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Abstract

Attribute control charts assuming a Poisson (c chart) or a binomial
distribution (np chart) are usually used when the quality characteristic
cannot be measured on a continuous scale. For equivalent sample sizes,
Shewhart type attribute control charts are known to be less efficient than
their measurement counterparts (like the X̄ chart) and, for this reason,
practitioners often compensate it by supplementing them with an EWMA
(Exponentially Weighted Moving Average) scheme. However, because of
the discrete nature of count data, it is unfortunately impossible to com-
pute exactly and accurately (by means of Markov chain of integral equa-
tion methods) the run length (RL) properties, such as its mean (ARL) and
its standard deviation (SDRL) of these EWMA attribute control charts
and, consequently, it is impossible to efficiently design them in order to
minimize some out-of-control characteristics. For this reason, we propose
in this paper a dedicated approach called “continuousify” method which,
coupled with a classical Markov chain technique, allows to compute the
RL properties of any EWMA attribute control chart in a reliable way.
A numerical comparison shows that the RL properties obtained by using
the proposed “continuousify” approach are very much alike to the ones
calculated via simulation and without the “continuousify” approach. Il-
lustrative examples are also provided to show how the proposed method
can be implemented in practice.

∗philippe.castagliola@univ-nantes.fr (corresponding author)
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1 Introduction

Statistical Process Monitoring (SPM) is a collection of statistical techniques
providing a rational management of manufacturing processes, which allows high
quality final products to be produced. Among SPM tools, the control charts are
undeniably the ones that are the most used for identifying changes in processes.
When the quality characteristic of interest can be measured, measurement type
control charts (usually based on the normality assumption) are used (like the
X̄ chart for the mean or the S chart for the standard-deviation) but, when this
quality characteristic cannot be measured (and only defective / not defective
products or number of defects can be observed), attribute type control charts
(such as the c and np charts) are commonly used.

For comparable sample sizes, Shewhart type attribute control charts are known
to be less efficient than their measurement counterparts and, for this reason,
practitioners often compensate it by supplementing them with the EWMA (Ex-
ponentially Weighted Moving Average) scheme, introduced by Roberts (1959),
which combines current and previous observations and is known to be one of
the most effective tools for monitoring sustained changes in a process. Although
EWMA type control charts have been massively studied in the case of normaly
distributed measurement data (among the most recent ones, we refer, for in-
stance, to Khoo et al. (2016), Riaz and Abbasi (2016), Zwetsloot et al. (2016),
Arshad et al. (2017), Bilen et al. (2017), Haridy et al. (2017), Lu and Huang
(2017), Raji et al. (2018), Maravelakis et al. (2019) and Tang et al. (2019)),
they have received less attention in the case of attribute data. For example,
Gan (1990a,b) proposed modified EWMA control charts for monitoring Poisson
and binomial counts, and he demonstrated that, based on the ARL (Average
Run Length) criterion, these control charts are generally superior compared to
the corresponding Shewhart control charts. Borror et al. (1998) presented a
methodology to design and evaluate the performance of the EWMA control
chart for monitoring Poisson data and they found it more efficient than the
Shewhart c chart and Gan (1990a)’s modified EWMA charts. Furthermore,
other works concerning attribute EWMA control chart have been discussed by
Somerville et al. (2002), Zhang et al. (2003), Yeh et al. (2008), Szarka and
Woodall (2011), Saghir and Lin (2014), Aslam et al. (2018) and Alevizakos and
Koukouvinos (2019).

In order to investigate the performance of a control chart, some in- and out-
of-control RL (Run Length) properties have to be evaluated (for example, the
ARL, MRL and SDRL) and accurate evaluation of these quantities is of great
importance as they are often used in the design phase of a control chart. For ex-
ample, for the design of an EWMA chart, the researcher has to find the optimal
parameters λ∗ ∈ (0, 1] (smoothing parameter) and K∗ > 0 (control limit pa-
rameter) such that, for a particular shift in the process, the out-of-control ARL
is minimized subject to the constraint that the in-control ARL equals ARL0, a
predefined value. If the evaluation of these RL properties is not reliable, it is
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therefore hopeless to correctly design such a control chart. In the case of mea-
surement data (usually, under the normality assumption) the RL properties of
EWMA type control charts are obtained, in general, using either Markov chain
or integral equation methods which are both based on a discretization of the
control limits interval into m subintervals. When the number m of subintervals
increases and becomes large enough (say m ≥ 200) these methods yield fairly
accurate approximations. On the other hand, in the case of attribute / count
data, due to the discrete nature of these data, it is impossible to accurately
compute any RL properties using Markov chain or integral equation methods
as the results will heavily fluctuate depending on the value of the selected num-
ber m of subintervals (this will be clearly highlighted in the paper through some
examples). Of course, it is always possible to obtain these values using Monte-
Carlo simulations but, even in this case, if it is quite easy to compute small
ARL or MRL values with some precision, it becomes just impossible to obtain
reliable results when these values become very large. In addition, the design
phase becomes significantly time consuming.

Therefore, in an attempt to extend the preliminary work by Wu et al. (2020),
the goal of this paper is i) to propose a method, called “continuousify”, that al-
lows to compute the RL properties of any attribute EWMA type control charts
in a reliable way, ii) to demonstrate the use of this method in the case of the
Poisson and binomial distributions, iii) to design the corresponding PEWMA
(for Poisson EWMA) and BEWMA (for Binomial EWMA) and iv) to compare
the results with the ones obtained through Monte Carlo simulations as well as
with the ones presented in the very recent contribution of Morais and Knoth
(2020) in which the authors tackle the same problem (for the PEWMA control
chart only) but in a different way.

The paper is structured as follows. Section 2 introduces the “continuousify”
technique as a general framework for discrete type distributions. Then, Sec-
tion 3 focuses on two particular cases, i.e. the PEWMA control chart and the
BEWMA control chart. In both cases, comparisons show how the “continu-
ousify” technique allows to obtain stable and reliable ARL values. Moreover,
we also provide the optimal values for the chart’s constants. In Section 4, two
illustrative examples clarify how the “continuousify” approach can be used to
monitor nonconformities or nonconforming items using EWMA. Finally, Sec-
tion 5 summarizes the main findings and suggest potential new research direc-
tions.

