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Abstract

Machine learning methods usually rely on large sample size to have good
performance, while it is difficult to provide labeled set in many applications.
Pool-based active learning methods are there to detect, among a set of unlabeled
data, the ones that are the most relevant for the training. We propose in this
paper a meta-approach for pool-based active learning strategies in the context
of multi-class classification tasks based on Proper Topological Regions. PTR,
based on topological data analysis (TDA), are relevant regions used to sample
cold-start points or within the active learning scheme. The proposed method is
illustrated empirically on various benchmark datasets, being competitive to the
classical methods from the literature.

1 Introduction

In recent years, machine learning has found gainful applications in diverse domains, but
it still has a heavy dependence on expensive labeled data: Advances in cheap computing
and storage have made it easier to store and process large amounts of unlabeled data,
but the labeling often needs to be done by humans or using costly tools. Therefore, there
is a need to develop general domain-independent methods to learn models effectively
from a large amount of unlabeled data at the disposal, along with a minimal amount of
labeled data: this is the framework of semi-supervised learning. Active learning aims
explicitly to detect the observations to be labeled to optimize the learning process and
efficiently reduce the labeling cost. The primary assumption behind active learning is
that machine learning algorithms could reach a higher level of performance while using
a smaller number of training labels if they were allowed to choose the training dataset
(Settles, 2009). The most common active learning approaches are pool-based methods
(Lewis and Catlett, 1994) based on a set of unlabeled observations. First, some points
are labeled to train a classification model, and then, at each iteration, we choose unla-
beled examples to query based on the predictions of the current model and a predefined
priority score. These approaches show their limitations in low-budget regime scenarios
because they need a sufficient budget to learn a weak model (Pourahmadi et al., 2021).
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The literature has shown that for active learning to operate in a low-budget regime
successfully, there is a need to introduce a form of regularization in training (Guyon
et al., 2011) usually found in other sub-domains, such as semi-supervised learning or
self-learning (Chapelle et al., 2006). Another line of work shows that the choice of the
initial seed set in these approaches significantly impacts the end performance of their
models (Hu et al., 2010; Chen et al., 2022), also known as the cold-start problem in
active learning.

We close the gap in this paper by providing a theoretically founded meta-approach
for pool-based active learning based on concepts from topological data analysis (TDA)
to improve performance in a low-budget regime and avoid the cold-start problem. TDA
aims to extract information on the structure of the data by examining its topological
properties (Edelsbrunner and Harer, 2010), the insight being that nontrivial topologies
should be exploited to improve data analysis (Carlsson, 2012). This structure can be
detected by flexible tools based on algebraic topology, for example, using persistent
homology based on Rips complexes (Hausmann, 1995): topological information is then
encoded with persistence modules and diagrams (Edelsbrunner and Harer, 2010). It
has already shown impressive results in machine learning (Rieck et al., 2020; Jiang
et al., 2021; Krishnapriyan et al., 2021), especially for clustering. Many recent pa-
pers have benefited from these topological insights to understand the structure of the
data: Singh et al. (2007) use persistence homology to extract molecular topological
fingerprints (MTFs) based on the persistence of molecular topological invariants, Lum
et al. (2013) use topological persistence to efficiently encode fMRI datasets, Carlsson
and Gabrielsson (2020) use persistence homology to automatically extract interpretable
features from meta-organic datasets in order to predict methane and carbon dioxide ad-
sorption levels for different materials, among others, and Li et al. (2020) also make use
of topological persistence in order to actively estimate the homology of the Bayes de-
cision boundary, the resulted module is then used to do model selection from several
families of classifiers.

In this paper, we propose to extend ToMATo Chazal et al. (2013), a persistent-based
clustering algorithm that respects the underlying topology, to detect proper topological
regions where one can safely propagate labeling (assuming that the clustering is coherent
with the metric). More precisely, our approach is based on the following:

� the introduction of proper topological regions using the σ-Rips graph based on an
adaptive threshold function and the extension of ToMATo’s theoretical guarantees
to the σ-Rips graph;

� the use of proper topological regions in a zero-shot learning method and a pool-
based active learning scheme.

This is illustrated in an empirical study with several active learning strategies which
shows that our approach for zero-shot learning and pool-based active learning improves
over classical methods on several datasets.

The remainder of the paper is organized as follows. Section 2 describes the related
work. The framework is introduced in Section 3. The method is developed in Section
4; and illustrated in Section 5. Finally, Section 6 concludes the paper.
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2 Related literature

Different attempts have been made to reduce the annotation burden of machine learning
algorithms. We can refer to the remarkable advances made in semi-supervised learn-
ing (Amini and Usunier, 2015; Berthelot et al., 2019). These methods take as input a
small set of labeled training data together with a large number of unlabeled examples.
They introduce a form of consistency regularization to the supervised loss function
by applying data augmentation using unlabeled observations (Chapelle et al., 2006).
The most commonly known pool-based strategies are uncertainty sampling (Lewis and
Catlett, 1994; Zhu et al., 2008), margin sampling, and entropy sampling strategies (Set-
tles, 2009). Some proposed strategies rely on the query-by-committee approach (Yan
et al., 2011; Lakshminarayanan et al., 2017), which learns an ensemble of models at
each round. Query by bagging and query by boosting are two practical implementa-
tions of this approach that use bagging and boosting to build the committees (Abe
and Mamitsuka, 1998). There has been exhaustive research on how to derive efficient
disagreement measures and query strategies from a committee, including vote entropy,
consensus entropy, and maximum disagreement (Settles, 2009), whereas Ali et al. (2014)
introduces model selection for a committee. Some research focuses on solving a derived
optimization problem for optimal query selection, e.g. in Roy and McCallum (2001)
they use Monte Carlo estimation of the expected error reduction on test examples. In
contrast, other strategies employ Bayesian optimization on acquisition functions such
as the probability of improvement or the expected improvement (Garnett, 2022), and
in Auer et al. (2002), the authors propose to cast the problem of selecting the most
relevant active learning criterion as an instance of the multi-armed bandit problem.
Aside from the pool-based setting, in the stream-based setting (Lughofer, 2012; Baram
et al., 2004), each unlabeled sample is given to the learner individually, and he queries
its label if he finds it helpful.

Recent advances in active learning propose enhancing the pool-based methods by
extracting knowledge from the distribution of unlabeled examples (Bonnin et al., 2011).
Perez et al. (2018) propose to use clustering of unlabeled examples to boost the perfor-
mance of pool-based active learners, with the expert annotating at each iteration cluster
rather than single examples. Such a strategy effectively reduces the annotation effort,
assuming that the cost of cluster annotation is comparable to single example labeling,
as used in Citovsky et al. (2021) to operate on large-scale data. Similarly, Krempl et al.
(2015) proposes to combine clustering with Bayesian optimization in the stream-based
setting. Yu and Hansen (2017) propose a two-stage clustering constraint in the active
learning algorithm, a first exploration phase to discover representative clusters of all
classes, and a post-clustering reassignment phase where the learner is constrained on
the initial clusters found at the first stage. Clustering methods also show promising re-
sults for addressing the cold-start problem in pool-based active learning strategies (Hu
et al., 2010; Chen et al., 2022). In Urner et al. (2013) authors propose a procedure for
binary domain feature sets to recover the labeling of a set of examples while minimizing
the number of queries. They show that this routine reduces label complexity for train-
ing learners. Recently, many studies have explored the use of clustering/segmentation
for active sample selection in real applications Andresini et al. (2023); Thoreau et al.
(2022).
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(a) (b) (c)

Figure 1: (a) A sample of 240 points, generated from a mixture of two bivariate Gaussian
distributions. Colors represent the true classes. (b) Associated Rips graph as defined
in Def. 1 with δ = 0.5. (c) Associated σ-Rips graph as defined in Def. 2, using the
parametric form given in Eq. (2) with δ = 0.5, r = 1.08 and t = 1/5.

