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The Fisher-Rao geometry of CES distributions
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Ginolhac

Abstract When dealing with a parametric statistical model, a Riemannian manifold
can naturally appear by endowing the parameter space with the Fisher information
metric. The geometry induced on the parameters by this metric is then referred to as
the Fisher-Rao information geometry. Interestingly, this yields a point of view that
allows for leveragingmany tools fromdifferential geometry.After a brief introduction
about these concepts, we will present some practical uses of these geometric tools in
the framework of elliptical distributions. This second part of the exposition is divided
into three main axes: Riemannian optimization for covariance matrix estimation,
Intrinsic Cramér-Rao bounds, and classification using Riemannian distances.
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1 Introduction: from CES distributions to information geometry

This section starts with reminders on complex elliptically symmetric distributions
(CES)1. This part is concluded by introducing the Fisher information matrix of this
model, which acts as a transition point to information geometry. Indeed, the Fisher
information matrix actually represents a metric that induces an inherent geometry
for statistical models, which is referred to as the Fisher-Rao information geometry.
In the specific case of CES, this will yield a particular geometry for the space of
covariance matrices. After evidencing this transition point, this section concludes by
outlining the rest of the chapter.

1.1 Reminders on CES distributions

Circular complex elliptically symmetric (C-CES) distributions [52] refer to a large
family of multivariate distributions. Very comprehensive and detailed reviews on the
topic can be found in the references [70, 73], and of course, the background chapter
of this book. A vector x ∈ Cp follows a centered (zero-mean) C-CES distribution,
denoted x ∼ C-CES(0,Σ, g), if it admits the following stochastic representation:

x=d
√
Q Σ

1
2 u, (1)

where:

• The notation =d means that random variables on both sides have the same cumu-
lative distribution function.

• The vector u ∈ Cp follows a uniform distribution on the complex unit sphere
CSp = {u ∈ Cp | ‖u‖ = 1}, denoted u ∼ U (CSp).

• The scalar Q ∈ R+ is non-negative real random variable of probability density
function fQ , independent of u, and called the second-order modular variate (while√
Q is called the modular variate).

• The matrix Σ 1
2 ∈ Cp×p is a factorization of the scatter matrix Σ = Σ 1

2 Σ H
2 . If

the covariance matrix of x exists, it is proportional to the scatter matrix, i.e.,
E

[
xxH

]
∝ Σ. If we then choose the normalization convention E [Q] = 1, these

two matrices are equal. Thus we will abusively refer to the scatter matrix Σ as the
covariance matrix, as it is a more familiar terminology.

We focus only on the absolutely continuous case where the covariance matrix Σ is
full rank (cf. Section 2.3 of the background chapter). In this case, the probability
density function of x is given as

1 Note that this chapter considers the case where the data and covariance matrix can be complex-
valued for the sake of generality. However, we focus solely on the circular case (referred to as
C-CES in the background chapter). Hence, most of the presented results can also be obtained in the
real-valued case (RES) with proper adjustments.



The Fisher-Rao geometry of CES distributions 3

fx (x|Σ) ∝ |Σ|−1g
(

xHΣ−1x
)
, (2)

where the function g : R+ → R+ is called the density generator. The density
generator satisfies the finite moment condition δp,g =

∫ ∞
0 tp−1g(t)dt < ∞. This

function g is directly related to the probability density function of the second-order
modular variate by the relation

fQ (Q) = δ−1
p,gQ

p−1g (Q) . (3)

Given a n-sample {xi}ni=1, assumed to be independent and identically distributed
(iid) from x ∼ C-CES(0,Σ, g), its log-likelihood is given as:

Lg

(
{xi}ni=1 |Σ

)
=

n∑
i=1

log
(
g

(
xH
i Σ−1xi

))
− n log |Σ|. (4)

The C-CESmodel being defined, wemove to the notion of information brought by
the Fisher informationmatrix: intuitively, themore the sample set {xi}ni=1 depends on
Σ, the more sampling from the likelihood (4) (increasing n) will reveal information
about Σ. The score vector is a tool that will help in quantifying this notion of
information: to define this quantity, we now consider a parameterization of the
covariance matrix through a real-valued vector ν of appropriate dimension2, denoted
Σ(ν). The score vector s is then defined entry-wise as

[s]j =
∂Lg

(
{xi}ni=1 |Σ(ν)

)
∂νj

, (5)

which therefore reflects the variation of the log-likelihood of the sample set {xi}ni=1
with respect to the parameter νj . Under mild regularity conditions (satisfied by Lg

in our case), this vector has zero mean, i.e., E [s] = 0. However, its covariance matrix
is a fundamental quantity referred to as the Fisher information matrix, denoted F,
and defined as:

[F]j,k = E


∂Lg

(
{xi}ni=1 |Σ(ν)

)
∂νj

∂Lg

(
{xi}ni=1 |Σ(ν)

)
∂νk

 . (6)

This matrix quantifies, on average, how much information about the vector ν we can
obtain from a sample set {xi}ni=1. In practice, the entries of the Fisher information
matrix F for centered C-CES can be obtained thanks to Slepian-Bangs type formula
from [16], also presented in the Section 6.5 of the background chapter. The latter

2 In this chapter, Σ is not assumed to have a specific structure, so ν is typically of dimension
p2 and stores the entries of the diagonal and upper triangle of the covariance matrix (where the
coordinates are split in terms of real and imaginary part). However, the definition extends to any
parameterization, e.g., from a choice of decomposition in the case of structured matrices [62].
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is briefly recalled below using an alternate expression that is consistent whit the
upcoming discussions:

Theorem 1 (Fisher Information matrix of centered C-CES)
Let Σ def

= Σ(ν) be a covariance matrix parameterized by the real-valued vector ν.
Let {xi}ni=1 be a n-sample of iid from x ∼ C-CES(0,Σ, g). The entries of the Fisher
information matrix are

[F]j,k = nαg Tr(Σ−1ξ jΣ−1ξk) + nβg Tr(Σ−1ξ j)Tr(Σ−1ξk), (7)

with
ξ j =

∂Σ(ν)
∂νj

, (8)

and where the coefficients αg and βg are defined by

αg = 1 −
E

[
Q2φ′ (Q)

]
p(p + 1)

and βg = αg − 1, (9)

with φ(t) = g′(t)/g(t).

In the statistical signal processing community [55], the Fisher information matrix
has been extensively leveraged thanks to the CramÃľr-Rao inequality:

E
[
(ν̂ − ν)(ν̂ − ν)>

]
< F−1 ⇒ ‖ν̂ − ν‖2F ≥ Tr(F−1), (10)

that yields a lower bound for the mean squared error of any unbiased estimator ν̂ of
ν (built from a set of observations {xi}ni=1). On the other hand, the seminal work of
Rao [79, 80] also discusses using the Riemannian geometry of the parameter space
when the Fisher information matrix is used as a metric tensor. The study of such
spaces is now broadly referred to as the Fisher-Rao information geometry, which is
introduced in the next section. Before this, we conclude this brief reminder by the
example of multivariate (Student’s) t distribution (also discussed with more details
in Section 5.2 of the background chapter).

Example The t-distribution with d ∈ N∗ degrees of freedom is obtained for the
C-CES representation x ∼ C-CES(0,Σ, gd) with

gd(t) =
(
1 +

t
d

)−(d+p)
, (11)

and the second-order modular variate is distributed as Q=dCX2
p
/CX2

d
/d where CX2

x

denotes the Chi-squared distribution with x degrees of freedom. Hence Q follows a
scaled F -distribution. We have

φ(t) = −
d + p
d + t

, (12)

and the expectation
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E
[
Q2φ2 (Q)

]
=
(d + p)p(p + 1)

d + p + 1
, (13)

that allows to obtain the coefficients

αg =
d + p

d + p + 1
and βg =

−1
d + p + 1

. (14)

for the Fisher information metric as in Theorem 2. The t-distribution also encom-
passes thewell knownmultivariateGaussianmodel x ∼ N(0,Σ) (of density generator
gN(t) = exp(−t)) as limit case when d →∞. The corresponding Fisher information
metric coefficient are then αg = 1 and βg = 0, which makes Theorem 1 coincide
with the classical Slepian-Bangs formula [84, 10].

1.2 From the Fisher information matrix to information geometry

This section aims at linking notions of Riemannian geometry to the classical expres-
sion of the Fisher informationmatrix fromTheorem 1. The goal is to shortly build the
intuition on why the C-CES statistical model naturally induces a certain geometry for
covariance matrices, while the corresponding framework will be presented in details
in Section 2. We first need to re-interpret the expression of the Fisher information
matrix from two key points:

• Covariance matrices belong to the smooth manifoldH++p
The matrix Σ def

= Σ(ν) is a point in the space of covariance matrices, i.e., the set
of p × p positive definite Hermitian matrices

H++p =
{
Σ ∈ Hp : ∀ x ∈ Cp\{0}, xHΣx > 0

}
, (15)

where Hp denotes the set of p × p Hermitian matrices. As it is an open of the
linear spaceHp , the spaceH++p is a smooth manifold. This means that it admits
a differential structure, and notably, a tangent space at each point Σ, denoted
TΣH

++
p . For any point Σ, this tangent space TΣH

++
p turns out to be identifiable to

be Hp (which again, comes from the fact that H++p is an open subspace of Hp).
An abstract representation of these spaces is presented in Figure 1.

Space of covariance matrices H++p

TΣH
++
p ' Hp

Tangent space at Σ

Σ •

Fig. 1: Space of covariance matrices represented as a smooth manifold.
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• The Fisher information matrix represents an inner product on TΣH
++
p

The entries of the Fisher information matrix of Theorem 1 can be compactly
denoted as [F]j,k = 〈ξ j, ξk〉

FIM
Σ , whose expression is identified directly from (7).

We then remark that the matrices ξ j and ξk in (8) are, in fact, elements of
TΣH

++
p . The expression in (7) can thus be generalized to any pair of matrices

ξ, η ∈ TΣH
++
p , which results in a bi-linear form, denoted 〈·, ·〉FIMΣ : TΣH

++
p ×

TΣH
++
p → R. Because this bi-linear form is positive definite, it defines a metric,

i.e., an inner product on the tangent space TΣH
++
p . This inner product on TΣH

++
p

is referred to as the Fisher information metric3.

These two points being stated, we can last notice that the obtained Fisher informa-
tion metric 〈·, ·〉FIMΣ varies smoothly with Σ. This enables the transition from statis-
tical models to Riemannian geometry: the branch of differential geometry studying
smooth manifolds endowed with smooth local inner products (referred to as Rie-
mannian metrics). Such framework indeed applies to parametric statistical models,
as it allows us to investigate the geometry of the parameter space equipped with the
Fisher information metric. The resulting Riemannian geometry is generally referred
to as the Fisher-Rao information geometry. Back to our central example, we have
presented enough elements to explicit that the title of this chapter “The Fisher-Rao
Geometry of CES distributions” more precisely stands short for “the Riemannian
geometry of Hermitian positive definite matrices (covariance matrices) induced by
the Fisher information metric of centered circular complex elliptically symmetric
distributions”, which will be studied in the next sections.