2 The “continuousify” method for attribute type
EWMA control charts

Let Xi, i = 1, 2, . . ., be a sequence of i.i.d. (independent and identically dis-
tributed) discrete r.v. (random variables), defined on Ω = {ω1, ω2, . . .} and
having fX(ω|θ) = P(Xi = ω) as p.m.f. (probability mass function), where θ
is a vector of parameters. In practice, it is actually possible to define and im-
plement an attribute EWMA type control chart directly monitoring a process
(via the observed Xi values) by using the statistic Zi = λXi + (1 − λ)Zi−1,
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i = 1, 2, . . ., where λ ∈ (0, 1] is some smoothing parameter to be fixed and Z0

is some initial value. As already explained in the Introduction section of this
paper, the problem of this approach is that, because of the discrete nature of
the r.v. Xi, i = 1, 2, . . ., it is impossible to accurately compute the RL proper-
ties of such a control chart (using Markov chain or integral equation methods)
and, therefore, it is impossible to tune the chart parameters in order to obtain a
predefined in-control performance. If, for instance, the Markov chain approach,
(as detailed hereafter), is used in order to compute the ARL or the SDRL, the
results will i) heavily fluctuate depending on the value of the selected number m
of subintervals and ii) not exhibit any monotonic convergence when m increases,
making useless such an approach. This point will be highlighted in Section 3.

Since the Markov chain and integral equation methods give good results in
the case of continuous r.v., (and, more particularly in the case of the normal
distribution, which is an unbounded one), we therefore suggest to transform
each discrete r.v. Xi, i = 1, 2, . . ., into a new continuous one, denoted as X∗i ,
(say that we “continuousify” the r.v. Xi), defined on (−∞,+∞), and to monitor
the process by using a traditional EWMA scheme. More precisely, we suggest to
simply define X∗i as a mixture of the r.v. Yi,ω1

, Yi,ω2
, . . . where, for each ω ∈ Ω,

Yi,ω ∼ N(ω, σ), i.e.

X∗i =


Yi,ω1 if Xi = ω1,
Yi,ω2

if Xi = ω2,
...

...

,

where N(ω, σ) stands for the Normal distribution with mean ω and standard
deviation σ. Concretely speaking, this means that if, at i = 1, 2, . . ., we have
Xi = ω ∈ Ω then, in order to obtain X∗i , we just have to generate a number
from the N(ω, σ) distribution. The “continuousify” parameter σ > 0 has to be
fixed and, as it will be shown later, its value does not significantly affect the
performance of the control chart as long as it is neither too small nor too large.
Since X∗i , i = 1, 2, . . ., is defined as a mixture of normal distributions, its p.d.f.
fX∗(x|θ, σ) and c.d.f. FX∗(x|θ, σ) are

fX∗(x|θ, σ) =
∑
ω∈Ω

fX(ω|θ)fN(x|ω, σ), (1)

FX∗(x|θ, σ) =
∑
ω∈Ω

fX(ω|θ)FN(x|ω, σ), (2)

where fN(x|ω, σ) and FN(x|ω, σ) are the p.d.f. and c.d.f. of the N(ω, σ) dis-
tribution, respectively. If µ = E(X) and V(X) are the mean and variance of
Xi, i = 1, 2, . . ., respectively, then it is not difficult to prove that the mean
µ∗ = E(X∗) and the variance V(X∗) of X∗i , i = 1, 2, . . ., are equal to (see
Appendix for details):

E(X∗) = E(X), (3)

V(X∗) = V(X) + σ2. (4)

In this paper, we will focus on an upper-sided EWMA control chart for process
monitoring based on the statistic Z∗i defined as

Z∗i = max(0, λX∗i + (1− λ)Z∗i−1), (5)
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with initial value Z∗0 = µ∗0 (corresponding to the in-control situation). Note that
a similar approach can be used to design a lower-sided EWMA control chart
properly modified. By definition, the asymptotic upper control limit UCL∗ of
this chart (i.e. with “continuousify”) is equal to

UCL∗ = E(X∗) +K

√
λ

2− λ
√

V(X∗),

where K > 0 is a control chart parameter to be fixed. Using (3) and (4), the
previous formula simplifies to

UCL∗ = E(X) +K

√
λ(V(X) + σ2)

2− λ
. (6)

In order to obtain the zero-state ARL and SDRL of the proposed EWMA control
chart, we suggest to use the standard approach proposed by Brook and Evans
(1972). This approach assumes that the operation of this control chart can be
well represented by a discrete-time Markov chain with m + 2 states. States
k ∈ {0, 1, . . . ,m} are transient and state m + 1 is an absorbing one. The
transition probability matrix P of this discrete-time Markov chain is

P =

 Q r

0ᵀ 1

 =


Q0,0 Q0,1 · · · Q0,m r0

Q1,0 Q1,1 · · · Q1,m r1

...
...

...
...

Qm,0 Qp,1 · · · Qm,m rm
0 0 · · · 0 1

 ,

where Q is the (m+1,m+1) matrix of transient probabilities, 0 = (0, 0, . . . , 0)ᵀ

and the (m + 1, 1) vector r satisfies r = 1 − Q1 (i.e. row probabilities must
sum to 1) with 1 = (1, 1, . . . , 1)ᵀ. The transient states k ∈ {1, . . . ,m} are
obtained by dividing the interval [0,UCL∗] into m subintervals of width 2∆,
where ∆ = UCL∗

2m and UCL∗ is the upper control limit as defined in (6). By
definition, the midpoint of the k-th subinterval (representing state k) is equal
to Hk = (2k−1)∆. The transient state k = 0 corresponds to the “restart state”
feature of the upper-sided EWMA chart (due to the presence of the max(. . . )
in (5)). This state is represented by the value H0 = 0. It can be easily proven
that the generic element Qk,j , k, j = 0, 1, . . . ,m, of the matrix Q is equal to:

