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Abstract

We extend the recently introduced setting of coherent differentiation for taking
into account not only differentiation, but also Taylor expansion in categories which are
not necessarily (left)additive. The main idea consists in extending summability into
an infinitary functor which intuitively maps any object to the object of its countable
summable families. This functor is endowed with a canonical structure of bimonad. In a
linear logical categorical setting, Taylor expansion is then axiomatized as a distributive
law between this summability functor and the resource comonad (aka. exponential),
allowing to extend the summability functor into a bimonad on the Kleisli category of
the resource comonad: this extended functor computes the Taylor expansion of the
(nonlinear) morphisms of the Kleisli category. We also show how this categorical ax-
iomatizations of Taylor expansion can be generalized to arbitrary cartesian categories,
leading to a general theory of Taylor expansion formally similar to that of differential
cartesian categories, although it does not require the underlying cartesian category to
be left additive. We provide several examples of concrete categories which arise in
denotational semantics and feature such analytic structures.

Differentiation, Lambda-Calculus and Linear Logic. Linear Logic (LL) is a field
that arose from semantics ([Gir87]), following the observation that some interesting models
of the A-calculus were actually the Kleisli category £ of some category L of linear morphisms.
That is, a morphism from object X to Y can be seen as a morphism in £(!X,Y"), where £
is a category of linear morphisms and ! is a comonad on £. The syntactical counterpart of
a morphism in £ is a proof/program that uses its input (data or hypothesis) exactly once,
and the syntactical version of !  features a construction (called promotion) that makes a
resource a duplicable and discardable.

It turns out that in multiple models of LL, the morphisms f € £(!X,Y) are differentiable
in some sense, strongly suggesting that differentiation of proofs and programs should be
considered as a natural LL operation. Remember that for any Banach spaces E and F', a
function f : E — F is differentiable at = € E if there is a neighborhood U of 0 in F and a
linear and continuous function ¢ : E — F such that, for all u € U

[l +u) = f(z) + o) + o[ul]) . (1)

When ¢ exists, it is unique and is denoted as %(z). When %(:1:) exists for all z € F, the

function % : E — L(E,F), where L(E, F) is the Banach space of linear and continuous
functions E — F, is called the differential of f. This function can itself admit a differential



and so on. When all these iterated differentials exist one says that f is smooth and the nth
derivative of f is a function jw—ﬁf :E — L,(E,F) where L,,(E, F) is the space of continuous
n-linear symmetric functions E™ — F'. It can even happen that f is locally (or even globally)
expressed using its iterated derivatives by means of the Taylor Formula
oo
1d™f

n=0

When this holds locally at any point z, f is said to be analytic.

Based on categorical models of LL where morphisms f € £(!X,Y) are analytic functions,
the differential A-calculus ([ERO03]) and differential LL provide a logical and syntactical
account of differentiation. If ',z : AF- P: Band I' F Q : A, then one can define in these
systems, by purely syntactical means, a program I',x : A - %—5 - @ : B whose denotational
semantics in such models is the derivative of the interpretation of P wrt. the variable =z,
linearly applied to the semantics of (). This syntactic derivative can be seen as a version
of P, where exactly one call to the variable x that occurs during the computation of P
is replaced with a call to ): this explains why =z is still free in %—I; - @ in general. This
provides a new approach of finite approximations of functions by a syntactical version of the
Taylor Formula whose effect is to translate A-calculus application (P)Q into the differential

A-calculus in such a way that

1 (o0"P

n! | oxn

(Az.P)Q reduces to nzzo (@Q,...,Q) ] [0/x]. (3)

n times

The term of rank n in this formal sum corresponds to the part of the computation that
uses the input @ exactly n times. Applying this transformation hereditarily to all the
applications occurring in a A-term, it becomes possible to turn it into an infinite sum of
strongly normalizing resource terms, see [ER0S].

Differentiation is deeply connected with addition, as it can already be seen in its defini-
tion Eq. (1) and in the syntactical Taylor expansion Eq. (3). As a result, the differential
A-calculus is always endowed with an unrestricted operation of sum between terms. Simi-
larly, all categorical models of the differential A-calculus and of differential LL (see [BCS06,
BCS09, Manl2]) were using categories where hom-sets have a structure of commutative
monoid. The only available operational interpretation of such a sum being erratic choice,
these formalisms are inherently non-deterministic. This is in sharp contrast with the uni-
formity property of the sum that can be observed in the syntax. For example, if the term of
Eq. (3) reduces to a variable, then only one term of the sum is non-zero. The position n of
this term gives the number of times the term @ is evaluated during the weak head reduction
strategy as shown in [ER03]. Furthermore, many deterministic (or probabilistic) models
of LL such as the ones based on the relational model (coherence spaces and probabilistic
coherent spaces) feature morphisms in £(!X,Y) which are clearly analytic in some sense,
although the hom-sets do not feature a commutative monoid structure.

Coherent differentiation. Recently, in [Ehr22b], it was observed that, in a setting where
all coeflicients are non-negative, differentiation survives to strong restrictions on the use of
addition. Consider for instance a function [0, 1] — [0, 1] which is smooth on [0,1) and all of
whose iterated derivatives are everywhere > 0'. If x,u € [0, 1] are such that z +u € [0, 1]

1This actually implies that f is analytic.



then f(x)+ f'(z)u < f(x4u) € [0,1] (this makes sense even if f'(1) = oo, which can happen:
take f(z) =1 —+/1—2x). Soif S is the set of all such pairs {z,u)) that we call summable,
we can consider the function D(f) : (z,u)) — <<f(x), %(:1:) . u» as a map S — S. This basic
observation is generalized in [Ehr23] to a wide range of categorical models £ of LL including
coherence spaces, probabilistic coherence spaces etc. where hom-sets have only a partially
defined addition. In these summable categories, S becomes an endofunctor £ — L equipped
with an additional structure which allows defining summability and (partial) finite sums in
a very general way and turns out to induce a monad. Differentiation is then axiomatized
as a distributive law IS = S! between this monad (similar to the tangent bundle monad of
a tangent category, see [Ros84]) and the resource comonad ! of the LL structure of the
category? L. Indeed, this distributive law allows one to extend S to £y, the Kleisli category
of ! | and this extension D : £, — £, inherits the monad structure of S. A category
equipped with such a differentiation is then called a coherent differential category. It was
also observed that the functor S often arises as D — _ (the category £ being most often
symmetric monoidal closed, with internal hom of X and Y denoted as X — Y'), where
D =1&1 (1 is the unit of the tensor product of £). This object D can be endowed with
the structure of a comonoid from which the monad structure of S arise. Differentiation then
boils down to the existence of a coalgebra structure D — !ID on I which is compatible with
its comonoid structure. This case where the coherent differential structure of a category
arises in that way is called elementary.

Contributions of this work. The goal of the present article is to study the Taylor
expansion in this setting of partial sums. We believe that this is a crucial step towards
providing generic tools to define a denotational semantics of the differential A-calculus and of
the syntactical Taylor expansion in a much more general setting than the current state of the
art of [Man12]. The starting idea is that for the same reason that Df(z) = ((f(x), %(m) u))
is defined, it should be possible to define directly a second order approximant.

2
7 o) = (160 L) -0y G0 )+ L))

The term u; should be seen as a first order variation and the term wus as a second order
variation. So Tf (x,u1,us)) gives the components (sorted by order) of the order 2 Taylor
approximation of f on the variation u; + us. Because the coefficients are non-negative, this
sum is lower than f(z + uq + u2), so it is well-defined. This idea should work for any order,
and going to the limit, for an infinite amount of coefficient, yielding an operator which
provides all the terms of the Taylor expansion.

The first step is to introduce an infinitary counterpart of the summability structure S. It
turns out that S is not only a monad, but also a comonad. The monadic and comonadic
structures interact well, turning S into a bimonad (Section 1). Surprisingly, the whole Taylor
expansion operation is again a distributive law !S = S! following the exact same properties
as coherent differentiation, except that now S is infinitary in the sense that an “element” of
S(X) is an N-indexed family of elements of X whose infinitary sum is well-defined. This
distributive law allows, as it is standard, to extend the functor S into a functor T : £y — L,
which inherits the monadic structure of S.

One more axiom is added, ensuring intuitively that the maps are analytic in the sense
that they coincide with their Taylor expansion. This axiom was the missing piece to ensure
that T inherits from S the structure of a bimonad. We call a category equipped with such

2Which by the way needs not be a fully-fledged LL model.



Taylor expansion an analytic category (Section 2). Again, in many concrete models of LL,
the functor S is equal to D — _ where this time D = 1 & 1 & --- (N-indexed cartesian
product). This object D can be endowed with the structure of a bimonoid that completely
determines the bimonad structure of S. The analytic structure — that is, the aforementioned
distributive law !S = S! — then boils down to a coalgebra D — ! compatible with the

bimonoid structure (Section 4).

In Section 5, we complement these general categorical considerations with concrete exam-
ples which are all models of LL. where the exponential (the ! comonad) is free, that is, which
are Lafont categories. The first example is based on a notion of coherence space discovered
introduced in [Lam95], which seems deeply related to Scott semantics. The second one is
based on nonuniform coherence spaces that were introduced in [BEO1] and are known to
have two different exponentials, one of them being the free exponential. In this setting, the
free exponential provides an example of elementary analytic category, but we show that the
non-free one is not an elementary analytic category, although it is an elementary coherent
differential category in the sense of [Ehr23]. We also mention the fact that the usual Gi-
rard’s coherence space, with their free exponential, are an elementary Taylor category, and
last we deal with the case of probabilistic coherence spaces (introduced in [DE11]) whose
only known exponential has been shown to be free. They provide yet another example of
elementary analytic category where morphisms are analytic functions with non-negative real
coeflicients. In this quantitative setting, we compute explicitly the action of the T functor
on morphisms induced by the D bimonoid, showing that it performs the expected Taylor
expansion of morphisms.

Taylor expansion in cartesian closed categories. Because L is a cartesian closed
category, it can be interesting to drift away from the SMCC structure of £ by only looking
at the structure induced in £,. This is what happened with differentiation. It was first
categorically axiomatized in a typical LL setting with additive categories, introducing a
notion of differential categories in [BCS06]. Differentiation was then carried to the setting
of cartesian left-additive categories, introducing cartesian differential categories in [BCS09],
leading to successful uses of differentiation outside the realm of LL. Unsurprisingly, the
Kleisli categories of differential LL categories are instances of cartesian differential categories,
but the latter are more general than the former and cover more examples of categories where
differentiation is available. Similarly, left summability structures and cartesian coherent
differential categories were introduced in [EW23] to axiomatize coherent differentiation
directly in any cartesian category. They arise in particular as the Kleisli category of coherent
differential categories, and are at the same time a conservative generalization of the cartesian
differential categories.

Since analytic categories are very similar to coherent differential categories, it is possi-
ble to introduce in a very similar way a notion of cartesian analytic category (Section 3).
We can then define the notion of a cartesian closed analytic category. This more direct
axiomatization should provide the foundation for working on the denotational semantics of
syntactical Taylor expansion, but also provide a categorical framework for Taylor expansion
independent of LL.

Mates and distributive law. One contribution of this article is to exhibit the crucial role
played by the mate construction (Section 8) in the elementary case, both in the setting of
[Ehr23] and in the setting of this article. In the elementary case, the commutative bimonoid
D induces a bimonad — ® D. This bimonad is the left adjoint of S = (D — ), so the
mate construction induces a bimonad structure on S that turns out to be precisely the



one described in Section 1.4. Then the mate construction also induces a bijection between
natural transformations 9 :!S=-Sland 9: (! ®D) = !(_ ® D), and it turns out that this
bijection preserves distributive laws. It provides a crucial step when showing that Taylor
expansion amount to a coalgebra on D.

Related work. There might be connections between the work presented here and the
recent article [KL23] where an account of Taylor expansion in differential LL is provided,
based on the use of a resource exponential modality ! which has not only its standard
comonad structure, but also a monad structure, thus turning it into a bimonad. In our
setting, it is not the exponential modality which features a bimonad structure, but the
infinitary summability functor S which does not at all play the same role: for instance,
in LL models, the functor S preserves cartesian products whereas the ! functor turns the
cartesian product into a tensor product. Another difference between the two approaches is
that, being based on differential LL, [KL.23] is based on additive categories whereas one of
our main motivations is to deal with Taylor expansion in settings where addition is only
partially defined. A more detailed analysis of the possible connections between the two
approaches is definitely necessary.
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1 Left w-summability structures

Summability structures and left summability structures have been introduced respectively in
[Ehr23] and [EW23]. Both are a categorical axiomatization of partial sums. More precisely,
those categorical structures give to the hom-sets the structure of a finite counterpart of the
notion of partially additive monoid introduced in [AMS80]. The difference between summa-
bility structures and left summability structures is that in the former every morphism is
linear with regard to the sum (we will call this property additivity), while this is not the
case in the latter. Summability structures thus typically appear in models of LL £, while
left summability structures appear in the co-Kleisli categories of their exponential £; or in
other cartesian closed categories.

We introduce an infinitary counterpart of those structures. We work in the framework
of left additive structures, because it is more general and is necessary for Section 3. Still,
we will put a lot of emphasis on the properties of the category of additive morphisms, see
Sections 1.2 and 1.4.



1.1 Left pre w-summability structures

Let C be a category with objects Obj and hom-set C(X,Y’) for any X, Y € Obj. We assume
that any hom-set C(X,Y) contains a distinguished morphism 0%Y (usually X and Y are
kept implicit) such that for any f € C(Z, X), 0% o f = 0%Y.
Definition 1. An w-summable pairing structure on a category C consists of:

e A map (functional class) S : Obj(C) — Obj(C) on objects;

o A family (m;)$2, where 7; is a family of morphisms m; x € C(SX, X)) such that for any
X, the morphisms (m; x )2, are jointly monic. That is, for any f,g € C(X,SY), if
Ty o f =m;y og for any i € N, then f = g;
o A family of morphism ox € C(SX, X).
The object X will usually be kept implicit. We assume in what follows that C is equipped
with an w-summable pairing structure (S, (7;)2,, o).
Definition 2. A sequence of morphisms (f;)2, with f; € C(X,Y) is summable if there
exists (f; )0 € C(X,SY) such that m; o (fi);~, = fi- The joint monicity of the m;’s ensures
that when ((f;);-, exists, it is unique. We call it the witness of the sum. Then we set
Yico fir=oo(fi)iZg € C(X,Y).
Remark 1. A more standard approach to notations would be to write the projections starting
from the index 1 and not the index 0. The reason we proceed that way is that in Section 2,
the element at position ¢ in {fi);, can be seen as an order i variation or a degree of
differentiation.
Proposition 1. By definition, the morphisms (m;)2, are summable with witness (m;);o, =
id and sum Zzo m=o0.
Proposition 2 (Left additivity). Let g; € C(Y,Z) for any i € N and f € C(X,Y). If
(9:)22, is summable, then (g; o )2, is summable with witness (g; o fYicy = (9i)iep © f-
Moreover, > .2 (gio f) = (X e gi) o f-

Proof. Let w = (g:);o¢°f. Then mow = g;o f so w is a witness for (g;o f)52,. Furthermore,

Yoicolgiof)i=oow= (3290 f. O

An important class of morphisms is that of additive morphisms, for which addition is
compatible with composition on the right.

Definition 3. A morphism h € C(Y, Z) is additive if ho 0 = 0 and if for any summable
family (f; € C(X,Y))2, (ho f;)$2, is summable and >°° (ho fi) =ho > .2, fi.
Proposition 3. A morphism h such that h o0 = 0 is additive if and only if (hom;)2, is
summable with sum hoo.

Proof. For the forward implication, recall that (m;)$°, is summable with sum o. Thus, by
definition of additivity, (h o m;)$°, is summable with sum hoo. For the reverse implication,
assume that (f;)$°, is summable. By assumption, (h o m;)$2, is summable of sum h o o,
so Proposition 2 ensures that (ho f;)52, = (hom o (fi)icy)i2y is summable with sum

hoao((fi»fiozhozzofi. O

Definition 4. The w-summable pairing structure (S, (7;)52,, o) is a left pre w-summability
structure if the projections (m;)$2, and o are additive. The w-summable pairing structure
(S, (m:)22,0) is a pre w-summability structure if all the morphisms in C are additive.

We now assume that (S, (7;)52,,0) is a left pre w-summability structure. The additivity
of the projections implies that the sum behaves well with respect to the operation {()):~,



itself, and the additivity of o ensures that the order of summation can be permuted.

Proposition 4. Assume that for any j € N, (fi ;)20 is a summable sequence of C(X,Y)
such that ({ fij)izg) 720 is summable. Then for anyi € N, (f; ;)32 is summable, (3°72 fi.j)7o

is summable of witness <<Zji0 fi’j»;io = Z;’.io (fij)ieo- Furthermore,

oo o0

ZZf fig

1=0 7=0 0 =0

Proof. By additivity of m;, m; o Z;io ((f”»fio = Z;io m; o ((f”»fio = Z;io fi.j- By
definition of summability, the equality above implies that (Z;io fi.5)52, is summable of
witness 37 (fi,j);=o- Then its sum is equal to

SOS figm oo (fug), e Z 7o (fii) Z Z fis

i=0 j=0 =0 =0 =0 i=0

O

Remark 2. In the proof above, the equality 0072 (fi j)icg = 2520 0o( fi )iz, implicitly
means that if the sum on the left-hand side of the equality is deﬁned then the sum on the
right-hand side is also defined and both are equal. We will often use this kind of implicit
formulation, as it makes proof much more concise and readable.

Proposition 5. The family (0)52, is summable of witness (0);=, =0 and sum y_;~,0 = 0.
In particular, 0 is additive.

Proof. On the one hand, m; 0 0 = 0 by additivity of m;, so (0)52, is summable of witness 0.
On the other hand, o 0 0 = 0 by additivity of o so Y ;2,0 := 000 = 0. In particular, 0 is
additive due to Proposition 3 because 000 = 0 and (0);~, = (0o m;)io, so (00 m;)52, is
summable of sum 0 =00 0. O

1.2 The category of additive morphisms

We assume in this section that C is equipped with a left pre w-summability structure (S, 7, o).

Recall Proposition 3: a morphism h is additive if and only if (h o ;)32 is summable of
sum hoo. We define Sh := (hom;));2,, so that m; o Sh = hom; and 0 0Sh = hoo. We can
easily check by joint monicity of the m; that Sho (z;);~q = (hox;);—,, so Sh consists in
applying h in each coordinate.

Proposition 6. For any X, the identity idx is additive and Sidx = idsx. For any h €
C(X,Y) and W € C(Y,Z), ' o h is additive and S(h' o h) = Sh’ o Sh.

Proof. The identity case is a straightforward consequence of Proposition 1 and Proposition 3.
Assume that h € C(X,Y) and b’ € C(Y, Z) are additive. Then m; o Sh' o Sh = h’ om; 0Sh =
h ohom so (h ohom), is summable of witness Sh' o Sh and sum o o Sh' o Sh =
hoocoSh=h"ohoo. But YohoO=h'o0 =0 so by Proposition 3, h’ o h is additive and
S(h' o h) = Sh' o Sh. O

Definition 5. Define €294 the category with the same objects and composition as C and
whose morphisms are the additive morphisms of C. This is a category thanks to Proposi-
tion 6, and there is a forgetful functor U : C2¢ — C. Proposition 6 also ensures that S is
a functor from €% to C. Finally, the projections 7; and o (as morphism in C) are natural
transformations S = U.



Notations 1. We will write the composition of h € C*4(X,Y) and b’ € C*¥(Y, Z) as h' h,
since it corresponds to the composition of linear maps which are linear with regard to the
sum.

We would like to turn S into an endofunctor on C24¢. This is possible, assuming (Pair-Add)
below. We will show in Proposition 10 that if (S,7,0) is a left summability structure (see
Definition 13), then (Pair-Add) necessarily hold, so this is not a strong assumption.

Definition 6. The left pre w-summability structure follows (Pair-Add) if whenever (h;)$2,
is a summable family of additive morphisms, then (h;);-, is additive.

Lemma 1. Under the assumptions of (Pair-Add) above, Y .2 hi =0 (hi) ;= is also addi-
tive.

Proof. It is the composition of two additive morphisms so it is additive. O

Any left pre w-summability structure on C trivially induce a pre w-summability structure
on C2%4 since the projections and the sum are all additive. Furthermore, (Pair-Add) ensures
that two morphisms of C?94(X,Y") are summable in C?% if and only if they are summable
in C. Besides, if h is additive then h o 7; is additive. So by (Pair-Add), Sh = (hom;);°, is
also additive. This means that S turns into an endofunctor on €%, and that the m; and o
(as morphisms in C244) are natural transformations S = Id.

Proposition 7. The pairing of natural transformations in C?% is also a natural transfor-
mation. More precisely, let (') be a family of natural transformations o’ € C*Y(FX,GX).

Then the family («afx >>Zo € C*¥(FX,SGX))x is a natural transformation F = SG, and
the family (30, oy € C*%(FX,GX))x is a natural transformation F = G.

Proof. Assume that F,G : D — C*% are two functors and ax € C*%(FX,GX) is a
natural transformation. We want to show that «aé(»zo € C*4(FX,SGX) is a natural
transformation F' = SG. That is, for all / € D(X,Y), (b )=y Ff = Saf (i),
But 7m; (04 ) _, Ff = o4 Ff = Gfax = Gfm {(ok))._, = mSGf (o ))._,- By joint
monicity of the m;, we conclude that ({(a’y >>ZO) x is natural. Furthermore, Y~ ok =
ox <<afx >>Zo is natural since o is natural. O

If (S, ()%, 0) is a pre w-summability structure, then C = €%, (Pair-Add) obviously
holds, and every result stated in C24 hold in C. In fact, summability structure where initially
axiomatized in [Ehr23| as an endofuctors S for which 7; and o are natural. By Theorem 1

below, those two axiomatization are equivalent.
Theorem 1. Let (S, (7;)2,,0) be an w-summable pairing structure, as in Definition 1. The
following are equivalent
o (S,(m)Xy,0) is a pre w-summability structure on C
e S is endowed with the structure of a functor for which the m; and o are natural trans-
formations, and for any morphism h € C(X,Y), ho0=0.

Proof. The forward direction is a consequence of the development of this section. Conversely,
for any h € C(X,Y), ho0 = 0 by assumption, and the equation of naturality m; o Sh = hom;
ensures that (hom;);°, is summable with witness Sh and sum ¢ o Sh = hoo. So by
Proposition 3, h is additive. O



1.3 Left w-summability structure

Given an injection ¢ : A < B and a family f = (fa)aca we define a family § = gp*? =
(90 € C(Y, X))ven by

fa b€ p(A) and p(a) =b
gb = .
0 otherwise.