1.3 Outline of the chapter

The previous section showed why an inherent geometry of the parameter space can
naturally result from a statistical model. Studying such geometry in detail requires
introducing tools from the framework of Riemannian geometry, which is done in
section 2. The C-CES distributions will be used as an example throughout the
exposition. Hence, we will obtain most tools related to the Fisher-Rao Geometry
of C-CES distributions: the Levi-Civita connection, the geodesics (and geodesic
distance) between two covariance matrices, as well as the Riemannian exponential
and logarithm mappings.

On a larger perspective, the second part of this chapter illustrates where tools
obtained from the Fisher-Rao information geometry of C-CES can be leveraged
within signal processing and machine learning tasks. In details:

• Section 3 addresses covariance matrix estimation problems, i.e., given a sample
set {xi}ni=1, we infer Σ to perform a task (covariance analysis, filtering, metric
learning, etc.). In this setup, we illustrate how the concepts of geodesic convexity

3 Note that the Fisher information matrix being obtained as [F] j,k = 〈ξ j, ξk 〉
FIM
Σ , it is actually a

matrix representation (metric tensor) of the Fisher information metric 〈·, ·〉FIMΣ when the set {ξ j }

is chosen as a basis of coordinates for the tangent space TΣH
++
p .
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and Riemannian optimization can be helpful in problems related to covariance
matrix estimation.

• Still related to covariance matrix estimation problems, Section 4 presents how the
statistical performance of an estimator can be evaluated with intrinsic CramÃľr-
Rao lower bounds, which generalize the standard CramÃľr-Rao inequality for
parameters that lie in a manifold.

• Section 5 discusses how the Fisher-Rao geometry of C-CES provides a mea-
sure between the distributions of samples that can be leveraged in classification
methodologies. This framework is then applied to Electroencephalography (EEG)
signals.

2 An introduction to Riemannian geometry through the
Fisher-Rao geometry of CES distributions

This section provides a short introduction to the concepts and tools of Riemannian
geometry, while using the Fisher-Rao geometry of C-CES distributions as the main
directive example. Some elementary notions are also assumed to be known for the
sake of conciseness (e.g., basics matrix differentiation). For more detailed coverages
of differential geometry, one can refer to the standard textbooks on the topic [41, 58,
59]. The notations and definitions of this section are mostly inspired from the books
[1, 26], which provide very good (optimization-oriented) entry points to smooth
manifolds and Riemannian geometry. The Fisher-Rao geometries of multivariate
Gaussian and CES models have been studied in, e.g., [8, 15, 28, 63, 64, 85, 83].

2.1 H++p as a Riemannian manifold

The set of p × p Hermitian positive definite matrices H++p is an open subspace of
the space of p × p Hermitian matrices Hp . Since H++p has the same dimension as
its embedding space Hp , it is a smooth manifold of dimension p2 [26, Definition
3.10]. As every smooth manifolds, H++p admits a differential structure, i.e., every
point Σ ∈ H++p possesses a tangent space TΣH

++
p . The elements of TΣH

++
p are

called tangent vectors, and correspond to the directional derivatives of curves in
H++p passing through Σ (cf. Figure 1 for an illustration). SinceH++p is open inHp ,
the tangent space TΣH

++
p at every point Σ can be identified as Hp [26, Theorem

3.15]. An illustration of the 1-dimensional caseH++1 = R+∗ is presented in Figure 2.

Remark The space H++p is often referred to as the convex cone of positive definite
matrices. It is indeed a cone because Σ ∈ H++p implies that aΣ ∈ H++p , ∀ a ∈ R∗+.
It is furthermore a convex cone because any linear combination aΣ1 + bΣ2 is also
in H++p , ∀ Σ1,Σ2 ∈ H

++
p and ∀ a, b ∈ R∗+. This cone visually appears in the real

2 × 2 case of S++2 , which is often used to representH++p . Still, this chapter will rely
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H1 = R H++1 = R+∗

0 σ

Fig. 2: Illustration of the manifold H++1 = R+∗ , which is open in H1 = R. We observe that the
tangent space at every point σ > 0 simply corresponds to H1 = R.

on the representation of Figure 1, which is more convenient to illustrate the generic
concepts and tools of Riemannian geometry.

In order to further harness the differential structure of H++p , we endow it with
a Riemannian metric. This consists in a mapping that equips every tangent space
TΣH

++
p with an inner product4 〈·, ·〉Σ that varies smoothly with respect to the point Σ.

This allows notably for locally defining the notion of angle and length for vectors in
TΣH

++
p . A smooth manifold equipped with such Riemmanian metric is then referred

to as a Riemannian manifold. Notice that the definition of the metric is a choice
that induces a corresponding geometry. In particular, if H++p is endowed with the
Euclidean metric 〈ξ, η〉EΣ = Re(Tr(ξη)), where Re(·) returns the real part of its
argument, all the geometrical objects of the manifold H++p are exactly the same as
those of the space Hp . In this case, there is no distinction between H++p and Hp

from a geometrical point of view, and the true structure ofH++p cannot be exploited.
This motivates the use of other metrics, that induce a more meaningful geometry on
H++p (e.g., ensuring that the boundaries of the space are not reachable). In this scope,
various options have been considered, such as the affine invariant metric [17, 65],
the log-Euclidean metric [7], or the Bures-Wasserstein one [18, 43]. Overviews of
the different metrics and their corresponding geometries can be found in [92, 93].

When dealing with a statistical model the Fisher information metric is generally
to be favored, as it is naturally suited to the underlying geometry of the data. Without
resorting to the tedious parameterization and identification of Section 1.2, a general
expression of this metric can directly be obtained following [85, Theorem 1] as:

〈ξ, η〉FIMΣ = E
[
DLg(x|Σ)[ξ] · DLg(x|Σ)[η]

]
= −E

[
D2 Lg(x|Σ)[ξ, η]

]
, (16)

where DLg and D2 Lg are the first and second order directional derivatives of the
log-likelihood Lg of the distribution with respect to Σ. Recall from [44] that the first
and second derivatives of a function L : H++p → R at Σ ∈ H++p in directions ξ and
η ∈ TΣH

++
p are defined as

D L(Σ)[ξ] = L(Σ + ξ) − L(Σ) + o(‖ξ ‖)
D2 L(Σ)[ξ, η] = D L(Σ + η)[ξ] − D L(Σ)[ξ] + o(‖ξ ‖).

(17)

Notice that D2 L(Σ)[ξ, η] is symmetrical with respect to ξ and η. In the case of the
CES distributions, the Fisher information metric was studied in [8, 15, 28, 63, 64],
and its derivation is reported in the following Theorem:

4 An inner product is a bilinear, symmetric, positive definite function.
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Theorem 2 (Fisher Information metric of centered CES) Let Σ ∈ H++p . Let
{xi}ni=1 be a n-sample of iid from x ∼ C-CES(0,Σ, g). The Fisher information metric
is obtained ∀ ξ, η ∈ TΣH

++
p as

〈ξ, η〉FIMΣ = nαg Tr(Σ−1ξΣ−1η) + nβg Tr(Σ−1ξ)Tr(Σ−1η),

with αg and βg defined in (9).

Proof The first things to compute to obtain the Fisher information metric are the
derivativesDLg({xi}ni=1 |Σ)[ξ] andD2 Lg({xi}ni=1 |Σ)[ξ, η] atΣ ∈ H++p in directions
ξ and η ∈ TΣH

++
p . To do so, recall that D log det(Σ)[ξ] = Tr(Σ−1ξ) andD(Σ−1)[ξ] =

−Σ−1ξΣ−1. It follows that

DLg({xi}ni=1 |Σ)[ξ] = −n Tr(Σ−1ξ) −
n∑
i=1

φ(xH
i Σ−1xi)Tr(Σ−1ξΣ−1xixH

i ).

Moreover, also recall that the trace is invariant to any permutation of the product of
three Hermitian matrices. Thus,

D2 Lg({xi}ni=1 |Σ)[ξ, η] = Tr(Σ−1ξΣ−1η)

+ 2
n∑
i=1

φ(Tr(Σ−1xixH
i ))Tr(Σ−1ξΣ−1ηΣ−1xixH

i )

+

n∑
i=1

φ′(Tr(Σ−1xixH
i ))Tr(Σ−1ξΣ−1xixH

i )Tr(Σ−1ηΣ−1xixH
i ).

We now need to compute the expectation. To do so, we exploit the stochastic rep-
resentation xi=d

√
QiΣ1/2ui . Recall that Qi and ui are independent, uH

i ui = 1 and
E

[
uiuH

i

]
= 1

p Ip (since ui ∼ U(CS
p)). Furthermore, from (3), E [Qiφ(Qi)] = −p.

It follows that

E
[
φ(Tr(Σ−1xixH

i ))Tr(Σ−1ξΣ−1ηΣ−1xixH
i )

]
= Tr(Σ−1ξΣ−1ηE

[
φ(Qi)QiuiuH

i

]
) = Tr(Σ−1ξΣ−1ηE [φ(Qi)Qi]E

[
uiuH

i

]
)

= −Tr(Σ−1ξΣ−1η).

For the second expectation, from [16], we need

E
[
(uH

i Aui)
2] = Tr(A2) + (Tr(A))2

p(p + 1)
.

Applying the polarization formula 1
4 [(u

H
i (A + B)ui)

2 − (uH
i (A − B)ui)

2], we get

E
[
(uH

i Aui)(uH
i Bui)

]
=

Tr(AB) + Tr(A)Tr(B)
p(p + 1)

.
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Therefore,

E
[
φ′(Tr(Σ−1xixH

i ))Tr(Σ−1ξΣ−1xixH
i )Tr(Σ−1ηΣ−1xixH

i )
]

= E
[
Q2
i φ
′(Qi)(uH

i Σ−1ξui)(uH
i Σ−1ηui)

]
= E

[
Q2
i φ
′(Qi)

]
E

[
(uH

i Σ−1ξui)(uH
i Σ−1ηui)

]
=

E
[
Q2
i φ
′(Qi)

]
p(p + 1)

(
Tr(Σ−1ξΣ−1η) + Tr(Σ−1ξ)Tr(Σ−1η)

)
From there, basic manipulations yield the result with coefficients αg and βg defined
in (9). Notice that the dependency on i in Q is omitted since these parameters are
assumed iid. �

The Fisher information metric of C-CES thus corresponds to a general form of the
well known affine invariant metric onH++p [17, 83]. Hence, if not specified otherwise
the remainder of this chapter will use the more common generic denotation:

〈ξ, η〉Σ
def
= gΣ(ξ, η) = Re(α Tr(Σ−1ξΣ−1η) + β Tr(Σ−1ξ)Tr(Σ−1η)) (18)

and study the corresponding Riemannian geometry of H++p for any α ∈ R+∗ and
β > −α/p (necessary conditions so that 〈·, ·〉Σ is positive definite). The Fisher-Rao
information geometry of the considered C-CES model is then recovered by fixing
α and β according to Theorem 2. We can also point out that the most studied case
corresponds to α = 1 and β = 0, which coincide with the Fisher information metric
of the Gaussian distribution, as αg = 1 and βg = 0 in this case [28, 85].