• if j = 0,

Qk,0 = FX∗

(
− (1− λ)Hk

λ

∣∣∣∣θ, σ) ,
• if j = 1, 2, . . . ,m,

Qk,j = FX∗

(
Hj + ∆− (1− λ)Hk

λ

∣∣∣∣θ, σ)−FX∗

(
Hj −∆− (1− λ)Hk

λ

∣∣∣∣θ, σ) ,
where FX∗(. . . |θ, σ) is the c.d.f. of X∗i , i = 1, 2, . . ., as defined in (2). Let
q = (q0, q1, . . . , qm)ᵀ be the (m + 1, 1) vector of initial probabilities associated
with the m + 1 transient states. In our case, we assume q = (1, 0, . . . , 0)ᵀ,
i.e. the initial state corresponds to the “restart state”. When the number m
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of subintervals is sufficiently large (say m ≥ 200), this approach provides an
effective method that allows the ARL and SDRL to be accurately evaluated by
using the following classical formulas from the theory of Markov chains (see, for
instance Neuts (1981) or Latouche and Ramaswami (1999))

ARL = qᵀ(I−Q)−11,

SDRL =
√

2qᵀ(I−Q)−2Q1 + ARL(1−ARL).

Of course, steady-state ARL and SDRL values can also be obtained by ade-
qualy modifying the vector q of initial probabilities defined above. However,
this topic is beyond the scope of this paper and we will not consider further the
steady-state properties.

It has to be noted that the choice of the normal N(ω, σ) distribution in (1) and
(2) for defining the mixture is just a possible choice among many others. In fact,
in Perdikis et al. (2021), in a similar context, several symmetrical distributions /
kernels (Normal, Parabolic, Biweight, Triweight, Cosine) have been tested and
the conclusion was that the choice of the distribution / kernel clearly has almost
no impact on the computation of the ARL and, therefore, the user is totally
free to use the kernel / distribution of his / her choice (including the uniform
distribution, for instance) without having to worry much about the reliability
of the result.

3 Applications of the “continuousify” method

The goal of this section is to demonstrate the use of the “continuousify” method
in the computation of the RL properties and the design of two upper-sided
attribute EWMA control charts: the upper-sided PEWMA chart (assuming a
Poisson distribution) and the upper-sided BEWMA chart (assuming a binomial
distribution).

3.1 The “continuousified” upper-sided PEWMA chart

Let us assume that Xi, i = 1, 2, . . . is a sequence of i.i.d. Poisson r.v. with
parameter θ > 0. When the process is in-control, we have θ = θ0 and when
the process is out-of-control, we have θ = θ1 > θ0. In this case, we simply have

θ = θ, Ω = {0, 1, 2, . . .} = N, fX(ω|θ) = e−θθω

ω! , E(X∗) = θ, V(X∗) = θ + σ2

and the c.d.f. of X∗ is equal to

FX∗(x|θ, σ) =

+∞∑
ω=0

fX(ω|θ)FN(x|ω, σ).

The upper control limit UCL∗ of the upper-sided PEWMA chart with the “con-
tinuousify” method is equal to

UCL∗ = θ0 +K

√
λ(θ0 + σ2)

2− λ
.

First of all, in order to have some insights about how to select the value of σ,
we plotted in Figure 1 the p.d.f. fX∗(x|θ, σ) (i.e. using (1)) of the r.v. X∗ for
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θ = 3 and for several values of σ ∈ {0.05, 0.1, 0.125, 0.15, 0.2, 0.4}. As it can be
seen, if σ = 0.05, the resulting p.d.f. is too “peaky” and too close to the original
discrete distribution, probably making the ARL values to still fluctuate a lot
when the number of sub-intervals m varies. On the other hand, if σ = 0.4, the
resulting p.d.f. is clearly too “over-smoothed”. In this case, the ARL values will
not fluctuate any longer but, due to the term “· · ·+ σ2” in (6) these values will
be larger. This will be confirmed in the following investigations. Therefore a
good tradeoff seems to be a value for σ ∈ [0.1, 0.2].

In Table 1 a comparison of the out-of-control ARL for the upper-sided PEWMA
chart obtained without (left part) and with (right part) the “continuousify”
method for a number of subintervals m ∈ {100, 110, . . . , 400} and for the fol-
lowing out-of-control situations (θ0, θ1) ∈ {(1, 2), (1, 1.5), (2, 3), (4, 5), (4, 6)} is
given. For illustrative purposes, the control chart parameters are K = 3 and
λ = 0.2 and the “continuousify” parameter is set at σ = 0.125 (this value has
also been used in Wu et al. (2020)). As it can be seen (and as it was mentioned
earlier):

• the ARL values obtained without “continuousify” heavily fluctuate (and
they are sometimes even negative) depending on the value of m. Clearly,
they do not exhibit any monotonic convergence when the number of subin-
tervals m increases. For instance, in the case (θ0, θ1) = (1, 1.5), the ARL
values obtained without “continuousify” fluctuate from −82.8 (negative
values may happen when the Markov chain approach does not converge)
to 221.7.

• on the contrary, for m ≥ 100, the ARL values obtained with the “continu-
ousify” method exhibit a strong stability and seem to converge rapidly to
a reliable value. Even for m = 100 the results obtained with the “contin-
uousify” approach are very reliable. This fact will reduce the time needed
for the required computations for obtaining the RL distribution. For in-
stance, using the same case (θ0, θ1) = (1, 1.5), the ARL values obtained
with “continuousify” converge rapidly to 28.4.

As a matter of comparison, in Table 1, we have also computed the ARL values
of the upper-sided PEWMA chart using 106 Monte-Carlo simulation runs (see
bottom of Table 1) for the without “continuousify” case only. What can be seen
is that the out-of-control ARL values obtained with the “continuousify” method
(see for example the case m = 400), i.e. 9.9, 28.4, 17.3, 33.4, 10.2 are almost
the same or just a bit larger (in a negligeable way) to the ones obtained using
simulations without the “continuousify” method, i.e. 9.9, 28.3, 17.2, 33.4, 10.2.