Lemma 2. The operation ¢ — @, is functorial, that is Id*7 = 7 and w*cp*7 = WOSD)*?-
Notations 2. A N-indexed family f = (f,, € C(X,Y))nen is the same thing as a sequence
(fn € C(X,Y))>>,. Whenever such a sequence is summable, we write {fY) := ( In)oro and
> JF = Zio fi.
Definition 7. (S-com) We say that the pre w-summability structure is commutative if, for
any set A, any ? € C(X,Y)4 and any injections ¢, : I — N, gp*? is summable iff 1/1*?
is summable, and then gp*? =Y f.

Assume that the w-summability structure satisfies (S-com). The following definition is
meaningful by this assumption.
Definition 8. For any set A, a family ? € C(X,Y)4 is summable if there is an injection
@ : A — N such that gp*? is summable, and then we set ? =D weafa=2 w*%
Remark 3. When A = N, this notion of summability coincides with the already introduced
notion of summability for sequences, thanks to (S-com). So the apparent clash of termi-

nology is harmless. Notice also that if 7 € C(X,Y)? is summable, then A is finite or
countable.

Remark 4. One major difference between this general definition of A-indexed summability
is that it does not make sense to speak of the witness of summability for a summable family
7 € L(X,Y)A, but only of cp*? for a given injection ¢ : A — N.

Observe that the empty family is always summable of sum 0. Besides, by Lemma 3 below,
for any bijection ¢ : A — A, the family (fs)aca is summable if and only if (f,(a))aca is
summable, so the summability of a family does not depend on the choice of indexes.

Lemma 3. If? =C(X,Y)4 is an at most countable family of morphisms and ¢ : A — B

is injective with B at most countable, then <p*? is summable zﬁ? is summable, and then

Se.f =27,

Proof. Assume first that ? is summable. Let ¢ : B < N be an injection, then pop : A - N
is an injection, hence (¢ o @), f = .« f is summable from which it follows that ¢, f is

summable with > gp*? =Y (¢o gp)*? = Z?

Conversely, assume that gp*? is summable, so let 1y : B — N be an injection, we know
that Y.« f = (¥ o ). f is summable and since ¥ o ¢ is injective it follows that ? is

summable. Moreover, > 7 =5 (¢o @)*7 =5 go*?. O

I;emma 4. If ? € C(X,Y)?4 is summable, g € C(U, X) and h € C(Y,V) is additive, then
f'=(hof,09€C(UV))seca is summable with Z?' =ho(d ?) 0g.

Proof. This is a direct consequence of Proposition 2, of the additivity of A and of the
definition of summability. O
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Definition 9. (S-zero) We say that the pre w-summability structure has zero if, for any
f € C(X,Y), the family f € C(X,Y)N such that fo = f and f,y1 = 0 is summable and
ST =
Definition 10. (S-flat) A pre w-summability structure is flattenable if (m; o m;)(; jyen2 €
C(52X, X)™¥ is summable.
Definition 11. (S-ass) A pre w-summability structure is associative if for any summable
family f € C(X, Y)Y,

e for all i € N the family (f; ;);jen is summable;

e the family (ZJEN fi.j)ien is summable;

e and we have

S fii=dY fig

(i,7)€EN? i€N jeN

Beﬁnition 12. (S-wit) A pre w—suglmability structure has witnesses if, for any faglily
h = C(X,SY)N, if the family 0 o h = (0 o h; € C(X,Y));en is summable, then h is
summable.

Definition 13. A left w-summability structure is a left pre w-summability structure that
satisfies (S-zero), (S-com), (S-flat), (S-ass) and (S-wit). An w-summability structure is a
pre w-summability structure that satisfies (S-zero), (S-com), (S-flat), (S-ass) and (S-wit).

We assume that C is equipped with a left w-summability structure (S, 7, o). We show in
Theorem 3 that the sum induced by this structure is a Y -monoid following the terminol-
ogy of [Hinl3]. Those monoids are the same as the partially additive monoids introduced
in [AMS0], except that the limit axiom is dropped®. Then the partially additive categories
of [AMS80] are probably a particular instance of our partially left additive categories in which
SX is equal to the countable coproduct of X with itself. We first show that (S-flat) and
(S-wit) provides a necessary condition to (S-ass).

Lemma 5. If? € C(X, Y)N2 satisfies
o for all i € N the family (fij)jen is summable,

e the family (3_,cy fi,j)ien is summable

then ? is summable. By (S-ass), we then have Z(i,j)eN2 fig =2 ien2jen fig-

Proof. Let 7 e C(X,SY)N be defined by h; = {(fi ;)i for each i € N. We have assumed

— —
that 0o h = (3 ey fij)ien € C(X, Y)Y is summable and hence by (S-wit), the family &
is summable. Let H = ((7)) € C(X,S%). By (S-flat) and Lemma 4, the family (m; o m; o

H)(,jyen> is summable, but 7 o m; 0 H = 7 0 h; = f; ;. So we have proven that f is
summable. The last statement of the lemma results from a direct application of (S-ass) to
O

Theorem 2. Let (f, € C(X,Y))aca and let p: A — B, assuming the sets A and B to be

at most countable. Then ? is summable iff for all b € B the family (fa)p(a)=p s summable
and the family (Zp(a):b fa)ven is summable. When these equivalent conditions hold, we

have 3 ue 4 fo = 2hen Zp(a):b fa

3This axiom will still be used when dealing with fixpoints, see Remark 6

11



Proof. Let ¢ : B — N be an injection and let (¢” : p~1({b}) — N)pep be injections.
Then the map ¢ : A — N? given by ¥(a) = (¢(p(a)), v*?(a)) is an injection. For each
b € B let ]Tg = (fa)p(a)=b be the restriction of ? to p~1({b}). Let ¢ = ¢*? = (9:; €
C(X,Y)) (i, j)enz-

Assume first that ? is summable, so that ¢*7 = ? is summable. By (S-flat), we know
that (gi,;)jen is summable for each ¢ € N and (3 ;. gi,j)ien is summable by (S-ass). If

i = ¢(b) for a (uniquely determined) b € B we have (g; j)jen = wi? so that F is summable
and )iy gij = Zp(a):b fa- If i ¢ ©(B) then g;; = 0 for all j € N. It follows that
(> en 9ig)ien = @43 p(a)=p fa)ven and hence (3°, ), fa)vep is summable and sums to
DieN 2ujen Jij = Do(i,jyenz Jij by (S-ass), and this latter sum coincides with 3 ¢ 4 fa since

7 = 1/’*?
Assume conversely that F is summable for all b € B and that (Zp(a):b fa)ven 1s

=

summable. Then ¢° f* = (g, (),;)jen is summable for all b € B and g;; = 0 if i ¢ ¢(B); it
follows that (g; j)jes is summable for each ¢ € N. Moreover,

J— Zp(a):b fa ifi = QD(b)
R

and hence (};cn0ij)ien = @«(X,()=p fa)vep and since (3, ) fa)bep is summable
it follows that (3o gij)ien is summable. By Lemma 5 it follows that (g ;)@ jenz is

summable and Y- yene 9ij = Djen D jen iy that is ? is summable (since g = 1/)*?)
and EaEA fa = EbEB Zp(a):b fa- 0

Theorem 3. The sum induced by (S,7,0) gives to C(X,Y) the structure of a > _-monoid.
That is:

(1) Unary axiom: The family with only one element (f) is summable of sum f.

(2) Partition associativity aziom: for any (B;):cr partition of A and fz (fa €C(X,Y))aca,
f is summable if and only if for all i € I the family (fu)vep, is summable and
(ZbeBi fv)ier is summable, and if one of those conditions is fulfilled, then

D=0 b

i€l beA,

Proof. The first statement is a direct consequence of (S-zero). The second statement is a
consequence of Theorem 3, with p : A — I defined so that p(a) =i if and only ifa € B;. O

Remark 5. As discussed in [MA86, Hinl3], the “only if” assumption of the partition as-
sociativity axiom in Theorem 3 that arises from (S-wit) is very strong, as it implies that
the morphisms are positive: if z +y = 0 then = y = 0. This leaves behind interesting
models of LL in which the coeflicients are not necessarily nonnegative, but in which maps
are definitely analytics, such as Kothe spaces, see [Ehr02], or finiteness spaces, see [Ehr05].

For now, we keep this stronger and fundamentally positive axiomatization because it suits
quite well with the situations which occur in the denotational semantics of programming
languages and of proofs. A more general axiomatization of summability structure based on
the partial commutative monoids of [Hin13] where the “only if” assumption is dropped is
currently a work in progress. It should allow to recover the summability dynamic of both
finiteness spaces and Ko6the spaces.

12



Remark 6. In [EW23|, additive morphisms only preserve finite summations (including
0), which corresponds to the usual algebraic notion of morphism of monoid. In our w-
summability setting, additivity means not only preservation of finite sums, but also of all
infinite sums whose existence is prescribed by S. This means that additive morphisms also
feature a property of continuity whose precise nature depends on the category C at stake.

A very interesting situation occurs when the w-summability structure of C satisfies three
additional properties

e a family ? € C(X,Y)N is summable as soon as, for any finite set A and any injection
@ : A — N, the family w*? is summable;

e the preorder relation < defined on hom-sets of C by f < g if 3h € C(X,Y) such that
g = f + h (where + is the binary addition induced by (S, (7;)52,,0) on C(X,Y)) is

antireflexive, that is, is an order relation;

o If for any finite subset A’ of A one has } 4 fo < f, then >, fo < f.

The first condition turns the structure of Y -monoid into a fully fledged partially additive
monoid, and the two other conditions turn it into an additive domain, see Section 8.3
of [MA86]. When these conditions hold, each hom-set C(X,Y") is easily seen to be an w-
complete partial order (ordered by < and having 0 as least element). The lub of (3", fi)nen
is given by >~ f;. Then, additive morphisms commute with the corresponding lubs in
the sense that h o sup,cy g; when h € C(Y, Z) is additive and g € C(X, Y)Y is a monotone
sequence.

All the examples provided in Section 4.7 are instances of this situation and, for that reason,
feature general fixpoint operators allowing to combine our coherent Taylor structures with
general recursion in the spirit of [Ehr22al.

Proposition 8. Let (f; € C(X,Y))jen and (h; € C(Y,Z))ien be summable and such that
Vi € N, h; is additive. Then (h; o fj)(i,j)eN2 is summable and

Y hiofi=0_h)oO_f)-

(i,5)EN? €N JEN

Proof. Let (gij = hio fj) i jjenz. For each i € N the family (g; j)jen is summable and sums
to hio) ey fi bladditivity of h;. Furthermore, the family (h; 03,y fj)ien is summable
and sums to (> h)o (D] ?) by left additivity (Proposition 2). So by Lemma 5, the family
(9i,5)(i,j)en? is summable, and we obtain the announced equation. O

Theorem 4. There is a morphism c € C(S2X,S%2X) such that for all i, € N, one has
T; OTMj; OC = T OTy.

Proof. The family (m; € C(S°X,SX)),en is summable (and sums to osx). Hence, for
each ¢ € N, the family (m; o ;) en is summable (and sums to m; o osx) by additivity of
m;. But by left additivity, the family (m; o osx)ien is summable (of sum ox o osx) and
hence by (S-wit), the family ((m; o ;) en)ien € C(S2X,SX)N is summable, so that we
can set ¢ = ((m o mj)jen)ien € C(S*X,S5%X). We have m; oc = {(m; o m;)jen and hence
;0 m; 0C = T; oM, as required. O

As another illustration of these axioms, we have the following.
Theorem 5. There is a morphism 0 € C(S2X,SX) such that, for alli € N, m; 00 =
Z;:o mi—jomj. For all i € N, there is a morphism ¢; € C(X,SX) such that mj o v; = ; jid
(and then o o; =id).

13



Proof. By (S-flat), (m; omj)(; jyenz is summable. Let B,, = {(k,n —k)|k € [0,n]}. Then the
B,, are a partition of N2, so by Theorem 3 the family (3 h_o Tk © Tn—k)nen is summable,
which implies the existence of fx. Next consider the one-element family f = (fa)acfs}
with f, = id. Let ¢ : A — N defined by ¢(x) = 0. Then w*? is summable of sum id by
(S-zero). By (S-com), it implies that 1. f is summable of sum id, where 1) is defined as
Y(x) =1i. Let ¢; = ((1/)*?» € C(X,SX). It satisfies the announced condition. O

Proposition 9. There is a morphism | € C(SX,S%X) such that m;omjol = &; jm;. That is,
I = (L 0mi)icy-

Proof. Define f; ; = d; jm;. Then for all 4, (f; ;) jen is summable of sum ;. But (m;)ien is
summable so by (S-wit), | := <<<(f”>)(;io>> .

i=

exists. Then T O Ty ol = fi,j = 5i,j7ri- O

1.4 The bimonad S

We now assume in this section that (S, 7, o) is a left w-summability structure. We want to
study the structure induced in C244. First, we show that the axiom (Pair-Add) necessarily
hold.

Proposition 10. A left w-summability structure always follows (Pair-Add).

Proof. Let (h;)$2, be a summable sequence, with h; € C(X,Y) additive. First, (h;);~ 00 =
(hio0):2y = (0):2, = 0by additivity of the ;. So by Proposition 3, it suffices to prove that
((hi)izgomy);2g is summable of sum (h); oa. But ((hi)iogom;)52g = ((hi o mi )i )70
by Proposition 2. By Proposition 8, the family (h; o 7;)¢; jyen2 is summable, so by (S-wit),

{({hiom; >>Z0>>;io exists. Furthermore,

0
<Z hiom; >> by Proposition 4

<hi oY 7 >> by additivity of h;

0
=(hioo)Zg={(hi)iZg00
It concludes the proof. O

Lemma 6. The pre w-summability (S,7,0) on C*4 follows (S-zero) and follows (S-com).
Besides, a family (hq € C*%4(X,Y))aca is summable in C?4 if and only if it is summable in
C, and Y, 4 ha is additive. Thus, the pre w-summability structure also follow (S-ass) and
(S-wit), and it is an w-summability structure on C3%.

Proof. This is a direct consequence of (Pair-Add) and the definition of the sum, using the
fact that 0 is additive (Proposition 5). O

Note that for all functors F, G : D — €24 for some category D, 0 is a natural transforma-
tion F' = G. Indeed, 0 Ff = 0 = Gf 0 by additivity of Gf. This observation will be used
in the proofs that follow.

14



Lemma 7. If for all a € A, (o%)x € C*¥(FX,GY) is a natural transformation F = G
such that for all X, (a%)aca is summable, then (3,4 a% € C*%(FX,GY))x is a natural
transformation.

acA

Proof. This is a direct consequence of Proposition 7 and the definition of the sum, using the
fact that 0 is a natural transformation F = G. o

Proposition 11. The families c, 6, ¢; and | are additive, and they are natural transforma-
tions: c:52=52,0:52=S5,,;:ld=S and|:S = S2.

Proof. All the morphisms above are defined as pairing of 0, projections, and sums of pro-
jections. Those basic blocks are all additive and are natural transformations (the sum of
projections is additive and natural thanks to Lemmas 6 and 7). So by Proposition 7 and
(Pair-Add), c, 6, ¢ and | are all additive and are natural transformations. O

Proposition 12. The tuple S = (S, 19, 0) is a monad on C?9.
Proof. We have

mi0x tosx = g T T Lo,sx = T ld =
l+r=1

™ 0SCx = E ™ T Sto,x = E Ty Lo, X Tp = T
l+r=1 l4+r=1

using the naturality of 7. Hence, 619 sx = 08 S(x = Id by joint monicity of the m;’s.
Next we have

T 0x Osx = Z m T Osx
l+r=1

dom ), mm

l+r=i  s+t=r

= § T Ty T

l+r+s=1

and

mi0x SOx = >  mm Sx
l+r=1

Z WloxTrT

I+r=1

Z ( Z ) M) Ty

I4r=i j+k=l

= E T T Tk

Jt+k+r=i

and hence 9}(95)(:9)(59)(. O

Proposition 13. The tuple S = (S, 0,1) is a comonad on C3%.
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Proof. We have

WiSUXlX :Uxﬂﬂxzaxbiﬂ'i:ﬂ'i

oo o0
miosx lx =m; g LT = g T Ly Tj = T
j=0 Jj=0

So by joint monicity of the m;, Sox |x = osx Ix = idx. Next we have

7T1'7TjS|X|X:ﬂ'ilerj|X:Li7TiLj7Tj: 0 oth .
otherwise
T 7Tj|sx|X:7TiLj7Tj|:7TiLij7Tj: 0 othe se
TW1

So by joint monicity of the m; m; we have Slxlx = Isx |x, and we conclude. O

The monad structure and the comonad structure are compatible together, in the sense
that they form a c-bimonad, recall Definition 73.

Lemma 8. Here are some useful observations on c: ¢ is involutive, ¢ = (Sm;);o, and
S7Ti C=T;.

Proof. First, m;mjcc = mjmc = m;m;id so by joint monicity of the m; m;, cc = id. Fur-
thermore, m; ;¢ = 7;m = m; Smy so by joint monicity of the m;, mjc = Sm;. That is,
c = (Sm;);2,- Finally, m; c = Sm; so using the fact that c is involutive, m; = Sm; c. O

Proposition 14. The natural transformation c is a distributive law SS = SS and SS = SS.

Proof. By Remark 37 it is only necessary to show that c is a distributive law SS = SS since
c is involutive. The first condition is that c is a distributive law SS = SS. It corresponds to
the two diagrams below. For the sake of readability, we write S instead of just S to make
clear which part is playing the role of the monad.

S §%S =~ S8 —» SS?
Losl Sto gsl lse
SS——SS  ss SS

C

We show both diagram using the joint monicity of the m; 7;.

myifi =0

T T Clg = T T Lo = .
0 otherwise

7Tj le:O

7T1'7TjSL0:7TZ'L07Tj: .
0 otherwise

So the left diagram holds.

i
mmjclsx = m;m Osx = Ty <Zﬂ'k mk>

k=0
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T T Sexcsx SCX :wiﬁijcsx SCX naturality Ofﬂ'j
= T; 9X STrj SCX

=m; Ox S27Tj functoriality of S
i
= (Z Tk Ti—k) S27Tj
k=0
i
=T; (Z T Ti—k) the sum is natural by Lemma 7
k=0

So the right diagram holds. Next, we show that c is a distributive law S§_:> SS. It
corresponds to the two diagrams below. For the sake of readability, we write S instead of
just S to make clear which part is playing the role of the comonad.

S —<+355 SS < SS
& lgs SQ i.s
S $5° 4555 — %5

cS Sc

The left diagram is a consequence of the joint monicity of the ;, using the naturality of o,
of 7;, and using the fact that Sm; c = 7; (see Lemma 8).

T;0sx C= stsﬂiczdsxﬂi =7TiSO'X
The right diagram is a consequence of the joint monicity of m; ;.

T T SCXCSX S|X = T;Cx TjCsx S|X
= S7TiS7TjS|X
= S(?Tiﬂ'j |)
B {so =0ifi#j

7; otherwise

0ifi#j

mimilsx cx = .
: m; ¢ = Sm; otherwise

Theorem 6. The monad S and the comonad S form a c-bimonad on C249.

Proof. The first three diagrams turning S and S into a c-bimonad are the following.

S2 _9S., g d —"-S 1d—s5
I T N
S——1d STSQ Id

The left diagram holds thanks to the computation below that relies on (S-ass) and Propo-
sition 8.

oxexzi@wmn_k): 3 mj:@m) S| —oo

n=0 \k=0 (4,§)EN? ieN jEN
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The center diagram holds by a straightforward computation using the joint monicity of the
m; m; and some case analysis. The rightmost diagram holds by (S-zero). The last diagram
is the following.

ss —% s SS

ol Jous

SSSS ———< 55— 5555

We use the joint monicity of the m; ;. We check the top path first.

7Ti9X = Z;c:()wkwi—k if 4 :j
0 otherwise

WinIXHX:{

For the bottom part, we first compute 7; m; (0 * 0) x.
T Tj (9 *9)){ =TTy 59)( 955X

=m; Ox 7j Ossx

i J
= E Tk Ti—k E T T5—1
k=0 k=0
= E T Ti—k T Tj—1

ke[0,i],l€[0,5]
Now observe that
Ty Tig Tiy Ty SCSX (l * |)X = Ty g Tiy Tiq SCSX SS'X |SX
= T, Tisz Tiy CSX Tiy SSlx Isx

= Ty Tjy Tig T4y SS'X ISX

Ty Tig | x iy Tiy lsx

Tio Ty if il = ig and iz = i4
0 otherwise

Thus

Wiﬂj(e*e)XsCS)(U*l)X: Z T Ti—k T Tj—1 SCSX('*')X
kef0,i],l€[0,5]

= E 7Tk7Ti_k7Tl7Tj_lSCSX (I*I)X
kefo,i],l€[0,4]

— {EZ_O Tpmi— ifi=j

0 otherwise

We conclude that the diagram commutes. O

1.5 Summability structure in models of LL

Assume that £ is a category equipped with an w-summability structure (S, 7, o). Since
£244 = £ we write the composition of f € £L(X,Y) with g € L(Y,Z) as g f. Then as seen
in Section 1.4, S is a bimonad on £. The category L is typically a model of LL, but it does
not to be a full-fledged model, so we will detail any assumption in use.
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1.5.1 Interaction with the monoidal structure

Assume that £ is a symmetric monoidal category. We write (®, 1, \, p, o, y) the symmetric
monoidal structure. We show how the w-summability structure should relate with this
structure.

Definition 14. The w-summability structure follows (S®-dist) if for all objects Xo, X1
(7Ti ® Xl)?io S ﬁ(SXO ® X1,Xo® Xl) and (XO K T € ﬁ(Xo ® SXl,XO ® Xl))?io are
summable, with respective sums ¢ ® X; and X; ® 0. Define

gp%le =(m® Xl»;')io € L(SXy ® X1,5(Xo ® X7)) so that o’ = (c ® X71)

@}(07X1 = <<X0 X 7Ti>>?i0 S ;C(XO [ SXl, S(XO X Xl)) SO that 0’(/71 = (XO X 0’)
Those are natural transformations thanks to Proposition 7.

Remark 7. Because the monoidal product is symmetric, only one of the assumption above
is actually necessary: (! can be defined from ° as o' = Sv® ©°+® and vice versa.