3 Framework and topological considerations

We introduce in this section the framework of active learning and the topological back-
ground needed to develop the proposed method. First, we introduce the framework and
the main topological notions. Then we define the persistence and upper-star filtrations.
Finally, we provide a comparison of persistence diagrams for Rips graph and σ-Rips
graph, which allows us to extend ToMATo results to the σ-Rips graph.

3.1 Framework and notations

We consider a multi-class classification problem such that the input space is X ⊂ Rm

and the output space Y = {1, . . . , c} is a set of unknown classes of cardinal c ∈ N, c ≥ 2.
Let d be a fixed distance on Rm. In pool-based active learning, we observe a sample
set Sx = {xi}ni=1 coming from an unknown marginal distribution P, and we have access
to an oracle O : X → Y that can provide the true label yi for every observation xi,
for 1 ≤ i ≤ n at some (expensive) cost. We denote S = {(xi, yi)}ni=1 the labeled data
sample of size n, which we do not have access to, generated by some unknown joint
distribution over X × Y .

In our method, as generally is the case in classification algorithms, we assume that
close samples (with respect to d) are associated with similar labels, also known as the
smoothness assumption. In that setting, one can consider neighborhood graphs on the
unlabeled sample Sx. A graph is denoted as a couple (V,E) with V the set of vertices,
and E the set of edges. For our purpose, we use a neighborhood graph induced by the
metric d on X .

Definition 1 (Rips graph). Given a finite point cloud Sx = {xi}ni=1 from a metric
space (X , d) and δ ≥ 0, the Rips graph Rδ(Sx) is the graph with set of vertices Sx and
whose edges correspond to the pairs of points (xi,xj) ∈ S2

x such that d(xi,xj) ≤ δ.

Rips graphs, or more generally Rips complexes (Chazal et al., 2014), are classical
in topology and are classically used in TDA, in particular with persistent homology.
However, class similarity might be different over the metric space. For example, lower
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Figure 2: Representation of s : u 7→ δ(r − u)1/t as a proxy of the parametric form of σ
given in Eq. (2), varying the parameters. By default, all the parameters are fixed to 1.
We vary in (a) δ ∈ {1, 0.5, 1/3}, in (b) r ∈ {0.9, 1, 1.1}, in (c) t ∈ {1, 0.7, 1/3}. Dashed
line is for a constant threshold function σ = 0.5.

is the density, weaker is the chance to detect a structure within points. Consequently,
we need to generalize the definition of the Rips graph to take into account such cases,
namely the σ-Rips graph Rσ(·)(Sx) for an adaptive threshold function σ.

Definition 2 (σ-Rips graph). Given a finite point cloud Sx = {xi}ni=1 from a metric
space (X , d) and a real-valued function σ : X 2 → R∗

+, the σ-Rips graph Rσ(·)(Sx) is
the graph with set of vertices Sx and whose edges correspond to the pairs of points
(xi,xj) ∈ S2

x such that d(xi,xj) ≤ σ(xi,xj).

Those two notions of neighborhood graph are illustrated in Figure 1 to understand
the differences. When the density is lower (few points), the σ-Rips graph is more
connected, to enforce the structure to appear.

The σ-Rips graph can be seen as a generalization of the Rips graph, which considers
constant threshold function, or as a δ-Rips graph on the non-metric space (X , d̂), with

d̂ : X × X −→ R+

(x,x′) −→ δd(x,x′)

σ(x,x′)
. (1)

Most of the topological properties of Rips graphs on metric spaces are true for Rips
graphs on non-metric spaces, as mentioned in Chazal et al. (2014, Section 4.2.5).

In this work, we choose the following parametric threshold function:

σ(·; δ, r, t) : X × X −→ R∗
+

(x,x′) −→ δ(r −max (P(x),P(x′)))
1
t ,

(2)

with t ∈ (0, 1] and (δ, r) ∈ (R∗
+)

2 such that r > maxx P(x). The temperature parameter
t controls the curvature, the max term ensures that the function is symmetric. Then,
δ and r are, respectively, dilatation and translation parameters. This parametric form
is illustrated in Figure 2. We show in Section 5.1 that the curve resulting from the
best parameters of our function confirms our intuition on the class similarity being a
density-aware measure.
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Figure 3: Persistence diagram DP (on the right) associated to the upper-star filtration
of the functions whose graph is given on the left. The function in black is smooth,
corresponding persistence diagram is given with black triangles. There are two elements
in the persistence diagram, corresponding to the two peaks of the function. Peaks and
valleys are highlighted on the left in red and black respectively, to read the values
of birth and death in the persistent diagram. Notice that the high left point on the
diagram is actually a point ”at infinity”, i.e. its death is −∞. The function in blue is a
noisy version with many peaks and valleys. Its persistence diagram corresponds to the
blue points. There are two bluepoints a bit above the two black triangle, corresponding
the the main topological features, and many points close to the diagonal, with low
prominence, suggesting that this is topological noise.

3.2 Persistence and upper-star filtrations

In order to detect the underlying topology from a point cloud, our method is based on
the notion of persistence, and more precisely, persistent homology, a classical tool in
TDA (Singh et al., 2007; Edelsbrunner and Harer, 2010; Carlsson, 2012).

A persistence module is a sequence of vector spaces X = (Xα)α∈R where R =
R ∪ {−∞,+∞} together with linear maps φβ,α : Xβ → Xα whenever α ≤ β (setting
Xα → Xα as the identity) and such that, if α ≤ β ≤ γ, then φγ,α = φβ,α ◦φγ,β. In such
a framework, one can study the persistence of a vector. More precisely, given α ∈ R
and v ∈ Xα, we say that v is born at time1 α if v is not in the image of φβ,α for all
β > α, and we say that it dies at time γ ≤ α if φα,γ(v) = 0 but φα,γ′(v) ̸= 0 for all
γ′ with γ < γ′ < α. Globally, we usually consider bases of the X ′

αs (and related to
the linear maps (φα,β)β≤α) and summarize their persistence with a persistence diagram.
More precisely, the persistence diagram DX of a persistence module X is the multi-

1Here, according to the way our spaces are connected, the time is flowing in the other direction:
from +∞ to −∞.
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Figure 4: A point cloud generated from a mixture of two gaussians (top left), some
realizations of its upper-star Rips filtration for δ = 0.5 and α ∈ {0.1, 0.095, 0.05, 0}
(bottom, from left to right) and the associated persistent diagram (top right).

set2 of points in R2
consisting in the diagonal3 ∆ = {(x, x) | x ∈ R} and points

(i, j) for each basis element appearing at time i and dying at time j < i. When
reading a persistence diagram, one should consider the distance of the points to the
diagonal, i.e., their prominence. A point with low prominence should be considered
as topological noise (they do not live long) whereas a point with high prominence as
relevant topological information. Persistence modules and diagrams are often used
with homology, and we refer the reader to Hatcher (2000) for more details. Here
we only use the 0-dimensional homology, which detects connected components. More
precisely, if T is a topological space or a graph, H0(T ) is the vector space spanned by
the (path) connected components of T . Moreover, a continuous map T1 → T2, between
spaces or a graph homomorphism between graphs, induces a natural linear application
H0(T1) → H0(T2). With that in hand, a classical example of persistence module is
induced by the upper-star filtration of a function P : X → R+. If α ≤ β are two reals,
then there is an inclusion P−1([β,+∞]) ⊆ P−1([α,+∞]), and this induces linear maps
H0(P−1([β,+∞]))→ H0(P−1([α,+∞])) which defines a persistence module. We denote
by DP the associated persistence diagram. This notion is illustrated in Figure 3 with
two functions: the black one, very smooth with only two peaks, and the blue one, a
noised version of the first one.