It is interesting to note that this topic (efficient ARL computation for EWMA
control charts monitoring discrete data) has also grasped the attention of other
researchers and, very recently, Morais and Knoth (2020) have proposed an al-
ternative method called the “Splitting Markov Chain”. This approach has been
applied to a two-sided PEWMA control chart (while, in this paper, we inves-
tigate a max-type upper sided PEWMA control chart). In order to compare
the two methods, we have reproduced the three plots in Figure 3 page 880 of
Morais and Knoth (2020), for the same two-sided PEWMA control charts, with
the same settings (i.e. (λ,K) ∈ {(0.27, 3.3190), (0.57, 3.4598), (0.86, 3.4846)})
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Figure 1: p.d.f. fX∗(x|θ, σ) of X∗ for θ = 3 and σ ∈ {0.05, 0.1, 0.125, 0.15, 0.2,
0.4}
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Table 1: Comparison of out-of-control ARL values for the upper-sided PEWMA
chart obtained with and without “continuousify” when K = 3 and λ = 0.2

without “continuousify” with “continuousify” (σ = 0.125)
θ0 = 1 1 2 4 4 θ0 = 1 1 2 4 4
θ1 = 2 1.5 3 5 6 θ1 = 2 1.5 3 5 6

100 10.9 56 17.2 105.8 11.9 9.9 28.4 17.3 33.5 10.2
110 7.5 11.1 16 34.2 10.4 9.9 28.4 17.3 33.4 10.2
120 7.1 10.3 17.5 -35.2 19 9.9 28.4 17.3 33.5 10.3
130 8.3 14.7 18.5 27.1 10 9.9 28.4 17.3 33.5 10.2
140 8.9 18.6 18.2 18.8 8.5 9.9 28.4 17.4 33.4 10.2
150 8.3 17 18.1 10.5 6.9 9.9 28.4 17.3 33.5 10.3
160 15.6 -82.8 17 20.1 8.8 9.9 28.4 17.3 33.5 10.2
170 8.2 15.2 18 26.5 9.8 9.9 28.4 17.3 33.4 10.2
180 8.9 18.5 16.4 19.9 9.1 9.9 28.4 17.3 33.5 10.3
190 11.6 46.3 17.5 73.8 11.7 9.9 28.4 17.3 33.4 10.2
200 7.2 12.1 16.3 22 8.9 9.9 28.4 17.3 33.4 10.2

m 210 9 19.8 18.3 21.1 9 9.9 28.4 17.3 33.5 10.3
220 15.8 -52.8 17.6 33.8 10.3 9.9 28.4 17.3 33.4 10.2
230 7.3 12.8 17.3 63.8 11.1 9.9 28.4 17.3 33.4 10.2
240 9.4 20.2 16.4 -45.1 15.2 9.9 28.4 17.3 33.5 10.2
250 9.8 28 17.7 18 8.6 9.9 28.4 17.3 33.4 10.2
260 9.2 21.1 16.5 32.8 9.8 9.9 28.4 17.3 33.4 10.2
270 13 254 18 24.8 9.8 9.9 28.4 17.3 33.5 10.2
280 8.3 19.3 17.7 432 13 9.9 28.4 17.3 33.4 10.2
290 6.6 11.6 16.9 20.6 8.5 9.9 28.4 17.3 33.4 10.2
300 15.4 -83.9 17.1 12.1 7.5 9.9 28.4 17.3 33.5 10.2
310 8.2 14.2 17.3 41.7 10.6 9.9 28.4 17.3 33.4 10.2
320 15.3 -50.1 15.2 345.7 12.8 9.9 28.4 17.3 33.4 10.2
330 5.7 9.4 16.6 14.1 7.1 9.9 28.4 17.3 33.5 10.2
340 9.2 21.2 16.9 30 9.9 9.9 28.4 17.3 33.4 10.2
350 12.2 221.7 16.8 -298.7 13 9.9 28.4 17.3 33.4 10.2
360 8.9 23.9 16.3 -16.4 26.2 9.9 28.4 17.3 33.5 10.2
370 8.4 15.2 17.2 74.8 11.2 9.9 28.4 17.3 33.4 10.2
380 6.3 10.3 18.3 20.4 8.8 9.9 28.4 17.3 33.4 10.2
390 9.3 20.8 16.6 27.2 9.5 9.9 28.4 17.3 33.5 10.2
400 7.2 10.7 17.5 122.1 12.1 9.9 28.4 17.3 33.4 10.2

sim 9.9 28.3 17.2 33.4 10.2
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and the same scale, but using the “continuousify” approach instead of the “Split-
ting Markov Chain” approach. The corresponding plots are in Figure 2 where
the three leftmost ones have been plotted for σ = 0.125 while the three right-
most ones have been plotted for σ = 0.2. From these plots, we can conclude
that

• the results are really comparable to the ones in Morais and Knoth (2020).
Fluctuations happen for some values m < 100 but, rapidly, when m ≥ 100
the ARL values becomes stable.

• As expected, there are less fluctuations when σ = 0.2 rather than when
σ = 0.125 but, as we already mentioned, the price to pay for this higher
stability are larger ARL values as it can be noticed in the rightmost plots.
Therefore a tradeoff has to be found and the value σ = 0.125 seems to be
a good compromise.

As the “continuousify” method now provides stable values for the ARL it is
therefore possible to design the upper-sided PEWMA chart in order to find
the optimal parameters λ∗ and K∗ such that, for a particular shift from θ0 to
θ1 = τθ0, τ > 1, the out-of-control ARL is minimized subject to the constraint
that the in-control ARL equals the desired ARL0 value, e.g. ARL0 = 370.4.
The optimal combinations (λ∗,K∗) are listed in Table 2 with the correspond-
ing out-of-control ARL values for θ0 ∈ {1, 2, 5, 10}, τ ∈ {1.1, 1.2, 1.5, 2, 3} and
σ ∈ {0.1, 0.125, 0.15, 0.2}. For instance, when θ0 = 1, τ = 2 (i.e. θ1 = 2) and
σ = 0.1, the optimal chart parameters are (λ∗,K∗) = (0.115, 2.728) and the cor-
responding out-of-control ARL = 9.5. From Table 2, we can draw the following
conclusions:

• No matter the value of σ, the out-of-control ARL values monotonically
decrease when τ increases.