Proposition 15. The w-summability structure follows (S®-dist) if and only if whenever
(fi € L(X0,Y0))2, and (g; € L(X1,Y1))2, are summable, then for all f € L(Xo,Yy) and
g€ L(X1, Y1), (i ®9)2, is summable, (f @ ¢;)52, is summable, and

Zfi@)g:(z:fi)@g Zf®9i2f®<zgi>
i=0 i=0 i=0 i=0

Proof. The converse direction is trivial, taking f; = m; and ¢; = m;. For the forward
direction, define w = ©Y, v, ({fi)izy ® g)- Then mw = (m; @ Y1) ({fi)imo ® 9) = fi ©g. So
(fi ® 9)22, is summable of sum cw = (0 Q@ Y1) ((fi)ieo ® 9) = (X in fi) ® g. We do the
same for (f ® g;)52, and conclude. O

Proposition 16. If (f; € L£(Xo,Y0))ien and (g; € L(X1,Y1))jen are summable, then
(fi ® g5)(i.j)enz is summable and

Y fiwgi= (Zﬁ) @D g

(i,5)€N2 €N JEN

Proof. Observe that f;®g; = (f; @Y1) (Xo®g;). By (S®-dist), (f; ® Y1)ien is summable of
sum (3°;° fi)®Y1 and (Xo®g;) jen is summable of sum Xo®(3°72 g;). So by Proposition 8,
(fi ® 9j)(i,j)en2 is summable and

5 ﬁ@gj:(@m@m) 0w (Y0 :(zfi)® S,

(i,5)€N? €N JEN €N JEN
O
Theorem 7. The natural transformations ¢° and o' are a strength for the monad S (see

Definition 67). Furthermore, the monad S equipped with ©° and @' is commutative. The
commutativity of the monad is a consequence of the commutation of the following diagram.

0
Px,sy

SSX ®Y) &5 SX @Sy 252 S(X ®SY)

Sz,ag(,yl lSS"ﬁ(,Y

X ®Y) X ®Y)

CXQY
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Proof. Let us check that ¢! is a strength.

1
PXQY,Z

1®SX*>S (X®Y)®sSZ S(XeY)® Z)

\ lSAX OCX,Y,SZ\L lSO‘X,Y,Z

X® Y ©S7) — XoS(Y87) -— S(X e ©2)

Pxvyez

Those two diagrams above are just routine check by joint monicity of the m;, their naturality
(recall that £ = £394) and the naturality of A and «.

‘Px Sy ‘Px Y

X®Y X ®S%Y X% 5(X ©SY) 5 S2(X @)

X®L0l \ X®0yl l9x®y

X®SY—>SX®Y) X®SY S(X®Y)

1
Px.y

The left diagram is a consequence of the fact that X ® 0 = 0.

X®0=0ifi#0

1

i X ®uw)=X@(miw) =9, -
wcpx,y( to) (i to) { ® Y otherwise Tito

The right diagram is a consequence of the distributivity of the sum of ®.
i

7 7
1 1 1 1 1 1
TiOxey SPxy Px sy = Z Tk Tiek SPXy PX.SY = Z Tk PX)y Ti—k PX SY = Z(X®7Tk Ti—k)
k=0 k=0 k=0

T (X @0y)=(Xom)(X@0y) =X () mmik)

So the monad S is strong. Finally, the monad is commutative if the diagram below commutes.

‘Psx Y <Px SY.

SSXQ®Y) +—— SX®SY —— S(X®5Y)
Sw%‘yi J{ka,y (4)
S2(X®Y) o S(X®Y) N S2((X®Y)

This is a consequence of stronger property, which is as announced the commutation of the
diagram below.

‘Psx Y LPX SY.

SSXQ®Y) +—— SX®SY —— S(X ®SY)

S@‘i(ryl J{S@k,y

(X ®Y) (X ®Y)

CXQRY

It is proved by the joint monicity of the 7; 7;.
mmcSe’ ot =mmS’ el = mi P mpl = (M Y) (SX @ m) =m @ m

mmi St =mtmi’ =(Xem) (m;@SY) =7, @™
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As discussed in Section 7.3, the commutative monad S is then a lax symmetric monoidal
monad (see Definition 66). The natural transformation Lx, x, € £(SXo®SX1,S(Xo® X1))
is defined as the diagonal of the diagram in Eq. (4). Observe that

LXO,X1 = <<Z7Tk & 7Ti—k>>
k=0

=0
It means that if (f; € £L(Xo,Y0))ien and (g; € L£(X1,Y1))jen are summable, then

o0

Lo, (U320 © (g5)2,) = «ka@gz »

=0

If one intuitively see (fi)i-, as the power series > = fiX" and (g:);-, as the power series
Dm0 95X7, then Ly, vy ((fi)imo @95 )5=) behaves as the Cauchy product of the two power
series.

1.5.2 Interaction with the closed structure

Assume now that (S®-dist) holds and that the category is closed with regard to its symmetric
monoidal structure.

Definition 15. The category L is closed (with regard to ®) if for all object A and X,
the pair of objects (A, X) of £ has an internal hom (A — X, ev4). That is, there exists
evy € L((A — X)® A, X) such that for any morphism f € £L(X ® A,Y), there exists a
unique morphism cura(f) € £L(X, A — Y) such that

eva(cura(f)®@A)=f

Then curg : L(X ® A,Y) — L(X, A — Y) is a bijection whose inverse is given by

cur;‘l(g) =evy(g®A)

We chose to label cury and evy with the object A (as opposed to the objects X and Y that
are always kept implicit) because it makes some situations clearer, but we will often keep
the object A implicit and simply write cur and ev.

If A is such that an internal hom of (A, X) exists for all X, then there is an adjunction
~_®A-4A— , of unit cura(idxga) € L(X, A — (X ® A)) and co-unit evy € L((A —
X)® A, X). The functor A —o _ maps a morphism f € £(X,Y) to a morphism A — f €
L(A — X, A —Y) defined as cura(feva). Then cury and cur,' are natural bijections.

curga(fgh® A)) = (A— f)cura(g)h
cur'((A — f)gh) = feury'(g) (h® A)

We can define a natural morphism
@ == cur((Sev) 9 _ox 4) € L(S(A — X), A — SX)

—o

Proposition 17. We have (A —o ;) p° =m; and (A —o0c)p ™ =0
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Proof. Observe that

(A — m;) ¢—° = cur(m; (Sev) gpA_OX 4) by naturality of cur
= cur(evm; QDAHDX 4) by naturality of m;
= cur(ev (m; ® A))

(

= cur(cur™ ( i) = T
The equality (A — o) ™ = o is proved similarly, using that o ¢ Xo.x, = (0 ® X1) O

Proposition 18. If (cur(f:))2, is summable with f; € C(X @ A,Y), then (fi)2, is
summable and .2 cur(f;) = cur(3°2, fi)-

Proof. Let w = cur™(¢y (cur(fi))iey) € L(X ® A,SY). Then

mw =cur ' ((Y —m) oy (cur(fi))so,) by naturality of cur™*

= cur™ ' (m; (cur(fi))ic,) by Proposition 17
- f

So w is a witness for (f;)$2,, and > .2 fi = cw. But

cw=cur (Y — o) px (cur(fi))iey) by naturality of cur™

=cur (o ((cur(fz)»l o) by Proposition 17
= cur_l(z cur(fi))
i=0

So Y2y fi = cur (302 cur(f;)). It implies that cur(Y ;2 fi) = Doioy cur(fi)- O

Definition 16. The w-summability structure follows (S®-fun) if ¢ is an isomorphism.
The invertibility of ¢ provides an only if condition for Proposition 18.

Remark 8. Monicity is preserved by right adjoint functors, meaning that the A — m; are
jointly monic. This fact can also be checked by hand in a rather straightforward way using
the fact that cur is a bijection and is natural. This will be useful in the proof of Proposition 19
below.

Proposition 19. The following are equivalent:

(1) (S®-fun) holds;

(2) (A —o m;)$2, is summable;

(8) if (fi € L(X,Y))2, is summable then (A —o f;)52, is summable;

(4) if (fi € L(X Q@ AY))2, is summable then (cur(f;))52, is summable.
And then (¢™°) 7t = (A — m ).

Proof. (1) = (2) : Assume that ¢ is an isomorphism. By Proposition 17, (A —o m;)op ™ =
m;. Then A —o m; = m; 0 (p°) 1. Thus, (4 —o m;)$%, is summable of witness (¢ ™)1
(2) = (1): Assume that (4 — m;)$°, is summable. Then by Proposition 17

miofA—m) oo =(A—om)opT =m

(A—m)opofAd—m)Zy=mofAd—om) g=A—om
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We conclude that (A — m;);~, © ¢ = idg(a—x) by joint monicity of the m;, and that
9o (A —m);oy =idaosx by joint monicity of the A —o 7; (see Remark 8).

(2) = (3): Assume that (f;)$2, is summable. Observe that A — f; = (A — ;) 0 (A —
(fi)isy)- Then, by assumption (A —o 7;)72, is summable so (A — ;)22 is summable by
left additivity.

(3) = (2): (2) is a particular case of case (3), taking f; = ;.

(3) = (4): By naturality of cur, cur(f;) = (A — f;) o cur(idxg4). By assumption, if
(fi)32 is summable then (A —o f;)?°, is summable so by left additivity, (cur(f;))s2, is
summable.

(4) = (3): Recall that A —o f; = cur(f; oev). If (f;)52, is summable then (f; o ev)2, is
summable by left additivity, so (cur(f; o ev))s2, is summable by assumption. It concludes
the proof. O

Remark 9. We recognize the mate construction, see Remark 36: ¢ is the mate of ¢
through the adjunction ® A+ A —  taking L = R =S. It is showed in Proposition 40
and discussed in Section 7.3 that ¢" is a distributive law S ® A = S(_ ® A). So by
Theorem 33, (S®-fun) is a necessary and sufficient condition to ensure that the adjunction
_ ®AdA— extends to Ls, meaning that Ls is a symmetric monoidal closed category.

1.5.3 Interaction with the cartesian product

Assume now that £ is also a cartesian category (with finite or countable products). We
write the terminal object T and the cartesian product of (X;);er as &;er X, following the
notations of LL. The projections are written as p; € L(&;cr X, X;), and the pairing of
the f; € C(X,Y;) as (fi)ier € L(X,&icr Y:). Let tx be the unique morphism of £(X, T).
Observe that tx = 0% 7.

Definition 17. (S-&) The w-summability structure is compatible with the cartesian product
if the morphism

ce = (Spi)ier € E(S(lﬁg] Xi);lﬁg[ SX;)

is an isomorphism. See Section 3.2 for a motivation of this definition on the more general
setting of left additive categories. It is shown in Proposition 27 that cg' = (&er ; Voo

Then we can check that the monad S on £ equipped with the natural transformations ¢q
and c&_é1 is a lax symmetric monoidal monad (see Definition 66) with regard to the symmetric
monoidal structure induced by the cartesian product. The diagram can be checked by
hand, but this is a consequence of a more general observation. As mentioned in [AHF18]
in paragraph 2.3, any monad M = (M, 7, 1) on a cartesian category can be endowed with
the structure of an oplax symmetric monoidal monad (see Remark 34) taking n° to be the
unique element of C(M T, T) and n%, x, = (Mpo, Mp1) € C(M(Xo & X1), MXo & MX,).
Then it turns out that if n® = 77?1 and if n? is invertible, then (M,n° n?) is de facto a lax
monoidal monad.

This is precisely what happens here, since ¢ T = (tx)jo, = toy. Indeed, tsT (t)ic, =
idT simply because T is final, and 7; (t7);—, tsT € C(ST, T) is necessarily equal to m; (also
because T is final), so by joint monicity of the 7;, (tt )i, o tsT = idsT.

Remark 10. This oplax structure cg actually comes from the adjunction A 4 &  (where
A is the diagonal functor defined in Definition 62) and the mate construction of Section 8
applied on the natural transformation id : AM = (M x M)A. As shown in Theorem 33,
the invertibility of cg is then a necessary and sufficient condition to extend the adjunction
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A4 &  to the Kleisli category Ls, meaning that it is a cartesian category (T is final
since 1y € C?44(T,ST) is an isomorphism).

As discussed in Section 7.3 (taking the symmetric monoidal structure to be the one
generated by the cartesian structure &), it means that S is a commutative monad where the
two strength are defined as

’lﬁo = Cgl (TXQ&LO) = <<7T0&X1,7T1 &0,7T2 &0,>> S C(SXo&Xl,S(XQ&Xl))

1/)1 = ngl (LO &TXl) = <<X0&7T0,0&7T1,0&7T2,.. >> S C(Xo&SXl,S(Xo&Xl))

1.5.4 Interaction with the resource comonad

Here, we only assume that £ is equipped with a resource comonad.

Definition 18. A resource comonad is a tuple (!,der,dig, m®, m?) where (!,der,dig) is a
comonad on £ (with counit der, called dereliction, and comultiplication dig called digging)
and (mY m?) is a strong symmetric monoidal structure on the functor !  from the SMC
(L£,&,T) to the SMC (£,®,1) (see Definition 64) satisfying some coherence diagram that
we will not recall here, see for instance [Mel09]. Recall in particular that m® € £(1,!T) is
an iso and m% y € L(!X @ !V, !(X &Y))) is a natural isomorphism.

Let £y be the co-Kleisli category of this comonad. It has the same object as £ and
Li(X,Y) = L(IX,Y). The identity in this category is defined as derx € £(X,X). The
composition of f € £(X,Y) with g € £,(Y,Z) is defined as go f = g!fdigy. There is a
functor Der : £ — L, defined as Der X = X and Der h = hder.

Proposition 20. For any f € Li(X,Y) and h € L(Y,Z), Derho f = hf. For any
geLi(Y,Z) and h € L(X,Y), goDerh =g!h

Proof. By naturality of der and triangle identity of the comonad, Der ho f = hdery ! fdigx =
h fdernxdigy = hf. By triangle identity of the comonad, g o Derh = glhlderx digxy =
g'h. O

We show that the w-summability structure on £ induces a left w-summability structure
on E!.

Proposition 21. The structure (S, (Der m;)52,, Dero) is a left pre w-summability structure
on Ly, Der (h;);ey = (Derh;);=,, and Der >~ h; = > .° Derh;. In particular, for any
h e L(X,Y), Derh is additive.

Proof. For any f € £,(X,SY), Derm; o f = m; f so the Derm; are jointly monic and (f; €
L1(X,Y))2, is summable in £y if and only (f; € L(1X,Y))2, is summable in £. Also,
Dero o (fi)yo = o {(fi)icy so the sums agree. Furthermore, Der (h;);~, = (Derh;);~,
by joint monicity of the Derm; since Derm; o (Derh;).o, = m (Derh;);o, = Derh; =
Der (m; (hi);~,) = Derm; o Der (h;));~,. Then Dero o {Derh;);-, = Derc o Der {(h;)ic, =
Der (3°:2, hi). In particular, if h € £(X,Y) then Der h is additive. Indeed, Der ho0 = h0 =
0 and because (h ;)2 is summable of sum h oo, then (Der h o Derm;)2, = (Der (h7;))52,
is summable of witness Der Sh and sum Der (h o) = Der hoDer o. By Proposition 3 it means
that Der h is additive.

Then Der 7; and Der o are all additive so (S, (Der 7;)52,, Der o) is a left pre w-summability
structure on L. O

As we observed, (f; € Li(X,Y))32, is summable in £ if and only (f; € L(IX,Y))2, is
summable in £, so this structure follows (S-com). It immediately follows that a family (f, €
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L1(X,Y))aeq is summable in £ if and only if (f, € L(!X,Y))seca is summable in £, and
the sums are equal. As a result, (S, (Derm;)52,, Dero) follows (S-ass), (S-zero) and (S-wit).
It also follows from the fact that Der (h;);o, = (Derh;);, that if (hq € L(X,Y))aca
is summable in £ then (Derh, € Li(X,Y))aecq is summable in £y and ) ., Derh, =
Der >, c4 ha- As aresult (S, (Derm;)§2,, Der o) follows (S-flat) and is a left w-summability
structure on L.

Remark 11. Let S99 be the functor on L‘fdd induced by the w-summability structure
(S, (Derm;)$2,, Dero) on Ly, so that there is no ambiguity with the functor S on £. In the
proof of Proposition 21 we saw that for any h € L(X,Y), (Der h o Derm;)32, is summable
of witness Der Sh. It means by definition of 5249 that

S24d(Der h) = Der (Sh)

0 S294 is an extension of S to L‘,”‘dd.

Definition 19. An w-summable resource category L is a cartesian and a symmetric monoidal
category equipped with a resource comonad, as well as an w-summability structure following
(S®-dist) and (S-&).

We do not assume (S®-fun) in the definition above as it is not crucial to define Taylor
expansion, so any use of it will be made explicit.

2 Taylor expansion as a distributive law in models of LL

We have all the necessary tool to axiomatize Taylor expansion in models of LL. Assume
that £ is an infinitary summable resource category. In particular, we do not need to assume
(S®-fun) for this section to make sense. As seen in Section 1.5.4, £ is then endowed with a
left w-summability structure (S, (Der m;)52,, Dero). We provide the intuitions first on what
the Taylor expansion operator should look like.

2.1 Motivation

The idea behind differential LL is that a morphism f € £,(X,Y) = L(!X,Y) can be seen as
some kind of analytic map between some kind of vector spaces associated with X and with
Y. Let us recall what is an analytic map. A map f : E — F between two Banach spaces
is dlfferentlable in a point x if its variation around x can be approximated by a continuous
linear map < ( ) € L(E, F) called the differential of f at x, that is

df
fla+u) = fl@)+ - (2) - utofflul) ()
If f is regular enough, the map = »—) d ( ) going from E to L(E, F) is also differentiable so
that for any z there exists a map d2 ( ) € L(E,L(E, F)) called the second order differential.

Repeating the process yields an n-order differential m(x) € L(E,L(E,(...,L(E,F)...))
which can also be seen as an n linear map E X --- x E — F. These iterated differentials
allow approximating f around a point by a map which is polynomial of n:

fa+w =3 2L @ .u) + ol

k=0
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A map is analytic if it is equal to the limit of its successive approximations, that is

Zi,j:f ) (©)

The series in the equation above is called the Taylor series of f at x.

The point of coherent differentiation is to generalize the ideas of differentiation to a
setting where addition is not necessarily a total operation. In coherent differentiation, £
is a summable resource category, that is, a category equipped with a binary counterpart
of our w-summability structure (see [Ehr23]) that induces a left summability structure on
L) (see [EW23]). Then all the sums in Eq. (5) must sums in the sense of this induced left
summability structure. This means that we should see the differential of f € £i(X,Y’) as a
morphism Df € £(SX,SY) that intuitively maps a summable pair (z,u) to a summable
pair ((f(z), gi () - u)). We will use the notation Df (z,u)) := df( )-u and this operator D
corresponds to corresponding operator in the (left-additive) cartesian differential categories
of [BCS09].

It turns out that this point of view comes with real benefits, because the chain rule of
the differential calculus then correspond to the functoriality of D on £, and the other rules
(Leibniz, Schwarz, linearity of the derivative) correspond to the naturality of Der ¢y, Der 6,
Derl and Derc with respect to D. An equationnal account of those observations can be
found in the long version of [EW23|*. Note that the axiomatization of differentiation as a
functor for which ¢, €, | and c are natural is very similar to the axiomatization of tangent
categories in [CC14].

The map D2 f can be seen as the following map.
~ 2
57 (o ooh) = (760 @) o) [ S0 G @0+ o))

Note that the rightmost component 7y D2 f = DDf does not only contain the second

order derivative jz—i(x)(u,v), but also the term %(:1:) -w. This happens because DDf is

the total derivative of Df, that is its derivative with regard to both of its coordinates at
2

the same time, whereas %(m) is only the partial derivative of Df with respect to its first

argument.

One specificity of coherent differentiation is that the second order derivative jz—f:(x)(u, v)
that appears Eq. (7) requires u and v to be summable. This is in sharp contrast with what
we want to do for Taylor expansion in Eq. (6): there is no reason for u to be summable with
itself, but % jnf (z)(u,...,u) is well-defined nonetheless thanks to the sharply decreasing
coefficient - in front of the derivative. This phenomenon does not seem to be taken easily
into account by the coherent differential setting.

So instead of defining D only as the first order development << f(x), % (x) - u>>, we define it
directly as whole Taylor expansion operator. Let us start with what a functor implementing
a second order development would look like. Let us introduce a functor T as follows (using
a notion of ternary summability structure that should exist, as mentioned in Remark 14).

2
T o) = (10, L0 oy G @+ Lo wl)

4In a setting where the category C considered can be any cartesian category, and not necessarily the
Kleisli category of a model of LL
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The term u1 can be seen as a first order variation and the term us as a second order variation.
So Tf {x, u1,us)) gives the components (graded by orders) of the best order 2 approximation
of f on the variation u; 4+ uz (and guarantees that the sums involved are well-defined). We
can recover the usual order 2 development of f taking us =0

7 o0} = (160 S 00 S (@)

The term % (x)-ug is still crucial though, and comes from the Faa di Bruno formula. Indeed,
one can check that

Ty(Tf (. u,0))
2
=Ty <<f(w)7 %(m) U, %%(m)(u, u)>>

(o0 L Lo u g G (F@-w o) + 5520 Lown)

We recognize here second order terms in the development of g o f, thanks to the chain rule
and the second order chain rule (formalized in the Faa di Bruno formula).

TG )y = S ) <%<I> g > + ) @)

So we have

Tg(Tf(,u,0)) = T(go f) {(z,u,0) .
This means that the compositionality of the Taylor expansion and the Faa di Bruno formula
should be related to the functoriality of T.

Similar computations can be performed for all finite orders n instead of 2, and ulti-
mately for an infinite sequence of terms, possibly of all finite degrees. Let M(n) := {m €
Men(N*)| > cn- im(i) = n} (where Mg, (N*) is the set of finite multisets of elements of
N*, see Section 5.1 for the notations). Define T f as the map

e - © s ) o)

meM(n)

n=0
| = )| = ]
where m! = J[;cq,op(m) MO #m = 37, cqupp(m) m(1) and
Ty = (T1y e ooy @y ey iy ey Ly ooy Ty e ey L)
—_——— ——— ———
m(1) times m(i) times m(n) times

The term z; should be seen as an order i infinitesimal z; €', so that Tf (z;));-, contains the
components sorted by order of the Taylor expansion of f at g +exy + €2 xo + - -.

The case k =n and m = [1,...,1] gives the value %(mo)(ul, ...,U1), SO We can recover
all the terms of the Taylor expansion of f by erasing all the higher order variations.

TF(@u,0,...) = <<%%(x)(u,...,u)»:o_o .