The persistence module that we consider here is the upper-star filtration of P : X →
R restricted to a Rips graph.

Definition 3 (upper-star Rips filtration). Given a finite point cloud Sx from a metric

2A multi-set A is a set with potential repetitions of elements, where we denote µ(p) the multiplicity

of point p ∈ Supp(A). It can be denoted A =
⋃

p∈|A|
∐µ(p)

i=1 p with Supp(A) the support of A.
3The multiplicity of a point in the diagonal is +∞.
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space (X , d) with a probability function P and a real value δ ∈ R+, the upper-star Rips
filtration of P, denoted Rδ(Sx,P), is the nested family of subgraphs of the Rips graph
Rδ(Sx) defined as Rδ(Sx,P) = (Rδ(Sx ∩ P−1([α,+∞]))α∈R. Such a nested family of
graphs gives rise to a persistence module

Rδ(Sx,P) =
(
H0

(
Rδ(Sx ∩ P−1 ([α,+∞]))

))
α∈R

and to its associated persistence diagram DRδ(Sx,P).

This notion is illustrated in Figure 4.
We define similarly the upper-star σ-Rips filtration of P, Rσ(·)(Sx,P) and the as-

sociated persistence module Rσ(·)(Sx,P) and persistent diagram DRσ(·)(Sx,P). In the
next section, we give some tools to control the difference between DRδ(Sx,P) and
DRσ(·)(Sx,P).

3.3 Comparison of persistence diagrams for Rips graph and
σ-Rips graph

The bottleneck distance is an effective and natural proximity measure to compare two
persistence diagrams.

Definition 4 (bottleneck distance). Given two multi-subsets A1, A2 of R2
and a multi-

bijection γ : A1 → A2, the bottleneck distance d∞B (A1, A2) between A1 and A2 is the
quantity:

d∞B (A1, A2) = min
γ:A1→A2

max
p∈A1

∥p− γ(p)∥∞.

One can control the bottleneck distance between two persistence diagrams from
upper star Rips filtration by comparing the evolution of the connected components
along the filtration which can be track with the appearance level.

Definition 5 (appearance level). Given a finite point cloud Sx = {xi}ni=1 from a metric
space (X , d) with a probability function P and δ such that Rδ(Sx) is connected. For two
distinct points (xi,xj) ∈ S2

x, we define the appearance level αδ(xi,xj) as the highest level
of the upper-star Rips filtration Rδ(Sx,P) at which xi and xj are in the same connected
component:

αδ(xi,xj) = max
γ∈P(xi,xj)

min
x∈γ

P(x)

where P(xi,xj) is the set of all paths4 in Rδ(Sx) from the vertex xi to the vertex xj.

For example, in Figure 4, between α = 0.1 and α = 0.095, we see two connected
components that are finally connected (on the cluster on the left). The appearance
level of the corresponding points is a value between 0.095 and 0.1.

We define similarly ασ(·) the appearance level for an upper-star σ-Rips filtration
Rσ(·)(Sx,P).

Then, we are able to bound the bottleneck distance between the Rips graph and
the σ-Rips graph.

4A path γ in a graph R is a sequence of vertices of R where two consecutive vertices of p are
adjacent in R.
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Theorem 1. Given a finite point cloud Sx = {xi}ni=1 from a metric space (X , d) with
probability function P. Let Rδ(Sx) be the Rips graph with parameter δ, Rσ(·)(Sx) the
σ-Rips graph with threshold function σ and assume that they share the same connected
components. Then,

d∞B
(
DRδ(Sx,P), DRσ(·)(Sx,P)

)
≤ max

(xi,xj)∈S2
x

|αδ(xi,xj)− ασ(·)(xi,xj)|,

setting αδ(xi,xj) = ασ(·)(xi,xj) = 0 if xi and xj are not in the same connected compo-
nent.

The proof stands in Appendix A. It relies on Chazal et al. (2009) and their notion
of ϵ-interleaving. The main idea is that one can control the birth and the death of
connected components along the filtration by controlling the changes in appearance
levels.

This theorem means that, when switching from the metric distance d to a closed
(possibly) non-metric distance d̂ defined in (1) (and then from the Rips graph to the
σ-Rips graph), the dendrogram induced by the upper star Rips graph is mostly the
same during the persistence process.

4 Proper topological regions and their use in active

learning

In this section, we start by defining the proper topological regions. We then use the
proper topological regions for zero-shot learning and for pool-based active learning.

4.1 Proper topological regions

The main tool used in our method is the notion of topological regions that are based
on the algorithm ToMATo (Chazal et al., 2013). ToMATo is a clustering method that uses
the hill climbing algorithm on a Rips graph Rδ(Sx) along with a merging rule on the
Rips graph’s persistence. It depends on a merging hyperparameter τ ≥ 0 which drives
the granularity: it keeps only clusters with prominence higher than τ . It can be easily
adapted to work with a σ-Rips graph Rσ(·)(Sx) by considering the non-metric space

(Sx, d̂) with d̂ introduced in Eq. (1). The topological regions correspond to the clusters
given by ToMATo for a σ-Rips graph, defined formally as follows.

Definition 6. The topological regions of a sample set Sx coming from an unknown
marginal distribution P and with parameters (δ, r, t, τ) are the clusters given by the
clustering

TRSx,P
δ,r,t,τ = ToMAToτ

(
Rσ(·;δ,r,t)(Sx),P

)
.

When the set of covariates Sx, the underlying density P, and the parameters are under-
stood, we will simply denote TR.

For TR: Sx → {1, . . . , k} a clustering into k topological regions of Sx, we denote
LP

TR the labeling function that propagates, in a given topological region, the label of
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the sample with the highest density with respect to P:

LP
TR : Sx → Y

xi 7→ O

(
argmax

xj :TR(xj)=TR(xi)

P(xj)

)
. (3)

If one could have access to the labeled data, we define the Purity Size function PS
as the objective function that considers the labeling error when propagating the labels
inside the topological regions with LP

TR, penalized by the number of topological regions
k in TR:

PS (S,P,TR) =

[
k

n
+

1

n

n∑
i=1

1LP
TR(xi )̸=yi

]
∈ [0, 1].

Then, we introduce the notion of proper topological regions, that will be the key
element in our method.

Definition 7. The proper topological regions of a sample set Sx coming from an un-

known marginal distribution P are the topological regions of TRSx,P
δ∗,r∗,t∗,τ∗ where

(δ∗, r∗, t∗, τ ∗) =argmin
(δ,r,t,τ)

{
PS
(
S,P,TRSx,P

δ,r,t,τ

)}
. (4)

However, in our active learning context, we need to use an unsupervised objective
function. We consider a trade-off between the Silhouette score5 and the coverage com-
pactness of a clustering TR of Sx into k topological regions {R1, . . . Rk}: for 1 ≤ q ≤ k,
let πq be the cardinal of the topological region Rq = {x ∈ Sx : TR(x) = q}. For λ ∈ R+,
we define

SilSizeλ(Sx,TR) =

1
k

k∑
q=1

1

πq

∑
x∈Rq

sil(x)

− λk
n
∈
[
−1− λ, 1− λ

n

]
, (5)

with sil(x) =
νc(x)− ν(x)

max(ν(x), νc(x))

where, for all q and all x ∈ Rq, ν(x) is the average distance of sample x within its
cluster Rq and ν

c(x) is the average distance of sample x to his nearest neighbor cluster:

ν(x) =
1

πq − 1

∑
x′∈Rq

d(x,x′), νc(x) = min
q′ ̸=q

1

|Cq′|
∑
x′∈Cq′

d(x,x′).