• The choice of the parameter σ ∈ {0.1, 0.125, 0.15, 0.2} does not signifi-
cantly impact the performance of the upper-sided PEWMA chart with
“continuousify” as the difference in term of out-of-control ARL is almost
negligible for a specified combination (θ0, θ1). For example, if θ0 = 2 and
τ = 1.1 (i.e. θ1 = 2.2), the optimal parameters (λ∗,K∗) are approximately
equal to (0.03, 1.96), and the ARL values are approximately equal to 92,
for the four possible choices of σ ∈ {0.1, 0.125, 0.15, 0.2}.

3.2 The upper-sided BEWMA chart with “continuousify”

Let us assume that Xi, i = 1, 2, . . . is a sequence of i.i.d. binomial r.v. with
parameters n and p. When the process is in-control, we have p = p0 and when
the process is out-of-control, we have p = p1 > p0. In this case, we have
θ = (n, p), Ω = {0, 1, 2, . . . , n}, fX(ω|θ) =

(
n
ω

)
pω(1 − p)n−ω, E(X∗) = np,

V(X∗) = np(1− p) + σ2 and the c.d.f. of X∗ is equal to

FX∗(x|θ, σ) =

n∑
ω=0

fX(ω|θ)FN(x|ω, σ).
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(2020)

11



Table 2: Optimal combinations (λ∗,K∗) and corresponding out-of-control ARL
values for θ0 ∈ {1, 2, 5, 10}, τ ∈ {1.1, 1.2, 1.5, 2, 3} and σ ∈ {0.1, 0.125, 0.15, 0.2}
for the upper-sided PEWMA chart with “continuousify”

θ0 τ θ1 σ = 0.1 σ = 0.125 σ = 0.15 σ = 0.2

1 1.1 1.1 (0.030, 1.986, 126.6) (0.030, 1.985, 126.8) (0.030, 1.984, 127.0) (0.030, 1.983, 127.6)
1.2 1.2 (0.030, 1.986, 64.2) (0.030, 1.985, 64.3) (0.030, 1.984, 64.4) (0.030, 1.983, 64.8)
1.5 1.5 (0.035, 2.077, 22.4) (0.035, 2.076, 22.4) (0.035, 2.075, 22.5) (0.035, 2.072, 22.6)
2 2 (0.115, 2.728, 9.5) (0.115, 2.725, 9.6) (0.115, 2.722, 9.5) (0.120, 2.737, 9.6)
3 3 (0.260, 3.144, 4.0) (0.245, 3.108, 4.0) (0.265, 3.147, 4.0) (0.250, 3.106, 4.0)

2 1.1 2.2 (0.030, 1.965, 92.0) (0.030, 1.964, 92.1) (0.030, 1.964, 92.2) (0.030, 1.963, 92.5)
1.2 2.4 (0.030, 1.965, 43.0) (0.030, 1.964, 43.1) (0.030, 1.964, 43.1) (0.030, 1.963, 43.2)
1.5 3 (0.075, 2.446, 14.2) (0.080, 2.476, 14.3) (0.080, 2.475, 14.3) (0.080, 2.473, 14.4)
2 4 (0.210, 2.920, 5.8) (0.215, 2.929, 5.8) (0.215, 2.927, 5.8) (0.185, 2.856, 5.8)
3 6 (0.375, 3.163, 2.4) (0.385, 3.173, 2.4) (0.385, 3.171, 2.4) (0.395, 3.177, 2.4)

5 1.1 5.5 (0.030, 2.060, 55.3) (0.030, 2.044, 55.6) (0.030, 2.027, 55.9) (0.030, 2.004, 55.1)
1.2 6 (0.035, 2.031, 24.7) (0.035, 2.031, 24.7) (0.035, 2.031, 24.7) (0.030, 2.004, 24.7)
1.5 7.5 (0.150, 2.683, 7.5) (0.150, 2.682, 7.5) (0.150, 2.682, 7.5) (0.155, 2.693, 7.6)
2 10 (0.345, 2.978, 3.0) (0.355, 2.987, 3.0) (0.355, 2.987, 3.0) (0.355, 2.986, 3.0)
3 15 (0.585, 3.143, 1.3) (0.595, 3.147, 1.3) (0.610, 3.152, 1.3) (0.640, 3.163, 1.3)

10 1.1 11 (0.035, 2.025, 37.3) (0.035, 2.025, 37.4) (0.035, 2.025, 37.4) (0.035, 2.025, 37.4)
1.2 12 (0.055, 2.199, 15.7) (0.055, 2.203, 15.7) (0.075, 2.372, 15.8) (0.075, 2.371, 15.8)
1.5 15 (0.285, 2.846, 4.6) (0.275, 2.836, 4.6) (0.275, 2.836, 4.6) (0.275, 2.835, 4.6)
2 20 (0.530, 3.013, 1.8) (0.530, 3.012, 1.8) (0.545, 3.018, 1.8) (0.545, 3.018, 1.8)
3 30 (0.890, 3.113, 1.0) (0.890, 3.112, 1.0) (0.890, 3.112, 1.0) (0.890, 3.110, 1.0)

The upper control limit UCL∗ of the upper-sided BEWMA chart with the “con-
tinuousify” method is equal to

UCL∗ = np0 +K

√
λ(np0(1− p0) + σ2)

2− λ
.

