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Abstract 

Multiple speckle diffusing wave spectroscopy (MSDWS) can be applied to measure 

spatially heterogeneous mechanical behavior in soft solids, with high sensitivity to 

deformation and both spatial and temporal resolution. In this paper, we discuss 

the mathematical approach behind the quantification of the deformation rate from 

MSDWS data and provide guidelines for optimizing the selection of experimental 

parameters in measurements. After validating the method in extensional tests on 
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an elastomer, we provide an example of the potentiality of MSDWS by measuring 

the spatial distribution of the deformation rate during shear debonding of 

adhesive tapes. We quantitatively characterize the deformation rate distribution 

related to shearing and peeling under loading. A highly heterogeneous 

deformation rate distribution is observed, and time-dependent measurements 

reveal an increase in deformation localization hundreds of seconds before full 

debonding. This behavior, previously predicted by theory and simulation, is here 

demonstrated experimentally for the first time. 

I. Introduction 

The mechanical response of soft materials under external loading provides 

valuable information about the structural composition and the application 

properties under dynamic conditions, especially for soft materials with high 

deformability and viscoelasticity. In common tests on soft solids, such as shear 

rheology and uniaxial stretching, one assumes that the material properties are 

spatially homogeneous, so that the macroscopic stress under deformation (or 

macroscopic strain under creep stress) completely defines the mechanical 

response [1, 2]. However, it is commonly reported, especially at large deformations 

[3, 4] or in the presence of flaws [5-7], that the material properties and, in 

particular, their mechanical response can be spatially heterogeneous and deviate 

from that inferred from simple models assuming homogeneity.  

Although measurements of the macroscopic mechanical response can also unveil 

local failure [8-10] and structural transitions [11, 12], the most direct and reliable 

way to investigate such phenomena is the full-field measurement on the whole 

sample, with both temporal and spatial resolution. Several imaging methods such 

as digital image correlation (DIC) [13], birefringence imaging [14, 15], and 

mechanophore fluorescence mapping [16, 17] can provide spatially-resolved 

information on the mechanical response. Among these methods, DIC measures the 

spatially-resolved deformation field and is commonly used for mechanical 



measurement in soft materials, since it can be easily combined with ordinary 

testing systems [18, 19]. DIC quantifies the displacement of region of interest (ROI) 

of the sample by comparing two images of the sample surface.  To optimize the 

DIC algorithm, the surface should be spray-painted with a highly contrasted, 

speckled pattern. However, the observations of spray-painted samples bring 

several limitations: (1) DIC is essentially a surface measurement, where the bulk 

deformation cannot be detected. In fact, any contribution due to the bulk needs to 

be minimized, to avoid interfering with the surface imaging. Furthermore, (2) 

spray painting may be difficult or even impossible for some materials, such as 

hydrogels with a high water content [5]. Sprayed speckles can also lose their 

original shape at large strains and detach from the sample surface, making the 

correlation of images difficult [20]. Finally, (3) although DIC provides, in general, 

excellent spatial resolution and high sensitivity to displacement, both spatial 

resolution and sensitivity are limited by the characteristic size of the speckled 

pattern, which can be difficult to reduce, e.g. as needed when working with small 

sample surfaces. 

Multiple speckle diffusing wave spectroscopy (MSDWS) uses a similar way to 

measure mesoscopic deformation. In contrast to usual DIC, however, no spray 

painting is needed: speckles are generated from multiply scattered light upon 

illuminating a turbid sample with coherent laser light [20-22]. The intensity 

correlation of speckled patterns is extremely sensitive to the displacement of the 

scatterers, down to the scale of nanometers [23, 24]. Accordingly, MSDWS has been 

applied to dynamic characterization in soft [22, 25], granular [26, 27] and 

polymeric [20, 28] materials, taking advantage of its excellent time resolution and 

displacement sensitivity. In this work, we apply MSDWS to quantitatively measure 

the spatially heterogeneous deformation rate of soft solids.  The main purpose 

of this work is to explore under what conditions MSDWS may be applied and 

explain the requirements and limitations related to the method, making it more 

accessible to other users.  



The rest of the paper is organized as follows. In Sec. II, we recall the general 

theoretical background of MSDWS and its application to the measurement of 

heterogeneous deformation. Focusing on the case of soft solids, we show how to 

simplify the mathematical processing to directly obtain a spatially revolved strain 

rate from in situ imaging, addressing practical issues commonly associated with 

this type of measurements. In Sec. III, we introduce the setup and the preparation 

of the material. In Sec. IV, we describe uniaxial extension tests on an elastomer that 

demonstrate and validate the method. Finally, in Sec. V, we apply the method 

described in this work to obtain spatial maps of the deformation rate during 

debonding of an adhesive tape, a quantity that was experimentally inaccessible in 

previous works on adhesion.  

  



II. Measurement of heterogeneous mechanical behavior by 

MSDWS 

A. Testing geometry 

In this work, we focus on MSDWS in the backscattering geometry [23, 24]. The 

experimental setup is schematically shown in Fig. 1(a). An expanded laser beam 

homogeneously illuminates the surface of a sample, which contains a sufficient 

amount of scatterers. The backscattered light is collected by a high-speed camera, 

which makes an image of the sample surface. Due to the coherence of the laser 

light, the images have a speckled appearance [inset of Fig. 1(a)]. The speckles 

result from the interference between photons that have penetrated in the sample 

and have been scattered due to local fluctuations of the material refractive index. 

These fluctuations may arise from concentration or composition fluctuations of 

the raw material or may be due to the addition of probe particles with a refractive 

index different from that of the material. For the turbid samples that we shall 

consider here, the majority of the backscattered light is due to multiple scattering. 

Multiple scattering is characterized by the photon transport mean free path 𝑙∗, 

the length scale over which a photon is scattered a sufficient number of times for 

its propagation direction to be randomized [6, 24]. 𝑙∗ typically ranges from a few 

to up to hundreds of µm.  Although the camera images the sample surface, the 

speckle pattern depends on the path of the photons in the bulk of the sample, such 

that the method is sensitive to deformations occurring in a sample layer of 

thickness up to about 10𝑙∗ [29, 30]. This makes the method suitable for mapping 

the in-plane deformation of a 3D slab of the material.  



 

Fig. 1(a) Scheme of a MSDWS experiment in the backscattering geometry. (b) 

Autocorrelation functions for systems with different dynamics. The value 𝑒𝑥𝑝 (−2𝜖) 

is indicated by the red dashed line: the intersection of the autocorrelation functions 

with this line defines the value of 𝜏0. Insert: schematic view of the regions of interest 

(ROIs) for data processing. In the scheme, one ROI contains 3×3 pixels, centered at 

𝒓⃗ 𝑖 . 

B. Autocorrelation function 

1. Autocorrelation function in multispeckle configurations 

When the scatterers are in motion due to thermal energy or owing to an external 

drive, the intensity of the scattered light fluctuates with time, at a rate related to 

the rate at which the scatterers are displaced. The dynamics of the scatterers can 

be thus extracted by quantifying the rate of intensity fluctuations, which is 

achieved by calculating the autocorrelation function of the backscattered light 

intensity measured by the camera [21, 23, 24, 31, 32], 

 C(𝒓⃗ , 𝑡, 𝜏) =
〈𝐼𝑝(𝑡)𝐼𝑝(𝑡+𝜏)〉𝒓⃗ 

〈𝐼𝑝(𝑡)〉𝒓⃗ 〈𝐼𝑝(𝑡+𝜏)〉𝒓⃗ 
− 1 (1) 



In Eq. 1, 𝑡  is the experimental time and 𝜏  is the delay or lag time for the 

correlation calculation. Images are divided into small ROI, so that spatially 

resolved dynamics can be obtained. 𝐼𝑝 is the intensity at 𝑝th pixel, and 〈… 〉𝒓⃗  is 

the average over the pixels corresponding to an ROI with center position 𝒓⃗  , as 

indicated in Fig. 1(b). For 𝐶 to be efficiently calculated, the speckle size should 

roughly match the pixel size [32]1. 