Note that the trade-off parameter λ in (5) is key in uncovering the proper topological
regions of the sample set Sx. High values of λ penalize the coverage compactness,
resulting in partitions with a high degree of agglomeration, i.e. fewer topological regions
with large cardinals. However, an additional way to control the labeling propagation
error term of the Purity Size objective in an unsupervised setting is to control the size
distribution of groups in the resulting partition. Conversely, lower λ values result in

5Other potential unsupervised criteria typically used to assess the clustering quality are discussed
in Appendix C, but we have observed on an empirical study the benefit of the Silhouette.
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Algorithm 1 Optimization procedure for PTR

Require: Sx := {xi}ni=1, d : X ×X → [0,∞), s the step size for the linear search, and
l the number of trials for the optimization strategy.

1: Initialize λ = s.
2: Compute the density estimator P̂ with (9) based on d and Sx.
3: Optimize the problem (7) for l trials, and return (δ̂, r̂, t̂).
4: Build the σ-Rips graph Rσ(·;δ̂,r̂,t̂)(Sx).
5: while Rσ(·;δ̂,r̂,t̂)(Sx) is not a degenerate graph6 do
6: Update λ←− λ+ s.
7: Optimize the problem (7) for l trials, updating δ̂, r̂, t̂.
8: Build the σ-Rips graph Rσ(·;δ̂,r̂,t̂)(Sx).
9: end while
10: Update λ←− λ− s.
11: Optimize problem (8) for l trials

12: Output: parameters δ̂, r̂, t̂, τ̂ and the corresponding P̂TR.

highly fragmented partitions with many groups with small cardinals, and the Silhouette
score tends to converge to graphs with a single non-singleton connected component and
many singletons.

Thus, the optimization problem (4) is approximated by the following:

argmax
(δ,r,t,τ)

{
SilSizeλ

(
Sx,TRSx,P

δ,r,t,τ

)}
. (6)

Unfortunately, this optimization problem is too costly, because the set of parameters
leads to running the ToMATo function many times. So instead, we propose to solve the
following proxy, which is running ToMATo only once:

(δ♯, r♯, t♯) =argmax
(δ,r,t)

{
SilSizeλ(Sx, Rσ(·;δ,r,t)(Sx))

}
(7)

τ ♯ =argmax
τ

{
SilSizeλ

(
Sx,TRSx,P

δ♯,r♯,t♯,τ

)}
(8)

with a slight abuse of notations in (7) between the Rips graph Rσ(·;δ,r,t)(Sx) and its
connected components seen as a clustering. The best hyperparameters a♯, r♯, t♯ for the
silhouette of the σ-Rips graph are then used to find the best hyperparameter τ ♯ for the
ToMATo algorithm.

Since the underlying density is usually unknown, we need to estimate it from the
data. For that purpose, we use the distance to a measure Chazal et al. (2013), which
computes the root-mean-squared distance to the ℓ nearest neighbors of the considered
query point: for all i ∈ {1, . . . , n},

P̂(xi) =

(
1

ℓ

n∑
j=1

d(xi,xj)
21xj is a ℓ-nearest neighbors of xi

)−1/2

. (9)

6A graph is degenerate if the sizes of the connected components are imbalanced (we do not allow
very small connected components).
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Algorithm 2 Zero-shot learning based on proper topological regions

Require: Sx := {xi}ni=1, oracle O, budget B, P̂, and proper topological regions P̂TR.

1: Detect the B largest proper topological regions R1, . . . , RB of P̂TR.
2: Set S0

x = ∪Bq=1Rq

3: for xi ∈ S0
x do

4: Label the corresponding points using the oracle O: ŷi = LP̂
P̂TR

(xi).
5: end for
6: Output: Ŝ0 = (xi, ŷi)xi∈S0

x

The whole procedure used to approximate the proper topological regions is data-

driven using the unlabeled set Sx, and we will denote in the following P̂TR the corre-
sponding estimated proper topological regions with parameters (δ̂, r̂, t̂, τ̂). We describe
in Algorithm 1 a two-stage black-box optimization scheme to estimate the σ-Rips graph
parameters (δ∗, r∗, t∗) by (δ̂, r̂, t̂), and the merging parameter τ ∗ by τ̂ , solution to our
optimization problem given in Eq. (4), for the proper topological regions of S.

As we are extending ToMATo to σ-Rips graph, proper topological regions enjoy the
same theoretical guarantees as the topological region given by ToMATo applied to the
usual Rips graph. More precisely, under some topological assumptions on the persis-
tence diagrams, there is a range of values of τ such that the number of topological
regions output by ToMAToτ (Rδ(Sx),P) is equal to the number of peaks (i.e., local max-
imum) of P with prominence at least τ in DP with high probability with respect to
n. Moreover, each of these topological regions contain a neighborhood of the basins
of attraction7 of the corresponding peak. In this context, Theorem 1 tells us that,
under reasonable conditions on the threshold function σ, we get about the same persis-
tence diagram when considering the σ-Rips graph, and thus we derive the same kind of
theoretical guarantees when applying ToMATo with a σ-Rips graph. Those results are
summarized in Appendix B.

4.2 Proposed meta-learning strategy

In this section, we introduce two strategies based on the proper topological regions
found by Algorithm 1. First, they are used in a zero-shot learning algorithm and
second, in a pool-based strategy in a meta fashion, independently from the estimator
and the strategy. To do so, we propose to use the label propagation scheme on proper
topological regions in order to increase the sample size for training in a small budget
scenario with a fixed number of calls to the oracle, as proposed in Perez et al. (2018);
Citovsky et al. (2021).

Zero-shot learning We observe the unlabelled set Sx, and we have access to the

proper topological regions P̂TR estimated by Algorithm 1; to an oracle to give few
labels (a budget B is considered); and the density estimation P̂. The strategy is the
following: we label the B largest proper topological regions R1, R2, . . . , RB using the

7The basin of attraction of P : X → R of a peak p of P corresponds to all the points of X flowing
into p along the flow defined by the gradient vector field of P.
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Figure 5: Illustration of Algorithm 2 (a) data with the oracle for the labels. (b)
clustering given by tomato, describing the proper topological regions with the estimated
parameters given by Algorithm 1 (c) output of Algorithm 2, where budget = 5, and
with propagation. Not all points are labelled, and not all labels are sure.

labelling function LP̂
P̂TR

defined in Eq. (3): we ask to the oracle B points (the one with

highest density in each Rq), and we then label
∑B

q=1|Rq| points by propagating in each

topological region. We denote by Ŝ0 this first set of labeled points, which includes true
labels obtained directly from the oracle, and estimated labels while diffusing the true
labels to the topological regions. This procedure is summarized in Algorithm 2 and
illustrated in Figure 5. The benefit to use proper topological regions instead of any
clustering method is in details. No structure is assumed, as in k-means for example
where clusters have a spherical shape. Here, only the topology is important, thus the
algorithm can retrieve connected components even with an ambiguous shape. Moreover,
fine hyperparameter tuning in ToMATo allows to merge or distinguish between regions
in a precise way (see Results 1 and 2 in Appendix B).

Meta-approach for training pool-based active learning The idea is again to
diffuse the labels asked to the oracle to the proper topological regions to get more
(pseudo)-labeled points. The unlabeled sample set Sx, the oracle O, the budget B, the
density estimation P̂ and the proper topological regions P̂TR = {R1, . . . , Rk} estimated
by Algorithm 1 are common inputs for active learning techniques. Additionally, a pool-
based active learning technique hst(Sx,B) is also provided as input. The algorithm
then performs r rounds of active learning. Within each round, the active learner agent
is asked to detect B points, which are defining at most B topological regions. If two
points detected by the active learner agent belong to the same topological region, we use
the extra budget to label the largest topological regions without any detected points.
Then, the oracle is asked to label B unlabeled examples that correspond to the points
of high density in each considered topological region. The labeled set Ŝr returned by
the algorithm has r×B labels and many pseudo-labels, given by the label propagation
with LP̂

P̂TR
to increase the size of the training set during each round of active learning.

