough to be useful. An example of useful CB max and CB min can be
seen in the case study presented in Sec. V.
Targeting the points that are enclosed in the area shown in Fig. 5

can be achieved by changing the ΔCB and at within the achievable
limits. Figures 6 and 7 show how these parameters need to change to
target any point within the accessible area. The same values as in
Fig. 5 have been used, except for the initial RAAN (which is why
Fig. 6 is displaced westward). It is clear that having a positive ΔCB

(so that CB1 < CB2) moves the reentry point to the east and having a
negativeΔCB (so thatCB1 < CB2)moves the reentry point to thewest.
Then, if ΔCB > 0, increasing the transition altitude increases the
argument of latitude of the reentry point, and ifΔCB > 0, increasing
the transition altitude reduces the argument of latitude of the
reentry point.
The longitude difference between the two exterior lines (maximum

andminimumΔCB) at equal argument of latitude (equal latitude) can
be used as a proxy for the amount of area that can be targeted. Figure 8
shows how this metric evolves when ΔCB and the initial altitude h0
are increased. The values used to produced the nominal curve (solid
line) of this figure are as follows: h0 � 275 km, hf � 100 km,
CB max � 0.0225 m2∕kg, CB min � 0.0215 m2∕kg, i � 70 deg,
H � 55 km, ρ0 � 6.66 × 10−12 kg∕m3, and aρ0 � 350 km. The
curve that shows the effect of an increased ΔCB was generated by
increasing the ΔCB from 0.0005 to 0.0006 m2∕kg. The curve that
shows the effect of an increased initial altitude was generated by
increasing h0 to 278 km. As it could be expected, increasing theΔCB
increases this longitude difference and therefore the area that can be
targeted; also, increasing the initial altitude also increases the
longitude differences and also retards the reentry argument of latitude
(it takes longer to decay).

Fig. 5 Area that can be targeted by changing ΔCB and the transition
altitude at.

Fig. 6 Reentry point for different ΔCB.

Fig. 7 Reentry point for different transition altitudes ht.
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The dashed lines show the effect of increasing different parameters.
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With this technique and a spacecraft that has the capability to
change its ballistic coefficient, the atmospheric interface reentry
location can be targeted. By increasing the initial altitude a0 or
increasing the range of ballistic coefficients available ΔCB, the
spacecraft will eventually achieve global coverage (the accessible
latitude is obviously limited by the orbit’s inclination). These
minimum conditions to achieve global coverage are dependent on the
atmospheric density, lower densities (low solar activity periods)
increase the decay time, hence reducing the required initial altitudea0
and range of ballistic coefficients availableΔCB to achieve the global
coverage.
These minimum conditions can be found by increasing a0 and

ΔCB so that the accessible area covers the whole Earth. Figure 9
shows how the minimum required altitude to target any longitude at a
particular latitude decreases as theΔCB range increases. The example
shown assumesCBmean � 0.03 m2∕kg, an orbit inclination of 50 deg,
a 0 deg target latitude, and the minimum altitude is computed in
0.1 km steps.
If, when this strategy is implemented, the minimum conditions to

achieve global coverage are exceeded, it will often occur that when
targeting a specific location there will be more than one solution. An
example of the available solutions to target a specific location is
provided in Fig. 10. Note that Fig. 10 shows multiple solutions
(combinations ofΔCB andat) when a single location is targeted. This

example uses the data provided in the case study presented in Sec. V.
It is important to mention that the solutions have been computed with
an initial altitude of 300 km (which is why the maximum transition
altitude is also 300 km).
It also interesting to note that the solutions seem to define curves,

although the solutions are discreet points. This tendency to define
curves has not been explored in depth, although the shape of those
curves seem to change for different scenarios.
In the case shown in Fig. 10, and ignoring anyother constraints that

the spacecraft may have, choosing the solution with the lower ΔCB
seems to be a good option because it is the solution that offers more
margin of CB to control the decay and cope with atmospheric
uncertainties when implementing this option.