Remark Taking the real part in the metric (18) defines a proper inner product on
TΣH

++
p from the original Hermitian inner product. This way, we implicitly identify

the complex space as its underlying real vector space (C ∼ R2), so that we can use
the usual derivatives (defined as those used on R). As a direct consequence, in this
chapter, both Hp and H++p are of dimension p2. Notice that, even though it is not
always stated, most works that deal with complex-valued matrices (e.g., [85]) also
implicitly use the real part of the Fisher information metric.

Remark Among many other properties, the Fisher information metric from Theo-
rem 2 has a notable quadratic dependence on Σ−1. This makes the norm of tangent
vectors ‖ξ ‖2Σ = 〈ξ, ξ〉Σ tend to infinity when the point Σ tends to the boundaries
of the manifold (i.e, when any number of its eigenvalues tend 0). This Riemannian
metric thus allows to actually perceive the boundary of H++p as being infinitely far,
which was not the case for the Euclidean metric. An illustration of the effect of the
metric is displayed forH++1 = R+∗ in Figure 3.
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H1 = R

H++1 = R+∗0

H++1 = R+∗ with affine invariant metric

Fig. 3: Illustration of the effect of the affine invariant metric on H++1 = R+∗ . Thanks to the metric,
the excluded point 0 becomes truly unreachable.

2.2 Levi-Civita connection

One of the most – if not the most – important tools of Riemannian geometry is
the Levi-Civita connection, which generalizes the notion of directional derivatives
of vector fields on manifolds. A vector field is a function that associates a unique
tangent vector ξΣ ∈ TΣH

++
p to every point Σ ∈ H++p , which is illustrated in Figure 4.

An example of a vector field that will be involved in Section 3 is the gradient of a
cost function. The set of vector fields onH++p is denoted X(H++p ).

•

•

•

•

•

•

•

•

•

Σ ξΣ

Fig. 4: Illustration of a vector field on H++p .

To differentiate a vector field on a manifold, one needs to resort to an affine
connection. This is an application from X(H++p ) × X(H

++
p ) onto X(H++p ). The con-

nection of ηΣ in the direction ξΣ is denoted ∇ξΣ ηΣ and generalizes the directional
derivative of ηΣ in the direction ξΣ (i.e., D ηΣ[ξΣ]). Such generalization is needed
because the tangent space changes when one moves from one point to another on a
manifold. Thus, the usual directional derivative might not be properly defined, as it
does not account for the structure of the manifold (constraints, Riemannian metric,
etc.). This specificity is illustrated in Figure 5.
Many affine connections can be defined on a manifold. However, there is a unique
one that is in accordance with the chosen Riemannian metric, which is referred to
as the Levi-Civita connection. This Levi-Civita connection, denoted ∇ξΣ ηΣ, is the
unique solution in the tangent space TΣH

++
p to the Koszul formula
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ξΣ

ηΣ

DηΣ[ξΣ]

•

Σ ξΣ̂

ηΣ̂

•

Σ̂

ξΣ

ηΣ

∇ξΣηΣ

•Σ
ξΣ̂

ηΣ̂

•

Σ̂

�

Fig. 5: Illustration of directional derivative DηΣ[ξΣ] (left) and affine connection ∇ξΣ ηΣ (right) of
a vector field η in the direction ξ at Σ. As the directional derivative, an affine connection describes
how the vector field η evolves in a given direction ξ. In addition, the affine connection takes into
account the structure of the manifold (curvature, and non-constant metric).

2gΣ(∇ξΣ ηΣ, νΣ) = 2gΣ(D ηΣ[ξΣ], νΣ)

+ D gΣ[ξΣ](ηΣ, νΣ) + D gΣ[ηΣ](ξΣ, νΣ) − D gΣ[νΣ](ηΣ, ξΣ), (19)

where we use the alternate notation of the metric, i.e., gΣ(·, ·) = 〈·, ·〉Σ. Notice that the
presented formula is simpler than the general case [1]. It is because the Lie bracket is
[ξΣ, ηΣ] = D ηΣ[ηΣ] −D ξΣ[ηΣ] sinceH++p is an open subset of a vector space, i.e.,
Hp . The Levi-Civita connection ofH++p associated with the Riemannian metric (18)
is provided in Theorem 3.

Theorem 3 (Levi-Civita connection) The Levi-Civita connection on H++p associ-
ated with the affine invariant metric (18) is defined for ξ , η ∈ X(H++p ) and Σ ∈ H++p ,
as

∇ξΣ ηΣ = D ηΣ[ξΣ] − Herm(ηΣΣ−1ξΣ),

where Herm(·) returns the Hermitian part of its argument.

Proof First recall that for A ∈ Hp and B ∈ Rp×p , Tr(AB) = Tr(AHerm(B)).
Further recall that the trace is invariant to any permutation of the product of three
Hermitian matrices. Since D(Σ−1)[ξ] = −Σ−1ξΣ−1, we have

DRe(Tr(Σ−1ξΣ−1η))[ν] = −2Re(Tr(Σ−1ξΣ−1ηΣ−1ν))

and

DRe(Tr(Σ−1ηΣ−1ν))[ξ] + DRe(Tr(Σ−1ξΣ−1ν))[η] − DRe Tr(Σ−1ξΣ−1η))[ν]

= −2Re(Tr(Σ−1ξΣ−1ηΣ−1ν)) = −2Re(Tr(Σ−1 Herm(ξΣ−1η)Σ−1ν)).

We also have

D
(
Re(Tr(Σ−1ξ)Tr(Σ−1η))

)
[ν] = −Re(Tr(Σ−1νΣ−1ξ)Tr(Σ−1η))

− Re(Tr(Σ−1ξ)Tr(Σ−1νΣ−1η)).
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It follows that

D
(
Re(Tr(Σ−1η)Tr(Σ−1ν))

)
[ξ] + D

(
Re(Tr(Σ−1ξ)Tr(Σ−1ν))

)
[η]

− D
(
Re(Tr(Σ−1ξ)Tr(Σ−1η))

)
[ν] = −2Re(Tr(Σ−1ν)Tr(Σ−1ξΣ−1η))

= −2Re(Tr(Σ−1ν)Tr(Σ−1 Herm(ξΣ−1η))).

From there, we can deduce that

D gΣ[ξΣ](ηΣ, νΣ) + D gΣ[ηΣ](ξΣ, νΣ) − D gΣ[νΣ](ηΣ, ξΣ)

= −2gΣ(Herm(ξΣΣ−1ηΣ), νΣ).

Injecting this into the Koszul formula yields the result. �

Remark Notice that the Levi-Civita connection of H++p associated with the Rie-
mannian metric of the metric in (18) does not depend on α and β. Hence it remains
the same for any underlying C-CES distribution.

2.3 Geodesics, Riemannian exponential, logarithm and distance

One of the main reasons why the Levi-Civita connection is so crucial is because
it allows to define geodesics. The geodesics generalize the concept of straight lines
on a manifold. These are curves γ : [0, 1] → H++p with no acceleration, where
acceleration is defined thanks to the Levi-Civita connection. They are parameterized
by the choice of starting point γ(0) = Σ ∈ H++p and either initial direction Ûγ(0) =
ξ ∈ Hp or ending point γ(1) = Σ̂ ∈ H++p . An illustration of geodesics is provided in
Figure 6. Formally, the geodesic γ : [0, 1] → H++p is the solution to the differential
equation

∇ Ûγ(t) Ûγ(t) = 0. (20)

The geodesics on H++p according to the Levi-Civita connection of Theorem 3 are
given in Theorem 4 along with the proof.

Theorem 4 (Geodesics) The geodesic γ : [0, 1] → H++p such that γ(0) = Σ ∈ H++p
and Ûγ(0) = ξ ∈ Hp is defined as

γ(t) = Σ exp(tΣ−1ξ) = exp(tξΣ−1)Σ = Σ1/2 exp(tΣ−1/2ξΣ−1/2)Σ1/2,

where exp(·) denotes the matrix exponential. Equivalently, one can define the
geodesic γ : [0, 1] → H++p such that γ(0) = Σ ∈ H++p and γ(1) = Σ̂ ∈ H++p by

γ(t) = Σ1/2
(
Σ−1/2Σ̂Σ−1/2

) t
Σ1/2,

where (·)t = exp(t log(·)), log(·) denoting the matrix logarithm.
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Proof We only provide the proof for γ(0) = Σ and Ûγ(0) = ξ . The result for γ(1) = Σ̂
is obtained by choosing

ξ = Σ log(Σ−1Σ̂) = log(Σ̂Σ−1)Σ = Σ1/2 log(Σ−1/2Σ̂Σ−1/2)Σ1/2.

Notice that the equality between the three versions of γ(t) given in the theorem above
and of ξ given here solely rely on the fact that A exp(B)A−1 = exp(ABA−1) and
A log(B)A−1 = log(ABA−1).

The differential equation (20) for the Levi-Civita connection defined in Theo-
rem 3 is

Üγ(t) − Ûγ(t)γ(t)−1 Ûγ(t) = 0.

Recall that d
dt exp(tA) = A exp(tA). Thus, with γ(t) = Σ exp(tΣ−1ξ), we have

Ûγ(t) = ξ exp(tΣ−1ξ) and Üγ(t) = ξΣ−1ξ exp(tΣ−1ξ). From there, we easily obtain
Ûγ(t)γ(t)−1 = ξΣ−1. Simple computations show that γ(t) satisfies the differential
equation above, which is enough to conclude. �

Remark Since the Levi-Civita connection does not depend on α and β, neither
does geodesics. Hence, the Fisher-Rao geometries of C-CES models share the same
geodesics whatever the underlying distribution.

•
Σ

•

Σ̂

Ûγ(t)
•
γ(t)

ξ =
logΣ(

Σ̂)

•
Σ

•

Σ̂ = expΣ(ξ)

Fig. 6: Illustration of geodesics (left), Riemannian exponential and logarithmmappings (right). The
Riemannian distance δ(Σ, Σ̂) is the length of the geodesic joining Σ and Σ̂.