Remark that the choice for the extra budget to label the largest unlabelled proper
topological regions is not driven by an active learner agent. Good results have been
observed in Section 5, but one can think of different ways to use the extra budget, such
as, for example, asking the learner for more examples to label. Algorithm 3 describes
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Algorithm 3 Pool-based active learning on proper topological regions (PALPTR)

Require: Sx := {xi}ni=1, oracle O, budget B, P̂, proper topological regions P̂TR =
{R1, . . . , Rk}, active learner agent hst(Sx,B) with an underlying pool-based strategy
st, and r the active training rounds.

1: Compute Ŝ0 using Algorithm 2
2: for u = 0, . . . , r − 1 do
3: Train the active learner agent hst(Ŝu,B).
4: Ask a set Sx from hst of size B.
5: Su+1

x = ∪Rq∩Sx ̸=∅Rq

6: if B̃ = |{q | Rq ∩ Sx ̸= ∅}| < B then
7: Detect the B − B̃ unlabeled largest topological regions without any points

which do not intersect Sx and add them to Su+1
x

8: end if
9: for xi ∈ Su+1

x do

10: Label the corresponding points using the oracle O: ŷi = LP̂
P̂TR

(xi).
11: end for
12: Ŝu+1 = Ŝu ∪ {(xi, ŷi) | xi ∈ Su+1

x }
13: end for
14: Output: the labeled set Ŝr

this meta-approach.

5 Empirical results

We conduct a number of experiments aimed at evaluating how the proposed approach
can identify valuable examples to be labeled for learning. To this end, we consider two
scenarios for the identification of an initial training set to be labeled from an unlabeled
set, and the increase of the training sample size during the rounds with active learning
while operating under a low-budget regime.

We carry out experiments on data collections that are frequently used in active
learning. Table 1 presents statistics of these datasets.

For the metric function, d, we consider the Euclidean distance, and we choose the
Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) for the optimization
procedure of Algorithm 1, with a number of trials l = 500, and a step size s of 0.01 for
the line search procedure. We estimate P using Eq. (9) with the distance to measure
based on the ℓ nearest neighbors with ℓ the sample size, if smaller than 2000, and 2000
elsewhere. In all our experiments, we use the random forest classifier (Ho, 1995) as
the base estimator for the different strategies with default parameters, we also consider
several budgets B ∈ {3, 10, 20}, and 20 stratified random splits, with 70% of the data in
the training set and 30% in the test set. We report the balanced classification accuracy
(Brodersen et al., 2010) over all experiments. Regarding the data preprocessing, we
drop sample duplicates and samples with null values. Then we apply a standard min-
max normalization to the filtered datasets.
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Table 1: Dataset statistics: ntrain is the size of the training set, ntest is the size of the test
set, m is the number of features, c is the number of classes, and imbalance corresponds
to the class imbalance ratio.

Dataset ntrain ntest m c imbalance
protein (Higuera et al., 2015) 756 324 77 8 0.70

banknote (Romano et al., 2021) 943 405 4 2 0.83

coil-20 (Yang et al., 2011) 1008 432 1024 20 1.00

isolet (Fanty and Cole, 1991) 4366 1872 617 26 0.99

pendigits (Romano et al., 2021) 7694 3298 16 10 0.92

nursery (Romano et al., 2021) 9070 3888 8 4 0.09

5.1 Rips graph vs σ-Rips graph

To validate our hypothesis of a density-aware threshold given by Eq. (2) for class
similarity and to motivate our generalization of the Rips graph to express this notion,
we present a comparison study in Figure 6 between the Rips and the σ-Rips graphs
on the protein dataset. The results for the other collections are shown in Figure 8 in
Appendix D.1.

The plot represents the threshold of the best Rips graph and σ-Rips graph in mini-
mizing the Purity Size cost function. The Rips graph’s threshold (in blue) is a constant
presented as a horizontal line in the plot.

In this figure, we also include two more side plots which are the distribution of the
dataset’s density estimation P̂ under the x-axis and the distance matrix D’s distribution
of Euclidean distances on the left of the y-axis. Note that from the definitions of the
Rips graph (Def. 1), and the σ-Rips graph (Def. 2), threshold values larger than the
maximum distance lead to a full graph.

From this figure, it comes out that the optimal threshold rule’s values found in the
hypothesis class of the σ-Rips graph with our proposed threshold function σ(·; (δ, r, t, τ))
given in Eq. (2) are negatively correlated to the estimation density P̂. We also observe
that the best σ-Rips graph achieves better Purity Size than the best Rips graph. These
observations are consistent with other datasets reported in the appendix, except for
coil-20 and nursery collection, where they have the same performance. These findings
provide empirical evidence for our hypothesis that class similarity is a density-aware
measure. It also supports our choice of σ(·; (δ, r, t, τ)) given in Eq. (2) as an appropriate
threshold function to generalize the Rips graph.

5.2 Cold-start results

For the cold-start experiments, we consider the following unsupervised approaches to
compare with our approach:

� K-Means clustering (KM). The K-Means algorithm (Lloyd, 1982) partitions a
collection of examples into K clusters by minimizing the sum of squared distances
to the cluster centers. It has been used for active learning in Zhu et al. (2008), to
generate the initial training set by labeling the closest sample to each centroid.
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Figure 6: Comparison study between the Rips graph and the σ-Rips graph on the
protein dataset: the Purity Size score is reported for each minimizer.
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� K-Means clustering with model examples (KM+ME). A variant of KM
proposed in Kang et al. (2004) adds artificial samples from the centroids, named
model examples, to the initial training set. This approach leads to an initial
training set twice as large as the one created using K-Means.

� K-Medoids clustering (Km). The K-Medoids algorithm (Kaufman and Rousseeuw,
1990) is very similar to K-Means except that it uses the actual samples for cen-
ters, namely the medoids, as the center of each cluster. These medoids are then
used to form the initial training set in active learning.

� Agglomerative Hierarchical Clustering (AHC). Agglomerative hierarchical
clustering (Voorhees, 1985) is a bottom-up clustering approach that builds a hier-
archy of clusters. Initially, each sample represents a singleton cluster. Then, the
algorithm recursively merges the closest clusters using a linkage function (here
the Ward linkage is used) until one cluster is left. This process is usually pre-
sented in a dendogram, where each level refers to a merge in the algorithm. AHC
has been used for active learning in Dasgupta and Hsu (2008) by pruning the
dendogram at a certain level to obtain clusters, then similar to the strategy used
with K-Means, selecting the closest samples to the clusters centroids to generate
the initial training set.
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Table 2: Average balanced classification accuracy (in %) and standard deviation of
random forest classifier with the initial training set obtained from different methods over
20 stratified random splits for a budget B = 10. ↑/↓ indicate statistically significantly
better/worse performance than Random Selection RS, according to a Wilcoxon rank
sum test with p < 0.05 (Wolfe, 2012).