2. Practical form of the autocorrelation function 

At a fixed time 𝑡0  and position 𝒓⃗ 0 , 𝐶  is a function of the time delay  only, 

𝐶(𝜏)𝒓⃗ 0,𝑡0 , whose decay time quantifies the 𝑡 -dependent local dynamics. A 

convenient functional form that describes well 𝐶(τ)𝒓⃗ 0,𝑡0  under many 

experimental conditions is [23, 33], 

 C(𝜏)𝒓⃗ 0,𝑡0 = 𝐴𝑒𝑥𝑝 (−2𝜖√(
𝜏

𝜏0
)
𝑝

+ 𝑎) + 𝐵, (2) 

where 𝜖  depends on the polarization of the incident and detected light. 𝑎 =

3𝑙∗/𝑙𝑎 depends on the ratio of the photon transport mean free path 𝑙∗ and the 

absorption length 𝑙𝑎  (usually, 𝑎 ≪ 1 ). 𝜏0  is the characteristic decay time, 

corresponding to the time scale over which 𝐶  decreases to around 𝑒𝑥𝑝 (−2𝜖) 

after normalization (as indicated in Fig. 1(b)), and the scatterers are displaced 

over a distance of the order of 1/k. 𝑘 is the wave vector of the laser light, 𝑘 =

2𝑛𝜋/𝜆 , with n being the refractive index of the material and λ  being the in-

vacuum laser wavelength. B is the baseline of the correlation function: ideally, B = 

0, but measurement noise and other artifacts often result in a non-zero baseline 

[34]. Details of these parameters are described in the supplementary material [85]. 

Equation 2 generalizes the usual form of the correlation function in the 

backscattering geometry [23, 24], with (
𝜏

𝜏0
)
𝑝

= 𝑘2〈∆𝑟2(𝜏)〉 , with 〈∆𝑟2(𝜏)〉 

                                                        
1 In practice, the speckle size may be adjusted by varying the numerical aperture (𝑓-number) of the objective 
mounted on the camera: the higher the 𝑓-number, the larger the speckle size 



being the mean squared displacement of the scatterers.  

Note that by construction, Eq. (2) cannot capture complex dynamics, e.g. stemming 

from the coexistence of two distinct dynamical processes occurring over different 

time scales. Nonetheless, Eq. 2 is sufficiently flexible to reproduce a variety of 

microscopic motions of interest, from Brownian motion (corresponding to p = 1) 

to the ballistic motion resulting from an applied deformation at constant rate (p = 

2). Given the functional form of C, 𝜏0  is also the time scale where the 

autocorrelation function is most sensitive to a change of the probed time scale. 

Accordingly, 𝜏0  is commonly used for quantifying and comparing different 

dynamical processes [4, 32, 35]. Examples of autocorrelation functions are shown 

in Fig. 1(b), which illustrates that slower dynamics corresponds to a slower decay 

rate of C and hence a larger 𝜏0 value.  

C. Dynamical processes probed by MSDWS 

Coexisting dynamic processes yielding multiple modes of decorrelation are 

commonly reported in DWS measurements [33, 36, 37].  Understanding these 

dynamics is the key challenge posed by the method. The measured dynamics is 

often attributed to a single relaxation mechanism, since it is very difficult to 

reproduce and analyze the form of the autocorrelation function in the general case. 

However, this requires a careful examination and choice of the system and 

experimental parameters. Here, we briefly review the most common contributions 

to the dynamics of soft solids and discuss the coupling between them. In particular, 

we show that in a wide range of practical mechanical testing conditions, MSDWS 

results can be safely analyzed by considering only the contribution due to the 

affine deformation field, which greatly simplifies the processing. 

1. Different dynamics sources in MSDWS measurement 

One source of dynamics for scatterers in a soft solid is thermally activated motion. 

Let us first consider the case of a soft solid whose turbidity is high enough for 



MSDWS to be viable with no addition of probe particles. Thermal energy results in 

(overdamped) fluctuations of the structure around its equilibrium position (think, 

e.g., of the fluctuations of strands in a colloidal gel or of network vibrations in 

elastomers). The amplitude of these fluctuations depends on the elastic modulus 

of the material and is typically on the order of several nanometers for stiff 

materials up to tens of micrometers for very weak colloidal gels [38, 39]. Since 

multiple scattering is sensitive to motion down to the nanometer scale [23, 24], 

these fluctuations are potentially captured by the correlation function. However, 

their typical time scale is quite fast, typically 0.001 s or less [37, 39, 40]. On longer 

time scales, fluctuations are limited by the sample structure [41, 42], so that this 

fast decorrelation mode normally does not lead to a full decorrelation. Because 

MSDWS uses a relatively slow detector (340 Hz for our camera), thermal 

fluctuations do not have a measurable impact on 𝐶, because they occur out of the 

experimentally accessible time window. More specifically, they result in overall 

lower levels of the correlation function measured by MSDWS, independently of 𝜏, 

which is corrected by the normalization factor A in Eq. 2. The situation is similar 

for samples to which particle probes have been added to enhance scattering, as 

long as the particles are large enough to be effectively trapped in the sample 

structure (e.g., if they are larger than the mesh size for gels and elastomers), as is 

the case for microrheology [38]. 

An additional source of dynamics in soft solids is the slow evolution of the sample, 

also referred to as aging [32, 43, 44]. Aging is due to the fact that many soft solids 

are out-of-equilibrium systems, slowly evolving toward (but often never reaching 

in accessible time scales) the most thermodynamically stable configuration. In the 

last two decades, ultraslow relaxations associated with aging have been uncovered 

in a wide range of systems, from gels to dense, repulsive systems [45-47]. These 

relaxation modes often lead to ballistic dynamics, which have been ascribed to the 

progressive release of internal stress stored when forming the sample [48, 49]. 

Even when measured with techniques such as MSDWS that are extremely sensitive 



to motion on small length scales, the decay time of these modes may be as large as 

hundreds or thousands of seconds [4] and it further increases with sample age. As 

we shall see, the decay time associated with an imposed mechanical deformation 

is typically smaller, on the order of a few seconds at most. Thus, aging dynamics 

usually do not interfere with the dynamics measured while mechanically driving a 

soft solid. However, one should always check this point, by running a preliminary 

measurement on the sample at rest. Should the spontaneous dynamics be fast 

enough to potentially interfere with those measured under a mechanical drive, it 

is preferable to let the sample age until the spontaneous dynamics become slow 

enough. 

A third source of dynamics, specific to soft solids under mechanical loading, stems 

from the deformation field induced by loading. Indeed, light scattering is sensitive 

to the relative motion of the scatterers. When the displacement is not spatially 

uniform, scatterers are displaced by a position-dependent amount, which results 

in the decorrelation of the scattered light. Displacement of the scatterers contains, 

in general, an affine contribution (i.e. the displacement field expected for an ideal, 

homogeneous elastic body under the same loading conditions) and, possibly, non-

affine contributions [50, 51]. We first discuss the affine contribution, assuming 

that non-affine dynamics may be neglected. Under these conditions, the 

autocorrelation function can be related to the strain field [52] by 

 𝐶(𝜏) = 𝐴𝑒𝑥𝑝 (−2𝜖√3𝑘2𝑙∗2𝑓[𝑼(𝜏)] + 𝑎) + 𝐵 (3) 

𝑼(𝜏) is expressed as the product of 𝑫 times the time interval by: 

 𝑈𝑖𝑗(𝜏, 𝑡)  = 𝐷𝑖𝑗(𝑡)𝜏 (4) 

where 𝑫 denotes the rate of deformation tensor [53, 54], and it is assumed that 

𝜏 is short enough for the deformation to occur at a constant rate. 𝑼(𝜏) is a rank-

two tensor describing the strain field over the time interval 𝜏 , and 𝑓[𝑼(𝜏)] =



[𝑇𝑟(𝑼)𝟐 + 𝟐𝑇𝑟(𝑼𝟐)]/15 [20, 52, 55]. 