Again, the other cases are still very relevant as they allow to recover the compositionality
of the Taylor expansion

#m >
Ta(Tr o ) = 3 o G
meM(n)

n=
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where i = (- gnj (@) (uy...,u))22,. Werecognize above the terms of the Taylor expansion
of g o f using the Faa di Bruno formula
d"(go f) B nl d#mg
W(x) (u,..u) = Z mm(@'ym-
meM(n)
So we have

Tg(Tf (2, u,0,...)) = T(go f) (,u,0,...)
which means that the compositionality of the Taylor expansion and the Faa di Bruno formula
are closely related to the functoriality of T.

Finally, if f is linear then d—m(x) u = f(u) and d f( )u,...,u) = 0. So for any f €
L£1(X,Y) that is linear (that is, f = Der f for some f € L(X, )) we should have

TH({(@i)iZo) = (f(@i))iZo

That is, Tf = DerSf. So T should extend the functor S to L, see Section 6 for a generic
definition.

2.2 The axioms of Taylor expansion

Let £ be an w-summable resource category. As motivated above, Taylor expansion should
be seen as a functor T on £, that extends S to £;. It is showed in Section 6 that this notion
of extension is deeply tied to the notion of distributive laws. So Taylor expansion should be
a natural transformation 9 :!S = S! following the axioms below.

Remark 12. These axioms are exactly the same as the axioms of coherent differentia-
tion [Ehr23], except that the summability structure is now infinitary. Their meaning in
coherent differentiation is well understood, see also [EW23]. They should have a similar
meaning in this new setting of Taylor expansion, but the underlying combinatorics is more
complicated and still slightly unclear. What we know for now is that these axioms indeed
hold in our examples from LL for the exact same reasons that the axioms of coherent differ-
entiation hold®, and that the functor T involved indeed correspond to the intuitive formula
given in Eq. (9), see Theorem 24.

SIX ISX Ox SIX

ISX —
(0-chain) \ lSder dugsxl lSdigX

ISX —o— ISIX —— SIX

This axiom means that 0 is a distributive law (see Section 6) between the functor S and
the comonad !. By Theorem 27, this axiom means that S can be extended to a functor
T on £ defined as Tf = (Sf)0. This functor T corresponds to the operator motivated
in Section 2.1. So this axiom should be understood as the higher order chain rule (Faa di
Bruno formula).

— SIX

(8-local) \ lﬂo

5Note however that some models admit a coherent differentiation but not such coherent Taylor expansion,
see Section 5.4
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This axiom means that my is a morphism of distributive law between 9 and id. By Theo-
rem 28, this axiom means that my extends to a natural transformation T = Id on £,. Note
that this axiom is requested for my and not for the m; with ¢ > 0. As noted in [Ehr23],
differentiation breaks the symmetry between the components of the functor S.

1s2x %5, qisx S9x, g2y
(9-add) l \ ,0% lelx
ISX —— SIX IS - SIX

This axiom means that ¢y is a morphism of distributive law between id and 0, and that 6 is a
morphism of distributive law between the composition of 0 with itself and 0. By Theorem 28,
this axiom means that ¢ and 6 extend to natural transformations Derig : Id = T and
Derf : T2 = T on £, meaning that T inherits the monad structure of S. Dually, this axiom
also mean that ! extends to a functor | on the Kleisli category Ls of S, and (0-chain)

together with Theorem 25 ensures that T inherits the structure of comonad of ! . This

axiom should be seen as the additivity of the iterated derivatives in each of their coordinates.

Sox

152X %X, SiI5x S21x
(0-Schwarz) ,CX\L lclx

2 2

IS2X —— SISX —— S?X

This axiom means that ¢ is a morphism of distributive law (again for the composition
of @ with itself). By Theorem 28, this axiom also means that c¢ extends to a natural
transformation Derc : T2 = T2 on L. It can be interpreted as a higher order equivalent of
the Schwarz theorem that states that the second order derivative is symmetric.

The next diagram is not among the axioms given in [Ehr23], but as discussed Section 5.1
of the long version of [EW23] it should have been a part of it.

ISX Ox SIX

(0-lin) ”Xl J/hx

1S2X —— SISX —— S21X
s x SOx

This axiom means that | is a morphism of distributive law between 0 and the composition of 0
with itself. By Theorem 28, this axiom also means that | extends to a natural transformation
Derl: T=T2on L. Together with (0-add), this axiom means that the derivatives are not
only additive in their individual coordinates, but also T-linear, see Definition 22°

LIXIY

ISX®ISY 2X2% s1X g sly X% s(1xelY)
(0—&) mzsx,syl lszx,y
[(SX &SY) — IS(X &Y) 5— SIX &Y)

This axiom means that m? is a morphism of distributive law between the composition of 9
with L, and the composition of d with (cg )™t (recall that the structure of a lax symmetric

6This explains the clash of terminology with [Ehr23], in which the axiom (d-lin) corresponds to our axiom
(0-add)
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monoidal monad can be seen as a kind of distributive law) By Theorem 26, it means that
m? extends to a natural transformation | ®' = !( &:_). This diagram means that if a
morphism is multilinear in the sense of linear loglc then it is T-multilinear in the sense of
Definition 30. More on this in Section 3.4.

Remark 13. In [Ehr23], the diagram below was stated as part of the axiom (0-&).

ST — 97 QI

!ol lS(mo)’l

IT W 1 ———5S1
It turns out that this diagram always holds (assuming (0-add)). Indeed, we know that
10 =!tsT is invertible of inverse liy, see Section 1.5.3. So we can prove the diagram with
the diagram chase below. The commutation (a) is (9-add) and the commutation (b) is the

naturality of ¢.

ST — 97 o7

Il o

'T*>1—>Sl
(m%)~*

Proposition 22. The left diagram always hold, and the right diagram is a consequence of
(0-& ). See Definition 42 for a definition of wk and ctr.

Ox

IS —2 Six ISX SIX
wksxl lSWkX Ctrsxl lSctrX
11— S1 ISX®ISX —— SIX ®SIX —— S(IX®!X)
Lo Ox ®0x Lix,i1x

Proof. This is a straightforward consequence of the diagram of Remark 13 and (9-&), un-
folding the definition of wk and ctr and using naturality. O

The left diagram means that wk is a morphism of distributive law (o :!1 = S1 is the
distributive law associated to the extension of the constant functor 1 on £ as the constant
functor 1 on Ls). The right diagram means that ctr is a morphism of distributive law
between O and the composition of 0 with L. By Theorem 26, those diagrams mean that
the contraction and weakening extends to Ls. The result of Proposition 22 is not surprising
then, since the weakening and the contraction on Ls can also be defined directly from m°
and the extension of m? to Ls.

Definition 20. A Taylor expansion in an w-summable resource category is a natural trans-
formation 0 :IS = S! following (0-chain), (0-local), (9-add), (9-Schwarz), (0-lin), (0-local).
Remark 14. Tt should be possible to define in a uniform way a notion of n-ary summability
structure S,, for any n € NU {oo}, as a summability structure which has only projections
m; for i € [0,n]. Then the summability structures of [Ehr23] would be a particular instance
for which n = 1, and the w-summability structure would be a particular instance for which
n = oo. It should induce a notion of n-ary summable resource category for any n.

Then a Taylor expansion in an n-ary summable resource category would simply be a
distributive law !S,, = S,,! defined exactly in the same way as above. This operation should
be seen as an order n Taylor approximation. Then the coherent differentiation of [Ehr23|
would be a particular case in which n = 1, and the Taylor expansion in our article a
particular case in which n = oco.
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We have not stated yet the fact that the morphisms in the category are analytic, that is,
equal to their Taylor expansion. This is the role of the axiom (9-analytic) below.

ISX —2, six

(0-analytic) \ l[, «
!O'X
1X

This axiom means that ¢ is a morphism of distributive law between 0 and id. By Theorem 28,
it means that o extends to a natural transformation Dero : T = Id. Together with (9-lin),
they allow to extend the comonad S to £;. The axioms (d-lin) and (d-analytic) can also
be interpreted as the fact that O is a distributive law between the functor ! and the
comonad S. Recall that in Section 2.1 the Taylor expansion of f at = on variation u
could be defined as Der (o) o Tf o {(x,u,0,...). So the naturality of Der () implies that
Der(c)oTfo{z,u,0,...)) = foDer(o)o{x,u,0,...) = fo(x+u). This exactly corresponds
to the property that f is equal to its Taylor expansion.

Definition 21. An analytic category is an w-summable resource category equipped with a
Taylor expansion that follows (0-analytic).

Remark 15. The purpose of our choice of terminology is to make a clear distinction between
the infintary setting of the present article and the finitary settings of [Ehr23, EW23], this is
why we prefer to speak directly of Taylor category: it is a category where any morphism has
a Taylor expansion (involving all its higher derivatives), which is a morphism of the same
category. In such categories, the morphisms however are not necessarily equal to the infinite
sum of all the terms of their Taylor expansion. This Taylor expansion is provided by the
functor T, which by the way is much richer than a mere Taylor expansion and is strongly
related to the Faa di Bruno formula, by need of functoriality.

We use the adjective “analytic” for the situation where any morphism is equal to the sum
of all the terms of its Taylor expansion, following the standard mathematical terminology,
with the slight difference that, in Analysis, analyticity is a local concept whereas here, it
is a global condition (btw. we have nothing like a topology which would allow to make it
local).

Although the notion of order n coherent differential category makes perfectly sense, an
order n Taylor category should not be very interesting, as it would mean that the morphisms
are all polynomials of degree lower than n.

Remark 16. Except for (0-local) (that is about the structure of the functor T) and (9-&)
(that is discussed in Section 3.4), the axioms of coherent differentiation are exactly the
necessary and sufficient conditions to extend the structure of the bimonad S to £;: 9 is a
distributive law between the comonad ! and the functor S by (0-chain), a distributive law
between the functor ! and the monad S by (0-add), a distributive law between the functor
! and the comonad S by (9-lin) and (9-analytic), and c is a morphism of distributive law

by (0-Schwarz). It means that Taylor expansion essentially act as a bimonad.

In [KL23], Taylor expansion is framed in some models of differential LL as a monad
structure on ! turning it into a bimonad. This bimonad seems to be quite different from
our bimonad S, but a closer comparison should be investigated.
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3 Cartesian analytic categories

We provide a direct axiomatization of Taylor expansion in any category C. We show how
this expansion should interact with the cartesian closed structure of C, whenever it has one.
Typically, C = L, for some model £ of LL, but the point of this axiomatization is that it
is more general, more compact, and does not depend at all on LL. We assume throughout
this section that C is equipped with a left w-summability structure (S, 7, o).

3.1 Taylor expansion in a left additive category

The axiomatization of Taylor expansion and analyticity on C is very similar to the coherent
differentiation of [EW23], except that left summability structure is now infinitary and that
o is natural.

Definition 22. Let T be a map on morphisms such that for any f € C(X,Y), Tf €
C(SX,SY). A morphism h is T-linear if it is additive and if m; o Th = h o m;. That is,
Th = Sh.
Definition 23. An (infinitary) Taylor expansion on C is a map on morphisms T such that
for any f € C(X,Y), Tf € C(SX,SY) and such that:

e (T-chain) T is a functor

e (T-local) m is a natural transformation

T-proj-lin) The projections 7; are T-linear

T-add) 1o € C(X,TX) and 0 € C(T?X, TX) are natural transformations
T-lin) | € C(TX,T2X) is a natural transformation
(T-Schwarz) ¢ € C(T%X,T?X) is a natural transformation

Again, assuming a suitable notion of n-ary summability structure, it should be possible
to define an order n Taylor expansion. The operator T f would perform the order n Taylor
approximation of f.

(
(
(T-sum-lin) o and 0 are T-linear
(
(

Definition 24. An analytic structure on C is a Taylor expansion such that o € C(TX, X)
is natural. We call this property (T-analytic).

We only assume in what follows that T is a map on morphism such that for any f €
C(X,Y), Tf € C(SX,SY). Any use of the axioms of Taylor expansion will be made explicit.
Proposition 23. Assuming (T-chain) and (T-proj-lin), if (fi)52, is summable then (T f;)52,
is summable and (T f;i)oog =co T {fi)io-

Proof. We have miocoT (fi)ieg =SmioT (fi)ieg = TmioT (fi)ieg = T(mio(fi)imo) = Tfi
using (T-proj-lin) and (T-chain). O

Proposition 24. The aziom (T-chain) ensures that the composition of two T-linear mor-
phism is also T-linear and that id is T-linear.

Proof. If h € C(X,Y) and b’ € C(Y, Z) are T-linear, then 1’ o h is additive by Proposition 6.
Furthermore, m;0 T(h' oh) =m0 Th o Th = h'om;oTh = h'ohom; so h' oh is T-linear. [

Definition 25. Let C'" be the category with the same objects as C and whose morphisms
are the T-linear morphisms. The identity and the composition are the same as in C. Observe
that C'" is a sub category of €249,
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Then (T-chain), (T-proj-lin) and (T-sum-lin) ensure that (S, 7, o) is a pre w-summability
structure on C'". Besides, they ensure that a sequence of morphisms (f; € C""(X,Y))2,
is summable if and only if it is summable in C, see Proposition 25 below. It implies that
(S,#,0) is an w-summability structure on C'".

Proposition 25. Assuming (T-proj-lin) and (T-chain), if the sequence (h; € C(X,Y))2,
is summable and h; is T-linear, then (h;);, is T-linear. Assuming (T-sum-lin), Y .o hi
is also T-linear. Then, for any family (ha)aca of T-linear morphisms, . 4 hq is T-linear.

Proof. We know that (h;));-, is additive thanks to (Pair-Add), and T (h; )y = co(Ths )y =
co (Shi)iog = S{hi)io, (the last equality can be easily checked by joint monicity of
the m; o 7;); so (hi);-, is T-linear. Then, by (T-sum-lin), (T-chain) and Proposition 24,
Yoo hi =00 (hi);o, is also T-linear. Finally, the last statement hold by definition of the
generalized sums. O

Corollary 1. Assuming (T-chain), (T-proj-lin) and (T-sum-lin), v;, 6, c, | and o are all
T-linear

Proof. They are all pairings of T-linear morphisms and sums of T-linear morphisms, so they
are T-linear by Proposition 7 above. O

As a result, Te; = Siy, TO = SO, Tc = Sc, Tl = Sl and To = So. In particular, all the
diagrams turning S into a bimonad also hold when replacing S by T. So the axioms of
a analytic structure except for (T-local) are exactly the conditions allowing turn T into a
bimonad that extends to C the bimonad S on C'™.

3.2 Interaction with the cartesian structure

We assume that C is a cartesian category, equipped with a left w-summability structure
(S, 7,0). The notations on the cartesian product will be the same as the one of Section 1.5.
This section is a straightforward adaption of the work of [EW23] to the setting where the
summability structure is infinitary. For the rest of this section, any set I is considered to
be universally quantified over the sets such that &;c; is well-defined. In particular, the
category may have countable products or not.

3.2.1 Left w-summability structure and cartesian product

First, observe that (tr);>, € C(T,ST) is an isomorphism of inverse 0 = ts7. Indeed,
tsTo((tT);-, = idT simply because T is final, and m; 0 (t7);- otsT € C(ST, T) is necessarily
equal to 7; (also because T is final), so by joint monicity of the m;, (tT);-, o tsT = idsT.

Definition 26. The left w-summability structure is compatible with the cartesian product
if the projections p; are additive and if cg := (Spi)icr € C(S&iecr Xi, &icr SX;) is an
isomorphism (cg is well-defined because the projections are additive)

Let us break down this definition in more details. The additivity of the projection implies
that the sum on pairs is the coordinate wise sum.

Proposition 26. The following are equivalent
e Foralli eI, p; is additive
o (O)ier = 0 and if ((f})ier € C(X, &ic1 Xi))52 is summable, then for alli € I, (f1)72,
is summable and 7% (fi)ier = Q7= fi)ier
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Proof. Assume that the p; are additive. Then p; 00 = 0 = p; o (0);c7. Thus, by joint
monicity of the p;, 0 = (0);c;. Furthermore, assume that ((f})ics)32, is summable. Then
by additivity of p;, the sequence (p; o (f})ier)j2y = (f;)52, is summable and E;io I =
pi o Y=o (fi)ier- So the joint monicity of the p; implies that 3% (ff)ier = (3720 f})ier-
Conversely, if (0);cr = 0 then p;o0 = p;0(0);er = 0. Furthermore, let (f; € C(X, &;er Yi));';o
be a summable sequence of morphisms. We can write (f;)52, = ((pi © fj)ier)j=o- Then
by assumption, for all i € I, (p; o f;)52, is summable and Z;io fi= <Z;i0 p; o fj)ier so
p; o Z;io fi= Z;io p; o fj. It means that p; is additive. O

Corollary 2. If the projections are additive, then &;c;0 = 0 and for any (&;er f; €
C(&ier Xi, &icr Yi))?io summable, then for alli € I, (f;)‘;';o 1s summable and Z;io &icr f; =
&iel Z(;io f;

Proof. This is a direct consequence of Proposition 26 using the fact that &;cr fi = (fiopi)ier
and the left additivity of the sum. O

We now assume that the projections are additive. Then the fact that cg, is an isomorphism
provides an only if condition for the summability of pairs: it suffices that each of their
coordinates are individually summable.

Proposition 27. The following assertions are equivalent

(1) cg is an isomorphism;

(2) (&ier ;)52 is summable;

(3) if for any i € I, (fj € C(X;,Y3))52, is summable, then (&icr f})52, is summable;

(4) if for any i € I, (fi € C(X,Y;))32, is summable, then ((f1)icr)52y is summable.

And when one of those holds, cg' = (&ier m; ));io.

To sum up, the left w-summability structure is compatible with the cartesian product
if and only if the following property hold: (0)icr = 0, ((f/)ier € C(X,&ier Xi))52, is
summable if and only if for all i € I, (f})32, is summable, and Z;io<f;>iel = <Z§i0 fhier.
We now assume that the left w-summability structure is compatible with the cartesian
product.

Proposition 28. If h; € C(X,Y;) are additive, then (h;)ics is additive. If b} € C(X;,Y;)
are additive, then &;cr bl is additive. In particular, C*% is a cartesian category.

Proof. First, (hi)icr ©0 = (h; 0 0)icr = (0)ier = 0. Furthermore, assume that (f;)32,
is summable. For any i, h; is additive so (h; o fj);?';o is summable. By Proposition 27,
((hiofj)ier)i2o = ((hi)iero f;)52o is then summable, of sum > 7% ((hi)iero f;) = (3272 hio
fi)ier = (hio Z;io fiYier = (hi)ier o E?io fj, because h; is additive. We conclude that
(hi)ier is additive. As a result, &;cy bl = (h} o p;)ier is also additive. Thus, the cartesian
product & on C restricts to a cartesian product on €2, and T is terminal in €% because
tx =0 € C(X,T) is additive, so C2% is cartesian. O

Then (cg)xy,x, = (Spo,Sp1) € C(S(Xo & X1),5X & SX1) is a natural transformation
in C*%. Besides, it is invertible in C of inverse (m; & m;));—,. This inverse is additive by
(Pair-Add) and Proposition 28, so cg is a natural isomorphism in C29. It means that the
observations of Section 1.5.3 hold in C2¥: the monad S on C?% equipped with ¢y and cgzl
is a lax symmetric monoidal monad, it is equipped with two strengths 4° and ¢!, and the
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adjunction Ag, 4 &  extend to the Kleisli category of S, meaning that it is a cartesian
category.

3.2.2 Differential structure and cartesian product

We assume that C is equipped with a left w-summability structure (S, 7, o) that is compatible
with the cartesian product.

Definition 27. A Taylor expansion is compatible with the cartesian product if the projec-
tions p; are T-linear. A cartesian analytic category is a cartesian category equipped with
an analytic structure that is compatible with the cartesian product.

Proposition 29. Similarly to Proposition 23, (T fi)ier = c& o T{fi)icr

Proof. We have p; o cg, o T(fi)ier = Spi o T(fi)ier = Tpio T(fi)ict = T(pi o (fi)ict) = Tfi,
and we conclude by joint monicity of the p;. O

Proposition 30. If h; € C(X,Y;) is a collection of T-linear morphisms, then (h;)icr is
T-linear. If b} € C(X;,Y:) is a collection of T-linear morphisms, then &;cy b} is T-linear.
In particular, C'™ is a cartesian category.

Proof. First, we know that (h;);cs is additive thanks to Proposition 28. Then, T(h;);c; =
nglo <Thz>zel = Cglo <Shi>iel by PI‘OpOSitiOIl 29. So Uy OT<hi>iel = (&iel 7Tj)0 <Shi>i€] USiIlg
that Cg_cl = <<&i61 Uy >>;)10 (PI‘OpOSitiOIl 27) But &iel ;O <Shz>zel = <7Tj o) Shi>ie[ = <hz @)
7Tj>i€] = <hi>iel omy. So ;o T<hz>zel = <hi>iel oTj. We conclude that T<hi>i€] = S<hi>iel
by joint monicity of the m;. The T-linearity of &;cr b} then follows directly from above
thanks to the fact that &;erhl = (h% o pi)icr and that the composition of two T-linear
morphism is also T-linear. We conclude that C'" is cartesian because tx = 0 is also T-linear
by (T-sum-lin), so T is also final in C'". O

The T-linearity of the projections imply that cg, = (Sp;)ier = (Tpi)ier € C(T &icr Xi, &icr TX;)
is a natural transformation. Since cg is invertible, it is then a natural isomorphism and
c&_é1 € C(&;e1 TX;, T &;er X;) is natural. Besides, both cg and cgzl are T-linear, thanks
to Propositions 27 and 30. Then for the same reasons that (S, to, c&:l) is a lax symmetric
monoidal monad in €49, (T, ¢, cgzl) is a lax symmetric monoidal monad on C.

Remark 17. As in Remark 10, the invertibility of cg ensures by Theorem 33 that the
adjunction A 4 _ & _ extends to the Kleisli category of T, Ct. So Cr is cartesian (again, ¢
is an isomorphism in C(T,TT) so T is terminal in Ct).

As seen in Section 7.3 (taking the symmetric monoidal structure to be the one generated
by the cartesian structure &), it means that T is a commutative monad where the two
strength are defined as

PO — Cg_él o (TXO & Lo) = <<7T0 &Xl,ﬂ'l &O,TFQ &0, .. » S C(TXo&Xl,T(XO &X1>)

\Ifl = ngl o (LO &TXl) = <<X0&7T0,0&7T1,0&7T2,.. » S C(Xo&TXl,T(Xo&Xl))

Those strengths are T-linear, and coincides with the strengths 1/° and ' associated to the
lax monoidal monad S on €9,

Definition 28. Let f € C(Xo & X1,Y). Define Tof = Tf o W% € C(TX( & X1, TY) and
T1f = Tf ol e C(XO & TXl,TY)

Intuitively, the strength maps a summable family (z;);°, and an element y to the family
((zo,y), (z1,0), (z2,0),...). So Tof performs the Taylor expansion of f on this family. In

particular, the coeflicient at position 1 should be seen as da(:ofu (z0,y) - (z1,0) = 0o f (xo,y) - 21
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where Jy is the partial derivative of f with regard to its first argument. So Tg, T are the
infinitary counterpart of the notion of partial derivatives: the Taylor expansion of f is
computed only with regard to a variation on one input.