Data RS KM KM+ME Km AHC FFT APC PTR

protein 28.2 30.6↑ 31.4↑ 29.3↑ 31.6↑ 21.8 28.8 40.5↑

(3.2) (4.6) (4.5) (4.4) (3.7) (3.8) (3.4) (3.9)
banknote 79.9 85.2↑ 86.8↑ 87.6↑ 85.6↑ 70.6↓ 82.4 88.7↑

(9.9) (5.7) (4.8) (3.3) (5.0) (5.3) (6.9) (4.4)
coil-20 29.0 36.7↑ 38.2↑ 32.9↑ 36.0↑ 18.6↓ 27.2 44.2↑

(5.7) (4.2) (2.7) (5.1) (3.7) (3.4) (4.8) (2.4)
isolet 13.8 22.3↑ 27.6↑ 07.1↓ 23.3↑ 16.5↑ 15.4 27.5↑

(2.3) (1.6) (1.6) (1.9) (1.8) (1.7) (3.2) (2.8)
pendigits 37.4 62.5↑ 65.6↑ 53.9↑ 61.4↑ 27.2↓ 38.3 80.1↑

(7.2) (3.5) (2.3) (5.2) (1.9) (4.9) (8.2) (2.6)
nursery 42.7 44.5 49.3↑ 28.4↓ 44.9 39.1 45.1 46.5

(7.2) (5.7) (4.0) (1.3) (7.2) (3.5) (6.7) (6.0)

� Furthest-First-Traversal (FFT). The furthest-first traversal of a sample set is
a sequence of a selected examples, where the first example is chosen arbitrarily,
and each subsequent example in the chain is placed as far away from the set of
previously chosen examples as possible. The resulting sequence is then used as
the initial training set for active learning as in Baram et al. (2004).

� Affinity Propagation Clustering (APC). Affinity propagation is a clustering
algorithm designed to find exemplars of the sample set which are representative of
clusters. It simultaneously considers all the sample set as possible exemplars and
uses the message-passing procedure to converge to a relevant set of exemplars.
The exemplars found are then used as an initial training set for active learning
(Hu et al., 2010).

Our meta-approach for zero-shot learning is called PTR, where the σ-Rips graph is
obtained by Algorithm 1. The results for Random Selection (RS) strategy, competitors,
and our method PTR are shown in Table 2 over all collections for a budget B = 10.
Note that we do propagation within clusters detected by ToMATo for our approach, but
not for competitors, for which we consider B clusters.

Except for the unbalanced dataset nursery, PTR consistently outperforms the ran-
dom selection method, which has been demonstrated to be very difficult to surpass in
different studies. This demonstrates that a preferable starting point for pool-based ac-
tive learning procedures than random selection is to use the biggest proper topological
regions discovered by Algorithm 1 as an initial training set (Line 2 of Algorithm 2). Fur-
thermore, when compared to baseline approaches that are exclusively created to address
the cold-start problem in active learning, our meta-approach exhibits very competitive
results on different datasets. APC is equivalent to RS, while FFT and Km may have
worst performance than RS in some settings. KM, KM+ME and AHL are better than
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RS, but we get the best results on four datasets out of the 6. We present further results
for budgets B equal to 3 and 20 in Table 3 in Appendix D.2, with similar conclusions.

5.3 Active learning results

In this section, we present the results of our meta-approach for pool-based active learn-
ing strategies (described in Algorithm 3 and denoted PALPTR).

For the active learning experiments and following results from Siméoni et al. (2019),
we only consider the comparison against the Random Selection strategy (RS) as a
cold-start strategy, as it outperforms many recent strategies in active learning in small-
budget scenarios. We compare our meta-approach and RS strategy for different pool-
based active learning strategies, namely the uncertainty sampling query, the entropy
sampling query, and the margin sampling query strategies (Danka and Horvath, 2018).

Figure 7 depicts the results corresponding to the uncertainty sampling query strat-
egy with budget B = 10 and a subfigure for each dataset made up of error bar plots
that show the average balanced accuracy and standard deviation across the splits for
all active learning rounds. Results for other strategies and budgets are shown in Fig-
ures 9, 10 and 11 in Appendix D.3, the plots are organized so that each row and column
represents a certain budget and active learning technique, but similar conclusions can
be drawn.

The results show that, as compared to the use of the random selection technique,
all of the pool-based active learning strategies that were taken into consideration gain
significantly from our method. Only in the nursery dataset do we not observe a gain.
The primary cause is the nursery’s significant class imbalance. In Algorithm 3, we
decide to put the increase in training sample size ahead of class discovery or class ratio,
which may help us understand the current class imbalance. These findings indicate
that, when training with highly class-imbalanced datasets, various sample criteria of
PTR in Algorithm 3 should be taken into account in addition to only picking the largest
ones.

6 Conclusion

We propose a data driven meta-approach for pool-based active learning strategies for
multi-class classification problems. Our approach is based on the introduced notion of
proper topological regions of a given sample set. We showed the theoretical foundations
of this notion and derived a black-box optimization problem to uncover the proper
topological regions. Then, we describe how to use those proper topological regions
to select the first points to label in a zero-shot learning task, and we derive a meta-
approach for pool-based active learning strategies. Our empirical study validates our
meta-approach on different benchmarks, in low-budget scenarios, and for various pool-
based active learning strategies. Challenging open questions are left: a theoretical
analysis that guarantees good performance in active learning, such as generalization
bounds, and the use of semi-supervised approaches to conclude the analysis with a
model-dependent approach by having a regularization term derived from the PTR.
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Figure 7: Average balanced classification accuracy and standard deviation of pool-based
active learning with the uncertainty strategy and budget B = 10 on protein dataset,
using random forest estimator over 20 stratified random splits.
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Siméoni, O., Budnik, M., Avrithis, Y., and Gravier, G. (2019). Rethinking deep active
learning: Using unlabeled data at model training. ICPR.

Singh, G., Mémoli, F., and Carlsson, G. (2007). Topological methods for the analysis
of high dimensional data sets and 3d object recognition. pages 91–100.

Thoreau, R., Achard, V., Risser, L., Berthelot, B., and Briottet, X. (2022). Active
learning on large hyperspectral datasets: A preprocessing method. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLIII-B3-2022:435–442.

Urner, R., Wulff, S., and Ben-David, S. (2013). Plal: Cluster-based active learning.
In Shalev-Shwartz, S. and Steinwart, I., editors, Proceedings of the 26th Annual
Conference on Learning Theory, volume 30 of Proceedings of Machine Learning
Research, pages 376–397, Princeton, NJ, USA. PMLR.

Voorhees, E. M. (1985). The Effectiveness & Efficiency of Agglomerative Hierarchic
Clustering in Document Retrieval. PhD thesis, Cornell University, USA.

Wolfe, D. A. (2012). Nonparametrics: Statistical Methods Based on Ranks and Its
Impact on the Field of Nonparametric Statistics, pages 1101–1110. Springer US,
Boston, MA.

Yan, Y., Rosales, R., Fung, G., and Dy, J. G. (2011). Active learning from crowds.
In Proceedings of the 28th International Conference on International Conference on
Machine Learning, page 1161–1168.

Yang, J., Chen, Z., Chen, W.-S., and Chen, Y. (2011). Robust affine invariant descrip-
tors. Mathematical Problems in Engineering.

Yu, C. and Hansen, J. H. L. (2017). Active learning based constrained clustering
for speaker diarization. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 25(11):2188–2198.

Zhu, J., Wang, H., Yao, T., and Tsou, B. K. (2008). Active learning with sampling
by uncertainty and density for word sense disambiguation and text classification.
In Proceedings of the 22nd International Conference on Computational Linguistics
(Coling 2008), pages 1137–1144, Manchester, UK.

23



A Proof of Theorem 1

To show that two persistence diagrams are close to one another with respect to the
bottleneck distance, one can use the following notion introduced in Chazal et al. (2009).

Definition 8 (ε-interleaved). Let X = (Xα)α∈R and Y = (Yα)α∈R be two persistence
modules and let DX. We say that X and Y are strongly ε-interleaved if there exist two
families of linear application {φα : Xα → Yα−ε}α∈R and {ψα : Yα → Xα−ε}α∈R, such
that for all α, β ∈ R, if α ≤ β, then the following diagrams, whenever they make sense,
are commutative:

Xβ+ε
//

φβ+ε

��

Xα−ε

Yβ // Yα

ψα

WW
Xβ

//

φβ

��

Xα

φα

��
Yβ−ε // Yα−ε

Xβ
// Xα

φα

��
Yβ+ε

ψβ+ε

WW

// Yα−ε

Xβ−ε // Xα−ε

Yβ //

ψβ

WW

Yα

ψα

WW

The idea behind these diagrams is that every component appearing (resp. dying)
in X at some time α must appear (resp. die) in Y within [α− ε, α+ ε], and vice-versa.
The following lemma highlights how important this notion is.