B. Numerical Approach

The behavior when the full dynamics are considered is more
complex but very similar. The disadvantage is that the algorithms to
identify the solution take much longer because, instead of evaluating
analytical expressions, lengthy numerical propagations have to be
performed. The analytical solutions could serve as a first guess for the
numerical algorithms. The main challenge to have a good initial first
guess is to adjust the exponential atmospheric model to match with
more accurate and complex atmospheric models.
In the analytical approach, a simple exponential atmospheric

model has been used. In the numerical approach, more realistic
atmospheric models are required. For example, the NRMLSISE-00
[27], JB2008 [28] orDTM2013 [29] are recommended.Modeling the
atmosphere is a complex task and an active field of research.
Fortunately the International Organization for Standardization (ISO)
provides some guidelines on how to model it [30].
In fact, the solutions are quite sensitive to the atmospheric

conditions, and hence special care has to be taken when setting the
parameters of the exponential model. If the exponential atmosphere
density profile differs substantially from the atmospheric model used
in the numerical approach, the solutions from the analytical and
numerical approach will diverge. A way to solve this issue, and
maintain good agreement between the analytical and numerical
approach, is to break down the exponential atmosphere into altitude
bands and apply different parameters (ρ0 andH) within these bands.
With this technique, a density profile that matches the density profile
produced with atmospheric models used in numerical propagators
can be generated.
Also, when propagating using the full dynamics of the system, the

effects of the uncertainty of the parameters not present in the models
has to be assessed. The uncertainty in the initial spacecraft position and
velocity, in the solar radiation pressure, or in the gravity models will
produce a reentry uncertainty footprint. This uncertainty footprint can
be partially corrected during the decay by the control, but it already
uses part of the controller range, which will no longer be available to
control other expected errors or uncertainties that may arise during the
decay (as changes in atmospheric density). Therefore, it is important to
have accurate information of the spacecraft state vector and also of its
properties.A case-by-case assessment has tobeperformed to assess the
impact of these uncertainties.
It is also interesting to point out that, when extracting the solutions

using a numerical approach, the simplifications in the dynamics
and in the environmental models (atmosphere, gravity, third-body
perturbations, and solar radiation pressure) can be dropped. The
propagators used in the numerical approach can be as accurate as
possible, and hence their solutions will include the effects of all these
other forces and perturbations omitted in the analytical approach.
Because the intention is to use the analytical approach solutions as

a first guest, there may be scenarios where it may be easier to add the
perturbations in the numerical approach one at a time. For example, at
the beginning, just addmore gravity harmonics while maintaining all
the other simplifications. The solution extracted in this case can be
used as a first guess for a propagator that usesmore gravity harmonics
and also solar radiation pressure, for example. This process continues
until all the perturbations are included. Using this step-by-step
approachwhen adding the perturbations can bemore time consuming
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Fig. 9 Minimum required altitude to target any point with respect
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but ensures that the solutions change progressively (making it easier
to converge).

IV. Navigation and Control

Once the nominal decay profile has been selected (at and ΔCB),
the spacecraft will have to control its decay to remain on target.
Because this nominal decay will have been computed using
simplified or inaccuratemodels, the spacecraft will have the tendency
to deviate from the nominal decay path. The uncertainty in the
atmospheric environment, mainly in density, is likely to be the main
difference between the models used to compute the nominal decay
and the real dynamics.Atmosphericmodels are not perfectly accurate
[27,28,31] and the solar activity is difficult to forecast, hence making
predictions of atmospheric densities difficult and inaccurate. To
remain on target, with this atmospheric environment uncertainty,
the ballistic coefficient can be adjusted to correct for the density
uncertainty. In addition, the nominal decay can be updated
regularly when more up-to-date atmospheric information becomes
available.
Here, a simple control strategy is presented, although it is clearly

not the only one that could be used and is not probably the most
effective. This control strategy shows that the system is controllable.
The computations required in this control strategy can be performed
onboard the spacecraft, making the system autonomous, or can be
performed on the ground and their results uplinked to the spacecraft.
If conventional communication architectures are used (without
relay satellites), the opportunities to downlink the information to the
ground and uplink the results are limited to a few per day. An
autonomous system may be more limited in terms of computing
power but it can implement its results without delay, and hence the
control can be adjusted more frequently. The simulation results from
the control strategy presented here suggest that frequent updates are
more important than a high accuracy, and hence the implementation
of the controller onboard the spacecraft is favored.
Once the nominal decay trajectory has been computed, it is

uploaded to the spacecraft. Then, to control this decay, the following
process can be followed:
1) A Δt (time interval) is set. This time interval is set taking into

account the current altitude and the aerodynamic capabilities of the
spacecraft. Thus, Δt will change during the decay, as the altitude
decreases, and will change from spacecraft to spacecraft, because
they will have different aerodynamic properties.
2) The current state of the spacecraft is propagated forwardp times

the Δt time interval pΔt. The parameter p, is another parameter
defined based on the altitude and the aerodynamic capabilities of the
spacecraft.
3) The predicted future position is compared with the nominal

decay position and velocity at that particular time.
4) The CB at the n different Δt intervals are adjusted so that this

error is minimized (this can be done using a simple least-square
quadratic technique). The error normal to the orbit plane is not
controlled because the change of the ballistic coefficient has very
little effect on this direction.
5) The new CB are implemented on the spacecraft.
6) The spacecraft orbits (decays) for a period of Δt with the new