This theory of partial derivative behaves very nicely and is crucial for the development of
a syntax. We refer the reader to [EW23] for a development of this theory in the framework
of coherent differentiation.

Definition 29. A morphism f € C(Yy & Y1, Z) is additive in its first coordinate if f o (0 &
Y1) = 0 and if for all sequence (h; € C(X,Y)))52, summable, then (f o (h; & Y1))2, is
summable and

Do fo(hi&Yi)=fo(()_hi) &)
i=0 =0

We define in a very similar way the notion of morphism additive in their second coordinate.
A morphism is bi-additive if it is additive in both of its coordinates.

Proposition 31. A morphism f € C(Yo & Y1,Z) such that f o (0& Y1) = 0 is additive in
its first coordinate if and only (f o (m; & Y1))52,, is summable of sum fo(c&Y1). A similar
result hold for morphisms additive in their second coordinate.

Proof. Very similar to the proof of Proposition 3. o

Definition 30. A morphism h € C(Xo & X;,Y) is T-linear in its first coordinate if it is
additive in that coordinate and if m;0 Toh = ho(m;& X7). It is linear in its second coordinate
if it is additive in that coordinate and if m; 0 T1h = ho (Xo & 7;). A morphism is T-bilinear
if it is linear in both of its coordinates.

Those notions can be generalized to arbitrary finite product, defining a strength

Ui =cgo(idy, & &o&- &idx,) €C(Xo & &TX; & -+ & X, T(Xo & - - & X))

This induces a Taylor expansion with regard to only one parameter T;f = fo Wi € C(Xo &
& TX; & -+ - & X,,). Tt is then possible to define a notion of multi-additive morphism and
a notion of T-multilinear morphism. The latter play an important role in [EW23].

3.3 Compatibility with the cartesian closed structure

We assume that C is a cartesian category, equipped with an w-summability structure (S, 7, o)
and a Taylor expansion compatible with the cartesian product. We assume that C is closed
with regard to &. That is, for all objects X and A there exists an object A = X and
Ev € C((A = X) & A, X) such that for any morphism f € C(X & A,Y), there exists a
unique morphism Cur(f) € C(X, A = Y) such that

Ev(Cur(f) & A) = f
Then Cur: C(X & A,Y) = C(X,A=Y) is a bijection whose inverse is given by
Cur '(g) =Evo (g & A)

The closure can be seen as an adjunction & A 4 A = _ for any object A, of unit
Cur(idxga) € C(X,A = (X & A)) and co-unit Ev € C((A = X) & A, X). The functor
A= maps a morphism f € C(X,Y) to a morphism A= f € C(A= X,A=Y) defined
as Cur(f o Ev). Then Cur and Cur™' are natural bijections. That is, Eq. (10) below holds

Cur(fogo(h& A)=(A= f)oCur(g)oh (10)
Cur (A= f)ogoh)=foCur'(g)o(h&A)
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3.3.1 Left w-summability structure and closure

Definition 31. An w-summability structure is compatible with the closure if Ev is additive
in its first coordinate, and if

co = Cur(Evo (m & A)):2, € C(S(A= X),A = SX)

is an isomorphism.

Let us break down this definition in more details. This is very similar to what happens
with the cartesian product in Section 3.2.1. The linearity of Ev means intuitively that if a
family of maps is summable, then it is summable point wise.

Proposition 32. The following are equivalent
(1) Ev is additive in its first coordinate;
(2) Cur ' (0) = 0 and for any (g; € C(X,A = Y2, if (9:)2, is summable then
(Cur™'(g:))$2, is summable and 300, Cur ™' (g;) = Cur " (3252, 94);

(8) Cur(0) =0 and for any (f; € C(X&A,Y))2,, if (Cur(fi))i2, is summable then (f;)2,

is summable and Y ;- Cur(f;) = Cur(3 22, fi)-

Proof. (1) < (2): By definition, Cur™*(f) = Evo(f& A) so the left additivity of Ev precisely
corresponds to (2).

(2) < (3): This is a straightforward proof using the fact that Cur and Cur™' are inverse
of each other.

O

Corollary 3. Assume that Ev is additive in its first coordinate and that (A = h; € C(A =
X, A =Y)), is summable. Then (h; € C(X,Y))52, is summable and Y ;= (A = h;) =
A= (30 hi)-

Proof. Recall that A = h; = Cur(h; o Ev) so by Proposition 32, if (4 = h;)$2, is summable

then (h; o Ev)$2, is summable. But h; = h; o Evo (Cur(id) & A) so by left additivity, (h;)32,
is summable and by left additivity again, >°.°(h; o Ev) = (3. hi) o Ev so

> (A= hi) = Cur(h; o Ev) = Cur(> (hi o Ev)) = Cur((>_hi)oEv) = A= (D hi)
=0 =0 1=0 1=0 1=0

O

The invertibility of c—. on the other hand provides an "only if" condition for Proposi-
tion 32. It means that a family of maps is summable if and only if it is summable point-wise,
and the sum of the maps is the point-wise sum.

Lemma 9. (A= m)ocs =m;.
Proof. The point is to use the naturality of Cur.

(A= m)ocs = (A= m)oCur{Evo (m & A)):2,
= Cur(m; o (Evo (m & A)):2,) By naturality of Cur
= Cur(Evo (m; & A))

= Cur(cur™(m;)) = m
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Remark 18. Monicity is preserved by right adjoint functors, meaning that the A = m;
are jointly monic. This fact can also be checked by hand in a rather straightforward way
using the fact that Cur is a bijection and is natural. This will be useful in the proof of
Proposition 33 below.
Proposition 33. The following assertions are equivalent

(1) c is an isomorphism;

(2) (A= m e C(A=SX, A= X)), is summable;

(8) for any sequence (f; € C(X,Y))2, summable, (A = f;)3°, is summable

(4) for any sequence (f; € C(X & A,Y))2, summable, (cur(fo))2, is summable.
Then, (A= )y = cZl.

Proof. (1) = (2): Assume that c_ is an isomorphism, of inverse w. By Lemma 9, (4 =
7;) 0 €= = m;. Then A = m; = m; ow. Thus, (A = ;)52 is summable of witness w.

(2) = (1): Assume that (A = m;)$2, is summable. Then by Lemma 9
T; O <<A = 7Ti>>;.i0 OC= = (A = 7Ti) OC= = T

(A = TQ) O0C= O <<A = 7Ti>>;')i0 = T; O <<A = 7Ti>>;.io =A=m

We conclude that (A = m;);2 o cos = ids(a=x) by joint monicity of the 7;, and that
¢ o (A= m)ioy =idassx by joint monicity of the A = 7; (see Remark 18).

(2) = (3): Assume that (f;)$2, is summable. Observe that A = f; = (A = m;) 0 (A =
(fi)ieo)- Then, by assumption (4 = m;)2, is summable so (A = f;)$2, is summable by
left additivity.

(3) = (2): (2) is a particular case of case (3), taking f; = ;.

(3) = (4): By naturality of Cur, Cur(f;) = (A = f;) o cur(idxga). By assumption, if
(fi)i2o is summable then (A = f;)2, is summable so by left additivity, (Cur(f;))52, is
summable.

(4) = (3): Recall that A = f; = Cur(f; o Ev). If (f;)72, is summable then (f; o Ev)32, is
summable by left additivity, so (Cur(f; o Ev))2, is summable by assumption. It concludes
the proof. O

To sum up, the left w-summability structure is compatible with the closure if and only if
the following property hold: Cur(0) = 0 and for any family of f; € C(X & A,Y), (fi)2, is
summable if and only if (Cur(f;))52, is summable, and >, Cur(f;) = Cur(3°°, fi)
Proposition 34. If h € C(X & A,Y) is additive in its first coordinate, then Cur(h) is
additive. If b’ € C(X,Y) is additive, then A = h' is additive.

Proof. First, Cur(h)o0 = Cur(ho(0& A)) = Cur(0) = 0 by naturality of Cur and by additivity
of h in its first coordinate. Furthermore, if (f;)°, is summable then (ho (f; & A))2, is
summable by left additivity of h, so (Cur(h) o f;)32, = (Cur(h o (f; & A)))$2, is summable
by Proposition 33, and

> Cur(ho (f; & A)) = Cur(d_ho (fi & A)) = Cur(ho (Y fi) & A)) = Cur(h) o (> fi)
=0

i=0 =0 =0

so h is additive. Then, A = h’ = Cur(h/ o Ev). It is easy to check that h' o Ev is left
additive (it is the composition of a left additive morphism with an additive one). So by
what precedes, A = h' is additive. O
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3.3.2 Differential structure and closure

Definition 32. A Taylor expansion that is compatible with the cartesian product is com-
patible with the closure if Ev € C((A = X) & A, X) is linear in its first coordinate.

We now assume that the Taylor expansion is compatible with the closure. It implies that
m; 0 ToEv = Evo (m; & A) so

¢ = Cur(Evo (m &ida)) ;o = Cur(TEvo U9 _ x 4) €EC(T(A= X), A= TX)

S0 c— is a natural transformation T(A = )= (4 = T_). We recognize above the mate
construction, see Remark 36: c— is the mate of W0 through the adjunction & A4 A= .
It is showed in Proposition 40 and discussed in Section 7.3 that ¥° is a distributive law
T &A= T( &A). So by Theorem 33, the invertibility of c—, is a necessary and sufficient
condition to ensure that the adjunction _ & A 4 A = _ extends to C1, meaning that Ct is
a cartesian closed category.

Definition 33. A cartesian closed analytic category is a cartesian closed category equipped
with a left w-summability and an analytic structure compatible with the cartesian product
and the closure.

3.4 Cartesian closed analytic categories arising from LL

Let £ be an analytic category, see Definition 21. Then as seen in Section 1.5.4, (S, (Der m;)22,, Der o)
is a left w-summability structure on Ly, Der (h;);~, = (Derh;);~, and Der > .° h; =

> 2, Der h;. This latter observation ensures that the morphisms defined from (S, (Der ;)52 Der o)
in Theorems 4 and 5 and Proposition 9 are respectively equal to Derc, Der, Deriy and

Derl. Then as discussed in Section 2, the analytic structure induces a functor T on L, for
which Dermg, Derc, Der@, Deriy, Derl and Dero are natural transformations. Then by
Proposition 35 below, Derm;, Dero, DerO = 0 are all T-linears, so £ inherits from £ a
analytic structure.

Definition 34. A morphism f € £i(!X,Y) is linear if f = Der (h) for some h € L(X,Y).

Proposition 35. By (0-chain), every linear morphism is also T-linear.

Proof. Let f = Derh € L£i(X,Y). By Proposition 21, Derh is additive. Furthermore,
(0-chain) ensures that T extends S, meaning that T(Derh) = Der(Sh). Then, Derm; o
T(Derh) = Derm; o Der (Sh) = Der (w; Sh) = Der(hm;) = Derh o Derm; so Derh is T-
linear. O

Remark 19. There are three successive layers of linearity: additivity, T-linearity and linear-
ity. Linearity implies T-linearity and T-linearity implies additivity. As discussed in [BCS09],
additivity does not necessarily imply T-linearity. The link between T-linearity and linearity
should be investigated further, drawing inspirations from the works on whether a cartesian
differential category is the co-Kleisli category of some model of linear logic.

The category Ly is cartesian. The cartesian product &;c; X; is the same as the one in
L, and the projections are Der p;. We can check using the joint monicity of the Der p; that
Der ho & Der h; = Der (ho & h1), meaning that the functor & : £? — L extend to a
functor _ &  : £¥ — L. Besides, Derhg & X1 = Der hg & Der X; = Der (ho & X;) and
similarly Xo & Der hy = Der (X & hy).

By Proposition 35 above, the projections are T-linear (in particular, they are additive).
Besides, the morphism introduced in Definition 26 is equal to

(Sadd(Der p:i)Yier = (Der (Sp;)Yicr = Der (Sp;)icr = Dercg,
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Thus by (S-&), it is invertible (of inverse Der c@l). Thus, £, is a cartesian analytic category.
Also,

U0 := Dercy' o (TXo & Der tg) = Dercg' o Der (SXg & tg) = Der (cg' (SXo & o))
So U0 = Der? and similarly ¥! = Der!.

The axiom (0-&) that has not played a role yet essentially ensures that a bilinear morphism
is T-bilinear. As shown in [Ehr22al, the axiom (0-&) implies the commutations below.

ISX @Y 228, gixgry S, S(IX®!Y)

m2SX,YJ/ lssz?Y (11)
(SX &Y) 7 IS(X &) 5 SUX & Y)

1
IX®ISY 229 1x o Sly —2 & S(IX®!Y)

mQX,SYJ/ lszx,y (12)
(X &SY) (1 (X &Y) 5 SIX&Y)

Those diagrams are not surprising. For example, Eq. (11) means that m? is a morphism
between the distributive law IS ®!Y = S(!_®!Y") and the distributive law (S & Y) =
S!(_ &Y. Those are similar to the distributive laws involved in (0-&) except that they use
the strengths 1/ and ¢ instead of the lax monoidalities cgcl and L.

Definition 35. A morphism f € £i(X &Y, Z) is bilinear if there exists h € L(X ® Y, Z)
such that

)71 der®der

— X &Y) T ixey EO x gy b, g

It is linear in its first coordinate if there exists h € L(X®!Y, Z) such that

)71 der®!Y

— (x&Y) ™ ixely ¥ xely h 2

We can define similarly what is a morphism linear in its second coordinate. Observe that a
bilinear morphism is linear in both of its coordinate.

Proposition 36. A morphism linear in a coordinate is T-linear in that coordinate. A
bilinear morphism is T-bilinear.

Proof. Assume that f is linear in its first coordinate. f = h (der®!Y) (m?x y)~!. Then for
any g € L(A,X)

fo(Derg&Y)= foDer(g&Y)
= h(der®!Y) (m?xy) ' (g &Y) by Proposition 20
= h(der®!Y) (1g2!Y) (m*x y)™! by naturality of m?
=N (g®!Y) (dersx®!Y) (m?xy)~! by naturality of der

So fo(0&Y) = fo(Der0&Y) = h(0R!Y) (dersx®!Y) (m?xy)~! = 0 by (S®-dist), by
additivity in the morphisms in £, and by left additivity. Moreover,

fo(Derm; &Y) = h(m®!Y) (dersx®!Y) (m?x,y) !
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so by (S®-dist), by additivity in the morphisms in £, and by left additivity, the sequence
(f o (Derm; &Y))52, is summable of sum

h(o®!Y) (dersx®!Y) (m?xy) ™' = fo(Derag & Y)
Thus f is additive in its first coordinate. Furthermore,

Tof =Tf o Der (Vxy)
=SfOxe&y !wg(y by definition and Proposition 20
— ShS(derx®!Y) Sm2yy Oxey WSy
= ShS(derx®!Y) Py 1y (Ox®!Y) (m’sx,y)~" by Eq. (11)
= Sh %,y (Sderx®!Y) (9x®!Y) (m?sxy)~! by naturality of ¢°
= Sh %Dg(,!y (dersx®!Y) (m%sx.y)~! by (0-chain)

In particular, Ty f is also linear in its first coordinate, and

Derm; o Tof = m; Sh g&w (dersx®!Y") (m25X y)_l by what precedes and Proposition 20

1

=hm; 909(7,3/ (dersx®!Y) (m%sxy)~! by naturality of m;
(

= h (1Y) (dersx@!Y) (msx.y) "

= N (derx®!Y) (Im;®!Y) (m%sx.y)~! by naturality of der
= h(derx®!Y) (m?x,y) ' !(m; & Y) by naturality of m?
= foDer(m &Y) by Proposition 20

= fo(Derm &Y)

So f is T-linear in its first coordinate. A similar proof based on Eq. (12) show that if f is
linear in its second coordinate then it is T-linear in that coordinate. Finally, applying both
results on a bilinear morphism show that it is T-bilinear. O

Assume that £ is closed with regard to ®, and that (S®-fun) holds. The category L
is closed with regard to its cartesian product. The internal hom-set of (A4, X) is given by
(A= X,Ev) where A = X =4 — X and

Ev — '(('A—OX)&ASm 1A—oX,A)" ('A%X)®‘AdenAﬂX® A('A 40X)®'A X

If fe L(X&AY) then fm?2x 4 € LIX®!A,Y) and Cur(f) = cur(f m?x) € Li(X,!A —o
Y).

Observe that Ev is linear in its first coordinate, so it is additive and T-linear in that
coordinate, thanks to Proposition 36. Furthermore, for any sequence (f; € LI(X & A,Y))2,
that is summable, (f; m?)22, is summable by left additivity, so (Cur(f;))2, is summable
by (S®-fun) and Proposition 19. By Proposition 33, it implies that c— is an iso, so the
w-summability structure and the analytic structure are compatible with the closure. To
summarize everything, we have proved the following result.

Theorem 8. For any analytic category L that is closed and that follows (S®-fun), L is a
cartesian closed analytic category.
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4 The elementary theory

We focus now on a more specific situation which seems quite common in models of Linear
Logic, and where the summability functor S is induced by a specific object, namely the N-
indexed cartesian product D of the unit 1 of the tensor product. Because of its conceptual
simplicity and of its ubiquity, we call this situation elementary. In this case, the structure
can be described very simply as a !-coalgebra structure on . We also provide three examples
and one non-example of this situation.

All the categories £ under consideration are assumed to have zero-morphisms, which
means that they are enriched over the monoidal category of pointed sets. Let us spell
out explicitly this assumption. For any two objects of £, we assume that £(X,Y) has
a distinguished element Ox y (we will most often omit the subscripts), and the following
equations hold:

0f=0 f0=0

If we {0,1} and f € L(X,Y), we define uf € L(X,Y) as the morphism which is Ox y if
u=0and fifu=1.

4.1 The bimonoid of degrees

Let £ be a symmetric monoidal category (SMC). We stick to the following conventions,
which are standard in Linear Logic: the monoidal product is ®, the monoidal unit is 1, the
canonical isos are A € L(1® X, X), pe LIX®1,X), 0 € L((X1®0X2)® X3, X1 ®(X2®X3))
and v € L(X; ® X2, X5 ® X1). We will add subscripts when there are ambiguities as to the
objects on which these isos are acting.

Notations 3. Let A be a set and P be a predicate on A, we define a family ([P(a)] €
L(1,1))gea by [P(a)] = Id; if P(a) holds and [P(a)] = 0 otherwise.

When a family of objects (X;);c; admits a cartesian product in £, we use &;crX; to
denote this product and (p; € L(&;erX;, X;)) to denote the associated projections. Given
morphisms (f; € L(X,Y;))icr, we use (f;)ies for the unique element of L(Y,&;c1X;) such
that p; <fj>j€1 = fiforalliel.

We assume that all finite and countable cartesian products of 1 do exist in L.

N
——
Definition 36. Weset D = &;enyl = 1& 1 & ---. The object D is called the object of degrees
of L.

We can define injections into D by (T; = (,:1d)jen € L(1,D));en, in other words 7; is
characterized by
[ ifi=
pj i = .
0 otherwise.

Since L is enriched in pointed sets, we have also to assume zero-morphisms to be absorbing
for the monoidal product:

f®0=0 0®f=0.

We do not need the SMC L to be closed, but we nevertheless require some internal homs
(X —o Y, ev) to exist, see Definition 15. Remember that if f € £(X3, X1) and g € L(Y7,Y2),
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if the pairs (X;,Y;) have internal homs (X; —o Y;,evy,) for ¢ = 1,2 then it is possible to
define f —o g € L(X; — Y7, X2 —o ¥3), turning —o into a functor £°P x £ — L. Explicitly
f—g=curx,(gevx, (X1 — Y1) @ f)).

IfYy =Y, =Y and g = idy then we obtain f — Y = cury,(evx, (X1 = Y)® f)) €
L(X] —-Y,Xy —-Y). Then for any h € L(Z ® X;,Y),

(f - Z) Curx, (h) = Cuer(h (Z ® f)) (13)

Lemma 10. Assume that (X,Y) and (X', Y) have internal homs and let ? € L(X', X)! be
such that, for all object Z, the morphisms (Z ® f;)ic1 are jointly epic. Then the morphisms
(fi oY e L(X =Y, X' —Y))er are jointly monic.

Proof. Let g1,92 € L(Z,X — Y') be such that, for all ¢ € I, one has (f; = Y)g1 = (f; —
Y)gs foralli € I and j € {1,2}. We have by Eq. (13) (fi — Y)g; = cur(cur~'(g;) (Z® f;))
and hence cur™'(g1) (Z ® f;) = cur (g1) (Z @ f;) so that cur~1(g;) = cur~!(g2) by our
assumption on the f;’s and hence g; = go. O

Notice that (1 — X, evy) always exists: we can take 1 —o X = X, ev; = p and curi(f) =
fot.

Assume that the internal hom (D — X ev) exists for all object X of L.

In particular, we can define the functor S = (D — ) : L — L, equipped with the natural
transformations m; = (7; — X) € L(SX, X) and 0 = (A — X) € L(SX, X).
Remark 20. More explicitly, m; = (T; — X) = curi(evp (D — X) @ 7)) = evp (D —o
X)®7;) p~! and similarly o = evp (D — X) @ A) p~ L.
Definition 37. An elementary pre-w-summable category is a symmetric monoidal category

L with zero morphisms, where the tensor unit 1 has an w-cartesian product (D, E)) such
that

e all internal homs (D — X, ev) exist;

e for any object X of £, the morphisms (X ® T;);en are jointly epic.
Remark 21. Upon taking X = 1, the second condition implies that the (T;);en are jointly
epic. Conversely, if the SMC L is closed, the joint epicity of the (7;);cn imply this second
condition. Assume indeed that £ is closed and that the (7;);eny are jointly epic. Let
f.g € LIX ®D,Y be such that (f (X 7)) = ¢(X ®7;))ien. By naturality of v, we get
(fy@T:®X))=g7(Ti®X))ien and hence (cur(f~)7T; = cur(g~y)T:)ien so that cur(f~) =
cur(g~y) and hence f = g.
Lemma 11. If £ is an elementary pre-w-summable category, then (S,?,J) 18 a pre w-
summability structure on L

Proof. We only have to check that the 7;’s are jointly monic, it suffices to apply Lemma 10
to the 7;’s. O

Lemma 12. If L is an elementary pre-w-summable category, then for any n € N the family
of morphisms (X Ty, ® -+ ® ?i")_i)eN" 18 jointly epic.