Similarly to Table 1, Table 3 compares the out-of-control ARL of the upper-sided
BEWMA chart obtained without (left part) and with (right part) the “continu-
ousify” method for a number of subintervals m ∈ {100, 110, . . . , 400} and for the
following out-of-control situations (n, p0, p1) = {(40, 0.05, 0.06), (20, 0.1, 0.12),
(10, 0.1, 0.15), (20, 0.15, 0.18), (10, 0.15, 0.2)}. As for Table 1, the control chart
parameters are K = 3 and λ = 0.2 and the “continuousify” parameter is set
at σ = 0.125. As it can be seen, the conclusions drawn for the upper-sided
PEWMA chart can also be drawn for the upper-sided BEWMA chart, i.e. i)
the ARL values obtained without “continuousify” heavily fluctuate and they
clearly do not exhibit any monotonic convergence when the number of subin-
tervals m increases, ii) on the contrary, for m ≥ 100, the ARL values obtained
with the “continuousify” method exhibit a strong stability and seem to converge
rapidly to a reliable value, iii) the ARL values obtained with the “continuousify”
method (see for example the case m = 400 with 74.1, 74.5, 27.8, 57.2, 39.9) are
a bit larger (again in a negligeable way) than the ones obtained by simulations
without the “continuousify” method, i.e. 73.6, 73.5, 27.4, 56.6, 39.4.

As the “continuousify” method also provides stable and reliable ARL values
for the upper-sided BEWMA chart, it is therefore possible to design it in or-
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Table 3: Comparison of out-of-control ARL values for the upper-sided BEWMA
chart obtained with and without “continuousify” when K = 3 and λ = 0.2

without “continuousify” with “continuousify” (σ = 0.125)
n = 40 20 10 20 10 n = 40 20 10 20 10
p0 = 0.05 0.1 0.1 0.15 0.15 p0 = 0.05 0.1 0.1 0.15 0.15
p1 = 0.06 0.12 0.15 0.18 0.2 p1 = 0.06 0.12 0.15 0.18 0.2

100 94.3 52.4 25.2 52.8 55.9 74.0 74.4 27.8 57.0 39.9
110 146.4 51.6 30.4 68.9 44.9 74.0 74.4 27.8 57.2 39.9
120 43.6 71.2 46.8 56.1 32.3 74.2 74.4 27.8 57.1 39.8
130 81.7 114.1 23.7 52.6 30.4 74.1 74.4 27.8 57.2 39.9
140 49.0 70.6 22.1 54.1 59.6 74.1 74.4 27.9 57.1 39.9
150 59.3 100.7 26.7 63.0 38.5 74.1 74.4 27.9 57.2 39.8
160 78.4 189.0 19.6 60.8 31.9 74.1 74.4 27.9 57.1 39.8
170 79.6 87.8 42.6 53.0 62.8 74.1 74.4 27.9 57.2 39.9
180 67.0 74.3 24.5 51.1 39.3 74.1 74.4 27.9 57.1 39.9
190 58.4 62.7 32.8 52.9 32.2 74.1 74.4 27.8 57.2 39.8
200 83.4 70.3 35.4 54.9 53.2 74.1 74.4 27.8 57.1 39.9
210 62.1 68.2 29.0 59.5 47.8 74.1 74.4 27.8 57.2 39.9
220 70.3 60.7 21.1 59.8 30.6 74.1 74.4 27.8 57.1 39.8
230 84.1 67.3 35.7 50.9 38.1 74.1 74.4 27.9 57.2 39.9
240 45.1 85.4 60.0 51.3 32.2 74.1 74.4 27.9 57.2 39.9

m 250 60.6 121.3 48.6 55.0 29.2 74.1 74.4 27.9 57.2 39.8
260 52.4 75.6 33.0 63.1 34.0 74.1 74.4 27.9 57.2 39.9
270 78.0 55.7 24.5 62.4 29.8 74.1 74.4 27.9 57.1 39.9
280 85.2 73.9 40.5 60.0 34.3 74.1 74.4 27.8 57.2 39.9
290 82.5 63.9 23.8 52.0 38.5 74.1 74.4 27.8 57.1 39.8
300 57.9 90.6 27.5 60.5 61.5 74.1 74.4 27.8 57.2 39.9
310 191.6 61.4 19.8 62.3 30.3 74.1 74.4 27.8 57.1 39.9
320 129.5 127.7 24.6 60.6 88.1 74.1 74.4 27.8 57.2 39.8
330 81.3 62.9 29.9 64.9 29.0 74.1 74.4 27.9 57.1 39.9
340 90.5 72.5 37.8 55.7 28.1 74.1 74.4 27.9 57.2 39.9
350 70.1 80.2 27.6 54.3 38.4 74.1 74.4 27.9 57.1 39.9
360 61.8 68.1 42.3 59.8 29.7 74.1 74.4 27.9 57.2 39.9
370 74.9 72.5 34.7 51.2 56.6 74.1 74.4 27.8 57.1 39.9
380 51.6 118.7 32.8 60.0 50.6 74.1 74.4 27.8 57.2 39.9
390 60.0 74.9 20.1 57.5 33.4 74.1 74.4 27.8 57.1 39.9
400 83.4 63.4 25.4 56.0 38.8 74.1 74.5 27.8 57.2 39.9

sim 73.6 73.5 27.4 56.6 39.4
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der to find the optimal parameters λ∗ and K∗ such that, for a particular shift
from p0 to p1 = τp0, τ ∈ (1, 1/p0), the out-of-control ARL is minimized un-
der the constraint that the in-control ARL = ARL0 = 370.4. The optimal
combinations (λ∗,K∗) are listed in Table 4 with the corresponding out-of-
control ARL values for p0 ∈ {0.05, 0.1, 0.15, 0.2}, τ ∈ {1.1, 1.2, 1.5, 2, 3} and
σ ∈ {0.1, 0.125, 0.15, 0.2}. For instance, when p0 = 0.1, τ = 1.2 (i.e. p1 = 0.12),
n = 20 and σ = 0.15, the optimal chart parameters are (λ∗,K∗) = (0.030, 1.954)
and the corresponding out-of-control ARL = 40.7. As for the upper-sided
PEWMA chart, similar conclusions can be drawn from Table 4 for the the
upper-sided BEWMA chart, i.e. i) no matter the value of σ, the out-of-control
ARL values monotonically decrease when τ increases and ii) for a specified com-
bination (p0, p1), the choice of σ ∈ {0.1, 0.125, 0.15, 0.2} does not significantly
impact the performance of the upper-sided BEWMA chart with “continuousify”
in terms of the out-of-control ARL. For instance, for the four possible values
of σ ∈ {0.1, 0.125, 0.15, 0.2}, if p0 = 0.1, p1 = 0.12 and n = 20, then the
optimal parameters (λ∗,K∗) are approximately equal to (0.03, 1.96) and the
out-of-control ARL values range from 39.9 to 40.8.