By replacing Eq. 4 in Eq. 3 and comparing with the general form, Eq. 2, one finds 

that for a deformation at a constant rate  

 3𝑘2𝑙∗2𝜏2𝑓[𝑫] = (
𝜏

𝜏0
)
𝑝

 (5) 

This implies p = 2 (ballistic dynamics) and 

 𝜏0 =
1

𝑘𝑙∗√3𝑓[𝑫]
 . (6) 

As an example of simple test geometries, we shall consider uniaxial extension and 

simple shear and discuss typical time scales for 𝜏0 due to affine deformation.  

For uniaxial extension along the 𝑥  axis in an incompressible solid with true 

strain rate 𝜆̇𝑇 , one has [20] 

 𝑫 =

[
 
 
 
 
𝜆̇𝑇 0 0

0 −
𝜆̇𝑇

2
0

0 0 −
𝜆̇𝑇

2 ]
 
 
 
 

  (7) 

For simple shear along the x direction at shear rate 𝛾̇ [56-58]  

 𝑫 = [

0
𝛾̇

2
0

𝛾̇

2
0 0

0 0 0

] (8) 

Equation (8) results from decomposing the shear rate tensor in the sum of two 

terms, corresponding to pure shear and pure rotation, respectively [58]. Recalling 

that MSDWS is only sensitive to the relative motion of the scatterers, one 

canrecognize that the only term that contributes to the decay of the correlation 

function is the pure shear term, which corresponds to Eq. (8). Then, for uniaxial 

extension, 



 𝜏0,𝑢𝑒 = √
5

3

1

𝑘𝑙∗𝜆̇𝑇
 (9) 

and for simple shear, 

 𝜏0,𝑠𝑠 = √5
1

𝑘𝑙∗𝛾̇
 (10) 

The above discussion shows that the MSDWS relaxation time in the backscattering 

geometry for a sample undergoing a macroscopic deformation depends on 𝑙∗ , 

unlike the case of the spontaneous dynamics of a system at rest [23]. Indeed, in 

multiple scattering experiments, 𝑙∗ sets the scale over which the deformation is 

measured [35]. 

As mentioned above, the minimum time delay accessible to MSDWS is about 1 ms 

(2.9 ms for camera used in this work). This sets a limit on the highest measurable 

deformation rate, since the relaxation time of the correlation function must be at 

least a few times the smallest 𝜏, in order to be correctly measured. Using typical 

parameter values 𝑙∗ = 100 µm, n = 1.5, 𝜆 = 532 nm, and 𝜏0,min = 5 ms, one can 

obtain the following estimates:  

 𝜆̇𝑇,𝑚𝑎𝑥 ≈
7.3×10−4

𝜏0,𝑢𝑒 𝑚𝑖𝑛
≈ 0.14 s-1 (11a) 

 𝛾̇𝑚𝑎𝑥 ≈
1.26×10−3

𝜏0,𝑠𝑠 𝑚𝑖𝑛
 ≈  0.25 s-1 (11b) 

To access higher deformation rates, one may reduce 𝑙∗  by increasing the 

concentration of tracer particles, by choosing tracer particles with a higher 

refractive index contrast with the sample, or by optimizing the size of the tracer 

particles, since 𝑙∗ has a non-monotonic behavior with particle size [23]. Note that 

using a faster camera to decrease the minimum measurable relaxation time 𝜏0,𝑚𝑖𝑛 

may not be a useful strategy because the relaxation dynamics due to thermal 

fluctuations discussed above would likely contribute to the decay of the 

correlation function, making data analysis difficult. The lower limit on the 



measurable deformation rate is of the order of a few 10-6 s-1, set by the longest 

relaxation time achievable by MSDWS, which is of the order of a few hundreds of 

seconds at least. Therefore, the accessible range of deformation rates covers most 

of the conventional measurement of mechanical behavior in soft solids. Within the 

accessible strain rate interval, spatially and temporally resolved local strain rates 

can be directly quantified by MSDWS, provided that 𝑙∗  is known, e.g. from an 

independent transmission measurement [23]. 𝑙∗ may be deduced from Eqs. (9) 

or (10) by imposing a known deformation rate to the sample. Note that the 

components of the deformation tensor can be directly calculated by MSDWS for 

simple, ideal deformation geometries. In the more general case (e.g. near to a 

fracture tip or in more complex geometries), 𝜏0 only provides the time scale over 

which √𝑇𝑟(𝑫𝟐)  reaches 1/ 𝑘𝑙∗  [see Eq. (5)], with no information on the 

individual components. In the case where dynamics are only dominated by the 

affine deformation field, the spatially-resolved strain rate can be quantified by 𝜏0 

obtained by fitting the autocorrelation functions measured in different ROIs. 

Alternatively, one can also plot the correlation value (C) at a fixed time delay 𝜏 to 

qualitatively visualize and identify spatial heterogeneity, thus obtaining “dynamic 

activity maps” (DAMs). This approach will be discussed later when analyzing the 

experiments presented in Sec. V. 

A fourth source of dynamics for soft solids loaded beyond their linear regime 

stems from rearrangements associated with plastic events, as exemplified in [25-

27], which apply MSDWS to the detection of plastic events in granular or polymeric 

systems. In general, we expect a plastic event occurring at a position 𝒓⃗ 0 to have 

a two-fold impact on the dynamics measured by MSDWS.  On the one hand, the 

local configuration of the sample around 𝒓⃗ 0 is modified, e.g. as in T1 or T2 events 

in foams [59] or in shear transformation zones in dense suspensions [60] or in a 

bond breaking event in network-forming systems [25]. The size of the region 

directly modified by the plastic event depends on the system, but it is typically 

smaller than or comparable to 𝑙∗. On the other hand, a local plastic event modifies 



the internal stress state, which in turn sets a strain field across the sample, 

including far from 𝒓⃗ 0 . MSDWS is sensitive to displacements down to the 

nanometer scale, but the spatial mapping of the dynamics is coarse-grained on a 

length scale ~𝑙∗ or larger (hundreds of µm). Consequently, it is likely that plastic 

events are not detected per se, but rather thanks to the strain field they set 

throughout the sample. 

A final issue to be considered in space-resolved MSDWS measurements coupled to 

mechanical tests is the rigid displacement of the sample, and hence of the speckle 

pattern. The rigid displacement causes a loss of the correlation in the 

autocorrelation function [20, 22, 61]. As a limiting case, consider a sample 

undergoing a pure translation. Due to the imaging geometry, the (otherwise frozen) 

speckle pattern is displaced with respect to the detector as the sample translates, 

such that the intensity of any given pixel fluctuates as bright and dark speckles 

scroll in front of it. For a sample undergoing tensile or shear strain, a similar effect 

occurs and the measured loss of correlation is in general due to both a rigid 

displacement of the speckle pattern and its evolution associated with the change 

of the relative position of the scatterers, stemming from the sample deformation.  

Schemes have been proposed to disentangle the two contributions [61]. Since 

these methods are computational demanding, it is interesting to discuss under 

what conditions the contribution of the rigid displacement may be safely neglected. 

2. Coupling between rigid displacement and deformation during mechanical 

testing 

The contribution of the rigid displacement is negligible when 𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒, the time it 

takes for a ROI to travel a speckle size due to rigid displacement, is much longer 

than 𝜏0,def, the relaxation time due to the relative motion of scatterers associated 

to the macroscopic deformation, see e.g. Eqs. (9) and (10) for the case of 

extensional and shear tests. For the former, one has 



 𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒 =
𝑙𝑠𝑝𝑒𝑐𝑘𝑙𝑒

𝑣
= 𝐹𝑂𝑉/(𝑁𝑣), (12) 

where 𝑙𝑠𝑝𝑒𝑐𝑘𝑙𝑒  is the speckle size, which can be measured by calculating the 

spatial autocorrelation function of one single speckle image [62], FOV is the size of 

the field of view and 𝑣  is the speckle displacement velocity. The last equality 

stems from the speckle size being a fraction 1/N of the FOV. This formulation is 

used in the following, since the field of view is a key parameter of interest in 

experiments, and N can be easily controlled by closing (opening) the diaphragm of 

the objective lens, which results in smaller (larger) N values. 