CB, and then the process is repeated.
The propagation of the spacecraft state needs to be as precise as

possible. During this step, all the previous assumptions to simplify the
dynamics need to be dropped. Then, the inclusion of realistic gravity
models (with high number of gravity harmonics), atmosphericmodels,
solar radiation pressure, and third-body perturbations are desirable.
Adding high-fidelity models will slow down the propagation, and it is
possible the processing power and the time available for the
propagation become the limiting factors. If this is the case, then more
simplistic environmental models can be used (although the accuracy
will decrease) and the control will lose effectiveness because it will try
to correct the errors included in the propagation.A shortΔt timeperiod
reduces the impact of the propagation errors.
This strategy controls the along-track and vertical differences in

positions and velocity to make them track the nominal decay by

adjusting the spacecraft CB. When the current state of the spacecraft
is propagated by pΔt and the propagation shows that the spacecraft
has then reentered, then the strategy changes from matching the
position and velocity in a future point to matching the time of reentry.
The process is then the following:
1) A new Δt is set. Again, this time interval is set taking into

account the current altitude and the aerodynamic capabilities of the
spacecraft. Here, the rules to set the time interval may be different
than the ones used before. These differences can makeΔt experience
a step change during the transition.
2) The current state of the spacecraft is propagated until reentry.
3) The predicted reentry time is compared with the nominal decay

reentry time.
4) The CB at the different Δt intervals until reentry are adjusted so

that this error is minimized.
5) The new CB are implemented on the spacecraft.
6) The spacecraft orbits (decays) for a period of Δt with the new

CB, and then the process is repeated until reentry.
This strategy only adjusts the ballistic coefficient to control the

trajectory in the short term. Therefore, this strategy can only
effectively correct the deviations in the orbit plane (both in position
and velocity), but it has very limited capabilities to correct the
deviations normal to the orbit plane. Fortunately, the main source of
error comes from the uncertainty in the density that causes errors
mainly in the along-track direction. Note that the uncertainty in the
spacecraft ballistic coefficient behaves as the uncertainty in the
density and can in fact be merged as a single uncertainty source
(uncertainty in the drag force).
Also, in the absence of perturbations normal to the orbit plane,

cross-track errors only occur when the decay deviates from the
nominal one for long periods of time (same mechanism as the one
used to obtain cross-track targeting capabilities). Therefore,
maintaining a decay profile close to the nominal one (without bias)
avoids cross-track deviations.
Because the atmospheric density decreases exponentially as the

altitude increases, theΔt and p parameters have to be defined so that
the uncertainty that dominates during the pΔt is either the
atmospheric or the ballistic coefficient uncertainty. As the altitude
increases, other errors can become increasingly relevant, such as the
error in the location and velocity of the spacecraft and the uncertainty
in the solar radiation pressure. Trying to correct the solar radiation
pressure (which can act in the normal plane direction) or trying to
react over the state vector uncertainties (coming fromGPS errors) can
exhaust the control authority and mask out the deviations caused by
the atmospheric and ballistic coefficient uncertainties, which are the
ones that cause real errors in the reentry interface location in the long
run. These others errors can effectively limit the applicability of this
method at high altitudes, because these errors will dominate at high
altitudes. Increasing the ΔCB range would be required to be able to
correct these other errors at lower altitudes by recomputing the
nominal decay trajectory.
It is also worth mentioning that, if the deviations are large, the

controller will saturate. In this case, the ballistic coefficient will be set to
its maximum or minimum achievable value. The saturation is more
likely to occur during the last stages of the decay,when the uncertainties
in atmospheric density and ballistic coefficient have a bigger impact
(hence requiring a larger control actuation). It is therefore important to
size theΔCB range so that saturation happens as late as possible or that
the impact of the saturation in the late stages of the decay is acceptable in
terms of the reentry interface dispersion footprint. Nominal decay
profiles that use nominalCB closer to theCBmean leavemore of theΔCB
range to the control, henceminimizing the saturation. So,whenmultiple
nominal decay solutions are available, theonewithnominalCB closer to
the CBmean is recommended.