Proof. Induction on n > 1. The base case is just our assumption that £ is an elementary pre-
w-summable category. Assume that the property holds for n and let f, g € £(X ® D®(+1)

be such that f (X @7, ®--- @7, @T,.,) = ¢ (X T, @- @, @7, ,,) forall i € N+,
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For i € Nlet f; € £L(X ® D®") be defined as

1 On g .
X @ D& LX®D®"®1M>X®D®”®DL>Y

and similarly for g;. By inductive hypothesis we have f; = ¢; for all i € N and hence f =g
since £ is an elementary pre-w-summable category. O

Saying that 7 = (f; € L(X,Y));en is summable in this pre w-summability structure
means thanks to Eq. (13) that there is h € £(X @ D,Y) such that, for all ¢ € N, the

following diagram commutes

X122 xob

"l lh
x —I Ly

We set ((?>)® = h since this h is unique when it exists by the fact that the 7;’s a jointly
epic, so that ( f ) = cur( f ).
And by Eq. (13) again the sum is given by

ST =P (xes) e LX),
Lemma 13. Let ? € L(X,DN.  The family of morphisms (%; fi)ien € L(X,D)N is
summable and has <7> € L(X,D) as sum.

Proof. Let h = (h;)ien € L(X @ D, D) where h; is the following composition of morphisms

XD X2 x o1 £ x L4

We have h (X @7;) = (fip (X @ (piTj)))ien = (0i,5 fi)ien p = (0ijfj)ien p = T; f; p which
shows that family (7; f;)ien is summable. Next we have ), i fi = h(X ® A) p ! =

(fip (X ® (pi A))ien p~" = (fip (X @ 1d1))ien p~2 = (7). O
Lemma 14. Let I,J C N and ¢ : J — I be a function. There is a unique x(I,v,J) €
L(D,D) such that

Idy ifjeJ and(j) =i

0 otherwise.

ij(I7¢7 J) Ty = {

Proof. The morphism x(I,v,J) = (f;)jen where f; =7 [j € J] py(;) for all j € N satisfies
the required condition, and uniqueness results from the joint monicity of the 7;’s. O

Lemma 15. Let I,J C N and n : I — J be a bijection. Then x(I,n~t,J) € L(D,D)
satisfies, for all i € N,

Ty fiel
Ia 71; J _i - (@)
X )7 {O otherwise.

Proof. Immediate from Lemma 14. O

We set x(I) = x(I,1d,I) € L(D, D).
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Lemma 16. Ifn: I — J is a bijection then x(I,n~t,J) A = x(J) A.

Proof. Using the same notations as in the proof of Lemma 14, we have x(I,n,J)A =
(fi)ien A = (fj A)jen, but

f Py- 1(J)A lfJEJ . Idy lfJEJ
/ 0 otherwise |0 otherwise

which proves our contention. O

Lemma 17. If L is an elementary pre-w-summable category, then (S, 7, o) satisfies (S-zero)
and (S-com).

Proof. We check first (S-zero) so let f € L(X,Y") and let ? € L(X,Y)N be such that fo = f
and froy1 =0. Let h= fp(X ®pg) : X @D — Y, we have h(X®7rn) =0nofp=fop
and hence ? is summable with ((7)) = h. We have Z? =h(X®A)p't=FfpX®
(PoA)) p~! = f since pg A = Ids.

We check now (S-com). Let A be a set and ? € L(X,Y)? and ¢, : A — N be injections.

Assume that w*? is summable, so let h = <(<p*?))®, that is h : X ® D — Y satisfies, for all
i €N,

fga*l(i) ifne QD(A)
0 otherwise.

h(X@m)(p) " = {

Notice that ¢ 0 9~! is a bijection 1¥(A) — ¢(A), so let ' = h (X ® k) where

-1

k=xXW(A),(pov™) , p(4)),

we have, for all j € N|
W (X @) ( :hX® kﬂ']))()_l
T(pow—1()) P~ i j € P(A4)

{ otherwise

by Lemma 15

fw gy 17 ev(A) since h = <<<P*?>>®

otherwise

— 7
which shows that 1/)*? is summable. We prove that 1/1*? =5 w*?. We have
S =K (Xea)!
=h(X®(kA)p!

=h(X @ (x(p(A)A)p~" by Lemma 16
=h(X @x(p(4)) (X @A) p~!
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but h (X ® x(©(A))) = h by joint epicity of the X ® 7;’s: we have indeed

h (X @ x(p(A)) (X @) = h (X @ (x(#(4) 7))

- hM(Xem) ifiep(A)
o otherwise

_ {fg;l(z‘) p e p(4) by definition of &,

0 otherwise

and hence Zz/)*? =h(X®A)p = Zw*? O

Lemma 18. Let L be an elementary pre-w-summable category. Let ? e L(X, Y)N2 be
summable. Then for all i € N, the family m = (fij)jen € L(X,Y)N is summable.

Moreover, the family (Ef‘(z—s = jen fij)ien is summable, and we have EieNEm =
Z(i,j)€N2 fij- In other words, the property (S-ass) holds.

Proof. By our assumption about ?, we can take an arbitrary injection ¢ : N> — N, and we
know that ¢, f is summable so let h = <(gp*?>)®, in other words, for all n € N,

h(X@ﬁ)Z f@—l(n)p ifnel
" 0 otherwise

where I = ¢(N?) C N.
Leti e N, I; = ({i} xN) C I and k; = x(I;) € L(D, D). Let ¢* : N — N? be the injection

given by () = (,7) so that ¢ o1’ is an injection N — I;. Define ¢ = (¢ o 1/;1)*f‘(z—s €
L(X,Y)N. We have, for all n € N,

0 otherwise

h (X ®ﬁn) if nel; f«p*l(n) p= f(i,(gao’l/}i)fl(n)) P ifn eI
0 otherwise,

h(X @ (kiTn)) ={ =

that is h (X @ k;) = (¢ )® (by the definitions of I; and of ), and hence ¢ is summable,
so that f(i) is summable for each i € N. Let h; = ((m»@ € L(X ®D,Y) so that f‘(z_g =
hi (X ® A)p~t.

Now we prove that (> M)iel\! is summable. Let ¢ : I — N which maps n € I to
the first component of the pair ¢~!(n). In other words, for n € I, 1(n) is the unique
i € N such that n € I; (by injectivity of ¢, the set I is the disjoint union of the I;’s).
Let k' = x(N,¢,I) € £L(D,D) (see Lemma 14), we have p; k', = [j € I and ¢(j) = 1]
and notice that we also have p; k; A = [j € I and ¢(j) = i] since k; = x(I;). Therefore,
K7 =k A e L£(1,D) for all i € N. Tt follows that h (X ® (K'7;)) = h (X ® (k; A)) and we
know that h (X @ ki) = (i 0 /). F(1))® so that h (X & (ki 4)) p* = Y0 0 1), F(). 1
follows that (> (¢ o wi)*f‘(i_;)ieN is summable, with h(X @ k') = (> (p o W)*m»%, but
d(po W)*m =3 f‘(z_g by Lemma 17 which ends the proof that (> f‘(g)ieN is summable.

We have ZieNZfTi; =h(X®(KA))p!and Ypen: fig = (X ®A) p~ 1. Notice
that ¥’ A = x(I) A by Lemma 16. We conclude the proof by observing that h (X®x(I)) = h
since h = ((g0*7)>® and I = ¢(N?). O
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Definition 38. (D-flat) An elementary pre w-summable category is flattenable if, for any
injection ¢ : N2 — N, there is a morphism k£ € £(ID,D ® D) such that, for all i, j,n € N

b _ J@@m) pmt i (i ) =n
" 0 otherwise.

Notice that k is then unique by Lemma 12.

Lemma 19. If elementary pre w-summable category satisfies (D-flat) then the associated
pre w-summable category satisfies (S-flat).

Proof. Let ¢ : N — N2 be an injection, we must show that ga*? € L£(S2X, X))V is summable,
where ? = ((mi)x (m5)sx)ij)enz. Wehave T; @T; = X € L(D®D — X),(1®1 — X))
and there are canonical” natural isomorphisms

ex €ELS’X =D —-(D—-X)),DeD—oX)andvy € L(I1®1 — X,X)

such that m;m, = vx (T; ®T; — X)ex. Let k € L(D,D ®D) defined from ¢ using (D-flat).
Let ' € L(D®D — X)®D, X) be the following composition of morphisms

(DED—oX)®k
_—

DD —-X)®D DeD—-X)oDeD =% X

In the sequel, we leave implicit some instances of the isos A and p to increase readability.
Setting Y = (D ® D — X) we have, by definition of k,

ev(Y® (7 07;)) if oli,j)=n
0 otherwise

h’(Y@ﬁn)z{

so that cur(h’) € LD ®D — X,SX) satisfies

mncur(h') = (7, — X)cur(h')
=cur(h (Y @7,))

~Jaur(lev (Y@ (T @7;))) if o(i,j) =n
0 otherwise

o otherwise

sothat h = cur(h/) ex € L(S?X,SX) satisfies m, h = (gp*?)n which shows that (m; 7;) i, j)en
is summable. O

Deﬁgition 39. (D-wit) Ag elementary pre w-summability structure has _1>uitnesses if, for
any h € LX @D, Y)N if h (X ®A)p~! € L(X,Y)N is summable, then A is summable.
Lemma 20. If elementary pre w-summable category satisfies (D-wit) then the associated
pre w-summable category satisfies (S-wit).

Proof. This is immediate, actually (D-wit) is a straightforward reformulation of (S-wit) in
the elementary setting. O

7In the sense that they can be expressed using only the SMC structure of £ and the fact that for all
object Y the internal hom (D —o Y, ev) exists.
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Definition 40. An elementary w-summable category is a symmetric monoidal category L
with zero morphisms, where the tensor unit 1 has an w-cartesian product (D, ?) such that

e all internal homs (D — X, ev) do exist;
e for any object X of £, the morphisms (X ® T;);en are jointly epic;
e the conditions (D-flat) and (D-wit) are satisfied.

Remark 22. As already noticed in [Ehr23], being an elementary w-summable category is a
property of the SMC L, and not an additional structure.

The following result summarizes what we have proven so far.
Theorem 9. Any elementary w-summable category has an w-summability structure (S, T, o)
withS=D — ), m =(T; — X) and 0 = (A — X).

From now on we assume that £ is an elementary w-summable category.
Proposition 37. If? € L(Xo, Yo)N is summable, then 7®X1 = (fi®X1)2, is summable,
and we have (f © X1)® = ((1)° © X1) (X @ 7) and (f © X1) = (£ ) @ X1.

If ? € L(X1, Y1) is summable, then Xo ® 7 (Xo ® fi)22, is summable, and we have

(%0© 7)° = (X0 @ (F)%) and YKo ® 1) = Xo & (T f).
So the w-summability structure follows (S®-dist).

The proof is trivial.

4.2 The comonoid structure of D

We equip D with a comonoid structure. The counit is the projection py = pg € £L(D,1). We
define a comultiplication e L(D,D ® D) which satisfies 07, = Yoo i ® Tp—s. To this
end we use Theorem 5 which yields Opgp € L(D — (D - D ® D),D — D ® D) and hence
cur }(Opep) € L(D — (D -D®D)) ®D,D® D). But we have A € L(1 @ D®D,D ® D)
whence cur(cur(A)) € L(1,D — (D — D ® D)) and hence

0 = cur ' (Bpep) (cur(cur(A) @ D) A~! € £(D,D ® D)

Given n € N, we know that (m; m,—;)", is summable and that 7,0 = >0 7 Tp—i.
From this fact and from the fact that (m;)x = (7; — X), by standard computations using
only the SMC structure of £ and the fact that all internal homs D — X exist, we can
easily deduce that the family (m; ® Tp—; € L(1 ® 1,D ® D)), is summable and that

OTn AL =D 1 i @ Tn—i-
Notice that the joint epicity of the 7,’s shows that # is uniquely characterized by these
equations.

Lemma 21. The triple (D, po,6) is a commutative comonoid.

Proof. We prove first that
D—LsDeD

x llD)@Po
P

D®1
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so let n € N, we have

(D®p0)9ﬂ'n— D®p0 Zﬂ'l@ﬂ'n 7 >\_
1=0

= Z(ﬁ ® (poTn—i)) A"

=0

but Po i = Po Tp—i = 5n,1‘10|d1 and hence (D X po) aﬁn = (fn X |d1)A1_1 = A]D)_l. So
the diagram commutes by joint epicity of the 7, ’s.

Next we prove that
D5 DeD 2% Deb) oD

aj i la

D® (D®D)

so let n € N, we have

a(@ D)7, =a(@ D) (Zn:m ® Tp_i) A"

n i

=a(D QO mem ;)T ) AT @A
i=0 j=0
=a Z (T @7;) @7k) AP ®@1) A1 by Proposition 37

i,j,k€EN
i+j+k=n

=( Z T (T om) (1@ AH)A?
i,7,k€N
i+j+k=n

= (D®0)AT, by asimilar computation

and the announced diagram commutes by joint epicity of the 7, ’s.

One proves similarly that
D—-DeD
NP
DD

using the fact that v (3" (7T @ Tn i) A = (g Tn—i ® )y A~ ! and that y A7 = A1
because A\; = p;. O

Next we equip D with a commutative monoid structure. First we have A = A € £(1,D).
Next for each i € N we have A (p; ® p;) € L(D ® D, 1), and we set | = (A(p; @ p;))ien €
L(D ® D, D). Notice that I(7; ® T;) = 6 ;@A = 6 ;mip1 for all i,j € N, which fully
characterizes | by Lemma 12.

Lemma 22. The triple (D, A,T) is a commutative monoid in L.
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Proof. We prove

Dol 224 Deb

S

TDRA)m®1) =17 A)
=17 o) 7))
jeN
=1 Zﬁi ®7,
jeN

= Z 0i,jTip1

jEN

so let © € N, we have

= pp (T; ®1) by naturality of p

which proves the commutation by Lemma 12.
Next we prove

DeD)eD —<5DeDdeb) =2, Deb

Ten| N ﬁ

DD ! D

so let 4,5,k € N, we have
Tmel)a(er)em) =Dl (e (T; @7))
=T(7: @ (3,475 V)
=04l (T @7;) (1@ N)
=0k T A(1®N)
=1(®D) (T ®7;) @)

by a similar computation, so the diagram commutes by Lemma 12. One proves similarly
that

DD —5DeD
\ﬁ
|
D

using again the fact that \; = p;. O
Theorem 10. The tuple (D, A,T, Po, 5) is a bicommutative bimonoid.

Proof. First we have

since pg A = pp A = Idy.



Next we prove that

DeD D 0 DD
mﬂ T@T
DeD)®DeD) — = DeD)® (D D)

where s 3 is defined using the canonical isomorphisms o and  of the SMC structure of L,
and is characterized by v2.3 (T, @ Ti,) ® (Tiy @ Tiy)) = (i @ Tiy) @ (T, T4, ). We have

ﬁ(fi ®fj) = 5i,j§fi A= 51')]‘(2 T @ Ti—k) A

and
(CDEY (5@ 5) (T ® fj)
= '72 3 Z iy ®7T12 ( Z T ®ﬁj2)) ()‘_1 ® )‘_1)
i1+iz=1i J1t+j2=J
=(@Nns( Y, Fu®m) @ @, 07,) (A er™)
i1+i2=1
Jit+j2=j
=(eh( Y @ &%) @ 07) (A @A)
11+i0=1
Jit+je2=J

D i 0is T ® i) A M) 23 (AT @A)
1:1+i‘2:i‘
Jit+j2=j
which ends the proof that 1 (7; ® ;) = =D V2,3 6 ®6) (T ® 7,) for all 4,5 € N upon
observing that if 8;, j, ds, j, = 1 then i = i;+ig = j1 +jo = j and (M ®@\) Y23 (A @A) =
ldigne@e). The diagram commutes by Lemma 12. O

4.3 Correspondence between the bimonad S and the bimonoid struc-
ture

We can define a functor Sg : L — L by SgX = X ® D and similarly on morphisms:
Sef = foD € L(SgX,SgY) if f € L(X,Y). The bimonoid structure of D induces
straightforwardly a bimonad structure on this functor. The comonad structure Sg is given
by

SeX =XoD 22 xg1 2 X
SeX=XoD X% X DeDb) — (X©D) oD =S3X

The monad structure Sg, is given by

-1
X2 5 X0l 228 XeD=SyX

22X =(X®D)oD 5 X@DeDb) X% X gD

and the distributive law is (keeping the associativity isomorphisms implicit)
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Bimonoid D Bimonad Sg Bimonad S

Monoid unit A Monad unit (X ® A) p~! Comonad unit o
Monoid multiplicationT Monad sum (X ®T) o Comonad sum |
Comonoid unit pg = Comonad unit p (X ® po) pates Monad unit ¢
Comonoid multiplication ] Comonad sum «a (X ® 5) Monad sum 6
Monoid commutativity ~ Distributive law X & ~ Distributive law ¢
Projection p; € £L(D, 1) p(X®p) e LX®D,X) Injection ¢;
Injection 7; € £(1,D) (Xom)ptel(X,X®D) Projection ;

Figure 1: Bimonoid and bimonad relations

RLX=XoDeD — 2" , XeDeD
Now the functor S = (D — ) : £ — L is the right adjoint of Sg and hence, as shown
in Section 8.2, S inherits from the mate construction a bimonad structure which is exactly
the same as the one described in Section 1.4. The different constructions are summarized
in Section 4.3. Let us write down the details.

By Remark 36 instantiated in L 41 R=_®D D -—-o and L' 4 R’ = Id 4 Id, the mate
construction maps a natural transformation Ay € £(X, X ® D) to a natural transformation
pux € L(D — X, X)) defined as p = ev A. It follows from the explicit formula of Remark 20
that m; € £(D — X, X) is the mate of (X ®7;) p~! and that o € L(D — X, X) is the mate
of ( X®A)p~?

By Remark 36 instantiated in L {R=1d 4ldand L' 4 R'= @D D — , the mate
construction maps a natural transformation Ay € £(X @ D, X) to a natural transformation
ux € L(X,D — X) defined as u = cur(\). By a standard computation involving Eq. (13), or
by using the fact that m; is the mate of (X ®7;) p~! and the fact that the mate construction
is compositional (see Section 8.1), we can show that

min=MNX®7)p*

Thus, by joint monicity of the m;, the mate of p(X ® p;) € L(X ® D, X) is necessarily
1 € L(X,D — X).

By Remark 36 instantiatedin L {R=_®D-AD—- and L’ 4R =(_@D)@D-AD —
D — _, the mate construction maps a natural transformation Ax € L((X®D)®D, X ®D) to
a natural transformation px € L(D — X, D — D —o X)) defined as u = cur(cur(ev Ap—x)).
By a standard computation involving Eq. (13), or by using the fact that m; is the mate of
(X @7;) p~ ! and the fact that the mate construction is compositional (see Section 8.1),

mmip=evA(D—oX)@7 7)) p 1 p !

But ev is an iso since cur(ev) = id. So mimip = 1 = ev((D — X) @ 7) p~ ! if and
only if A(D - X)®7,, 7)) = (D — X) @7 and mym; = 0 if and only if XA (D —
X)@m ®@7;)p~ ! = 0. Thus, by joint monicity of the m; 7;, the mate of (X ®Da is
necessarily |.

By Remark 36 instantiatedin L4 R=(_@D)®DAD —-D—o ,and L’ 4R = DA
D — _, the mate construction maps a natural transformation Ax € £(X @D, (X @ D) @ D)
to a natural transformation puy € L(D — D — X, D —o X) defined as u = cur(ev (ev@D) \).
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By a similar computation as the ones above, one can show that
mip=ev(Eev@D)A((D—-oD—oX)7)p !

In particular, m; p = ZZ:O e mi—k if and only f A(D — D — X)@7;) = (D — D —
X) @Y _o(Tr ® Ti—k), thanks to the computations below.

Z TRTi—k = Z (ev(ev®@D) (D —D— X) @7k ®@Ti—k)p 'p~ ') SMC computation
k=0 k=0

= ev(ev® D) <(]D) —D—X)® > (T @mk)) pipt
k=0
(left) additivity and (S®-dist)

It means that the mate of o (X ® 6) is 6. ®
Finally, by Remark 36 instantiated in L 4 R = (_ @ D) @D 4D — D — _, and

L'4R =(_®D)@D 4D — D — _, the mate construction maps a natural transformation
Ax €L(X@D)eD, (X @D)®D) to a natural transformation px € L(D — D — X, D —o
D —o X)) defined as 1 = cur(cur(ev (ev@D) X)). We can show with similar argument as above
that mymp=m;m ifand only if A(D D - X) @7 ®@7;) =(D—oD— X)®7, 7,
so the mate of X ® v must be c.

Definition 41. We define a natural transformation (up to associativity)

— 9 X D
Cxox, = Xo® X, @D 22288 yio X, DD 2792, ¥, D X; @D

That is, EX07X1 S £(5®(X0 ® Xl), S®X0 & S®X1)
The natural transformation L is characterized by the equation Lx, x, (X0 ® X1 @ 7,,) =
ZZ:O(XO QT ® X1 @ Tp—k). Applying the mate construction of Section 8 with H = K =
® and taking L’ 4R = ®DAD—-oD-—-o and Ld4R=(_®D)x(_®@D)-

(_ID) — )X (D — ) (this is the product of the adjunction @D 4D — _ with itself, see
Section 8.4) yield a natural transformation

a=cur((ev®ev) Lp ox,pox,) € L((D — Xp) ® (D — X1),D — (Xo ® X1))

A computation similar to the other computations of this section show that m; o = 22:0 QR
mi—k 80 @ = L (where L is defined in Section 1.5.1). Recall that (S, ¢, L) is a lax monoidal
monad. By Theorem 32, (Sg, p (id ® po), L) is then an oplax monoidal comonad. This oplax
structure is the one associated to the strengths (up to associativity)

Xo®vx,p € L(Se(Xo @ X1),S¢Xo @ X1)
id € L(S@(XO & Xl),Xo ® S®X1)

Those strengths were implicitly used when defining L in the first place. The mates of those
two natural transformations are ¢ and ¢! respectively. Observe in particular that Xo ® ~y
is a natural isomorphism, so ¢" is an isomorphism (the mate of an isomorphism is an
isomorphism).

8In fact, the existence of 0 was proved implicitly by taking the left mate of 6, so this is a somewhat
redundant argument
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Proposition 38. If L is monoidal closed, then (S®-fun) holds.