Geodesics allow to define the Riemannian exponential mapping. By definition,
for all Σ ∈ H++p , this is the mapping from TΣH

++
p ' Hp ontoH++p such that, for all

ξ ∈ Hp , expΣ(ξ) = γ(1), where γ is the geodesic such that γ(0) = Σ and Ûγ(t) = ξ .
Thus, for all Σ ∈ H++p and ξ ∈ Hp , we have

expΣ(ξ) = Σ exp(Σ−1ξ) = exp(ξΣ−1)Σ = Σ1/2 exp(Σ−1/2ξΣ−1/2)Σ1/2. (21)

From there we can define the Riemannian logarithm mapping, which is the inverse
of the Riemannian exponential mapping. Given Σ ∈ H++p , it is the mapping from
H++p onto TΣH

++
p ' Hp such that, for Σ̂ ∈ H++p , logΣ(Σ̂) is the solution to equation

expΣ(logΣ(Σ̂)) = Σ̂. In our case, we have

logΣ(Σ̂) = Σ log(Σ−1Σ̂) = log(Σ̂Σ−1)Σ = Σ1/2 log(Σ−1/2Σ̂Σ−1/2)Σ1/2. (22)

Illustrations of Riemannian exponential and logarithm mappings are given in Fig-
ure 6.
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The last object from Riemannian geometry presented in this chapter is the Rie-
mannian distance. The distance between two points corresponds to the length of the
geodesic joining them. Formally, it is defined as

δ(Σ, Σ̂) =
∫ 1

0
〈 Ûγ(t), Ûγ(t)〉

1/2
γ(t)

dt, (23)

where γ is the geodesic such that γ(0) = Σ and γ(1) = Σ̂. The Riemannian distance
onH++p associated to the metric of Theorem 2 is given in Theorem 5 along with the
proof. It was derived in [28].

Theorem 5 (Fisher-Raodistance ofC-CESdistributions)The square of the Fisher
distance of C-CES distributions overH++p is defined, for all Σ and Σ̂ ∈ H++p , by

δ2(Σ, Σ̂) = α‖ log(Σ−1Σ̂)‖2F + β(log det(Σ−1Σ̂))2.

Proof From the proof of Theorem 4, Ûγ(t)γ(t)−1 = ξΣ−1 for all t ∈ [0, 1]. Thus,
we can deduce that 〈 Ûγ(t), Ûγ(t)〉γ(t) = 〈 Ûγ(0), Ûγ(0)〉γ(0) for all t ∈ [0, 1]. Therefore,
δ2(Σ, Σ̂) = 〈 Ûγ(0), Ûγ(0)〉γ(0), with γ(0) = Σ and Ûγ(0) = Σ log(Σ−1Σ̂). It follows that

δ2(Σ, Σ̂) = α Tr((log(Σ−1Σ̂))2) + β(Tr(log(Σ−1Σ̂)))2.

To conclude, it is enough to recall that Tr(log(A)) = log det(A). �

Remark We previously noticed that the Levi-Civita connection and geodesics do
not depend on the coefficients α and β of the metric. However, since the Riemannian
distance integrates the metric along the geodesics, it does well depend on these
factors. This means that the Fisher-Rao distance (Riemannian distance according
to the Fisher in formation geometry) actually depends on the underlying C-CES
distribution.

3 Covariance matrix estimation with Riemannian optimization

The estimation of the covariance matrix of a set of observations is a ubiquitous prob-
lem in signal processing and machine learning. Among many applications involving
this quantity, we can mention: adaptive filtering and detection, metric learning in
classification, data analysis (e.g., graph learning), and dimension reduction. This
section discusses covariance matrix estimation within the class of C-CES, and illus-
trates how the concepts related to Fisher-Rao information geometry can be leveraged
in this context. First, Section 3.1 provides some reminders on covariance matrix
estimation in the C-CES framework (cf. Section 6 of the background chapter for
more details). Second, section 3.2 presents an introduction to Riemannian optimiza-
tion, where maximum likelihood estimation of C-CES models is used as a driving
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example. Finally, Section 3.3 shortly presents how this framework can be leveraged
to more general regularized covariance matrix estimation problems and points to
references on the matter.

3.1 Reminders on covariance matrix estimation within CES

Given a n-sample {xi}ni=1 assumed to be iid from x ∼ C-CES(0,Σ, g), with unknown
covariance matrix Σ, we consider inferring this matrix. The most common approach
to tackle this problem consists in maximizing the log-likelihood function in (4). The
maximum likelihood estimator is thus obtained as a solution to the optimization
problem

minimize
Σ∈H++p

L(Σ) (24)

where L denotes in short the negative log-likelihood of the sample set {xi}ni=1, i.e.:

L(Σ) = −Lg

(
{xi}ni=1 |Σ

)
, (25)

with Lg defined in (4). The solution of (24) yields the MLE in the form of a fixed
point equation

Σ̂ =
1
n

n∑
i=1

ψ
(
xH
i Σ̂−1xi

)
xixH

i =dTψ

(
Σ̂
)
, (26)

where ψ(t) = −g′(t)/g(t). This solution is most commonly evaluated thanks to a
fixed-point algorithm

Σ(k+1) = Tψ
(
Σ(k)

)
=

1
n

n∑
i=1

ψ(xH
i Σ−1
(k)xi) xix

H
i . (27)

The existence and uniqueness of the fixed-point solution (26), as well as the con-
vergence of the fixed-point algorithm (27) is subject subject to conditions on the
function ψ (resp. the density generator g) and the sample set {xi}ni=1, e.g., obtained
in [73, Theorems 6 and 7]. A notable condition in the absolutely continuous case is
that the sample size is required to be larger than the dimension, i.e., n > p.

Remark In practice, the true density generator g may not be known or accurately
specified. In the robust estimation theory, an M-estimator of the scatter matrix
[60, 95] refers to an estimator built from (26)-(27) using a function ψ(t) that is
not necessarily linked to the density generator g (cf. Section 6.3 of the background
chapter). In this chapter, we focus on the example of the MLE, but the tools that will
be presented apply to any generic cost function L.
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3.2 Computing MLEs with Riemannian optimization

Riemannian optimization [1, 26] is a general framework to solve optimization prob-
lems on manifolds. This extends to Riemannian manifolds classical Euclidean op-
timization methods such as steepest gradient descent, conjugate gradient, Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm,Newtonmethod, trust region, etc. This
section introduces Riemannian optimization on H++p as a framework to solve (24)
that can leverage tools from the Fisher-Rao information geometry. At the end of this
section, we will see that this framework actually yields the fixed point algorithm (27)
as a special case (specifically, a Riemannian steepest gradient descent with a specific
choice of metric, retraction, and step-size).

We consider an optimization problem of the from (24) that has no obvious closed-
form solution on H++p . In order to evaluate this solution, we resort to iterative
methods, i.e., methods that yield a sequence of iterates {Σ(k)} inH++p from a starting
point Σ(0) ∈ H++p . This sequence is constructed so that it eventually converges to
a critical point of the objective in (24). When the variable is constrained to lie in
the manifold H++p , a generic first-order Riemannian optimization method operates
as follows:

1. At iterate Σ(k) ∈ H++p , a descent direction in the tangent space, denoted ξ (k) ∈
TΣ(k)H

++
p ' Hp , is computed by leveraging the Riemannian gradient.

2. The direction descent ξ (k) is used to obtain the next iterate Σ(k+1) on H++p . This
is achieved through a retraction on H++p , which is an operator that maps tangent
vectors back onto the manifold. �

An illustration of such an optimization process is presented in Figure 7, while the
design of these two steps is discussed to solve (24) onH++p in the following.

For the first step, the steepest descent direction is given by the gradient, which
is defined through the metric in the Riemannian setting. The Riemannian gradient
of the negative log-likelihood L at Σ ∈ H++p according to the metric of Theorem 2
is the unique tangent vector grad L(Σ) ∈ TΣH

++
p ' Hp such that, for all ξ ∈ Hp ,

we have
〈grad L(Σ), ξ〉Σ = D L(Σ)[ξ]. (28)

This Riemannian gradient is provided in Proposition 1.

Proposition 1 (Riemannian gradient of L) The Riemannian gradient grad L(Σ) of
the negative log-likelihood L defined in (25) at Σ ∈ H++p according to metric (18) is

grad L(Σ) =

(
n

α + pβ
+

β

α(α + pβ)

n∑
i=1

ψ(xH
i Σ−1xi) xH

i Σ−1xi

)
Σ

−
1
α

n∑
i=1

ψ(xH
i Σ−1xi) xixH

i .
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H++p

TΣ(k)H
++
p

ξ(k)•
Σ(k)

•
Σ(k+1)

•
Σ(0) •

Σ∗

D L(Σ
(k) )[ξ

(k) ]

L(Σ(0))

L(Σ(k))

L(Σ∗)

Fig. 7: Illustration of Riemannian optimization. Given some initialization Σ(0), the goal is to reach
the minimum Σ∗. At Σ(k), the descent direction ξ(k) is such that it induces a decrease in L, i.e.,
D L(Σ(k))[ξ(k)] < 0 (slope of the orange line).

Proof From the beginning of the proof of Theorem 2, we get that the directional
derivative of L at Σ ∈ H++p in direction ξ ∈ Hp is

D L(Σ)[ξ] = n Tr(Σ−1ξ) +
∑n

i=1
g′

g (x
H
i Σ−1xi)Tr(Σ−1ξΣ−1xixH

i )

= Tr
(
Σ−1 (

nΣ −
∑n

i=1 ψ(xH
i Σ−1xi

)
xixH

i )Σ
−1ξ

)
.

Thus, for α = 1 and β = 0, we immediately get the result by identification. To
obtain the result in the general case, notice that, given A and B in Hp , if we set
Ã = 1

α A −
β

α(α+pβ) Tr(A)I p , then we have Tr(AB) = α Tr(ÃB) + β Tr(Ã)Tr(B).
Taking A = Σ−1/2(nΣ −

∑n
i=1 ψ(xH

i Σ−1xi)xixH
i )Σ

−1/2 and B = Σ−1/2ξΣ−1/2, and basic
calculations allow to conclude. �

To perform the second step, it remains to define a retraction that maps tangent
vectors back onto the manifold. Formally, given Σ ∈ H++p , a retraction is a mapping
RΣ : TΣH

++
p ' Hp →H

++
p such that, for all ξ ∈ Hp ,

RΣ(ξ) = Σ + ξ + o(‖ξ ‖). (29)

From a geometric point of view, the Riemannian exponential mapping provides the
ideal retraction for a manifold equipped with a Riemannian metric (in the sense that
it is the most reflective of the considered geometry). In our case, it is defined in (21)
and illustrated in Figure 6. However, this retraction involves computing the matrix
exponential of some Hermitian matrix, which can be computationally costly and/or
numerically unstable, as the exponential tends quickly to infinity or zero. From a
practical point of view, it might thus be more advantageous to employ alternate
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retractions. Notice that (29) means that a proper retraction is (at least) a first-order
approximation of the Riemannian exponential mapping. Since H++p is open in Hp ,
a proper first order approximation is simply obtained as

R(1)Σ (ξ) = Σ + ξ . (30)

The main limitation of R(1) is that, given Σ ∈ H++p , there are many ξ ∈ Hp

such that R(1)Σ (ξ) < H
++
p . This means that the iterative algorithms that employ

this retraction are not guaranteed to be numerically stable. To overcome this issue,
Proposition 2 provides a retraction that is a second-order approximation of the
Riemannian exponential (21) (initially proposed in [51]), that does not suffer the
same limitation as R(1).