V. Case Study

The case of the ΔDsat CubeSat is studied here to show how this
method can be used in a real mission. The ΔDsat spacecraft is a two
unit CubeSat that is scheduled to fly as part of theQB50network [32].
Its main scientific objectives are to study rarefied-gas aerodynamics

8 AIAA Early Edition / VIRGILI, ROBERTS, AND HARA

D
ow

nl
oa

de
d 

by
 C

R
A

N
FI

E
L

D
 U

N
IV

E
R

SI
T

Y
 o

n 
Ja

nu
ar

y 
28

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
08

84
 



[33], to measure thermosphere winds, and demonstrate aerostability.
To do so, it has four deployable panels that can rotate independently
from one another, as seen in Fig. 11. This gives the CubeSat the
ability to change its cross-sectional area and hence to change its
ballistic coefficient from 0.02 to 0.16 m2∕kg. This large range will
allow ΔDsat to demonstrate the novel technique proposed here. One
secondary objective will then be to make the spacecraft reenter over
Cranfield University (United Kingdom), where the main ground
station of the mission will be located. Targeting Cranfield would
allow the Cranfield ground station, or other neighboring ground
stations, to receive the CubeSat transmissions just before reentry
(broadcasting its position) and hence assess if the technology
demonstration has been successful or not. Targeting Cranfield does
not pose any risk to property or population because the ΔDsat
CubeSat will completely vaporize during reentry and no debris are
expected to reach the ground.
Based on the latitude of Cranfield of 52°N, the 98 deg inclination

of the orbit, and the aerodynamic capabilities of the CubeSat, the
minimum required altitude forΔDsat to ensure that it is able to target
Cranfield regardless of the local time of the ascending node (which is
still uncertain) is estimated to be between 240 and 250 km depending
on the solar activity. Lower solar activity allows a lower starting
altitude. Having such a low starting altitude for the reentry control
allows the CubeSat to perform its other science experiments without
interference at higher altitudes, because it will be deployed in a
380 km circular orbit.
To understand howall these different effectswork together, amission

simulator (high-precision three-degree-of-freedom orbit propagator)
has been developed to assessΔDsat’s expected accuracy. The simulator
uses the NRLMSISE-00 model [27] to model the atmospheric density
and the HWM93 model [34] to model the atmospheric wind. The
simulator uses the EGM96 [35] gravity field model of the Earth. It also
includes thegravity fields of the sun, themoon, and a realistic rotation of
the Earth using the ITRF93 model [36] (celestial bodies ephemeris
extracted using the SPICE toolkit from the Jet Propulsion Laboratory).
The simulator also includes the perturbation of solar radiation pressure,
assuming a reflectivity coefficient of r � 0.9.
Figure 10 shows an example of the solutions when Cranfield is

targeted from an initial altitude of 300 km using ΔDsat. These
solutions would change depending on the local time of the ascending
node, which is still uncertain, and will also depend on the solar
activity (because it drives the atmospheric density).
Figure 12 shows the expected reentry interface location dispersion

3σ from the target if the controlmethod described in Sec. IVis applied
and if an initial altitude of 250 km and a decay profile with CB1 �
0.0715 and CB2 � 0.1209 m2∕kg is set. This case is then a
realistic one because it simulates a typical decay profile with the
segmented decay with two different ballistic coefficients equidistant
to CBmean � 0.0962 m2∕kg.
To simulate the uncertainty of the atmospheric density and the

spacecraft CB, a Gaussian error of 20% 3σ has been introduced on
the real CB (biases of the atmospheric density are corrected by the
navigation algorithm just by adjusting the mean CB to cope with the

bias). In addition, the HWM93 [34] wind model has been omitted in
the control algorithms, but is included in the propagator to simulate
the uncertainty of the winds. The knowledge of the spacecraft
position and velocity contains a 4.5m and 0.1 m∕s 3σ error (based on
theGPSunit to be flown) and a 15%uncertainty has been added to the
solar radiation pressure forces. No uncertainty has been introduced in
the gravity field model. Figure 12 shows the result of a 60 sample
Monte Carlo simulation.
As can be seen in Fig. 12, the main dispersion occurs in the along-