4 Illustrative examples

4.1 Example of an upper-sided PEWMA chart with “con-
tinuousify”

This example is based on the data provided in Chapter 7 of Montgomery (2013)
(Tables 7.7 and 7.8). These tables present the number of nonconformities ob-
served in 44 (initially, they were 46 samples but two of them have been proved
to be out-of-control) successive samples of 100 printed circuit boards. The data
set is divided into two subsets: the first 24 samples are used as a Phase I data
set and the remaning 20 samples are used as a Phase II data set (see column
Xi in Table 5).

Using the Phase I data, the in-control number of nonconformities per sample is
estimated as θ̂0 = 472

24 = 19.67. Assuming K = 3, λ = 0.2 and σ = 0.125, the
upper control limit UCL∗ of the upper-sided PEWMA chart with the “contin-
uousify” method is equal to

UCL∗ = 19.67 + 3×
√

0.2× (19.67 + 0.1252)

2− 0.2
= 24.103.

Note that without the “continuousify” method (i.e. σ = 0) this upper control
limit would have been UCL = 24.101 which is almost the same as for the with
“continuousify” approach.

In addition to the number of nonconformities Xi, Table 5 also lists the values
of X∗i , Zi (based on Xi) and Z∗i for Phases I and II. These Phases have been
treated separately with initial values Z0 = Z∗0 = 19.67. As it can be seen the
values of Zi (without “continuousify”) are actually different but nevertheless
very close to those of Z∗i (with “continuousify”). This highlights the fact that
the “continuousify” technique has a very small impact in the computation of the
EWMA statistic itself (but it has a positive strong impact in the computation of
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Table 4: Optimal combinations (λ∗,K∗) and corresponding out-of-control
ARL values for p0 ∈ {0.05, 0.1, 0.15, 0.2}, τ ∈ {1.1, 1.2, 1.5, 2} and σ ∈
{0.1, 0.125, 0.15, 0.2} for the upper-sided BEWMA chart with “continuousify”
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the RL properties as we have seen before). In any case, the upper-sided PEWMA
chart with “continuousify” does not detect any out-of-control situation as it also
visible in the control chart plotted in Figure 3.

Table 5: Example (printed circuit boards) of an upper-sided PEWMA chart
with “continuousify”

Phase I Phase II

i Xi X∗i Zi Z∗i i Xi X∗i Zi Z∗i

1 21 21.021 19.933 19.938 25 16 15.985 18.933 18.930
2 24 24.100 20.747 20.770 26 18 17.944 18.747 18.733
3 16 15.935 19.797 19.803 27 12 12.039 17.397 17.394
4 12 12.107 18.238 18.264 28 15 15.214 16.918 16.958
5 15 15.075 17.590 17.626 29 24 23.927 18.334 18.352
6 28 27.971 19.672 19.695 30 21 20.954 18.867 18.872
7 20 20.077 19.738 19.771 31 28 28.119 20.694 20.722
8 31 31.184 21.990 22.054 32 20 20.224 20.555 20.622
9 25 25.211 22.592 22.685 33 25 25.285 21.444 21.555
10 20 19.975 22.074 22.143 34 19 19.090 20.955 21.062
11 24 23.816 22.459 22.478 35 18 17.840 20.364 20.417
12 16 15.958 21.167 21.174 36 21 21.023 20.491 20.538
13 19 19.210 20.734 20.781 37 16 15.914 19.593 19.613
14 10 10.016 18.587 18.628 38 22 22.238 20.074 20.138
15 17 17.006 18.270 18.304 39 19 19.022 19.860 19.915
16 13 12.868 17.216 17.217 40 12 12.179 18.288 18.368
17 22 21.881 18.173 18.150 41 14 13.880 17.430 17.470
18 18 18.171 18.138 18.154 42 9 9.251 15.744 15.827
19 30 29.972 20.510 20.517 43 16 16.051 15.795 15.871
20 24 23.995 21.208 21.213 44 21 20.993 16.836 16.896
21 16 15.969 20.167 20.164
22 19 18.761 19.933 19.884
23 17 17.018 19.347 19.311
24 15 15.062 18.477 18.461

4.2 Example of an upper-sided BEWMA chart with “con-
tinuousify”

This example is also based on the data provided in Chapter 7 of Montgomery
(2013) (Tables 7.2 and 7.3). In these tables the author providesthe number of
nonconforming frozen orange juice concentrate 6-oz cardboard cans in samples
of n = 50 cans. This data set has been divided into two subsets: the first 24
samples are used as a Phase I data set and the remaning 40 samples are used
as a Phase II data set (see column Xi in Table 6).

Using the Phase I data, the estimate of the in-control proportion of noncon-
forming cans is p̂0 = 133

24×50 = 0.1108. Using Table 4 for p0 = 0.1, τ = 1.2 (20%
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Figure 3: Example (printed circuit boards) of an upper-sided PEWMA chart
with “continuousify”

increase), σ = 0.125 and n = 50, the optimal values for λ∗ and K∗ are 0.05 and
2.196, respectively. Therefore, the upper control limit UCL∗ of the upper-sided
BEWMA chart with the “continuousify” method is equal to

UCL∗ = 50×0.1108+2.196×
√

0.05× (50× 0.1108(1− 0.1108) + 0.1252)

2− 0.05
= 6.322.

Note again that, without the “continuousify” method (i.e. σ = 0), this upper
control limit would have been UCL = 6.320 which is almost the same as for the
with “continuousify” approach.