The cameras used in MSDWS produce images with a linear size of several 

hundreds to a few thousands of pixels, while the speckle size ranges from a fraction 

of a pixel to several pixels: thus, N ranges from a few hundreds to a few thousands. 

We first consider an extensional test with only one clamp moving, and the other 

one fixed (commonly to a force sensor). A popular geometry consists in imaging 

the whole sample, which allows to obtain full information on the sample response 

and to check for slippage at both clamps. Under these conditions, FOV = L, L being 

the sample length. The largest velocity occurs at the moving clamp, 𝑣 =  𝜆̇𝑁𝐿 , 

where 𝜆̇𝑁  is the nominal strain rate. Here we simply consider 𝜆̇𝑁 = 𝜆̇𝑇  to 

estimate the approximately scale for comparison. Inserting this expression in Eq. 

(12) and using Eq. (9), we find the following lower bound 

 
𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒

𝜏0,𝑢𝑒
≥ √

3

5

𝑘𝑙∗

𝑁
 (13) 

Using the same parameters as above (𝑙∗ = 100 µm, n = 1.5, 𝜆 = 532 nm), one can 

find 𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒/𝜏0,𝑢𝑒 ≈ 1370/𝑁 . Remarkably, the ratio of the two characteristic 

times does not depend on the strain rate and may be tuned to be either smaller or 

larger than unity by varying the speckle size, which in turn controls N. For example, 

we will show in Sec. IV that in the experiments on a stretched 

polydimethylsiloxane (PDMS) elastomer presented here, the speckle size was such 



that kl* = 7260, N = 683 and 𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒 = 8.2𝜏0,𝑢𝑒 . Under these conditions, the 

speckle pattern fluctuates (due to the affine displacement field) much faster than 

it translates (due to the displacement associated to elongation), such that no 

correction needs to be implemented. On the contrary, in [20], the speckle size was 

designed to be smaller than the pixel size, such that 𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒 < 𝜏0,𝑢𝑒  and the 

strain rate field was inferred from the displacement field, measured using the 

computationally demanding method of [61]. 

For a shear test, we consider a sample of thickness d undergoing simple shear. We 

recall that MSDWS in the backscattering geometry is not sensitive to 

displacements in the full depth of the sample, but rather in a layer of thickness 

~10l* on the side of the illumination and collection optics [63].  Assuming that 

the sample is sheared at a rate 𝛾̇ while keeping fixed one of its surfaces, one has 

to distinguish the two cases where the sample is illuminated on the fixed side or 

on the mobile side. For a sample illuminated on the fixed side and assuming d > 

10l*, the displacement velocity averaged over the thickness of the probed layer is 

𝑣 = 5𝑙∗𝛾̇. Inserting this expression in Eq. (12) and using Eq. (10), one can find the 

lower bound, 

 
𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒

𝜏0,𝑠𝑠
≥

𝐹𝑂𝑉 𝑘

10 𝑁
 . (14) 

Note that the right-hand side of Eq. (14) is particularly simple, since it does not 

depend on strain rate nor on l*. With the typical values used above, k ~1.7×107 m-

1, such that for usual geometries (FOV ≥ 1 cm and N ~ 1000) 𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒/𝜏0,𝑢𝑒 ≥

20 . Thus, for simple shear while imaging on the fixed side of the sample the 

speckles fluctuate much faster that they are displaced and no correction is 

required. This will be the situation for the experiments on the adhesive debonding 

reported in Sec. V.  

If a sample of thickness d undergoing shear is imaged from the moving side, the 

velocity averaged over the layer probed by MSDWS is 𝑣 = 𝛾̇(𝑑 − 5𝑙∗) (assuming 



again that d > 10l*) In this case, the lower bound for the ratio of the displacement 

and fluctuation times becomes 

 
𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒

𝜏0,𝑠𝑠
≥

𝐹𝑂𝑉 𝑘𝑙∗

√5 (𝑑−5𝑙∗)𝑁
 , (15) 

which does not depend on the strain rate, but does depend on 𝑙∗. Inserting in Eq. 

(15) typical values for the various parameters (FOV = 1cm, l* = 100 µm, d = 1 mm), 

one can find 𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒/𝜏0,𝑢𝑒 ≥ 16,  showing that the correction of rigid 

displacement may be safely neglected. 

To summarize this section, we have shown that in the typical range of time delays 

probed by MSDWS coupled to mechanical tests (1 ms <  < 100 s), the relaxation 

time of the intensity correlation function is directly related to the (local) 

deformation rate. The latter may be extracted from the MSDWS data provided that 

l* is known and that the deformation geometry may be approximated by a simple 

geometry such as extension or shear. While, in principle, correcting the speckle 

images for rigid displacement may be necessary, we find that for typical 

experimental parameters, this correction is not necessary, apart for tensile tests 

when the speckle size is small enough for thousands of speckles to fit in the (linear) 

size of the image. 

D. Comparison of MSDWS and DIC 

As MSDWS and DIC can provide similar information on the deformation rate 

spatial distribution, it is worth to quantitatively compare the two methods. 

Considering that the correlation function is sufficiently informative when 𝜏 ≈

0.02𝜏0 and 𝐶(𝜏) ≈ 0.93, this gives a strain accuracy for MSDWS (≈ 𝑓[𝑼(0.02𝜏0)]) 

of the order of 10-6. This is much more accurate than DIC, whose strain resolution 

is limited to the scale of 10-3 in practical experimental conditions [64, 65]. Another 

advantage of MSDWS is the fact that the method only requires the material to be 

turbid (which may also be achieved by adding a small amount of highly scattering 



particles), with no need of surface treatment. More importantly, MSDWS directly 

provides the magnitude of the deformation rate, which can be more useful for the 

examination of subtle dynamic changes, compared to conventional strain 

measurements.  

III. Material and methods 

A. Materials 

1. Elastomer samples for tensile tests 

For the tensile tests, a Sylgard 184 PDMS elastomer was prepared with a ratio of 

PDMS base and curing agent of 10:1. Titanium dioxide (TiO2) nanoparticles 

(diameter 250 nm measured by dynamic light scattering) with wt.% of 0.25 % 

were added before curing, to enhance the sample turbidity. TiO2 nanoparticles 

were first mixed with the PDMS base and manually stirred. The suspension was 

then sonicated for 10 min to thoroughly disperse the particles and put in vacuum 

to remove bubbles formed during stirring and sonication. The suspension and 

curing agent were mixed and poured into a mold, and then cured at 90 ℃ for 12 h. 

A sheet of elastomer of 4 mm thickness was thus obtained. The transport mean 

free path 𝑙∗  of the PDMS elastomer was measured in a suspension containing 

TiO2 nanoparticles with the same volume concentration as in the elastomers. The 

autocorrelation function from the suspension can be calculated from the known 

viscosity of water and matched to the experimental one, using 𝑙∗  as the only 

fitting parameter [23]. For a PDMS wt.% = 0.25%, we find 𝑙∗ ≈ 430 μm. Note that 

here the dependence of scattering cross section on the difference between the 

refractive index of water and that of PDMS is ignored. This may lead to a small 

deviation of the calculated 𝑙∗, which will be discussed later. 

2. pressure sensitive adhesive tapes for debonding tests 

Commercially available polyacrylate pressure sensitive adhesive tapes were used 



to investigate debonding. The tapes are made of a copolymer of 2-ethylhexyl 

acrylate (88 % by weight) and acrylic acid (12% by weight), filled with hollow 

glass microspheres (12% by weight, type: Q-Cel® 5020 from Potters, with mean 

size of 60 µm). The copolymer was synthesized by UV-polymerization using 

Irgacure 184 (0.4% by weight) as photoinitiator and 1,6-Hexanediol diacrylate 

(0,15% by weight) as cross-linker. The thickness is 1 mm and the tapes are cut to 

different sizes for measurement. To determine the photon mean transport path l*, 

we used the method discussed at the end of Sec. IV (measurement of the decay 

time of 𝐶(𝜏) while applying a tensile strain at a known deformation rate), finding 

kl* = 3.3 ×  103, corresponding to 𝑙∗ ≈ 190  µm, assuming n = 1.47 (the 

refractive index of 2-ethylhexyl acrylate). 