track direction with a much smaller dispersion in the cross-track
direction. The estimated dispersion of the reentry interface location for
ΔDsat is small enough so that, if Cranfield was targeted, the ground
station fromCranfield, or other neighborground stations, couldpick up
the signals of the spacecraft emitted moments before it burns up. It is
fair to say that the case presented here overestimates the control
capability of the CubeSat, because some disturbances or delays have
not been modeled. For example, it has been assumed that the onboard
computer has enough computing power to handle orbit propagations
with relatively high-fidelity models and that it does them instantly (no
delays in applying the control ballistic coefficients). Thiswill not be the
case, the onboard propagator will probably use simpler models, and
there will be delays in applying the output of the controller. These
estimations will be refined before the launch of the mission.
Another interesting point is illustrated by observing the final CB

applied during the decay. Figure 13 shows the 3σ range ofCB applied

Fig. 11 Schematic representation of the ΔDsat 2U CubeSat.
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Fig. 12 Dispersion of the atmospheric interface reentry point from the
target location.
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Fig. 13 CB applied during the 60 sample Monte Carlo simulation.
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in this 60 runMonte Carlo simulation. Note how theΔt time interval
is shortened as the decay progresses. This keeps the CB dispersion
range constant andwell below the limits of the spacecraft capabilities.
Before the transition in strategy, the controller saturates in someof the
simulated cases, but after the transition, the dispersion on the CB is
reduced, because the Δt time interval is reduced significantly (step
reduction). As the spacecraft approaches the reentry interface, the
dispersion in the applied CB grows significantly again and it reaches
the limits (hence saturating). To reduce this saturation, the Δt time
interval could be reduced until the practical limit is reached.

VI. Potential Applications

The novel method presented here has mainly two major potential
applications. The first one is in drag enhancing deorbiting devices.
These devices increase the drag on a spacecraft after the end of the
spacecraft operational life to speed up their decay, to reduce the risk
of collision with other operational spacecraft or debris [37]. These
devices are passive, and hence the location of the reentry is not
controlled. On spacecraft that have components that will survive
reentry, this can be a problem because they pose a risk to the
population and to property. The method described in this paper could
then be used to engineer a drag-enhancing deorbit device that could
change the amount of drag it creates and hence control its reentry
point. The reentry point could be selected to target remote areas such
as the South Pacific. As these safe reentry areas are quite large, it
requires a relatively low precision and hence a small ΔCB range.
The second potential application is in passive small reentry

capsules with inflatable heat shields [38]. In this case, a small reentry
capsule could be crudely guided by thismethod using a similar device
as the one used in ΔDsat to reenter over a predefined area. The
advantage of this method is that it is passive, and hence no propulsion
is required. This allows for a cost and complexity reduction.
Combining this method with an inflatable heat shield such as the one
envisioned in [38], a complete targeted reentry system could be
contained in a very small spacecraft (potentially down to a CubeSat
size). This method is not very precise (refer to case study in Sec. V),
and hence a large landing areawill be expected. Therefore, part of the
complexity is transferred to the search and recovery of the craft once
on the ground.
It is obvious that including a device that canmodulate the drag of a

spacecraft and be used during the decay to target the atmospheric
interface reentry can have amajor impact on the spacecraft design and
its operations. The case study shows a practical implementation of
such a device (yet to be flown) and its scalability to bigger spacecraft
is yet to be proven. It is clear then that, before the method presented
here is used, it may need to be adapted to the specific mission
requirements and spacecraft capabilities. It is possible to envision a
system where the control of the ballistic coefficient is more limited
than what has been assumed here (for example, limited range, larger
ballistic coefficient steps for the control, or larger uncertainties).
Also, the operations and design requirements that this method
imposes may conflict with the requirements imposed by other
mission objectives. This practical limitation may limit the ap-
plicability and performance of this method and may force it to adapt
to the particular mission that will be using it.

VII. Conclusions

A novel method to control the reentry location of a spacecraft in a
circular orbit by controlling its decay rate has been presented in this
paper. Constructing the nominal decay is fairly simple when
simplified dynamics are used. When more complex and realistic
dynamics are considered, finding the nominal decay trajectory can be
very computationally intensive. This can be a challenge when the
nominal decay of a spacecraft needs to be recomputed between
ground passes. Also, when considering full dynamics, the impact of
the uncertainties in the spacecraft position and dynamicmodels needs
to be taken into account. The case study has shown that the two-phase
control algorithm has an acceptable performance for the example
mission and for other potential applications. The range of ballistic

coefficient required is dependent on the mission profile and hence
needs to be assessed on a per-case basis.
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