0

—o

Proof. As seen above, ¢" is an iso, so its mate ¢ = cur((Sev) 90?4%)(,,4) through the
adjunction ® A+ A — _ is also an iso. O

Assume that £ is cartesian. There is a natural transformation
(Po®@D,p1 ®@D) € L((Xo & X1) @D, (Xo®D) & (X7 ® D))

Applying the mate construction of Section 8 with H = K = &  and the same two
adjunctions as above yield a natural transformation

a=cur((ev&ev)(po@D,p1 @D)) € LI(D — Xo) & (D — X7),D —o (Xo & X71))

Again, a computation involving the SMC structure show that m; « = m; & m; so a = cgl by
Proposition 27. So Proposition 39 below holds.

Proposition 39. If L is cartesian, then the elementary w-summability structure follows

(S-& ).

4.4 A mate to the distributive law 0

Let £ be an elementary w-summable category. We assume moreover that £ is cartesian and
is equipped with a resource comonad, see Definition 18, so that it is a summable resource
category. By applying the results of Section 8.3, we can show that the mate construction
induce a bijection between the distributive laws of Section 2 9 : !S = S! and a distributive
law 0 : Sg! = !Sg. It means that in the elementary case, Taylor expansion can be directly
expressed as the existence of such 9:! ®D = !(_ ® D) with the following properties.

X oD -2 (XoD) !X®D (X ® D)

O-chai i i
(O-chain) dm J{der dg®1D>l ldg

X®D NX @D —— (X ®D) —— (X D)
X UX

The commutation (J-chain) mean that 0 is a distributive law between the functor Sg and
the comonad ! . By Corollary 6, (0-chain) holds if and only if J is a distributive law between
the functor S and the comonad ! , that is, if (0-chain) holds.

l\

(0-local) X®1 (X ®1)
1X®ﬁ{ \!(Xfﬁ“)
X @D Ox (X ® D)

The commutation (0-local) mean that the natural transformation (X ®7) p~! € L(X, X ®
D) is a morphism of distributive law. By Corollary 8, it is one if and only if 7y (its mate)
is a morphism of distributive law, that is, if (0-local) commutes.
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1X oD 255 I(X © D) X @D Ox (X ®D)
l!(X@po) !X@@i l!(x(g@)
(0-add) 1x@p, (Xl XeDeDb) (X ® (D®D)
l!p al J{!a
IX @1 —— X (X®D)®D —— (X ®D)©D —— (X ® D) ® D)

JOx ®D Ix oD

The commutation (J-add) mean that 9 is a distributive law between the functor ! and the
comonad structure on Sg described in Section 4.3. By Corollary 9, (J-add) holds if and
only if 0 is a distributive law between the functor ! and the comonad S, that is if (9-add)
holds.

In the next diagram, the use of « is kept implicit.

dxeD

X oDoD ZB (X gD) oD 2% (X 9D D)
(E-Schwarz) !X®,Yl lg (X®a)
X@DOD =— (X 9D)®D — (X ®De D)

X

Ox @D

The commutation (0-Schwarz) mean that X ® v is a morphism of distributive law. By
Corollary 8, it is one if and only if ¢ (its mate) is a morphism of distributive law, that is, if
(0-Schwarz) hold.

X021 X; @ D —E— 1X @ DelX; @D —222 |(X, ® D)®!(X; ® D)

(0-&) mz@”ﬂ lmz

The commutation (0-&) mean that m? is a morphism of distributive laws between the
composition of @ with L, and the composition of d with (py ® D, p; ® D). But as we saw in
Section 4.3, the mate of L is L and the mate of (pg @ D, p; ® D) is cgzl. By compositionality
of the mate construction and Corollary 5, (0-&) holds if and only if (9-&) holds.

(XeD)oD 228 (X oD) oD X% 1((X © D) ® D)

o| I

(0lin) 11X ® (D® D) (X ® (DeD)
| X®Tl i!(xe@T)
X @D - (X ® D)
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1X
1p~t
pfll \

(0-analytic) 1X®1 (X ®1)
!X®AJ{ \!():@A)
IX @D _ (X ©D)
Ox

Together, the commutations (0-lin) and (d-analytic) mean that 0 is a distributive law be-
tween the functor ! and the monad structure on Sg described in Section 4.3. By Corol-
lary 10, they hold if and only if J is a distributive law between the functor ! and the

comonad S, that is, if and only if (9-lin) and (0-analytic) hold. The following result sum-
marizes what we have proved in this section.

Theorem 11. Let 0 : !S = S! and 0 : Sg! = Sg be mates. Then O follow (0-chain),
(0-local), (0-add), (0-Schwarz), (9-&), (0-lin) and (9-analytic) if and only if O follows
(0-chain), (0-local), (0-add), (0-Schwarz), (0-&), (0-lin) and (0-analytic).

4.5 The Taylor coalgebra structure of D

An important structure can be derived from the cartesian structure of £ and its resource
comonad: a lax symmetric monoidality of the functor !, from the SMC (£,®,1) to itself.
More precisely we have a morphism p® € £(1,!1) and a natural transformation M?X,Y €
L(IX @Y, (X ®Y)) which satisfy some coherence diagrams, and can be defined as the
following compositions of morphisms

T SN o S GO NN
mX,y digxgy ((m% ) ™) 1(dig x ®digy)
IX @Y 5% (X &Y) EXY, (X & Y) — 51X 1Y) ——ex298), yx g y)

Particularly important is the associated Eilenberg-Moore category £' whose objects are
the coalgebras of !, that is, the pairs P = (P,hp) where P is an object of P and hp €
L(P,!P) makes the two following diagrams commute

P p p-rrp
N lderg hpl ldigﬁ
P p ey np

It is easy to check that (1,u°) is an object of £' that we simply denote as 1 (so that
h; = ©°) and that, given objects P, and P of L', the object P ® P, can be equipped with
a l-coalgebra structure defined as



hp, ®hp,

2
PP P P 5 (P o Py)

We use P; ® P, to denote this coalgebra, so that hp,gp, = 2 (hp, @ hp,).

Each object P of £' can be equipped with a weakening morphism wp € £'(P,1) and a
contraction morphism cp € £'(P, P ® P) which can be defined as follows

m0)~!
p e p e T M) g

(m2)71 der®der

(idp,ldp) (P& P) — 5 1Ppolp <9, pg P

p-rap

Theorem 12. For any object P of L', the triple (P,wp,cp) is a commutative comonoid in
L.

Given (fz € E!(Pi, Qi))izl)g, it is easy to check that f1 ® fo € L (Pl RP, Q1 ® Qg) And
therefore if (f; € £L'(P,Q;))i=1,2, one can define (f1, f2)") = (f1 @ f2)co € L'(Q, P1 @ Py).
We can also define projections pz(-!) € L'(P, ® P, P;), for instance the first projection is
simply

Piewp, 14
PP —— P®l — P

Theorem 13. The category L' is cartesian, with 1 as terminal object and (Py, ®Ps, pg!), p(!))
as cartesian product of Py and Py. Given (f; € L'(P,Q;))i=1.2, (f1, 200 = (fi ® f2) cQ €
L£(Q, P, ® Py) is the unique morphism such that pl(-!) (f1, fo) = f; fori=1,2.

This is a non-trivial result, for which we refer to [Mel09].

For any object X of £, the pair EX = (!X, digy) is an object of £'. This defines a functor
E: L — £ which maps f € L(X,Y) to !f € L'(EX,EY) as easily checked. The coalgebra
EX is the cofree coalgebra generated by X in the sense that, for any object P of £' and any
f € L(P, X), there is exactly one morphism f' € £'(P,EX) such that derx f' = f.

The “image” of this functor is a full subcategory which can be described, up to equivalence,
as the Kleisli category of the ! comonad.

Definition 42. We write wky € £(1X,1) and ctrx € L(!X,!X ®!X) for the weakening and
contraction associated to this free coalgebra (!X, digy). In other words wkx = wgx and
ctrx = Cgx.

Definition 43. An analytic coalgebra on £ is a morphism 0 € £(D,!D) such that (ID,d)
is an object of £', the four structure maps of the bimonoid (D, A, 1, pg, ) are morphisms in
L', and such that 7 is a morphism in £'. When such analytic coalgebra is given, and when
there are no possible ambiguities, we simply use D to denote the coalgebra (D, 9).

Let us make these conditions more explicit. The fact that (DD, 5) is an object of £' means
that the two following diagrams commute

D—2, 1D D—2 1D

m %)dem ;ﬂ ~ J{digm

D 2 1D
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The fact that po € £'(ID, 1) means that

D—251D

S

1T

and the fact that 6 € £'(D, D ® D) means that

D 9 D

i) I

aPENy 2
DoD 2% De D £ (Do D)

The fact that A € £'(1,D) and 7y € £'(1,D) mean that the following diagrams commute

u® u®
11— 1—— 1
ﬁol lxa, Al lm
D —25 1D D—2.1D

and the fact that | € £'(D ® D, D) means

D 9 D

.

DD —% IDRID X (DeD)

Theorem 14. We have po = wp € £'(D,1) and 6 = cp € L/(D,D @ D).

Proof. This is a direct consequence of Definition 43; the first equation results from the fact
that 1 is the terminal object of £', and the first equation implies that pl(-!) 0 =Idp fori=1,2
which entails # = (Idp, ldp)®") = cp.

Theorem 15. Any analytic coalgebra d induces a natural transformation
— 3 2
= 1XoD X2 1XxeD £ (X D)

that follows (O-chain), (0-local), (9-add), (0-Schwarz), (0-&), (9-lin) and (D-analytic).

Proof. We show that 9 follows (O-analytic) with the diagram chase below. The only crucial
argument involved is the fact that A € £'(1,D).

X (X o)

xe1| I

IX®1 ——0 IXal
IX®u
IX®A\L l!X@!A

IX®D —— 1X®ID —— (X ®D)
IX®0 “w

(X®A)
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We show that 0 follows (0-lin) with the diagram chase below (any use of « is kept implicit).
The only crucial argument involved is the fact that | € £'(D @ D, D).

2
1X 9D D PP xem oD L5 1(X o D) o 225X 9 D)oD — (X © D D)
\!X®D®5 ;L2®!]DJ% u? —
IX®ORH ~ — —
Ixel XDRD —— I X!/(D e D) (X
IX®pu
LX@T
XoD = XD ——— (X @D)
1 X®0 o

The other computations are similar and can be found in Theorem 19 of [Ehr23] (they do
not involve any argument on the summability structure, so they directly carry to our setting).
Note that the proofs of (0-Schwarz) and (0-&) do not rely on any of the assumptions on
0. O
Theorem 16. Any natural tmr_wformation_g :Sg! = 1Sy that follows (0-chain), (0-local),
(0-add), (0-Schwarz), (0-&), (0-lin) and (0-analytic) induces an analytic coalgebra given
by

7= D25 10D % n1eDp 25 11eD) -2 D

Furthermore, d = X @ D 1X®9 XD , (XeD) .

Proof. The fact that 0 = p? (!X ® 9) can be found in Theorem 17 of [Ehr23]. Again, no
argument on the summability structure are used so the proof carry directly to our setting.

We prove that A € £'(1,D) with the following diagram chase. The only crucial argument
involved is (0-analytic).

1 £ "
/\_1 A
A T /’p_ll IA
11 ey @1
1@3A '1®A (D-analytic) l’(1®A)
Dﬁl@ﬂ)m'l@ﬂ)?.(l@ﬂ)) —— 1D

We prove that Tecr (D ® D,D) with the following diagram chase. The proof involves

59



(0-lin) and the fact that @ = p? (X ® ) (commutation (x)).

DoD —222, DeD DD —2 5 (D@ D)
A-1 !/\_1®!]D)l
2
12DeD 22 ¢ IDeID 128D I(1 @ D)ID

11QDRI H
7 19888 NeDeD 5% | (1 D) ®D(@—D)®§6.( 1 D)®!
11R90D (a) H (a) lu

19DeD 2211 g DD =—(1eD)eD =— (18D & D)
1 1QD
1Q1 1l (D-lin) !(1®T)l
D— 19D ———— 1®D _ (1®D) —— ID
ATt @D 91 DY
The other computations rely on similar arguments and can be found in [Ehr23]. O

Corollary 4. The constructions of Theorem 15 and Theorem 16 are a bijection. Thus,
for any elementary summable resource category, there is a bijective correspondence between
analytic structures following (0-analytic) and analytic coalgebras.

Proof. We already know from Theorem 16 that if 9 =120 (U @D) AL then d = 42 (X ®
6). Conversely, assume that 9 = pu? (X ® 6) Then we can check by a straightforward
computation that & =!A3; (u°®D) A~L. So the constructions of Theorem 15 and Theorem 16
are a bijection. Then, we know from Theorem 11 that the existence of d following (J-chain),
(0-local), (9-add), (9-Schwarz), (0-&), (9-lin) and (J-analytic) is equivalent to the existence
of an analytic structure 0. O

4.6 A remarkable isomorphism

In this section we assume that £ is an elementary w-summable category equipped with a
analytic coalgebra.

Given an object P of P', let ¢ € £'(P, P®") be the n-ary version of the comultiplication
of the comonoid P, so that ¢(® =w, ¢! =Id and ¢ =c.

In the case where P is the coalgebra (D, 5), we know by Theorem 14 that cp = 0 and
hence we have

MmN = 3w e e,

Tent
it i=n
where A(®) € £(1%™,1) is the unique canonical isomorphism induced by the SMC structure
of L.

Lemma 23. For all n € N we have

(n) ”
D -2 per 27 jen
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Proof. Given k € N, we have

n)_— n n — — n -1
)\(n) p1®"c]§))m :)\( )p1® ( Z i, ®"'®7Tin)()‘( ))

Tenn
i1t tin=k
= Op,nldy
=PnTk
so that the diagram commutes by joint epicity of the 7 ’s. O

Definition 44. For all object X, we define a natural morphism dery € L£(!X, X®") as

(n) ®n
< d
X X, (1x)® X, xen

and call it n-ary generalized dereliction.
For each n € N we define deg™ = A" der? € L£(!1,1), and then we define deg =
(deg'™)en € £(11,D). In other words, thanks to Lemma 13, we have

deg = > 7 A®) der, "y . (14)
k=0

Conversely, we define deg’ € £(ID,!1) as
D2,y

Lemma 24. degdeg’ = Idp.

Proof. Given n € N, we have

deg'™ deg’ = A" der, ®" cg) Ip1 O
= A" der, @™ 1p, & c%) d
= A" p &7 derp @ c%) d
= A p,@n )
= Pn

by Lemma 23 and hence degdeg’ = <deg(")>n€N deg’ = (deg(") deg’)nen = (Pn)nen = ldp.
O

Definition 45. The resource category L is finitary if the generalized derelictions (der]),en
are jointly monic, that is deg is monic.

The intuition is that the “points” of !1 contain only a finite amount of information. This
is typically the case when the definition of the exponential is based on multisets.

Theorem 17. If the elementary analytic category L is finitary, then deg’ deg = Id;. The
coalgebras objects D and 1 are isomorphic in L'

Proof. We have degdeg’ deg = deg by Lemma 24 and hence deg’ deg = Id by monicity of
deg. The second statement results from the fact that clearly deg’ € £'(D,!1). O
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Remark 23. So when L is a finitary elementary analytic category which is closed, the objects
1 —o X and SX are isomorphic, meaning that a morphism f from 1 to X in £, is the same
thing as a summable family 7 of elements of X: f can be considered as a power series on
the object 1 of scalars, whose coefficients are the z;’s, that is f(t) = > oo t"xy.

More generally, if f € £i(X,Y) = L(!X,Y), we can define h € L(!1X ® !1,Y) as the
following composition of morphism

u? 'p f
Xl 2 1(Xel) = 1X =Y

which can be seen as a two parameter analytic function which, by the isomorphism between
1 and D, can be considere as a summable family (h,, € £i(X,Y))nen. This means intuitively
that we can write f(tz) = > .2 t"hy(x), that is, hy, is the n-homogeneous component of f
which can be considered as a “polynomial” morphism X — Y. This morphism can also be
obtained as m, T(f)!t1, using the Taylor functor.

Remark 24. It seems very likely that the free exponential of a Lafont SMC (see Section 4.7)
is finitary, although we don’t know how to prove it yet.

4.7 The case of Lafont resource categories

If £ is an SMC, one defines the category L% of commutative ®-comonoids: an object of this
category is a triple C' = (C, w¢, cc) where the counit we € £(C, 1) and the comultiplication
co € L(C,C ® O) satisfy the following commutations

C—=5CeC Cc s CceC
(Ag)_\/‘ iwm@g R gleNe]

10C ceC

c c cecC
cc lQ@Cc
Coc 2L, caC)eC 245 0o (CaC)

A morphism from a comonoid C' to a comonoid D is an f € £(C, D) such that the two
following diagrams commute

f

c—1.p c——D
\ ) cc cp
’ % Qigﬂgé

and identities and composition are defined as in L.

There is an obvious forgetful functor U : L& — £ which maps C to C and acts as the
identity on morphisms.

Definition 46. The SMC L is a Lafont category if the functor U has a right adjoint.
Theorem 18. Any cartesian Lafont SMC L has a canonical structure of resource category.

This is a standard result, see for instance [Mel09]. It means that £ is endowed with a par-
ticular resource structure (!, der,dig, m®, m?) that we describe now. The resource modality
which arises in that way is often called the free exponential of L.
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Let C: £ — L® be the right adjoint of U. By this adjunction, the functor UoC: £ — L
has a structure of comonad: this is our resource comonad (!, der, dig).

For the Seely isomorphisms, we must first notice the following property.

Theorem 19. The category L® is cartesian, with terminal object (1,1d1,\1 = p1) and
cartesian product of C1 and Cy the triple (C1®Cs,w, c) where the unit and the multiplication

are given by

®
g@@%l@l&l

(CLO®C) @ (CLOCy) 2% (CLeC)®(Ca®Cy) “25% 00 0y

where 72,3 is defined using the coherence isos of the SM structure of L. The first projection
18

wo, QC:
G0 ~ 22100, 2 Cy

and similarly for the second one.

As a right adjoint, the functor C preserves cartesian products, and the Seely isomorphisms
embody this preservation.

Theorem 20. A Lafont elementary w-summable category has a Taylor structure.

Proof. This is an immediate consequence of the fact that (D, pg, 6) is a commutative comonoid
and of the fact that pg, 8, A, | and Ty are comonoid morphisms. O

Remark 25. So any Lafont w-summable category is automatically an elementary analytic
category. It turns out that all the concrete instances of elementary analytic categories that
we know for the time being are of this kind.

Remark 26. There are Lafont categories that are not w-summable, such as Kothe spaces ([Ehr02])
or finiteness spaces ([Ehr05]). As mentioned in Remark 5, it might be possible to give weaker
axioms to our w-summability structures in order to capture those models.

5 Examples of elementary analytic categories

5.1 Some notations

If A is a set, a (finite) multiset of elements of A is a function m : A — N whose support
supp(m) = {a € A | m(a) # 0} is a finite set. Intuitively, m(a) is the number of occurrences
of a in m, and we write a € m if a € supp(m). We use [] for the empty multiset such that
supp([]) = 0. We use Mg, (A) for the set of all finite multisets of all elements of A, that we
consider as a commutative monoid (actually it is the free commutative monoid generated
by A), whose operation is denoted additively: if mq,...,m, € Mg,(A4), then we write
my + -+ -+ my, for their pointwise sum. If @ = (ay,...,axr) € A*, we use [@] = [a1, ..., ax]
for the element m of [A] which contains the elements of 7, taking multiplicities into account,
that is m(a) is the number of ¢ € {1,...,k} such that a; = a. The size, or cardinality, of
a multiset m is #m = Y ., m(a) € N. We use M (A) for the set of all m € Mg, (A)

such that #m > 0. We set m! = [[,c 4, m(a)! € N and call this number the factorial of m.

For any ni € Mgn(A)", the quotient mn(nf) = w is an integer and is called the
malmy!

multinomial coefficient of m.
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If u € R4 where R is a semiring (with standard algebraic notations) and m € Mg, (A)

we set u™ = [[,ca w1t u(1),...,u(k) € RA, the usual multinomial formula generalizes
to
m k
(Z u(i)) = Y m@) [Jum.
i=1 € Mo (4)* =1

mi+-+mp=m

5.2 Strict coherence spaces

Our first example is based on a notion of coherence space introduced in [Lam95| and which
also arise naturally in the setting of Indexed Linear Logic [BEO1]. The nice feature of this
model, from the point of view of coherent differentiation, is that it has a non-trivial and
very simple notion of summability.

Definition 47. A strict coherence space (SCS) is a structure E = (|E|, ~g) where |E| is a
set and ~g is a binary symmetric relation on |E)|.

Definition 48. A clique of a strict coherence space E is a subset = of |E| such that
Va,a' € X a ~g a’. We use CI(E) for the set of all cliques of E.

Definition 49. If F and F are SCS, we define a SCS E — F by |E — F| = |E| x |F| and
(a,b) NE-—oF (a',b’) if a ~E a =b ~F v

Obviously ldg = {(a,a) | a € |E|} € CI(E — E)andifs € Cl(E — F)andt € Cl(F — G)
then the relational composition ¢t s = {(a,c) € |E| x |G| | 3b € |B| (a,b) € s and (b,¢) € t}
belongs to CI(E — G).
Definition 50. The category Scs has the SCS as objects, and Scs(E, F) = CI(E — F),
with identities defined as diagonal relations and composition as relational composition.

Definition 51. The dual of E is E*+, the SCS whose web is |E| and a ~g. @' is a v o,
which means that —(a ~g a’).

The SCS 1 is defined by |1| = {*} and * ~; *. So that Cl(1) = {0, {*}}. Then one define
1 = 1" so that | L| = {*}, with * — * so that Cl(L) = {}}. If E; and E; are SCS, we set
E, ® By = (By — Ey)*, that is (a1, a2) ~g,e8, (a},db) if a; ~g, a’ for i = 1,2.

Lemma 25. If (s; € Scs(E;, F;))i=1,2 then s1 ® so2 C |E1 @ Ea| x |Fy @ Fy| defined by
s1 ® s2 = {((a1,a2), (b1,b2)) | (a;,b;) € s; for i = 1,2} belongs to Scs(E1 @ Eq, F1 @ F).
The operation @ defined in that way is a functor Scs® — Scs.

The proofis straightforward. This bifunctor, together with its neutral element 1, turns Scs
into an SMC, by taking the following coherence isos: pg = {((a,*),a) | a € |E|} € Scs(E ®
1aE)7 Ap = {((*aa)va) | ac |E|} € SCS(1®EaE)7 QF,,Es,E5 = {(((alaaQ)aa3)a (alv (&2,&3)) |
a; € |E;| for i =1,2,3} € Scs((F1®FE2)QFEs, Ey®@(F2®FEs)) and v, g, = {((a1,a2), (a2,a1)) |
a; € |E;| for i = 1,2}.