Lemma 1. Let X and Y be two persistence modules such that DX and DY have only
finitely many points away from the diagonal, and let ε > 0. If X and Y are strongly ε-
interleaved, then DX and DY are at a distance at most ε with respect to the bottleneck
distance.

This lemma is a direct consequence of Chazal et al. (2009, Theorem 4.4) where the
result is proven for every homological dimension.

For example, in Chazal et al. (2011, Theorem 5), it is proven that given the density
function P on a point cloud Sx with sufficient sampling density, the persistence diagram
DRδ(Sx,P) built upon the Rips graph Rδ(Sx) with an appropriate δ is a good approxi-
mation of DP the persistence diagram of P. Consequently, DRδ(Sx,P) encodes the 0th
homology groups of the underlying space of Sx, this is a crucial ingredient in the proof
of the theoretical guarantees of ToMATo.

Proof of Theorem 1. Let denote by Rδ = Rδ(Sx,P) and Rσ(·) = Rσ(·)(Sx,P). Rδ =
Rδ(Sx), and Rσ(·) = Rσ(·)(Sx) and, for α ∈ R, we set

Rδ,α = Rδ

(
Sx ∩ P−1([α,+∞])

)
and Rσ(·),α = Rσ(·)

(
Sx ∩ P−1([α,+∞])

)
.

For α ∈ R, let C1, . . . , Ck be the connected components of Rδ,α. For every q ∈
{1, . . . , k}, and each vertices xi,xj ∈ Cq, we have that αδ(xi,xj) ≥ α and thus, by
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definition of ε, ασ(·)(xi,xj) ≥ α − ε. Hence Cq is contained in a connected component
of Rσ(·),α−ε. This gives a linear map:

φα : H0(Rδ,α)→ H0(Rσ(·),α−ε).

By a similar argument, we get a linear map:

ψα : H0(Rσ(·),α)→ H0(Rδ,α−ε).

By construction, the following diagrams are commutative (the linear maps involved
are induced by inclusions on connected components).

H0(Rδ,β+ε) //

φβ+ε

��

H0(Rδ,α−ε)

H0(Rσ(·),β) // H0(Rσ(·),α)

ψα

WW
H0(Rδ,β) //

φβ

��

H0(Rδ,α)

φα

��
H0(Rσ(·),β−ε) // H0(Rσ(·),α−ε)

H0(Rδ,β) // H0(Rδ,α)

φα

��
H0(Rσ(·),β+ε)

ψβ+ε

WW

// H0(Rσ(·),α−ε)

H0(Rδ,β−ε) // H0(Rδ,α−ε)

H0(Rσ(·),β) //

ψβ

WW

H0(Rσ(·),α)

ψα

WW

Consequently, R and Rσ are strongly ε-interleaved, then the bottleneck distance is
bounded.

B More details on the theoretical guarantees of ToMATo

Let us assume that X is a Riemannianm-manifold and the density function P : X → R is
a κ-Lipschitz probability density function with respect to the m-dimensional Hausdorff
measure and κ > 0. In order to draw the theoretical guarantees of ToMATo we need some
assumption on the persistence diagram of P, more precisely, on the spatial distribution
of the points in this diagram.

Definition 9. Let d1, d2 ∈ R be two non-negative real numbers such that d1 < d2. The
persistent diagram DP is called (d1, d2)-separated if every point of DP lies either in the
region D1 above the diagonal line y = x−d1 or in the region D2 below the diagonal line
y = x− d2 and to the right of the vertical line x = d2.

The points in the region D2 will be considered as the prominence peaks and the
points in the region D1 as ”topological noise”.

We highlight the theoretical guarantees of ToMATo. We refer the reader interested
in more details and the proof of the statements to Chazal et al. (2013).

The first guarantee ensures that with reasonable assumption on the point cloud and
the density P ToMATo can recover the numbers of clusters induced by P.

Result 1 ((Chazal et al., 2013, Theorem 9.2)). Assume that Sx is i.i.d with respect
to P. If DP is (d1, d2)-separated and if the parameter δ is smaller than a fraction of
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d2 − d1 and of the convexity radius of X , then there is a range (d1 + 2κδ, d2 − 3κδ) of
values of τ such that the number of topological regions output by ToMAToτ (Rδ(S),P) is
equal to the number of peaks, of P with prominence at least τ with probability at least
1− eΩ(n) where n is the number of data points.

Ω(n) hides a factor increasing monotonically with c and δ and depending on certain
geometric quantities of the manifold X .

The following result tells us that, under the same hypotheses, we can recover the
basins of attractions of the prominent peaks of P.
Result 2 ((Chazal et al., 2013, Theorem 10.1)). Under the same hypotheses as in Result
1 and with the same probability, we have that, for every point p ∈ D2, ToMAToτ (Rδ(S),P)
outputs a topological region R such that R∩P−1([α,+∞]) = Bτ (mp)∩S∩P−1([α,+∞])
for all α ∈ (ατ (p)+d1+

5
2
κδ, px], where mp is the peaks of P corresponding to p, Bτ (mp)

is the basin of attraction of mp in the underlying manifold X , and ατ (mp) is the first
value of α at which Bτ (mp) gets connected to the basin of attraction of other peaks of
P of prominence at least τ in the superlevel-set P−1([α,+∞]).

In other words, R is the trace of the basin of attraction Bτ (mp) over the point of
S, until the value ατ (mp) at which the basin of attraction meets another τ -prominent
peak.

Finally, it is worth mentioning that in (Chazal et al., 2013, Section 11), they also
study the robustness of the approach when considering an estimation of the density
function.

Theorem 1 tells us that one way to ensure the bottleneck constraint in (4) is to apply
the same post-processing phase used in the ToMATo algorithm on the σ-Rips graph. It
consists of applying a merging rule along the hill-climbing method on the graph with
P. This merging rule compares the topological persistence of connected components to
an additional merging parameter τ ∈ [0,maxx∈Sx P(x)] (Chazal et al., 2013).

C How to approximate the Purity Size objective

function

For a given graph R(Sx), let C1, . . . , Ck be the connected components of this graph, we
define the mean-sample per connected component Cq, and the mean-sample of Sx as
follow:

µq =
1

|Cq|
∑
x∈Cq

x,∀q ∈ {1, . . . , k}

µ =
1

n

n∑
i=1

xi.

Then, apart from the adapted Silhouette score (5) that we use here the following scores
can be used to approximate the purity size objective function:

� Calinski-Harabasz score

Sch(R(Sx)) =

[
(n− k)B

(k − 1)
∑k

q=1Wq

]
∈ [0,+∞),
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with B =
∑k

q=1|Cq|∥µq − µ∥2 is the inter-group variance, and Wq =
∑

x∈Cq ∥x −
µq∥2 is the intra-group variance, for all q ∈ {1, . . . , k}. It translates that good
partitioning should maximize the average inter-group variance and minimize the
average intra-group variance; some well known clustering algorithms, such as K-
means (Lloyd, 1982), maximize this criterion by construction.

� Davies-Bouldin score

Sdb(R(Sx)) =

[
1

k

k∑
q=1

max
j ̸=q

(
δ̄q + δ̄j
d(µq, µj)

)]
∈ (+∞, 0],

with δ̄q =
1

|Cq |
∑

x∈Cq d(x, µq) is the average distance of all samples in the group to

their mean-sample group, for all q ∈ {1, . . . , k}.