B. Experimental setup 

 

Fig. 2 (a) Experimental set-up for the uniaxial extension experiment, combined with 

the MSDWS measurement. (b) A typical portion of a speckle image and its displaced 

position. (c) Spatial autocorrelation function of image in (b), from which the size of 

the speckle is estimated at 𝐶 = 1/𝑒 to be about 3 pixels. 

 

1. Uniaxial extension test setup 



The uniaxial extension test of the elastomer was performed with a custom setup, 

see Fig. 2(a) (a detailed image of the setup is shown in Fig. S1 in the supplementray 

material [85]). The sample was fixed by two clamps, one of which is connected to 

a Newport translational stage with a step precision of 500 nm. The nominal stretch 

𝜆𝑁  is defined as the ratio of the deformed length over the original length. The 

whole sample surface was illuminated by an expanded laser beam (Excelsior-532-

300-CDRH, wavelength 532 nm, power 300 mW) with incident angle around 45° 

and diameter around 6 cm at the surface of the sample. The sample/laser distance 

is about 20 cm and the camera/sample distance (via a mirror) is around 25 cm. 

Images of the sample surface formed by the backscattered light were collected 

simultaneously to the nominal displacement imposed by the motor, using a CMOS 

camera (BASLER acA2000-340km, sensor size 11.3 mm × 6 mm, pixel bit depth 

8 bits). The camera was equipped with an objective lens (Thorlabs, MVL50TM23) 

with focal length of 50 mm. 

Figure 2(b) shows a typical portion of the CMOS image where the presence of 

speckles can be detected. Spatial autocorrelation [using spatial displacement 

∆𝑋 instead of time interval 𝜏 in Eq. (1) for the correlation, as seen in Fig. 2(b)] 

is calculated and shown in Fig. 2(c). The size of speckle is estimated by the full 

width at 𝐶 = 1/e, around 3 pixels. The image size in the horizontal direction (also 

the deformation direction) is 2048 pixels, hence N = 2048/3 = 683. Inserting this 

value and 𝑛  = 1.43 for PDMS[66] and 𝑙∗  = 430 μ m into Eq. (13), one has 

𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒 = 8.2𝜏0,𝑢𝑒, so that there is no need for the correction of rigid displacement. 

We used DIC to check that no slippage occurred at the clamps, testing a stretched 

PDMS sample with fixed 𝜆𝑁 = 1.15 for more than 200 s. 



 

Fig. 3 Experimental set-up for the measurement of adhesive debonding under single-

lap shear. 

2. Adhesive tape debonding test setup 

The debonding process of a pressure sensitive adhesive tape in single-lap shear 

[67, 68] (tape fixed between two rigid substrates and exposed to a translational 

shear stress) was measured with the setup shown in Fig. 3. The camera and laser 

configuration are similar to that in the set-up for uniaxial extension. The 

sample/laser distance is around 20 cm and the camera/sample distance is around 

10 cm. The angle of incidence of the laser beam on the sample is about 45°. 

First, the tape was glued to an aluminum plate using instant glue (Loctite 406) to 

ensure adhesion stronger than at the debonding interface. Then, a glass 

microscope slide with a thickness of 3 mm was pressed to the other side of the 

tape, using a weight of 0.3 N for 10 min. A shear stress was imposed to the tape by 

holding the glass slide fixed in a vertical plane, while hanging a weight to the 

aluminum plate. Rectangular samples were used, with different sizes as shown in 



Table I. The position of the loading axis was set to be around the midplane of the 

tape, to avoid torque on the tape, which may result in strong peel stresses and 

cleavage in the bulk region. A small angle around 2.5° is introduced between the 

aluminum plate and the vertical axis, so that a small component of the load 

provides compression on the tape, to avoid possible normal tension that strongly 

changes the debonding conditions. In this geometry, the tape is under simple shear 

conditions and adhesive debonding is studied under creep deformation. The 

weight 𝑊 was adjustable from 1.5 N (the weight of the aluminum plate alone) to 

21.5 N. Macroscopic shear stress during creep is calculated by 𝜎𝑚𝑎𝑐𝑟𝑜 = 𝑊/𝐴 , 

where 𝐴 is the area of the glass-tape interface, typically of the order of a fraction 

of cm² (Table I). The laser illumination and the imaged surface is on the side of the 

glass-tape interface, which is static until debonding.  

To estimate whether any correction may be needed, we use a slightly modified 

version of Eq. (14), because here d/l* ~ 5 and MSDWS probes the dynamics across 

the full thickness of the sample. The average velocity of the measured layer is 𝑣 =

2.5𝑙∗𝛾̇  and 𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒/𝜏0,𝑢𝑒 =  𝐹𝑂𝑉 𝑘/5𝑁 = 107 , where we have used k = 

1.67×107 m-1, N = 250, FOV ≈ 0.8 cm for the biggest sample (8.4 × 7.6 mm2, 

where N is maximal). Since 𝜏𝑠𝑝𝑒𝑐𝑘𝑙𝑒 ≫ 𝜏0,𝑠𝑠, no correction was necessary for the 

debonding tests concerning rigid displacement. 

𝜎𝑚𝑎𝑐𝑟𝑜(MPa) Tape size (length × width, 

mm) 

𝑊 (N) 

0.26 8.4 × 7.6 16.5 

0.49 5.2 × 5.5 13.5 

0.62 5.2 × 5.1 16.5 

0.72 4.5 × 3.5 11.5 



0.88 5.1 × 3.6 16.5 

Table I. Parameters for debonding tests under shearing. 

The samples were illuminated by a diode green laser with  = 532 nm (wavelength 

532 nm, power 300 mW). Speckle images in the backscattering geometry were 

collected using a CMOS camera (BASLER acA2000-340km). To optimize the time 

resolution and speckle quality, the exposure time was set to 0.03 s. The strong 

spatial fluctuations of intensity due to the speckled appearance of individual 

images makes it difficult to obtain morphological information on the surface, such 

as evidence of cavitation [69] and fibrillation [70] that typically occur during 

debonding. However, the morphological information can be extracted by averaging 

several speckle images acquired over a time interval longer than 𝜏0, such that the 

intensity fluctuations average out. The displacement 𝐿  of the aluminum plate 

can be measured as a function of time by tracking a reference point on the 

aluminum substrate and the macroscopic shear strain is defined as 𝛾𝑚𝑎𝑐𝑟𝑜 = 𝐿/𝑑, 

where 𝑑 is the sample thickness, 1 mm for all measurements. 

C. Software and data processing 

Images are collected by commercial software NORPIX STREAMPIX 8 and data are 

processed by a self-developed program in PYTHON.  

  



IV. Method validation: uniaxial extension of PDMS 

 

Fig. 4 Measurement of the deformation rate in the central region of a dog-bone 

PDMS sample, schematically shown on the left. Graph: relaxation time 𝜏0 

measured by MSDWS (black circles, left axis) and corresponding experimental (red) 

and nominal (blue) strain rate 𝜆̇ (right axis), as a function of 𝜆𝑁 . Inset: exponent  

𝑝 as a function of 𝜆𝑁 . 

A. Averaged strain rate measurement 

We first validate MSDWS applied to mechanical tests in uniaxial extension of a dog 

bone PDMS sample to which a nominal strain rate 𝜆̇𝑁 =1.25×10-4 s-1 is applied. 

The autocorrelation function is calculated for a ROI located in the center of the 

sample (with size of 1 × 2 cm2, indicated by the dashed rectangle in Fig. 4). The 

autocorrelation function is fitted to Eq. (2), using a, p and 𝜏0  as fitting 

parameters. We find that a is around 0.015 from fittings at different 𝜆𝑁, so that 

the absorption is very low. Note that a should be essentially constant throughout 

the experiment but its fitted value strongly depends on data quality. In the 



following fittings, we used a constant value a = 0.015.  An example of fitting is 

shown in Fig. S2 in the supplementary material [85]. The relaxation time 𝜏0 is 

plotted as a function of the nominal strain 𝜆𝑁 in Fig. 4. We find that 𝜏0 is slightly 

smaller than 1 s at the beginning of the test and increases up to about 1.5 s with 

growing strain.  