In addition to the number of nonconforming cans Xi, Table 6 also lists the
values of X∗i , Zi (based on Xi) and Z∗i for Phases I and II. As for the pre-
vious example, these Phases have been treated separately with initial values
Z0 = Z∗0 = 50 × 0.1108 = 5.54. As it can be seen the values of Zi (without
“continuousify”) are different but they are nevertheless very close to those of
Z∗i (with “continuousify”). One more time, this highlights the fact that the
“continuousify” technique has a very small impact in the computation of the
EWMA statistic itself along with a positive impact in the computation of the RL
properties). The upper-sided EWMA np chart with “continuousify” does not
detect an out-of-control situation as it can be seen in the control chart plotted
in Figure 4.

17



Table 6: Example (orange juice) of an upper-sided BEWMA chart with “con-
tinuousify”

Phase I Phase II

i Xi X∗i Zi Z∗i i Xi X∗i Zi Z∗i

1 9 8.865 5.715 5.708 25 8 8.067 5.665 5.668
2 6 5.923 5.729 5.719 26 7 7.034 5.731 5.736
3 12 11.895 6.042 6.027 27 5 4.970 5.695 5.698
4 5 5.242 5.990 5.988 28 6 5.906 5.710 5.708
5 6 5.918 5.991 5.985 29 4 3.919 5.625 5.619
6 4 4.052 5.891 5.888 30 5 4.930 5.593 5.584
7 6 5.979 5.897 5.893 31 2 1.975 5.414 5.404
8 3 3.001 5.752 5.748 32 3 2.694 5.293 5.268
9 7 6.811 5.814 5.801 33 4 4.013 5.228 5.206
10 6 6.052 5.824 5.814 34 7 7.009 5.317 5.296
11 2 2.026 5.632 5.624 35 6 6.009 5.351 5.331
12 4 3.941 5.551 5.540 36 5 5.120 5.334 5.321
13 3 3.012 5.423 5.414 37 5 5.165 5.317 5.313
14 6 5.809 5.452 5.434 38 3 3.075 5.201 5.201
15 5 4.725 5.429 5.398 39 7 6.823 5.291 5.282
16 4 3.718 5.358 5.314 40 9 8.985 5.476 5.467
17 8 7.953 5.490 5.446 41 6 5.916 5.503 5.490
18 5 5.031 5.466 5.425 42 10 10.185 5.727 5.725
19 6 6.027 5.492 5.455 43 4 3.958 5.641 5.636
20 7 6.955 5.568 5.530 44 3 2.815 5.509 5.495
21 5 4.963 5.539 5.502 45 5 5.053 5.484 5.473
22 6 5.793 5.562 5.517 46 8 7.948 5.609 5.597
23 3 2.857 5.434 5.384 47 11 10.739 5.879 5.854
24 5 4.885 5.413 5.359 48 9 8.888 6.035 6.006

49 7 7.057 6.083 6.058
50 3 3.122 5.929 5.911
51 5 4.925 5.883 5.862
52 2 2.085 5.688 5.673
53 1 0.868 5.454 5.433
54 4 4.122 5.381 5.367
55 5 4.676 5.362 5.333
56 3 2.966 5.244 5.215
57 7 7.192 5.332 5.313
58 6 6.092 5.365 5.352
59 4 3.936 5.297 5.282
60 4 4.080 5.232 5.221
61 6 6.135 5.271 5.267
62 8 7.897 5.407 5.399
63 5 5.056 5.387 5.381
64 6 6.106 5.417 5.418
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Figure 4: Example (orange juice) of an upper-sided BEWMA chart with “con-
tinuousify”

5 Conclusions

In this paper, we propose a new method to obtain reliable RL properties of an
EWMA type chart for count data. Due to the discrete nature of count data,
the traditional approaches that are used to obtain the exact RL properties of an
EWMA chart show an unstable (and thus unreliable) performance. Of course
the problem can be partially confronted by the use of Monte Carlo simulation.
However, this approach can be very time consuming when the need is to ap-
propriately design the chart (i.e. determine the optimal values for its chart’s
constants).

The main findings from our study are i) the “continuousify” technique is a sim-
ple approach that allows to compute the RL properties of any attribute EWMA
type control charts in a reliable way by obtaining stable values no matter the
number of sub-intervals m > 100 used in the Markov chain method. Even for
m = 100, the results are very stable and reliable and, obviously, less computa-
tional effort is needed. ii) the ARL values obtained using the “continuousify”
method are negligibly larger than the ones obtained without the “continuousify”
method, iii) the choice of the “continuousify” parameter σ has a negligeable in-
fluence on the evaluation of the RL properties as long as this one is not too
small nor too big. A good compromise seems to be a value σ ∈ [0.1, 0.2], iv) the
fact that the ARL values obtained using the “continuousify” method are stable
makes possible to optimize any kind of EWMA chart for discrete distributions
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in an efficient way. Finally, a comparison with the recent “Splitting Markov
Chain” approach proposed by Morais and Knoth (2020) has shown that our
“continuousify” method performs in a similar way in the case of the PEWMA
control chart.

This method can be used for any discrete distributions like the Zero-Inflated
Poisson, Binomial or Negative Binomial ones. Moreover, other smoothing ker-
nels (in place of the normal kernel used in this paper) can also be investigated
like the Epanechnikov, Biweight and Triweight (see Wand and Jones (1994)).

Appendix

By definition, using (1), we have

E(X∗) =

∫ +∞

−∞
x

(∑
ω∈Ω

fX(ω|θ)fN(x|ω, σ)

)
dx.

Exchanging the integral and the sum gives

E(X∗) =
∑
ω∈Ω

∫ +∞

−∞
xfN(x|ω, σ)dx︸ ︷︷ ︸

ω

fX(ω|θ)

=
∑
ω∈Ω

ωfX(ω|θ) = E(X).

Using the same approach, we have

E(X∗2) =
∑
ω∈Ω

∫ +∞

−∞
x2fN(x|ω, σ)dx︸ ︷︷ ︸
ω2+σ2

fX(ω|θ)

=
∑
ω∈Ω

ω2fX(ω|θ) + σ2
∑
ω∈Ω

fX(ω|θ)︸ ︷︷ ︸
1

= E(X2) + σ2,

and since E(X∗) = E(X) we also have V(X∗) = V(X) + σ2.
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