� Dunn score

Sd(R(Sx)) =
[
minq,j d(µq, µj)

maxq∆q

]
∈ [0,+∞),

with ∆q = max
x,x′∈Cq

d(x,x′) being the diameter of group Cq, similar to the Calinski-

Harbasz score, we aim to maximize the minimum distance between the mean-
sample groups and minimize the maximum group diameter.

D More empirical results

D.1 Rips graph vs σ-Rips graph

In this section we show an empirical comparison in Figure 8 between the Rips graph and
the σ-Rips graph using the considered datasets. Overall, the σ-Rips graph achieves a
better PuritySize (PS) score than the Rips graph, except for coil-20 datasets where the
scores are comparable. Note that the retrieved decision curves of the σ-Rips graphs are
anti-correlated to the density estimation, which validates our intuition, and motivates
the σ-Rips graph formulation.

D.2 Cold-start results

This section presents the numerical results obtained in our empirical investigation of
the cold-start problem in Table 3 for several budgets. It shows that the proposed PTR
approach achieves competitive performance compared to the baseline methods, we also
notice that most of the methods except for the k-means-based methods and PTR suffer
from degraded performance compared to the random selection strategy.

D.3 Active learning results

This last section illustrates the empirical results of pool-based active learning for the rest
of the considered datasets using our proposed approach, compared against the random
sampling strategy. Figures 9, 10 and 11(a) show a clear and significant gain of the PTR
methodology for pool-based active learning strategies against random selection. The
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Figure 8: Comparison study between the Rips graph and the σ-Rips graph over all
datasets, the Purity Size score is reported for each minimizer.
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results in Figure 11(b) indicate that the PTR approach is not robust against the high
label imbalance datasets. We observed that the propagation step over the PTR tends
to amplify the class imbalance in the resulting training set.
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Table 3: Average balanced classification accuracy (in %) and standard deviation of
random forest classifier with the initial training set obtained from different methods over
20 stratified random splits for different budgets B. ↑/↓ indicate statistically significantly
better/worse performance than Random Selection RS, according to a Wilcoxon rank
sum test (p < 0.05) (Wolfe, 2012).

Dataset B RS KM KM+ME Km AHC FFT APC PTR

protein
3 16.9 21.2↑ 23.9↑ 21.2↑ 22.7↑ 17.4 16.7 22.1↑

(4.0) (1.8) (2.2) (4.4) (2.5) (3.3) (3.3) (6.2)
20 36.4 42.1↑ 45.5↑ 39.2 43.4↑ 26.1↓ 39.2 54.0↑

(3.8) (3.9) (2.5) (4.4) (3.4) (3.4) (3.7) (3.4)

banknote
3 55.5 74.0↑ 84.3↑ 62.5↑ 63.7↑ 58.2↑ 58.7 70.2↑

(7.2) (4.6) (5.6) (3.3) (4.5) (7.3) (8.0) (14.7)
20 87.6 90.7↑ 92.4↑ 92.3↑ 92.6↑ 71.9↓ 90.9↑ 93.9↑

(2.9) (2.4) (2.0) (2.4) (2.9) (7.2) (3.2) (3.4)

coil-20
3 12.6 15.0↑ 15.0↑ 15.0↑ 15.0↑ 10.8↓ 11.7 13.6

(2.6) (0.0) (0.0) (0.0) (0.0) (2.0) (2.3) (1.7)
20 42.0 56.7↑ 63.0↑ 42.3 58.1↑ 25.6↓ 41.4 71.1↑

(5.8) (3.7) (2.8) (3.5) (4.1) (2.5) (4.7) (3.8)

isolet
3 07.6 08.7↑ 09.7↑ 07.8 09.1↑ 09.2↑ 07.5 10.8↑

(1.5) (0.9) (0.6) (1.6) (1.9) (1.0) (1.8) (1.1)
20 19.2 27.9↑ 40.4↑ 10.7↓ 28.2↑ 18.8 21.1↑ 38.6↑

(2.7) (2.5) (3.2) (2.0) (2.1) (2.4) (3.1) (3.2)

pendigits
3 21.5 21.3 22.5 26.6↑ 19.4↓ 17.3↓ 17.8↓ 29.9↑

(3.5) (1.9) (2.1) (2.6) (1.8) (3.7) (4.9) (0.0)
20 54.3 72.3↑ 75.8↑ 64.0↑ 72.3↑ 34.8↓ 52.2 87.7↑

(5.9) (2.7) (2.3) (3.6) (2.5) (4.5) (5.9) (4.1)

nursery
3 30.7 29.2 30.2 25.0↓ 28.3↓ 30.0 30.0 35.1↑

(4.0) (5.2) (6.5) (0.2) (3.9) (3.2) (3.7) (5.6)
20 55.3 52.8↓ 54.4 32.9↓ 53.8 39.8↓ 52.5↓ 54.1

(2.8) (3.3) (3.0) (1.1) (2.7) (1.1) (4.9) (4.5)
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Figure 9: Average balanced classification accuracy and standard deviation of different
pool-based active learning strategies and budgets on protein and banknote datasets,
using random forest estimator over 20 stratified random splits.

4 6 8 10 12 14 16 18

0.2

0.3

0.4

0.5

bu
dg

et
 o
f 3

uncertainty sampling

RS
PALPTR

4 6 8 10 12 14 16 18

0.2

0.3

0.4

0.5

margin sampling

RS
PALPTR

4 6 8 10 12 14 16 18

0.2

0.3

0.4

0.5

entropy sampling

RS
PALPTR

10 20 30 40 50 60

0.3

0.4

0.5

0.6

0.7

0.8

bu
dg

et
 o
f 1

0

RS
PALPTR

10 20 30 40 50 60

0.3

0.4

0.5

0.6

0.7

0.8

RS
PALPTR

10 20 30 40 50 60

0.3

0.4

0.5

0.6

0.7

0.8

RS
PALPTR

20 40 60 80 100 120
number of queries

0.3

0.4

0.5

0.6

0.7

0.8

0.9

bu
dg

et
 o
f 2

0

RS
PALPTR

20 40 60 80 100 120
number of queries

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RS
PALPTR

20 40 60 80 100 120
number of queries

0.4

0.5

0.6

0.7

0.8

0.9

RS
PALPTR

(a) protein

4 6 8 10 12 14 16 18

0.5

0.6

0.7

0.8

0.9

bu
dg

et
 o
f 3

uncertainty sampling

RS
PALPTR

4 6 8 10 12 14 16 18

0.5

0.6

0.7

0.8

0.9

margin sampling

RS
PALPTR

4 6 8 10 12 14 16 18
0.5

0.6

0.7

0.8

0.9

entropy sampling

RS
PALPTR

10 20 30 40 50 60
0.70

0.75

0.80

0.85

0.90

0.95

1.00

bu
dg

et
 o
f 1

0

RS
PALPTR

10 20 30 40 50 60

0.70

0.75

0.80

0.85

0.90

0.95

1.00

RS
PALPTR

10 20 30 40 50 60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

RS
PALPTR

20 40 60 80 100 120
number of queries

0.850

0.875

0.900

0.925

0.950

0.975

1.000

bu
dg

et
 o
f 2

0

RS
PALPTR

20 40 60 80 100 120
number of queries

0.80

0.85

0.90

0.95

1.00

RS
PALPTR

20 40 60 80 100 120
number of queries

0.80

0.85

0.90

0.95

1.00

RS
PALPTR

(b) banknote

31



Figure 10: Average balanced classification accuracy and standard deviation of different
pool-based active learning strategies and budgets on coil-20 and isolet datasets, using
random forest estimator over 20 stratified random splits.
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Figure 11: Average balanced classification accuracy and standard deviation of different
pool-based active learning strategies and budgets on pendigits and nursery datasets,
using random forest estimator over 20 stratified random splits.
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