Proposition 2 (Second order retraction) The retraction R(2) such that, for all Σ ∈
H++p and ξ ∈ Hp ,

R(2)Σ (ξ) = Σ + ξ +
1
2
ξΣ−1ξ

is a second order approximation of the Riemannian exponential mapping (21).
Furthermore, for all Σ ∈ H++p and ξ ∈ Hp , R(2)Σ (ξ) belongs toH

++
p .

Proof Recall that the matrix exponential of A is exp(A) =
∑∞

k=0
Ak

k! . Hence the sec-
ond order approximation is exp(A) = I p+A+

1
2 A

2+o(‖A‖2). Applying this to (21),
we obtain expΣ(ξ) = Σ(I p+Σ−1ξ+ 1

2 Σ−1ξΣ−1ξ)+o(‖ξ ‖2). Basic calculations yield
the result. Moreover, it is obviously a proper retraction. It remains to show that we
always get a matrix inH++p . To do so, notice that

R(2)Σ (ξ) = Σ1/2(I p + Σ−1/2ξΣ−1/2 +
1
2
(Σ−1/2ξΣ−1/2)2)Σ1/2.

Let the eigenvalue decomposition Σ−1/2ξΣ−1/2 = UΛUH . Then

R(2)Σ (ξ) = Σ1/2U(I p + Λ +
1
2
Λ2)UHΣ1/2.

The result follows from the fact that the second order polynomial λ 7→ 1 + λ + 1
2λ

2

is strictly positive for all values of λ. �

We now have everything needed to define an iterative algorithm that solves the
MLE optimization problem (24). Given the retraction R, we can, for instance, define
the Riemannian gradient descent that yields the sequence of iterates

Σ(k+1) = RΣ(k) (−λk grad L(Σ(k))), (31)

where λk is the step size, which can be set by the user or computed through a line
search; see e.g. [1, 26].
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Our final point in this section is to show that the fixed point algorithm (27) is, in
fact, a particular case of (31). Indeed, if we choose α = 1 and β = 0, the Riemannian
gradient of Proposition 1 is

grad L(Σ) = nΣ −
n∑
i=1

ψ(xH
i Σ−1xi) xixH

i .

Algorithm (27) is then obtained from (31) by choosing the first order retraction (30)
and constant step size λk = 1

n . Notice that in this particular case, the choice of the
first order retraction (30) is a valid choice because the particular structure of the
gradient ensures that all iterates remain inH++p . Though alternate choices of α and
β in the metric, step size, and retraction could improve the convergence speed in
some cases, this fixed-point is generally a good all-purpose candidate to compute
MLEs as in (26). However, having recast it from the prism of Riemannian geometry
opens many perspectives, which are discussed in the next section.

3.3 Beyond MLE and fixed-point algorithms

The MLEs (and M-estimators) are known for their good asymptotic performance
in terms of estimation accuracy [37, 38, 39, 70, 100]. Still, they suffer from two
limitations: i) they do not exist when the sample set is lower than the dimension
(n < p); ii) they can be inaccurate when n ' p, as they do not leverage any
bias-variance trade-off improvement. These limitations motivated the development
of generalized estimation procedures by expressing new estimators as solutions to
penalized optimization problems of the form:

minimize
Σ∈H++p

L(Σ) + λh(Σ) (32)

where L is the negative log-likelihood as in (25), λ ∈ R+ is a regularization param-
eter, and h is a penalty function that promotes some form of regularization. Among
many options considered in the literature for h, we can mention shrinkage to a tar-
get matrix [72, 74, 86], shrinkage of the eigenvalues [97, 29], promoting a sparse
graphical structure [45, 101], or pooling from groups of observations [35, 71]. For
appropriate choices of regularization penalty and parameters, the regularized es-
timators, as formulated in (32), can overcome the aforementioned issues of their
non-regularized counterparts. In this scope, the Riemannian geometry provides use-
ful tools to address and study (32), which is discussed next.

3.3.1 Riemannian options for computing solutions of (32)

The optimization problems expressed in (32) generally do not exhibit closed-form or
fixed-point solutions and, thus, require the use of iterative algorithms to be evaluated.
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In this setup, the Riemannian optimization framework is a good candidate in order to
ensure that the variable remains inH++p along the iterations. Beyond the introduction
of the Riemannian gradient descent presented in Section 3.2, this flexible framework
extends to many other algorithms:

• Conjugate gradient, or BFGS-type algorithms, require the notion of Riemannian
vector transport operator [26, Section 10.3], which allows to transport tangent
vectors between tangent spaces at different points.

• Second-order methods, such as trust region or Newton methods require the defi-
nition of the Riemannian Hessian [26, Section 5.5].

• For large dimensional datasets, stochastic optimization methods can also be ex-
tended to the Riemannian setting [19, 99, 23].

A last remark is that in these algorithms, the metric is left as a choice that conditions
the gradient and possibly the retraction. There are various options for H++p (cf.
Section 2.1), with their respective pros and cons. It is still noticed that the gradient
obtained from the Fisher information metric, also referred to as the natural gradient
[2], is generally experienced to yield a faster convergence when dealing with a cost
function related to the statistical model of the data (cf. examples in [43, 36]).

3.3.2 Geodesic convexity onH++p

The classical results on the existence and uniqueness of the MLEs [73, Theorems 6
and 7] do not directly extend to the formulation in (32), so one might inquire about
the optimally of the solution obtained by reaching a local minimum of this problem.
In this scope, the Riemannian perspective offers some answers by generalizing
the property of convexity. First, we recall that the geometry induced by the Fisher
information metric (18) yields geodesic curves γ(t) as defined in Theorem 4 between
any two points Σ0,Σ1 ∈ H

++
p . A function f is then said to be geodesically convex

(g-convex) onH++p if ∀Σ0,Σ1 ∈ H
++
p , it satisfies the inequality

f (γ(t)) ≤ (1 − t) f (Σ0) + t f (Σ1), ∀t ∈ [0, 1]. (33)

If the above inequality is strict, the function is then said to be strictly g-convex.
The g-convexity enjoys properties similar to those of the convexity in the standard
Euclidean case, in particular:

Theorem 6 (Global minimizer of g-convex functions onH++p ).
Let f : H++p → R be g-convex as defined in (33), then any local minimum of f
over H++p is a global minimum. Furthermore, if f is strictly g-convex, this global
minimum is unique. �

This property offers an alternate proof for the uniqueness of MLEs as in (24) [72],
and had practical impacts for the design of regularized covariance matrix estimators
as in (32): many examples of penalty functions (with various regularization effects)
can be found in the overviews in [98, 40], and the references [9, 97, 96, 98, 72, 40].
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4 Intrinsic CramÃľr-Rao Bound for covariance matrix
estimation

The CramÃľr-Rao inequality is a staple tool in statistics that characterizes the optimal
mean-squared error an unbiased estimator can reach given a model and setup [55].
This tool can either be used to validate estimation procedures, or to design systems so
that a certain level of accuracy is guaranteed to be theoretically reachable. While the
Euclidean formulation of this inequality was briefly introduced in Section 1.1, the
so-called intrinsic Cramér-Rao bounds extend it to parameters living in a manifold,
and for any chosen Riemannian metric. This perspective is especially interesting as:
i) some metrics can be more meaningful to assess the estimation performance in a
given application; ii) a suitable Riemannian geometry (as opposed to the Euclidean
one) can reveal hidden properties that make the bound more informative (such as
curvature terms, intrinsic biases, etc.). First, Section 4.1 introduces the background
on intrinsic CramÃľr-Rao bound from [85], where the C-CES model is used as a
driving example. We also refer the reader to [25, Chapter 6] and the reference [14],
for more details on the topic. Then, CramÃľr-Rao bounds are derived for various
distances in the context of covariance matrix estimation within C-CES distributions
[28] in Section 4.2.

4.1 Introduction to intrinsic CramÃľr-Rao bounds

This subsection will present tools that can be applied to any chosen Riemannian ge-
ometry onH++p . The needed objects are the Riemannian metric, logarithm mapping
and square of the distance, which are denoted ≺ ·, · �·, log ·(·) and d2(·, ·), respec-
tively. As in Section 3, we consider the problem of estimating the matrix Σ from a
given n-sample {xi}ni=1 assumed to be iid from x ∼ C-CES(0,Σ, g). We denote Σ̂ an
estimator of this parameter; e.g. the MLE presented in Section 3. We then consider
the evaluation of the performance of such estimator Σ̂. To do so, we exploit the
chosen Riemannian metric ≺ ·, · �Σ. Such metric can, for example, be the Fisher
information one (18), or one of the many other options from the literature [93]. The
performance criterion is the resulting square of the Riemannian distance, i.e., the
error is measured through d2(Σ, Σ̂). The intrinsic CramÃľr-Rao theory from [85] then
allows us to obtain a lower bound on the expectation of this error for any unbiased
estimator Σ̂. Eventually, this retrieves the well-known inequality “ C � F−1,” with
C ∈ Rp2×p2 being the covariancematrix of the estimation error andF ∈ Rp2×p2 being
the Fisher information matrix, where p2 = dim(H++p ). However, these parameters
have different definitions due to the specific nature of the considered objects. The
point of this section is to briefly present the key ingredients to obtain such inequality
and the corresponding main theorem.

First, we need to generalize the notion of estimation error vector ε ∈ Rp2 to the
Riemannian context. Notice that, in the Euclidean case, such vector is generally con-
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structed by vectorizing the entry-wise subtraction of the covariance matrix Σ to its
estimate Σ̂, i.e., εE = vech(Σ̂−Σ), where vech(·) denotes the half-vectorization oper-
ator. As it happens, from a Riemannian geometry point of view, Σ̂−Σ corresponds to
the Euclidean logarithmmapping at Σ. Therefore, the Riemannian logarithm logΣ(Σ̂)
provides a natural way to extend the error to any geometry. It is indeed an element of
the tangent space TΣH

++
p of Σ that “points towards” Σ̂, and whose norm corresponds

to the Riemannian distance. It remains to actually get an error vector ε ∈ Rp2 from
logΣ(Σ̂). To do so, we leverage a basis {ξq}

p2

q=1 of TΣH
++
p ' Hp that is orthonormal

with respect to the chosen metric ≺ ·, · �Σ. In practice, such a basis can be ob-
tained either analytically from mathematical calculations or numerically, thanks to
the Gram-Schmidt orthonormalization process. This basis yields the decomposition

logΣ(Σ̂) =
p2∑
q=1

εqξq, (34)

and we denote ε = [ε1, · · · , εp2 ] ∈ Rp2 the corresponding coordinates error vector,
obtained as

εq = ≺ logΣ(Σ̂), ξq �Σ . (35)

Moreover, the norm of this vector corresponds to the Riemannian distance between
Σ and Σ̂, i.e.,

d
2(Σ, Σ̂) =≺ logΣ(Σ̂), logΣ(Σ̂) �Σ= ‖ε‖

2
2, (36)

which will be instrumental in the next derivations. The basis {ξq}
p2

q=1 also yields a
Fisher information matrix F, with entries

Fq` = 〈ξq, ξ`〉
FIM
Σ . (37)

The matrix F represents the Fisher information metric of Theorem 2 according to
this system of coordinates. Then, from [85, Corrolary 2], we obtain Theorem 7.