Assuming that the observed dynamics are only due to the imposed strain, the 

strain rate 𝜆̇𝑀𝑆𝐷𝑊𝑆 is calculated from 𝜏0 using Eq. (9) with 𝑙∗ = 430 μm and 

plotted in Fig.4 (red circles, right axis). A sharp decrease is detected in the initial 

stage of the test (𝜆𝑁 < 1.1 ), after which 𝜆̇𝑇,𝑀𝑆𝐷𝑊𝑆  keeps decreasing, but more 

slowly. Due to the shrinkage of the cross-sectional area upon stretching, the 

macroscopic true strain rate may be calculated from the macroscopic nominal 

strain and macroscopic nominal strain rate,  

 𝜆̇𝑇,𝑚𝑎𝑐𝑟𝑜 =
𝜆̇𝑁

𝜆𝑁
 (16) 

The value of 𝜆̇𝑇,𝑚𝑎𝑐𝑟𝑜 is plotted in Fig.4 as a blue line (right axis). We found that 

the macroscopic values obtained from Eq. (16) match well with 𝜆̇𝑀𝑆𝐷𝑊𝑆  for 

𝜆𝑁 > 1.1, with around 15% of deviation. Concomitantly, the exponent 𝑝 (inset 

in Fig. 4) increases from 1.8 and plateaus to p = 2 for 𝜆𝑁 > 1.1. This suggests that 

there is an initial regime where other relaxation mechanisms, in addition to affine 

displacements, contribute to the decorrelation of the autocorrelation function. We 

speculate that these additional relaxation mechanisms may be due to 

heterogeneity of the local environment of the probe particles and from residual 

stresses generated when clamping the sample. Indeed, in preliminary tests on the 

same material with no extension, we observed enhanced dynamics upon clamping, 

which slowly relaxed over several hours [71]. The contribution of these additional 

mechanisms becomes negligible beyond 𝜆𝑁 = 1.1, where the evolution of 𝜆̇𝑇 as 

measured macroscopically and by MSDWS match very well. The 15% systematic 

offset between the microscopic and macroscopic strain rates is likely to stem from 



a difference between the values of 𝑙∗ in the PDMS sample and as obtained from 

measurements of the dynamics of aqueous suspensions of the same nanoparticles, 

respectively. The proportionality between the two curves seen in Fig. 4 strongly 

suggests that the value of 𝑙∗  used to analyze the MSDWS data via Eq. (9) is 

slightly underestimated. This is consistent with the fact that the mismatch 

between the refractive index of the TiO2 particles and that of the medium in which 

they are dispersed is larger in water than in PDMS, which would lead to a smaller 

l* in water as compared to that in PDMS23. Note that the proportionality 

established in Fig. 4 implies that the actual value of l* may be obtained by matching 

the deformation rate measured by MSDWS the macroscopic one. 

 

Fig. 5 (a) PDMS dog bone sample with a varying width along the stretching direction. 

The green rectangles indicate the clamp positions. A tensile strain is imposed by 

moving the bottom clamp at a velocity of 0.005 mm/s. The red hatched rectangles 

show the location of the 9 ROIs used for the data analysis. (b) 𝜈0  and the 

corresponding local strain rate measured by MSDWS as a function of the ROIs 

position. 

 

B. Spatially-revolved strain rate measurement 



We argued in Sec. III B that no correction for the rigid displacement of the sample 

was required in the experiments on PDMS reported here. To validate 

experimentally this result, the contribution of the rigid displacement is 

investigated using a customized dog bone sample, whose width along the 

extension direction varies, as shown in Fig. 5(a). A tensile strain is imposed by 

moving one clamp at a velocity of 0.005 mm/s, such that the displacement velocity 

is proportional to the distance z from the fixed clamp. The sample length is 40 mm 

and the nominal strain rate is 𝜆̇𝑁 = 1.25× 10-4 s-1. Leveraging on the space 

resolution afforded by MSDWS, we measure 𝜏0  for nine ROIs, at different 

positions as shown in Fig. 5(a). The corresponding 𝜆̇𝑀𝑆𝐷𝑊𝑆 values are calculated 

using Eq. (9) and are shown in Fig. 5(b). Overall, 𝜆̇𝑀𝑆𝐷𝑊𝑆 is of the same order of 

its macroscopic counterpart, 𝜆̇𝑇 =10-4 s-1, but inhomogeneous along 𝑧. 𝜆̇𝑀𝑆𝐷𝑊𝑆 

peaks around z = 22 mm, close to the middle part of the sample, where the width 

is smallest, showing enhanced deformation rates as expected due to strain 

localization. Crucially, 𝜆̇𝑀𝑆𝐷𝑊𝑆(𝑧) is nearly symmetric around the middle of the 

sample, reflecting the symmetry of the sample shape. If the rigid displacement 

sample would contribute significantly to the decay of 𝐶(𝜏), this symmetry would 

be broken and the decay would be faster at larger 𝑧 , where the displacement 

velocity is higher. Thus, the test on the dog bone sample with variable width 

confirms that here the dynamics is dominated by the relative motion of the 

particles, so that only the strain rate is measured, regardless of the displacement 

velocity.  

The experiments on PDMS under uniaxial extension confirm that the spatially-

revolved strain rate can be effectively measured by MSDWS. Furthermore, the 

combination of MSDWS and uniaxial extension provides a simple way to estimate 

𝑙∗ for a (solid) sample with unknown scattering properties, by tuning 𝑙∗in order 

to match the MSDWS strain rate to the macroscopic one. This provides a simple 

alternative to optical methods to measure 𝑙∗ , which are often quite delicate to 

implement, especially for solid samples [20, 22]. We shall use this method to 



determine 𝑙∗ for the adhesive tapes discussed in Secs. V and VI. 

V. Calibration of MSDWS measurement of adhesive debonding 

A. Characterizations of kinetics of debonding 

MSDWS is applied here to measure the spatially-resolved shear deformation rate 

at the interface between a soft adhesive film under fixed shear stress 𝜎𝑚𝑎𝑐𝑟𝑜 and 

a glass substrate during adhesive debonding, with the setup shown in Fig. 3. First, 

for different 𝜎𝑚𝑎𝑐𝑟𝑜 , the nominal (macroscopic) shear strain 𝛾𝑚𝑎𝑐𝑟𝑜(𝑡)  is 

measured from the macroscopic displacement in the vertical direction of the 

aluminum substrate and shown in Fig. 6(a). 𝛾𝑚𝑎𝑐𝑟𝑜(𝑡)  as a function of time 

exhibits a typical creep behavior for all 𝜎𝑚𝑎𝑐𝑟𝑜. A rapid increase in 𝛾𝑚𝑎𝑐𝑟𝑜 right 

after loading is observed, followed by a steady growth of 𝛾𝑚𝑎𝑐𝑟𝑜 , exhibiting a 

power law behavior with a constant exponent around 0.25. The results are in 

agreement with previous work where creep behavior was studied in the linear 

viscoelastic regime [72-74]. Finally, a sudden increase of 𝛾𝑚𝑎𝑐𝑟𝑜(𝑡) is detected at 

a critical value of 𝑡, corresponding to the full debonding. The shear strain where 

debonding occurs 𝛾𝑏~ 3  (shear strain at break) is almost independent of 

𝜎𝑚𝑎𝑐𝑟𝑜, consistent with a strong strain hardening typical of cross-linked adhesives 

[75].  