Theorem 7 (Intrinsic CramÃľr-Rao bound) Let Σ ∈ H++p . Let {xi}ni=1 a iid n-
sample from x ∼ C-CES(0,Σ, g). Let Σ̂ an unbiased estimator of Σ with correspond-
ing error vector ε defined in (35). Then

C = E
[
εεT

]
� F−1 + curvature terms,

where F is the Fisher information matrix in (37) and the curvature terms – which
are not detailed here – depend on the Riemannian curvature tensor corresponding
to the chosen geometry and on F; see [85, 24, 25] for further details.

In practice, the curvature terms can usually be neglected in Theorem 7. Furthermore,
taking the trace of the inequality yields the desired result, i.e.,

E
[
d

2(Σ, Σ̂)
]
≥ Tr(F−1). (38)
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It offers a bound that can be derived for any chosen Riemannian distance d2(·, ·) (and
corresponding metric ≺ ·, · �·).

Remark The inequality in Theorem 7 interestingly takes into account the curvature
of the manifold, which, for H++p , only depends on the chosen metric. In the Eu-
clidean case, such curvature term is null, and we recover the standard CramÃľr-Rao
inequality. We also notice that the theorem in [85] also incorporates an intrinsic
bias terms, which was excluded here for the sake of conciseness. This intrinsic bias
(expectation of the Riemannian logarithm) depends on the estimator and the chosen
metric, and can reveal unexpected properties. A main example is that the MLE of the
covariance matrix of the Gaussian model appears unbiased in the Euclidean setting,
but is, in fact, biased when using the Fisher information metric [85]. Such analysis
thus opens prospects for improved estimation from the intrinsic perspective.

4.2 Bounds for various matrix distances in C-CES distributions

This Section presents the derivation of special cases of Theorem 7 when considering
various usual metrics. Hence, it yields intrinsic CramÃľr-Rao bounds for the prob-
lem of covariance matrix estimation in C-CES distributions for the corresponding
Riemannian distances. Since the Fisher information metric is already obtained in
Theorem 2, the derivation boils down to the following steps:

a) Selecting the performancemetric ≺ ·, · �Σ and computing {ξq}
p2

q=1, a correspond-
ing orthonormal basis of TΣH

++
p ;

b) Computing the elements of the Fisher information matrix with this basis, accord-
ing to (37);

c) Inverting the Fisher information matrix, applying Theorem 7, then (38).

These operations are conducted in the following for the Euclidean metric, the so-
called natural Riemannian metric (the affine invariant metric (18) with α = 1 and
β = 0), and the Fisher-Rao metric of the assumed model (i.e., the metric of Theorem
2: (18) with α = αg and β = βg, where αg and βg are defined in (9)). In order for the
chosen values of α and β to be clear, in this subsection, the metric (18) is denoted
〈·, ·〉(α,β)· and the distance of Theorem 5 is denoted δ2

(α,β)
(·, ·).

4.2.1 Euclidean distance

We first recall the elementary tools of the Euclidean metric forH++p :

Metric: 〈ξ, η〉EΣ = Re(Tr(ξη))
Logarithm: logEΣ (Σ̂) = Σ̂ − Σ
Distance: δ2

E
(Σ, Σ̂) = ‖Σ̂ − Σ‖22 .

(39)
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A basis of the tangent space TΣH
++
p that is orthonormal with respect to the metric

in (39) can be obtained as follows:

1. For 1 ≤ i ≤ p, ξ Eii is a p× p symmetric matrix whose ith diagonal element is one,
zeros elsewhere

2. For 1 ≤ i < j ≤ p, ξ Ei j is a p × p symmetric matrix whose i j th and jith elements
are both 1/

√
2, zeros elsewhere.

3. For 1 ≤ i < j ≤ p, ξ̄ Ei j is a p × p Hermitian matrix whose i j th and jith elements
are
√
−1/
√

2 and −
√
−1/
√

2, respectively, zeros elsewhere. �

To shorten notations, we simply denote this basis {ξ Eq }
p2

q=1, where the p2 elements
are ordered following items 1), 2), and 3). The squared Euclidean distance between
an estimator Σ̂ and the true value Σ also corresponds to the summed squared errors
on the coordinates in this basis. We then have the following result:

Theorem 8 (Cramér-Rao bound on Euclidean distance) Let Σ̂ an unbiased esti-
mator of Σ built from iid data {xi}ni=1 drawn from x ∼ C-CES(0,Σ, g). The Euclidean
distance between Σ̂ and Σ is bounded in expectation as

CE = E
[
δ2
E(Σ̂,Σ)

]
≥ Tr(F−1

E ),

where

[FE]q` = Re(nαg Tr(Σ−1ξ Eq Σ−1ξ E` )) + nβg Tr(Σ−1ξ Eq )Tr(Σ−1ξ E` )),

with αg and βg defined in (9). 2.

Proof The result is a direct application of Theorem 7 and (38) using the basis
{ξ Ej }

p2

j=1. �

Remark that this corresponds to the Euclidean Cramér-Rao bounds obtained for
several distributions in [42, 75, 16, 64]. Also notice that we retrieve the same result
as [85, Theorem 5] for the Gaussian distribution, i.e., αg = 1 and βg = 0.

4.2.2 Natural Riemannian distance

The natural Riemannian distance refers to the distance induced by the affine invariant
metric (18) with the standard choice of coefficients α = 1 and β = 0. The elementary
tools for this metric forH++p are

Metric: 〈ξ, η〉(1,0)Σ = Re(Tr(Σ−1ξΣ−1η))

Logarithm: logΣ(Σ̂) = Σ log(Σ−1Σ̂)
Distance: δ2

(1,0)(Σ, Σ̂) = ‖ log(Σ−1Σ̂)‖22 .
(40)

Recall that the full description of this geometry is provided in Section 2. A basis of
the tangent space TΣH

++
p that is orthonormal with respect to the metric in (40) can
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be obtained by coloring the canonical basis of previous section as

ξ (1,0)q = Σ1/2ξ Eq Σ1/2. (41)

The whole basis is denoted {ξ (1,0)q }
p2

q=1. We then have the following result:

Theorem 9 (Cramér-Rao bound on natural Riemannian distance) Let Σ̂ an
unbiased estimator of Σ ∈ H++p built from iid data {xi}ni=1 drawn from x ∼
C-CES(0,Σ, g). The Riemannian distance between Σ̂ and Σ is bounded in expec-
tation as

E
[
δ2
(1,0)(Σ̂,Σ)

]
≥

1
n

(
p2 − 1
αg

+
1

αg + pβg

)
, (42)

with αg and βg defined in (9).

Proof Plugging the basis {ξ (1,0)q }
p2

q=1 of TΣH
++
p defined in (41) in (37) yields[

F(1,0)
]
q`
= 〈ξ (1,0)q , ξ (1,0)

`
〉FIMΣ = Re(nαg Tr(ξ Eq ξ E` ) + nβg Tr(ξ Eq )Tr(ξ E` )).

Hence, from the relations

Tr(ξ Eq ξ E` ) = δq` and Tr(ξ Eq )Tr(ξ E` ) =
{

1 if (q, `) ∈ n1, po2

0 otherwise,

we obtain the Fisher information matrix

F(1,0) = nαgIp2 + nβg

[
1p×p 0p×p(p−1)

0p(p−1)×p 0p(p−1)×p(p−1)

]
,

which is expressed as F(1,0) = nαgIp2 + npβgvvT with unitary vector v =
1√
p

[
1p | 0p(p−1)

]
, i.e. vTv = 1. Hence, the inverse of the Fisher information matrix

can be obtained by the Sherman-Morrison formula. In particular, its vector of eigen-
values can be directly identified as 1

n

[
(αg + pβg)−1, α−1

g , . . . , α
−1
g

]
and summed to

obtain its trace. Theorem 7 and (38) are then applied to conclude. �

Remark Contrarily to the Euclidean case of Theorem 8, the bound on the natural
Riemannian distance in Theorem 9 does not depend on the parameter Σ. This is
generally a desirable property, as it offers an interpretation grounded solely on
intrinsic dimensions of the problem.Additionally, simulation examples in Section 4.3
show that assessing the error with such criterion (that is more in accordance with
the nature of the parameter) can also reveal unexpected properties of the estimates.

4.2.3 Fisher-Rao distance

The Fisher-Rao distance refers to the geodesic distance associated with the Fisher
information metric (cf. Section 2.3). A subtlety is that we voluntarily omit the
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dependency on n of the Fisher information metric of Theorem 2, i.e., the bound
will be obtained for using a generic metric in (18) with α = αg and β = βg. This
distinction has two main reasons: i) it appears more logical to evaluate performance
with a distance whose expression does not vary with the sample support of the
scenario n; ii) this allows us to also stress that, though identical, two metrics play
a separate role in the derivations: one is inherent to the statistical model, the other
is a choice made to measure estimation accuracy. Hence, the elementary tools on
H++p are

Metric: 〈ξ, η〉
(αg,βg )

Σ = Re(αg Tr(Σ−1ξΣ−1η) + βg Tr(Σ−1ξ)Tr(Σ−1η))

Logarithm: logΣ(Σ̂) = Σ log(Σ−1Σ̂)
Distance: δ2

(αg,βg )
(Σ, Σ̂) = αg‖ log(Σ−1Σ̂)‖22 + βg(log det(Σ−1Σ̂))2.

(43)

Recall that full details on this geometry are provided in Section 2. Contrary to
previous geometries, since the considered metric is the Fisher information one, we
do not actually need to compute a basis of the tangent space TΣH

++
p to obtain

the bound. However, notice that if needed, such a basis can be obtained using the
Gram-Schmidt orthogonalization process. In this case, the CramÃľr-Rao bound is:

Theorem 10 (CramÃľr-Rao bound on Fisher-Rao distance) Let Σ̂ be an unbiased
estimator of Σ ∈ H++p built from iid data {xi}ni=1 drawn from x ∼ C-CES(0,Σ, g).
The Fisher-Rao distance between Σ̂ and Σ is bounded in expectation as

E
[
δ2
(αg,βg )

(Σ̂,Σ)
]
≥

p2

n
.

Proof By definition, we have 〈·, ·〉FIMΣ = n〈·, ·〉(αg,βg )

Σ . Hence, since the basis of
interest, denoted {ξ (αg,βg )

q }
p2

q=1, is orthonormal according to 〈·, ·〉(αg,βg )

Σ , it follows
that F(αg,βg ) = nIp2 . The trace of its inverse is therefore p2/n and the proof is
concluded by applying Theorem 7 and (38). �

Wenotice that Theorems 9 and 10 coincide in the Gaussian case (αg = 1 and βg = 0).

Remark Theorem10 actually exemplifies amore of universal result,which illustrates
that the Fisher-Rao distance is the most in accordance with the underlying statistical
model. Indeed, the proof strategy of Theorem 10 holds for any geometry induced by
a statistical model (parameter manifold and probability density function). Thus, the
Fisher-Rao distance will always be bounded by a ratio between the intrinsic problem
dimension and the number of samples.



28 F. Bouchard, A. Breloy, A. Collas, A. Renaux, G. Ginolhac

4.3 Simulation examples

This section illustrates the results of Theorems 8-10 for themultivariate t-distribution
(cf. example of Section 1.1), and various covariance matrix estimators. In the follow-
ing, the scatter matrix is built as a p× p (with p = 10) Toeplitz matrix [ΣT ]i j = ρ

|i−j |

with ρ = 0.9(1+
√
−1)/
√

2. For samples distributed as x ∼ C-CES(0,ΣT , gd), where gd is
the density generator of the t-distribution with d degrees of freedom, we study the
performance of the following estimators of ΣT :

• SCM: the usual sample covariance matrix, defined as Σ̂SCM =
1
n

∑n
i=1 xixH

i .
• MLE: The estimator Σ̂MLE defined in (26) using the appropriate function ψ(t) =
−φ(t), with φ defined in (12).

• Mismatched MLE: the M-estimator Σ̂m-MLE constructed as the MLE, except that
the parameter d is different from the true parameter. Here, d = 10 is set regardless
of the underlying distribution.

These performances are evaluated with respect to n (n ranging from 11 to 103)
through the mean squared distances δ2

E
, δ2
(1,0) and δ2

(αgd
,βgd )

(evaluated on 104

Monte-Carlo simulations) and are compared to the corresponding CramÃľr-Rao
lower bounds from Theorems 8-10.

The left column of Figure 8 displays the results for a t-distribution with d = 100
degrees of freedom. Notice that, in this case, data almost follow a Gaussian distri-
bution (it is usually admitted that d > 30 allows to assume Gaussianity of the data).
In this setting, Σ̂MLE ' Σ̂SCM so these estimators reach similar performances. For
all performance measurements (different distances), the mismatched MLE appears
not efficient at high sample support, which is due to a bias induced on the scale
through the wrong choice of parameter d. Also, α ' 1 and β ' 0, so 〈·, ·〉(1,0)· and
〈·, ·〉

(αgd
,βgd )

· generate almost identical distances and corresponding bounds, as ob-
served in Figure 8. Interestingly, as noted in [85], these performance criteria show
that the studied estimators are not efficient at low sample support. The natural metric
is able to reflect some empirical results in terms of application – the SCM is known
to provide an inaccurate estimation at low sample support –, while the Euclidean
metric is apparently not, i.e., the CramÃľr-Rao bound and MSE on the Euclidean
metric appear non-informative here.

The right column of Figure 8 displays the same results for a t-distribution with
d = 3 degrees of freedom. Here, the distribution is heavy tailed and the SCM, as well
as the mismatched MLE, fail to provide an accurate estimator of the scatter matrix.
In this case, the study of the Euclidean metric reveals that the MLE is not efficient
at low sample support, however it converges to the bound as n grows. We notice that
the convergence towards this regime appears to be slower through the study of the
natural and C-CES Fisher-Rao metric, which may be an interesting point in order
to quantify the number of samples needed to achieve good performance in terms of
application purpose.
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Fig. 8: From top to bottom: Euclidean, Natural, CES Fisher-Rao CRLB and mean squared distance
scatter matrix for t-distribution with d degrees of freedom versus n/p for p = 10. On the left,
d = 100 (close to Gaussian case) and, on the right, d = 3.

5 Riemannian classification with the Fisher-Rao distance

Classification is a ubiquitous task in machine learning. From a statistical point
of view, the problem generally consists of attributing a class to each sample (or
batch of samples) from an unlabelled mixture of different distributions. The Fisher-
Rao geometry provides a tool that can be efficiently leveraged in this context: as
most classification methods are based on the Euclidean distance between samples,
these can be transposed to the Riemannian setting by using the Fisher-Rao distance
on the statistical feature space (i.e., the parameters of the assumed model). Such
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transposition is often beneficial as it leverages a metric that is in accordance with
the model (e.g., it can account for its natural geometric invariance). In this regard,
Section 5.1 presents a generic framework driven by the Fisher-Rao geometry. An
example based on CES models and the nearest centroÃŕd classifier is derived in
Section 5.2 and applied to EEG recordings in Section 5.3.

5.1 A Fisher-Rao Riemannian classification framework

The use of statistical features (or descriptors) is common in batch sample classifi-
cation, as these tend to be more discriminative than raw data. Interestingly, when
assuming a statistical model for the batches, the model parameters appear as a natural
choice for such statistical features, and the Fisher-Rao distance as a natural tool to
compare them. For example, assuming two C-CESmodels with the same probability
density function f , but different parameters Σ1 and Σ2, the Fisher-Rao distance (cf.
Theorem 5 and (43)) acts distance between statistical models through the following
relation:

δFR( f (x|Σ1), f (x|Σ2))︸                      ︷︷                      ︸
dist. between models

def
= δFR(Σ1,Σ2).︸         ︷︷         ︸

FR-dist. between parameters

(44)

In practice, we handle empirical distributions (i.e., batches of samples), so this
distance can be evaluated as:

δ̂FR({xi,1}ni=1, {xi,2}
n
i=1)︸                        ︷︷                        ︸

dist. between batches

def
= δFR(Σ̂1, Σ̂2),︸        ︷︷        ︸

FR-dist. between estimated covariances

(45)

where {xi,1}ni=1 (resp. {xi,2}ni=1) denotes a sample batch, and Σ̂1 (resp. Σ̂2) denotes
an estimate of its covariance matrix, such as the maximum likelihood estimator
presented in Section 3. From this perspective, a batch classification problem then
turns into a problem of classifying covariance matrices onH++p . Such a task can be
achieved by using a standard classification algorithm in which criteria and objects are
carefully transposed according to the Fisher-Rao distance (rather than the Euclidean
one). For examples related to this setup: the Riemannian nearest centroÃŕd (or
minimum distance to mean) classifier [11, 94]; the Riemannian K-means on H++p
was, e.g., used in [32, 46], Kernel methods based on Riemannian distances were
studied in [12, 49, 50], and Riemannian Gaussian mixture models on H++p were
proposed in [81, 82]. The following section presents the Riemannian counterpart of
the nearest centroid classifier forH++p .

Remark Beyond C-CES models, the presented framework generalizes to a generic
(model-driven) Riemannian classification methodology, which can be summarized
as follows: i) Model selection: we assume an underlying statistical model, whose
parameters should differ between classes; ii) Statistical Feature extraction: we es-
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timate the corresponding parameters for each batch; iii) Riemannian classification:
the extracted features are classified by leveraging the Fisher-Rao distance.

5.2 Nearest centroÃŕd classifier on H++p for C-CES models

The Riemannian center of mass corresponding to the framework discussed in Section
5.1 when assuming a Gaussian model has been the reference method to classify
electroencephalography (EEG) recordings for the past decade [11]. This section
extends this methodology to the C-CES distributions, and presents the necessary
tools to compute the Riemannian center of masses onH++p .

Formally, we focus here on the supervised classification of batches of data. For-
mally, given an unknown batch of a n-sample {xi}ni=1 and z fixed classes, a classifier
C : (Cp)n → n1, . . . , zo infers the class label y ∈ n1, . . . , zo, i.e.,

y = C
(
{xi}ni=1

)
. (46)

To provide accurate results, the classifier C is trained on m batches of n samples
{{xi, j}ni=1, yj}

m
j=1 associated to known class labels yj ∈ n1, . . . , zo. In practice, one

usually aims to evaluate the accuracy of a classifier on some dataset T . To do so, the
dataset is split into training and test sets, denoted Ttrain and Ttest, respectively. The
classifier C is trained on Ttrain and prediction is performed on the testing set Ttest.
Predicted labels are then compared to actual labels, which yields the accuracy of C
on the considered dataset. Notice that there are different ways to build Ttrain and Ttest
from T , see e.g., the documentation of scikit-learn [76] for more details.

For the model selection step, we consider that each batch {xi, j}ni=1 is distributed
according to x ∼ C-CES(0,Σj, g). The statistical parameter extraction step is then
performed by maximum likelihood estimation on each batch (cf. Section 3). From
there, the feature classification problem is set as T = {Σ̂j, yj}

m
j=1 on H++p . We then

exploit the Fisher-Rao distance δ of C-CES distribution defined in Theorem 5 to
generalize the nearest centroÃŕd classifier, also referred to as minimum distance to
mean (MDM) classifier, toH++p , . This classification algorithm consists of two steps:

• First, it computes the center of mass of each class, also called class center, from
covariance matrices in the training set Ttrain.

• Then, it assigns the label of the closest class center to each covariance in Ttest. �

Since the covariance matrices lie on the Riemannian manifold H++p , the geodesic
distance δ from Theorem 5 is leveraged in both steps.

We now detail the first step. For every class y ∈ n1, . . . , zo, one must compute
the class center Σ̄(y) from the training set Ttrain. It is the center of mass of the
set {Σ̂j ∈ Ttrain : yj = y}. We thus need to be able to compute the center of
mass Σ̄ of a set {Σj}

m
j=1 of matrices in H++p according to the Fisher-Rao distance

in Theorem 5. Following [54], the Riemannian center of mass is defined in the
following Definition 1.
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Definition 1 (Riemannian center of mass on H++p ) The center of mass Σ̄? of
{Σi}

m
i=1 on H++p is defined as the minimizer of the variance computed with the

geodesic distance
Σ̄? = arg min

Σ̄∈H++p
V(Σ̄) (47)

with V(Σ̄) def= 1
2m

∑m
j=1 δ

2(Σ̄,Σj).

Remark that if the Riemannian distance δ is replaced by its Euclidean counterpart,
δE(Σ, Σ̂) = ‖Σ − Σ̂‖2, then the minimizer of V becomes the arithmetic mean Σ̄ =
1
m

∑m
j=1 Σj . Unfortunately, for the Riemannian case, a closed-form solution of (47)

remains unknown [65] except in very specific cases (m = 2, commutingmatrices, ...).
Hence, onemust turn to an iterative optimization procedure. As in [78], we focus here
on a Riemannian gradient descent onH++p . Recall from Section 3 that, to employ this
algorithm, we need to compute the Riemannian gradient of (47), choose a retraction
and a step size rule. The Riemannian gradient of V was derived in [54, 65], and is
provided in Proposition 3.