The values of time when 𝛾𝑚𝑎𝑐𝑟𝑜  reaches 1, 𝑡𝛾=1 , are plotted as a function of 

𝜎𝑚𝑎𝑐𝑟𝑜 in Fig. 6(b) to compare the debonding kinetics. The debonding time itself 

is not used to compare debonding kinetics as it can depend strongly on the edge 

effects at the interface. We found that 𝑡𝛾=1  decreases with 𝜎𝑚𝑎𝑐𝑟𝑜  following 

power law with exponent around –6, indicating the strong dependence on applied 

load of the creep failure kinetics. This type of experiment is classically carried out 

in industry and the only time measured is the failure time. Yet the debonding 

mechanisms are difficult to investigate and so are the heterogeneities in stress. A 

recent study on a similar shear failure geometry combining a fracture mechanics 



approach of shear failure and a finite strain modeling, showed clearly the 

heterogeneity of the load along the bonded surface [76, 77].  

We now focus on the spatial mapping of the deformation process on the interface 

with the glass. Images of the interface at different times after loading are displayed 

in Fig. 6(c) for 𝜎𝑚𝑎𝑐𝑟𝑜 = 0.26 MPa. These images are obtained by averaging 25 

speckle images acquired over a time interval larger than τ0 (the time interval is 

adjusted during the various experiments to optimize the time resolution and 

image quality), in order to smooth the spatial fluctuations of intensity due to the 

speckles and make various morphologies visible. As seen from the enlarged 

images, bottom row of Fig. 6(c), signs of fibrillation are visible on the top edge of 

the sample, while they are not visible on the bottom edge. Images are enhanced by 

averaging over a longer period, with interval time longer than 𝜏0, so that different 

images for averaging are uncorrelated. With increasing 𝛾𝑚𝑎𝑐𝑟𝑜 , fibrils develop 

further and can partially detach from the substrate. After 25 h of loading, 2 h before 

full debonding and with enhanced contrast, most of the top edge is still attached 

to the glass substrate with no substantial debonding. At the center of the sample, 

no particular morphological change is observed from these images. 



 

Fig. 6 (a) 𝛾(𝑡) as a function of time under different loading shear stresses 𝜏𝑚𝑎𝑐𝑟𝑜 . 

(b) Time where 𝛾𝑚𝑎𝑐𝑟𝑜   reaches unity, 𝑡𝛾=1 , as a function of 𝜏𝑚𝑎𝑐𝑟𝑜  . The data 

follow a power law with an exponent of -6, indicated by the red line. (c) Interface 

images at different times for 𝜎𝑚𝑎𝑐𝑟𝑜 = 0.26 MPa. Inset: enlarged images from the 

region indicated by the red rectangle.  

In previous studies of deformation during adhesive debonding in peel or probe 

tack tests, it was not possible to measure the in-plane deformation distribution of 

the debonding interface since the interface is static and bulk deformation is hard 

to visualize [78-80]. In experiments, debonding was studied by inspecting the 

sample from the side [81], which does not allow for the full characterization of the 

large-shear edge region. In principle, DIC can also be applied in this case to 

measure if there is a slippage at the interface between the substrate and the tape, 

but the measurement of the deformation field requires speckles that are normally 



prepared by spray painting, which will largely change the adhesive strength on the 

interface. By contrast, MSDWS allows for measuring the deformation rate of the 

adhesive tape over a layer of thickness several 𝑙∗ without changing its mechanical 

properties. For our sample, for which 𝑑 ≈ 5𝑙∗ , this corresponds to the full 

thickness of the tape, for which we can thus visualize and quantify in-plane 

heterogeneity in the mechanical behavior of the whole sample.  

B. calibration of deformation rate 

In the central region of the tape, where shear localization and peeling are not 

dominating, we expect the deformation measured by MSDWS to match the 

macroscopic strain inferred from the aluminum plate displacement, provided that 

the deformation is homogeneous through the thickness. We compare the MSDWS 

strain rate and the macroscopic one for a sample with 𝜎𝑚𝑎𝑐𝑟𝑜 = 0.62 MPa, from 

the beginning of loading up to 𝑡 = 1404 𝑠, when debonding occurs. The MSDWS 

shear strain rate 𝛾̇𝑀𝑆𝐷𝑊𝑆 is calculated from the fitted relaxation time 𝜏0,𝑠𝑠of 𝐶(𝜏) 

using Eq. (10), with kl* = 3.3 × 103 independently measured in an uniaxial 

extension test on the bare tape (see Fig. S3 in the supplementary material [85]). 

The MSDWS data are obtained by averaging 𝐶(𝜏) in a square region of size 1.5 × 

1.5 mm2 located in the center of the sample, as indicated in Fig. 7. The macroscopic 

strain rate is obtained by numerically differentiating 𝛾𝑚𝑎𝑐𝑟𝑜 after smoothing the 

data with a sliding window of 60 s, to reduce noise. Fig. 7 shows that 𝛾̇𝑀𝑆𝐷𝑊𝑆 

matches well the overall trend of 𝛾̇𝑚𝑎𝑐𝑟𝑜 , although the MSDWS strain rate is 

systematically larger than the macroscopic one by around 20%. Such a 

discrepancy may be due to uncertainties in the sample thickness d used to 

calculate the macroscopic strain rate or in the value of kl* obtained from the 

uniaxial extension test. Furthermore, we analyze the MSDWS data for both the 

uniaxial extension test and under shear with the formalism of Sec. IIB, which 

applies to semi-infinite samples, while for our tape samples the condition d >> l* 

is not met. Since the ratio between the microscopic and macroscopic strain rates 



is close to unity and constant throughout the test, this difference has no impact on 

the discussion that will follow. We emphasize that the strain rate inferred from 

MSDWS has a much lower noise than the macroscopic data. MSDWS directly 

measures strain rate with a superior sensitivity, while macroscopic strain data 

need to be differentiated, which is a notorious source of experimental noise.  

 

Fig. 7 Sketch on the left: side view of the sheared adhesive tape, the dashed rectangle 

indicates the location of the ROI for which the MSDWS data shown on the right are 

collected. Right:  𝛾̇𝑀𝑆𝐷𝑊𝑆  and 𝛾̇𝑚𝑎𝑐𝑟𝑜   as a function of time for 𝜎𝑚𝑎𝑐𝑟𝑜   = 0.62 

MPa. Inset: 𝛾𝑚𝑎𝑐𝑟𝑜  for 𝜎𝑚𝑎𝑐𝑟𝑜  = 0.62 MPa.  

VI. Heterogeneous deformation during adhesive debonding 

A. Strain rate maps 

To further characterize the spatial distribution of the strain rate, 𝛾̇𝑀𝑆𝐷𝑊𝑆 maps 

of the whole interface at different times are shown in Fig. 8 (a), for the case of 



𝜎𝑚𝑎𝑐𝑟𝑜 = 0.62 MPa. The maps are obtained from spatially resolved autocorrelation 

functions, by dividing the imaged interface in ROIs with size 0.3 × 0.3 mm2. The 

area of the tape that initially adheres to the glass slide is indicated by the red 

rectangle. The white region in the maps corresponds to the debonding region. 

Higher 𝛾̇𝑀𝑆𝐷𝑊𝑆 values are detected at the edges, around a central area that bears 

most of the applied stress. These areas with a higher deformation rate propagate 

toward the inner region as creep proceeds and debonding sets in. It has been 

reported that during shear of a single-lap joint, strain and stress at the interface 

are relatively uniform along the tape, but both shear and peel stress peak at the 

edge [82]. Previously, this behavior could only be predicted theoretically or 

investigated numerically. By contrast, MSDWS reveals the spatial distribution of 

the deformation rate in the adhesion plane. Furthermore, the boundaries of the 

central area that bears most of the stress can be assessed more reliably than by 

looking at the emergence of morphological features, as in Fig. 6(c). Note that high 

values of 𝛾̇ originate here from both localized shear and peel at the edge, which 

cannot be distinguished from each other. From about 150 s before global 

debonding, the local strain rate at the top and bottom edges are significantly 

enhanced, up to about twice the macroscopic strain rate.  

We now turn to a more detailed analysis and quantify the observations in Fig. 8(a). 