Proposition 3 (Riemannian gradient of V) the Riemannian gradient grad V(Σ̄) of
the variance V defined in (47) at Σ̄ ∈ H++p is

grad V(Σ̄) = −
1
m

m∑
j=1

logΣ̄(Σj) = −
1
m

m∑
j=1

Σ̄1/2 log(Σ̄−1/2ΣjΣ̄−
1/2)Σ̄1/2. (48)

Proof In [65], a technical proof directly deriving the distance of Theorem 5 for
α = 1 and β = 0 is provided. Here, we propose a more general Riemannian geometry
proof, which do not depend on the distance or the manifold. The proved result is
well-known and can for instance be found in [77] without proof. Given Σ ∈ H++p ,
we aim to show that the gradient of the function v(Σ̄) = 1

2δ
2(Σ̄,Σ) is grad v(Σ̄) =

− logΣ̄(Σ), where log·(·) is the Riemannian logarithm mapping corresponding to the
Riemannian distance δ(·, ·). Let Σ̄(t) the geodesic such that Σ̄(0) = Σ̄ and Û̄Σ(0) =
ξ ∈ Hp . It follows that D v(Σ̄)[ξ] = d

dt v(Σ̄(t))
��
t=0. Let γt the geodesic joining

Σ̄(t) to Σ. By construction, H(s, t) = γt (s) is a variation of the geodesic γ0 [41,
Definition 3.24]. Furthermore, we have d

dt v(Σ̄(t))
��
t=0 =

d
dt E(γt )

��
t=0, where E(γt ) =

1
2

∫ 1
0 〈 Ûγt (s), Ûγt (s)〉γt (s)ds is the energy of the geodesic γt . Let Y (s) such that H(t, s) =

expγ0(s)
(tY (s)). From [41, Theorem 3.31], we get the first variation formula of energy

d
dt

E(γt ) = [〈Y (s), Ûγ0(s)〉γ0(s)]
1
0 −

∫ 1

0
〈Y (s),∇ Ûγ0(s) Ûγ0(s)〉γ0(s)ds.

Since γ0 is a geodesic, ∇ Ûγ0(s) Ûγ0(s) = 0. Hence, the second term vanishes. Moreover,
Y (1) = 1

t logγ0(1)(γt (1)). Since γ0(1) = γt (1) = Σ, Y (1) = 0. We also have Y (0) =
1
t logγ0(0)(γt (0)) =

1
t logΣ̄(Σ̄(t)) = 1

t tξ = ξ . It follows that
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d
dt

E(γt ) = −〈ξ, Ûγ0(0)〉γ0(0) = 〈ξ,− logΣ̄(Σ)〉Σ̄.

We thus get D v(Σ̄)[ξ] = 〈ξ,− logΣ̄(Σ)〉Σ̄. The result follows by identification. One
can then conclude the proof of the proposition by using the sum property of the
gradient operator. �

Then, the most common choice for the retraction is to take the Riemannian expo-
nential mapping (21). Furthermore, the stepsize in this case is often simply set to 1.
It follows that, given some initialization Σ̄(0), the sequence of iterates is

Σ̄(k+1) = expΣ̄(k)

(
1
m

∑m
i=1 logΣ̄(k) (Σj)

)
= Σ̄1/2

(k)
exp

(
1
m

∑m
i=1 log(Σ̄−1/2

(k)
ΣjΣ̄−

1/2
(k)
)

)
Σ̄1/2
(k)
.

(49)

The varianceV (47) is a strictly geodesically convex function overH++p [89]. Hence,
its minimizer is unique.

Remark Notice that there is no dependence on α and β in (49). This means that the
Riemannian center of mass according to the Fisher-Rao distance in Theorem 5 is the
same for every C-CES distribution.

The computation of the class centers being solved, we now turn to the second step
of the nearest centroÃŕd classifier: the assignment to a class yj of each estimated
covariance matrix Σ̂j belonging to the test set Ttest. This is achieved by taking the
class that corresponds to the minimal geodesic distance with respect to all class
centers, i.e.,

yj = arg min
y∈n1,...,zo

{
δ2(Σ̄(y), Σ̂j)

}
y∈n1,...,zo

. (50)

The resulting nearest centroÃŕd classifier onH++p is summarized in Algorithm 1.

Algorithm 1: Nearest centroÃŕd classifier onH++p
Input: A training set Ttrain = {(Σ̂ j, yj )}

mtrain
j=1 and a test set Ttest = {Σ̂ j }

mtest
j=1 .

Output: Predictions of the test set {yj }mtest
j=1 .

# Training
for y = 1 to z do

Compute the center of mass Σ̄(y) of {Σ̂ j ∈ Ttrain : yj = y } with (49).
# Testing
for j = 1 to mtest do

Assign Σ̂ j to the class with the nearest class center Σ̄(y) with (50).

Remark The Gaussian assumption allows recover the classification algorithm
from [11], as in this case: i) the maximum likelihood estimator is the sample covari-
ance matrix Σ̂j =

1
n

∑n
i=1 xi, jxH

i, j ; ii) α = 1 and β = 0 in the Fisher-Rao distance δ of
Theorem 5.
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5.3 Application to EEG classification

One usually needs to classify EEG recordings in the context of brain-computer
interfaces (BCI), where a subject interacts with a computer through brain activity.
There are several paradigms for BCI based on EEG. The three main ones are:
steady-states visually evoked potentials (SSVEP) [53], motor imagery (MI) [91],
and event-related potentials (ERP) [5]. This example focuses on ERP data, where
subjects are exposed to some stimuli (most often a visual one). These induce a signal
response in the brain: the so-called P300, which is a positive wave occurring 300
ms after the stimulus. An ERP dataset consists in a set of trials separated into two
classes: a target class (TA), for which the subject is exposed to a stimulus; and a
non-target class (NT), for which there is no stimulus. More specifically, we consider
the BNCI2014_009 dataset [5], which is available on the MOABB platform5. This
dataset contains data from 10 subjects, with 3 sessions each. Data were acquired on
16 electrodes at 256 Hz and bandpass filtered between 0.1 Hz and 20 Hz. Recordings
were then downsampled to 128 Hz. Each session of each subject contains 1728 trials
of 0.8s: 288 target and 1440 non-target ones. Hence, each dataset (one session of
one subject) yields T = {Xj, yj}

m
j=1 in Rp×n × {TA,NT}, where p = 16, n = 102,

m = 1728 and z = 2.
To perform classification of ERPs, raw data are not directly used. Instead, follow-

ing [13], augmented data are leveraged. Given the training set Ttrain = {Xj}
mtrain
j=1 , we

compute the average target ERP with

PTA =
1

mTA

mtrain∑
j=1

yj=TA

Xj, (51)

where mTA is the number of target trials in the training set Ttrain. From there, aug-
mented trials are defined as

X̃j =

[
PTA
Xj

]
. (52)

Covariance matrices Σ̂j are then estimated from these augmented trials both in the
training and testing sets. Finally, the nearest centroÃŕd classifier in Algorithm 1 is
applied on these augmented covariance. We compare two different versions here:

1. Gaussian version: covariance matrices estimated through the sample covariance
matrix (SCM) and nearest centroÃŕd classifier employed with α = 1 and β = 0.

2. t-distribution version: covariance matrices estimated with the MLE of the t-
distribution with ν = 2.1 degrees of freedom and nearest centroÃŕd classifier
used with α = ν+p

ν+p+2 and β = α − 1.

Achieved accuracies are presented in Figure 9. One can observe that both classi-
fiers feature very good performance on this dataset. One can further notice that they
have very similar performance. Indeed, on average, the nearest centroÃŕd classifier

5 https://github.com/NeuroTechX/moabb – A standard benchmark platform for BCI.
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with the t-distribution is better by 0.12%. Considering that the SCM is much sim-
pler to compute than the MLE of the t-distribution, one can argue that the nearest
centroÃŕd classifier associated with the Gaussian distribution is more advantageous
on this dataset. Due to the biological nature of the data, which can be expected to be
noisy and contain a non-negligible amount of outliers, one could have expected that
a heavy-tail distribution such as the t with ν = 2.1 perform significantly better. How-
ever, the dataset at hand has been curated and the preprocessing has been designed
for the Gaussian distribution to work well. Leveraging the t-distribution might be
advanategous on real world non-curated data.

MDM Gaussian MDM Student t
0.5

0.6

0.7

0.8

0.9

1

RO
C
AU

C

Fig. 9: AUC of ROC plots for the nearest centroÃŕd classifiers exploiting the Gaussian distri-
bution (left) and Student t-distribution with ν = 2.1 degrees of freedom (right) applied on the
BNCI2014_009 dataset [5] (10 subjects, 3 sessions each).

6 Conclusion

This chapter presented the Fisher-Rao geometry of C-CES distributions, and its
practical uses in statistical signal processing and machine learning. Remark that
the methodology that consists in obtaining a Riemannian geometry from the Fisher
information metric generalizes to any statistical model (assuming that the parameter
space is a smooth manifold). Hence, the approaches presented in this introduction
can extend to many other models and applications. Among other examples, such
intrinsic analysis has been conducted for the estimation of rotations matrices [27]
and for other Lie groups related to tracking problems [56, 57]. In other scopes more
directly related to elliptical distributions, we can also mention that geometric tools
were used for:

• Structured covariance matrices: In many applications, the covariance matrix is
known to satisfy some form of structural constraint, that can be exploited to reduce



36 F. Bouchard, A. Breloy, A. Collas, A. Renaux, G. Ginolhac

the dimension of the estimation problem (see, e.g., [98, 87]). Geometric tools can
then be leveraged by expressing the constrained space as a sub-manifold ofH++p .
For example: the Fisher information metric was used to obtain structured estima-
tors in [62, 61]; A geometry of Toeplitz matrices was studied in [6]; A framework
for in probabilistic component analysis (low-rank structured covariance matrices)
in C-CES was proposed in [21]; Kronecker products preserve geodesic convexity
[96], ans such structure was considered in online covariance matrix estimation
in [22]; geometry and structured covariance have also been considered for blind
source separation [20].

• Non-centered models: The geodesics and Fisher-Rao distance of the model
x ∼ CES(µ,Σ) for themean-and-covariance product manifoldCp×H++p remains
intractable in the general case. Even for the Gaussian distribution x ∼ N(µ,Σ),
only special cases and approximations from geodesic triangles can be obtained
[30, 90, 34]. Numerical methods to evaluate these geodesics and corresponding
distances were proposed in [69, 68]. Concerning estimation problems, Rieman-
nian optimization was leveraged for non-centered mixture of scaled Gaussian
distributions (a sub-family of C-CES distributions) in [33, 36].

• Mixture models: Mixtures of C-CES can occur within the samples (the obser-
vation is the sum of multiple independent contributions) or within batches (the
sample set aggregating multiple classes of C-CES). The within-sample mixture is
typically used to cast robust models for probabilistic principal component analysis
[31, 88, 47]. In this context, geometric tools were developed for low-rank scaled
Gaussian signal corrupted by white Gaussian noise in [32]. The within-batch
mixture corresponds to a typical sample-wise classification problem. For this
purpose, g-convex relaxations for Gaussian mixture models were studied in [48].

As a final note, we also point out that information geometry also refers to a much
broader field than the scope covered by this chapter [3, 4]. For comprehensive
overviews of the many geometric structures behind families of probability distribu-
tions, we refer the readers to [66, 67].
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