We calculate the profile of the local strain as a function of the distance 𝑦 from the 

top edge, by averaging 𝛾̇𝑀𝑆𝐷𝑊𝑆  over the width of the hatched region (1 mm), 

shown in Fig. 8(a). We show in Fig. 8(b) profiles of the local shear rate (curves are 

offset along the y axis for better comparison) with the absolute scale indicated in 

Fig. 8(b), normalized by the macroscopic scale for various t after loading the 

sample. When approaching the debonding time, regions exhibiting high 

deformation rates further penetrate toward the central region of the sample and 

𝛾̇𝑀𝑆𝐷𝑊𝑆/𝛾̇𝑚𝑎𝑐𝑟𝑜 can locally reach values as high as 2. Crucially, this marked growth 

of the local strain rate occurs at a time when 𝛾̇𝑚𝑎𝑐𝑟𝑜 is still stable and the sample 

is far from full debonding (𝛾𝑚𝑎𝑐𝑟𝑜 around 1.7 while 𝛾𝑏 ≈ 3), which occurs at t = 



1404 s. These results demonstrate the superior sensitivity and richness of 

information of spatially-resolved MSDWS, which allow one to detect subtle 

changes in the deformation rate, hundreds of seconds before the emergence of any 

macroscopic precursor of debonding. 

 

Fig. 8 (a) 𝛾̇𝑀𝑆𝐷𝑊𝑆 maps at different times t after loading and adhesive tape under 

shear with 𝜎𝑚𝑎𝑐𝑟𝑜  = 0.62 MPa (same test as in Fig. 7). The region that is initially 

bonded is indicated by the red rectangle. (b) Normalized shear rate 𝛾̇𝑀𝑆𝐷𝑊𝑆/𝛾̇𝑚𝑎𝑐𝑟𝑜 

calculated for the shaded region in (a), as a function of the distance y from the top 



edge. Curves are offset vertically for clarity, the bar  corresponds to a change of 0.3 

in 𝛾̇𝑀𝑆𝐷𝑊𝑆/𝛾̇𝑚𝑎𝑐𝑟𝑜 ., Data are color-coded according to the value of 𝛾̇𝑀𝑆𝐷𝑊𝑆/𝛾̇𝑚𝑎𝑐𝑟𝑜 ., 

as shown by the color bar on the right.   

B. Dynamic activity maps 

The results shown in Fig. 8 were obtained by calculating the local shear rate from 

the characteristic time 𝜏0 determined by a fit of the full autocorrelation function. 

This procedure leads to excellent results, but is somehow time consuming. Indeed, 

for each t and each position 𝒓⃗  of interest one needs to first calculate 𝐶(𝑡, 𝜏, 𝒓⃗ ) for 

a sufficiently large sets of time delays, and then perform a non-linear fit on each 

𝐶(𝜏) function. To speed up the processing, for each 𝑡 one may simply calculate a 

DAM, i.e. a spatial map of the degree of correlation at a fixed time delay 𝜏 [31]. 

Assuming that the decay of the autocorrelation function may be attributed only to 

the affine deformation and taking for simplicity 𝑎 = 0, from Eqs. (3), (4) and (10) 

one has  

 (−
ln

C(𝜏)−C(∞)

C(0)−C(∞)

2𝜖
)

2

= 3𝑘2𝑙∗2𝑓[𝑫(𝜏)] =
𝜏2𝛾̇𝑀𝑆𝐷𝑊𝑆

2𝑘2𝑙∗
2
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  C(∞) = B, C(0) − C(∞) = 𝐴, (17) 

such that 

 𝛾̇𝑀𝑆𝐷𝑊𝑆 =
√10ln

C(0)−C(∞)

C(𝜏)−C(∞)

2𝜖𝑘𝑙∗𝜏
  . (18) 

In Eq. (18), 𝐶(0) and 𝐶(∞) are the correlation values at zero delay and infinite 

delay, respectively, which can be approximately calculated as the correlation of one 

image with itself and with images at a large time delay 𝜏. In writing Eq. (18), we 

have used the expression of D for simple shear: one can write similar equations 

for different deformation geometries, e.g. for uniaxial extension using Eq. (9). 

Using Eq. (18), the DAMs can thus be directly converted to maps of the local strain 



rate [83, 84]. This procedure is much faster than the fitting scheme described 

above, essentially because the correlation coefficients C need to be calculated only 

for one lag value.   

Fig 9(a) shows DAMs calculated at 𝑡 = 1080 s for 𝜏 = 0.18 s and 0.6 s, again 

for the experiment with 𝜎𝑚𝑎𝑐𝑟𝑜  = 0.62 MPa. The two maps show qualitatively 

similar dynamics distributions: at the top-right corner where the debonding starts, 

the value of 𝐶(𝜏) is lower, implying that the dynamics are faster. Note that, by 

choosing different values of the time delay 𝜏, one can tune the sensitivity of the 

DAM to deformations occurring on different time scales, striking the desired 

balance between measuring the “instantaneous” deformation (by keeping  as 

small as possible) and assessing the cumulated deformation (by increasing 𝜏 ). 

Figure 9(b), compares the maps of the local strain obtained either from the DAM 

shown in Fig 9(a), or by fitting the full (local) autocorrelation functions. The spatial 

distributions obtained from the two methods are very similar, demonstrating the 

soundness of the approach based on the DAMs. For these data, the gain in time 

when using the DAMs is quite substantial, since the full fitting procedure was 

about 100 times slower than that based on the DAMs.   

A few remarks on the limits of the DAM approach are of interest. First, we note that 

retrieving the deformation rate from a DAM is only valid when the autocorrelation 

functions have the same shape over the whole image. Furthermore, when the 

magnitude of the deformation rate varies too much over the imaged sample or 

with time, the DAM approach significantly loses accuracy, due to the exponential 

shape of the autocorrelation function, which makes the DAMs poorly sensitive to 

deformation for time delays too small or too large compared to the relaxation time 

of C. Finally, the amplitude of the autocorrelation function, 𝐴 in Eq. (3), depends 

on the coherence of the scattered light, which may vary over the imaging field. In 

practice, the most reliable and efficient approach would mix both fitting and using 

DAMs: (1) correlation functions calculated in real time on a subset of the acquired 



images should be monitored, in order to determine the optimal 𝜏 for DAMs; (2) 

renormalization of the correlation value by spatially resolved 𝐴  in the subset 

images. 

 

Fig. 9 (a) Dynamic activity maps (DAMs) for 𝜏 = 0.18 𝑠 (left) and 0.3 s (right). (b) 

𝛾̇𝑀𝑆𝐷𝑊𝑆 map calculated from a DAM (left) and from fits of the local autocorrelation 

functions.  



VII. Conclusions 

We have shown that MSDWS is a powerful tool for the measurement of spatially- 

and temporally-varying mechanical responses. Even though a complete modeling 

of the intensity autocorrelation function remains challenging, we have 

demonstrated that in a wide range of common testing situations, it is possible to 

directly quantify the deformation rate distribution from the decay of space- and 

time-resolved correlation functions. MSDWS is relatively simple, requiring only 

illumination of the sample with coherent laser light and detection with a 2D sensor, 

typically a standard CMOS camera. Because MSDWS is not too sensitive to the exact 

illumination and detection parameters (angles of the incident and collected light 

with respect to the sample, acceptance angular range of the detector, etc.), the 

requirements on optical alignment and the experimental environment are less 

strict than in other optical methods. The tests on PDMS under elongation strain 

have allowed us to validate the theoretical analysis presented in Sec. II. The 

method was then applied to the investigation of adhesive debonding, unveiling a 

heterogeneous deformation rate distribution and the emergence of microscopic 

precursors of failure hundreds of seconds before macroscopic debonding. 

This paper provides theoretical and practical guidelines for using MSDWS as a 

powerful tool for measuring the local mechanical response of a loaded soft solid. 

A successful and efficient implementation requires a suitable combination of 

sample opacity ( 𝑙∗ ), range of deformation rate, testing geometry, and data 

processing strategy. We hope that our work will further spur interest in this 

powerful method. 
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