This SMC is closed, with internal hom of E and F the pair (F — F,ev) where ev =
{(((a,b),a),b) | a € |[E| and b € |F|}. Let us check that ev € Scs((F — F)® E,F), so
let a,a’ € |E| and b,0" € |F| with ((a,b),a) ~(g—rer ((a/,b"),a’). This implies a ~p o’
and also (a,b) ~g—op (a/,V’). Therefore, we have b ~p b" as required. The transpose of
s€Scs(GR E,F) is cur(s) = {(¢, (a,b)) | ((¢,a),b) € s} € Ses(G,E — F).

The SMCC Scs is *-autonomous with | as dualizing object. This means that the mor-
phism cur(evyg_o1.p) € L(E,(E — 1) — 1) is an iso. This iso can also be expressed
more simply by observing that there is a simple iso in Scs(E — L, E+), namely the rela-
tion {((a, *),a) | a € |E|} which is actually a bijection from |E — 1| to |E*|.
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The category Scs is cartesian. If (F;);cr is a family of such objects, then we define
& icr Ei as the SCS whose web is | &, ; Ei| = U, {i} x | Ei| and whose coherence relation
is defined by saying that (i,a) ~g,._ g (i',a’) if i =4 = a ~p, o’. Indeed, the relations
(pi = {((1,a),a) | i € I and a € |E;|})ier satisty p; € Ses(& e Ej, Ei) and for any family
(si € Scs(F, E;))icr there is exactly one morphism (s;)ic; € Scs(F, &, Fi) such that
V‘] el p; <5i>i61 = Sj, namely

(siYier = {(b, (i,a)) | i € I and (b,a) € s;}

so the p;’s are the projections of this cartesian product.

By *-autonomy, the category Scs is also cocartesian with coproduct @, ; Ei = (&;¢; Ef)*
whose web is |@,.; Ei| = U,;c;{i} x |E;| and coherence is given by (i, a) ~D,er By (i',a')
if i =4 and a ~g, a’. The corresponding injections are (p; = {(a, (i,a)) | i € [ and a €
|Ei|} € Ses(Ei, @ c s Ej))ier-

In the special case where I = (3, the product of the empty family is the terminal object
T = (0,0) and the coproduct of the empty family is the initial object 0 = (0,0) = T.

Theorem 21. The SMC Scs is a Lafont category.
Proof. Easy verification. O

So the category Scs can be equipped with a free resource modality (!,der,dig, m®, m?),
and it is easy to check that this resource modality can be described as follows (this is part
of the proof of Theorem 21). First |!E| = Mgn(|E|) is the set of finite multisets of elements
of [E|, and m ~gm/ if a ~g a for all a € m and o’ € m'. If s € Scs(E, F) then

Is ={([a1,...,an],[b1,...,bn]) | n € N and ((a;,b;) € )i}

and one checks easily that !s € Ses(!E,!F): let (m,p),(m',p") € ls, we must prove that
(m,p) ~1p—otr (M, p’), so assume that m ~ g m’ and let us prove that p ~p p’. Let b € p
and b’ € p’. There are a € m and @’ € m’ such that (a,b), (a/,b’) € s. We have a ~g a’ and
(a,b) ~g—op (a/,V’) and hence b ~p b'.

The counit and comultiplication of the comonad are

derp = {([a],a) | a € |E|}
digg = {(m1+ - +mp,[m1,...,my]) | n € Nand (m; € May(|E|))i,}.

It is obvious that derg € L(IE, E), let us check that dig, € L(IE,I'E) so let (m, M), (m/, M') €
digp and assume that m ~ g m’, we must prove that M ~g M’. Let p € M and p' € M’
so that m = p + m; and m’ = p’ + m) for some multisets m; and mf. Since m ~ g m’ we
have p ~ g p'.

The Seely isomorphisms are m® = {(x,[])} and m%, g = {((m1,m2),1-m1 +2-my) |
(m1,mz) € 'Eq| x |'"E1|} where i - [ay,...,a,] = [(i,a1),. .., (i,a,)]. We have m® € L£(1,!T)
because [] ~ [], and m® is an iso because * ~, *. The fact that the relation m%,
is a bijection is obvious, and it is easy to check that it is an isomorphism in Scs(!E; ®
By, /(E1 & E3)). Assume for instance that (mq1,ms) ~ig giE, (M), m5) and let us prove
that p = 1-mq +2-ma ~yp,&E) P’ =1-m] +2-mj so let (i,¢) € p and (i',c) € p, one
must check that (i,¢) ~g, &5, (i,¢'), so assume that ¢ = i’. Then, by definition of p and p’
we have ¢ € m; and ¢’ € m/ and hence ¢ ~g, ¢.
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The induced symmetric lax monoidal structure (u°, u?) is easily proven to be
10 = {(*,k[*]) | k € N} € Scs(1,!1)

/’L2E7F:{(([alu'"7a/k]7[b17"'7bk])7[(alabl)u"'u(akubk)]
|k €N, ay,...,a € |E| and by,...,b; € |F|} € Scs(lEQ F,{|(E® F)).

Remark 27. Although formally similar to Girard’s coherence spaces [Gir87], SCS have quite
different properties and are closer to Scott semantics based on cpo’s and continuous functions
than to Berry stable semantics. As an example, representing the type of booleans by 1 & 1
with tt = (1, %) and ff = (2, %), we can define a “parallel or” morphism

por = {(([tt], []), tt), ([, [tt]), tt), (([Ff], [fF]), )} € Ses((1@ 1) @ (1 ® 1), 1 @ 1))

which is a clique because tt ~jq1 tt. So SCS are compatible with this form of non-
determinism (there is no deterministic implementation of this por morphism), and nev-
ertheless implement a non-trivial form of coherence since for instance {tt,ff} ¢ Cl(1& 1) =
{0, {xt}, {ff}}.

The category Scs has zero morphisms: take Og p = () € Scs(E, F).

The object D = &
Vi,j € Ni~pj.

The injections 7; € Scs(1,D) are easy to describe: 7; = {(x,1)}.

sen 1 can be described as follows (up to trivial iso): |D| = N and

Lemma 26. Scs is an elementary pre w-summable category.

Proof. Since Scs is an SMCC, this amounts by Remark 21 to saying that the 7;’s are jointly
epic which is obvious since, given s € Scs(D, F) we clearly have s = {(i,a) | s7; #0}. O

Let E be an SCS, then the SCS E®D has |E| x N as web, and one has (a,n) ~ggp (a’,n’)
if a ~ga'.
Lemma 27. A family of morphisms § € Scs(E, F)N is summable iff | J

s; € Scs(E, F),
and if this is the case then 3. % = J;cy Si-

ieN

Proof. Saying that & is summable means that there is ¢ € Ses(E ® D, F) such that s; =
{(a,b) € |E — F| | ((a,),b) € t}. If this is the case then, given (a,b) € s; and (a’,b") € sy,
if a ~g @ then (a,i) ~pgp (a’,7’) and hence b ~p b'. It follows that | J,cy si € Scs(E, F).
Conversely, if (J;cy i € Ses(E, F') then t = {((a,4),b) | i € N and (a,b) € s;} € Scs(E ®
D, F') as easily checked, and then we have s; = {(a,b) € |E — F| | ((a,i),b) € t} for each
i € N. If such a t exists, then, by definition, 3> 5 = {(a,b) | 3i ((a,i),b) € t} = U;e 85 O

Lemma 28. Scs satisfies (D-flat).

Proof. Let ¢ : N> — N be an injection and let k¥ = {((i,j), (1,7)))} € N x (N xN). It
is obvious that k € Ses(D,D ® D) since (i,5) ~pgp (i,4") for any (i, ), (i’,j') € N?. This
morphism obviously satisfies the required property. O

Lemma 29. Scs satisfies (D-wit).

Proof. Let Te Scs(D, E)N be such that the family (¢; A € Ses(1, E));en is summable, that
is

t=|JtiA={(x,a)|3i,j €N (j,a) € t;)} € Ses(1, E),
€N
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we contend that ¢ is summable. This amounts to proving that v € Scs(D @ D, E)

where u = {((j,i),a) | (j,a) € t;} since then we will have (t;, = u(D @ 7;) p~1)ien. If

((3,7),a),((7,5"),a’) € u we have (j,a) € t; and (j',a’) € t;» and hence (x,a), (x,a’) € t so

that a ~g a’. Tt follows that u € Scs(D® D, E). O
So we have proven the following.

Theorem 22. Scs is a Lafont elementary w-summable category.

The comonoid structure of D is given by
po = {(0,%)} € Ses(D, 1)
0={(n,(i,5)) | n,i,j e Nand n =i+ j} € Ses(D,D ® D)
and its monoid structure is

A ={(*,n) | n € N} € Ses(1,D)
T={((4,9),i)) | i € N} € Scs(D ® D, D).

We describe the associated functor S = (D — ) : Scs — Scs. First, SE has N x |E]
as web, and (i,a) ~sg (¢,a') iff a ~p o/. Tt follows that we have the following order
isomorphism

Cl(SE) ~ {7 e [[ QB | |z € CUE)}.
i€EN ieN
And we have m; = {((i,a),a) | a € |E|} and ¢ = {((i,a),a) | i € Nand a € |E|}. Given
s € Scs(E, F), we have S(s) = {((i,a), (¢,0)) | i € N and (a, b) € s}.

We have seen that S has a bimonad structure induced by the bimonoid structure of
D, see Figure 1. This structure is quite easy to describe. The unit of the monad is
o = {(a,(0,a)) | a € |E|} € Scs(E,SE) and the multiplication of the monad is § =
{((i,(j,a)), (i + j,a)) | i,j € Nand a € |E|} € Scs(S?E,SE). The unit of the comonad is
o={(({,a),a) | i € Nand a € |E|} € Scs(SE,S) and the multiplication of the comonad is
I = {((i,a), (i, (i,a))) | i € N and a € |E|} € Ses(SE,S?E). Last the distributive law of the
bimonad is ¢ = {((i, (j,a)), (4, (i,a))) | i,j € N and a € |E|} € Scs(S*E, S?E).

By Theorem 20, D has a Taylor structure, that is, a !-coalgebra structure de Scs(D, D)
which is given by

d={(n,lir,...,ix)) | k € Nand iy,... i, € N with iy +--- +ip =n}.

This is simply due to the fact that the k-ary version D — D®F is the relation {(n, (i1, ... ,ix)) |
i+ +ip = n}.

As seen in Corollary 4, this coalgebra structure induces the distributive law 0 = cur(9%) €
Scs(ISE,S!E) where 0 € Scs(/(D — E) @D, E) is

I(D—E)®3H
e

(D — E)@D (D — E) @D 5 (D — E) ©D) -2 1E

so that

8E‘ = {([(ilval)v'-'7(ik7ak)]a(i1+"'+ik7[ala-'-7ak]))
|keN, i1,...,ix € Nand ay,...,ax € |E|}.

67



Remember that the extension of S to the Kleisli category Scs; is the functor T : Scs; —
Scs; which maps an object E to SE (the object of summable families) and a morphism
s € Scsi(E, F) to

T(s) = (Ss) 0r

={([(i1,a1),. .., (ix,ak)], (i1 + - + i, b))
| k€N, iy,...,i € Nand ([a1,...,ak],b) € s}.

The morphism 13 = (p1 — E) € Scs(E,SE) satisfies 11 = {(a,(1,a)) | a € |E|} so that
i = {([a1,...,ak],[(1,a1),...,(1,ax)]) | ¥ € Nand aq,...,ar € |E|} € Scs(lE,ISE). It
follows that T(s)!t1 = {([a1,...,ak], (k,)) | ([a1,-..,ak],b) € s} € Scsi(E,SF) is such
that 7 T(s) ey € Sesi(E, F) is the k-homogeneous component of s, that is, the set of all
(m,b) € s such that the size of the multiset m is k.

Notice last that the resource modality is easily checked to be finitary in the sense of
Definition 45 so that we know that deg € Scs(!1,D) is an iso by Theorem 17. This can also
be checked directly: |'1| = {k[+] | ¥ € N} ~ N and we have k[*] ~y k'[«] for all k, k" € N

since * ~q .

5.3 Girard’s coherence spaces

Just as in [Ehr23|, one can show that the usual Girard’s coherence spaces (CS) have an
analytic coalgebra. Remember that such a coherence space is a pair E = (|E|,<g) where
|E| is a set (the web) and g is a binary, reflexive and symmetric relation on |E|. A clique
of E is a subset z of |E| such that Va,a’ € z a < o’. Given CS E and F, one defines a CS
E — F by |E — F| and (a,b) g (a/,V)ifacgd = (bop b and b=V = a = d’),
and the category Coh has CS as objects, and Coh(FE, F') = CI(E — F), identity morphisms
and composition being defined as in Scs.

The category Coh is doubtlessly the most popular model of Linear Logic, and is a Lafont
category with |F defined as follows: ['F| = {[ai,...,a,] | n € Nand {aq,...,a,} € Cl(E)}.
This is a major difference between all the other models presented in this section, where
'E| = Magn(|E]): one often says that the CS exponential is uniform, whereas the expo-
nentials of the other models are non-uniform. As far as we know, it is not possible to
equip the category Coh with a non-uniform exponential. One has also to be careful with
the definition of the action of this functor on morphisms: given s € Coh(F, F), one takes
Is ={([a1,...,ak], [b1,...,bk]) | k € N, {a1,...,ar} € CI(E) and (a;,b;) € s for all i}.

The category Coh is easily seen to be elementarily w-summable. The object of degrees
D satisfies D] = N and Vi,j € N ¢ <p j. Therefore, SE satisfies [SE| = N x |E| with
(i,a) <sg (i',a') if a < o’ and i # i’ = a # o/. It follows that CI(SE) ~ {Z e CI(E)N |
Uienzi € CI(E) and i # j = x; Na; = 0}. The canonical analytic coalgebra is d =
{(n,[i1,--- i) € Nx Mg,(N) | k € Nand i1 + - - - + i, = n}. The induced Taylor functor
T : Coh; — Coh; maps a CS E to SE, and if s € Coh(E, F) then T(s) € Coh/(SE,SF)
is given by

T(s) = {([(i1,a1), - -, ik, ar)], (n,b)) | k € N,
{(i1,a1), ..., (ix,ar)} € CI(SE), i1 + -+ +ir = n and (a1, ...,axr],b) € s}.

So if s = {([a,a],b)} is a simple “quadratic” morphism, for having {(i1,a), (i2,a)} € SE,
we need i1 = i. It follows that

T(s) = {([(4; ), (3,0)], (24,0)) | i € N}

68



whereas in SCS, we had T(s) = {([(¢1,a), (i2,a)], (i1 + i2,b)) | i1,i2 € N}. The precise
meaning of this difference between the actions of the T functor in the uniform setting of
coherence spaces and in the non-uniform one of SCS has still to be fully understood.

5.4 Nonuniform coherence spaces

Formally, nonuniform coherence spaces (NUCS) can be considered as a refinement of SCS,
but they have quite different properties, being much closer to Girard’s coherence spaces and
to the stable semantics. In particular the relation por of Remark 27 is rejected by NUCS.

We refer to [Ehr23], Section 6.1 for a detailed presentation of NUCS, we just recall the
basic definitions.

Definition 52. A NUCS is a tuple £ = (|E|, ~g,~g) where |E| is a set (the web of
E) and ~p (strict coherence) and g (strict incoherence) are disjoint binary symmetric
relations on |E|. The relation =g = |E|? \ (~g U ) (which is also symmetric) is called
neutrality and the large coherence and incoherence relations are defined as cgp = ~g U=pg
and xp = wgU=g. A clique of a NUCS F is a subset x of |F| such that Va,a’ € v a g d/,
and we use CI(E) for the set of all cliques of E.

The dual of a NUCS E is E+ = (|E|,—g,~g) and one defines E — F by stipulating
that |E — F| = |E| x |F| and by providing the large coherence relation and the neutrality:
(a,0) =g (a',V)if a=g a and b=p V', and (a,b) Spor (a',V') if

acgpd = (boplb andb=plV =a=pd).

Then the category Nucs has the NUCS as objects and Nucs(E,F) = CI(E — F),
identity morphisms and composition being defined as in the category Scs. The definition
of the SMC structure of Nucs is completely similar to that of Scs as well as the proof that
the category Nucs (with dualizing object L =1 = (x,0,0)) is *-autonomous and cartesian.
Notice that we have here an important difference between Nucs and Scs: in the latter
category, the objects 1 and L = 1 are not isomorphic.

Nucs is proven to be an elementary w-summable category exactly as Scs. The induced
functor S : Scs — Scs is such that |SE| = N x |E| and (i,a) ~sg (i,ad') if a ~g a' and
(i,a) =sp (i/,a') if i =4 and a =g o, and this functor acts on morphisms exactly as in the
setting of SCS. This means that a family (x; € CI(E));en is summable iff « ~g @’ as soon as
a € x; and o’ € x; when i # 7', For instance, for a family (z; € Cl(1));en to be summable,
we need all the z; to be empty but possibly one (which is then equal to {x}).

As shown in [Boull], the SMC Nucs is a Lafont category, the induced resource modality
is (Ip, der,dig,m®, m?) where |',E| = Mg, (|E|) and m <i,p m' if Ya € mVa' € m' a < o
and m =g m’ it m cg m’ and m = [a1,...,a,] and m’ = [d/1,...,d/,] with a; =g ] for
i=1,...,n and der, dig, m® and m? are defined as in Scs.

So by Theorem 20, exactly as for Scs, D has an analytic coalgebra, that is, a !-coalgebra
structure which is defined exactly as in Scs.

One interesting feature of Nucs is that it admits another resource modality ! whose
structure morphisms der, dig, m® and m? are, again, defined as in Scs. This exponential
was actually the first one discovered for NUCS because it arises naturally in the setting
of Indexed Linear Logic, see [BE0O1] where NUCS were introduced as a particular example

of denotational models based on phase semantics. One has |lp.F| = |E| and, given m =
[ai,...,an],m = [any1,...,ax], one has m <, g m/ if Vi,j € {1,...,k} i # j = a; Tk a;
and m ~, g m if moy,gm and J e {1,...,k}Vje{l,....k} i #j=a; ~g aj.
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Let us describe lpel: we have |lpel| = {i[*] | i € N} ~ N. Next 0 ~,.1 1 and i =),1 j as
soon as i + j > 2. But D is characterized by |D| = N and ¢ =p ¢ and ¢ ~p j when i # j,
and therefore D and !,e1 are not isomorphic, and since !, is easily seen to be finitary, the
only possibility is that this resource modality !pe has no analytic coalgebra 9 and thus no
analytic structure 9.

Remark 28. On the other hand, setting D = 1 & 1, it is not hard to check that we have a
coalgebra structure 6 € Nucs(Da, lheD2) given by

§={(i,[i1, . ix]) | iyit,. .. ix € {0,1} and i =iy + - + ix}

so that Nucs, equipped with the !, resource modality, is an elementary model of coherent
differentiation in the sense of [Ehr23], which shows that the analytic structure is strictly
stronger than the coherent differential structure.

5.5 Probabilistic coherence spaces

This last example is in some sense similar to both Scs and Nucs, additionally featuring
nonnegative real coefficients.

. ——aA —
Given an at most countable set A and u,u’ € R>o™, we set (u | u') =3 . 4 uau) € R>g

where R>¢ is the completed half real line. Given P C RZOA, we define PL CR>o  as
Pt ={u eRso” |VueP (u|u)<1}.

Observe that if P satisfies Va € Adz € P x5, > 0 and Va € A3dm € R>oVx € P z, < m then
Pt c RIZO and P satisfies the same two properties that we call local boundedness which
can also be rephrased as

Vae A 0<supz, < 0.
xzeP

A probabilistic pre-coherence space (pre-PCS) is a pair X = (|X|,PX) where |X]| is a

set and PX C RZO‘X| satisfies PX++ = PX. A probabilistic coherence space (PCS) is a
pre-PCS X such that PX is locally bounded.

Given a PCS X and x € PX we set ||z||x = sup,cpx.(z | 2') € [0,1]. This operation

obeys the usual properties of a norm: ||z|| = 0 = z = 0, ||zg + 21| < ||zo| + ||z1] and
[[Az]| = Al|z|| for all X € [0, 1].
Remark 29. Given x € PX and a € |X| we use the notations x, or z(a) for the corresponding
element of R>(, depending on the context. In some situations x; can denote an element of
PX and in such a situation we will prefer the notation x;(a) to denote the a-component of
x; to avoid the ugly z;,.

. ——AxB . .
Given t € R>¢ *7 considered as a matrix (where A and B are at most countable sets)
——A ——B .
andu € R>o , wedefinet-u € R>o~ by (t-u)y = > ,c 4 ta,pUa (usual formula for applying a
. . =—BxC ——AxC .
matrix to a vector), and if s € R>q *™ we define the product? st € R>o % of the matrix

s and ¢t as usual by (st)g,c = ZbeB ta,bSb,c. This is an associative operation.

Let X and Y be PCSs, a morphism from X to Y is a matrix ¢t € RL)BIXIY‘ such that

Vz € PX t-2 € PY. It is clear that the identity (diagonal) matrix is a morphism from X

9We write this product in the reverse order wrt. the usual algebraic conventions on matrices, because it
is the notion of composition in our category, and we respect the standard order of factors when writing a
composition in a category. This is a well known and unfortunate mismatch of conventions.
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to X and that the matrix product of two morphisms is a morphism and therefore, PCSs
equipped with this notion of morphism form a category Pcoh.

The condition ¢ € Pcoh(X,Y) is equivalent to Vo € PXVy € PYL (t-z | y') <1 and
observe that (t-x | ') = (t | * ® y') where (z ® ¥')(a,p) = Talp. We define X — YV =
(IX|x|Y],{te RL);%Y‘ | Vo € PX t-x € PY'}): this is a pre-PCS by this observation, and
checking that it is indeed a PCS is easy.

We define then X ® Y = (X —o Y+)=; this is a PCS which satisfies P(X ® Z) = {z ® 2 |
x € PX and z € PZ}+ where (2 ® 2)(q,c) = TaZ. Then it is easy to see that we have
equipped in that way the category Pcoh with a symmetric monoidal structure for which it
is x-autonomous with the dualizing object L = 1 = ({x}, [0, 1]), which coincides with the
unit of ®. The *-autonomy follows easily from the observation that (X — 1)~ X*.
Lemma 30. Given s,t € Pcoh(X;®---® Xy,Y), if for all (z; € PX;)¥_| one has s- (21 ®

The category Pcoh is cartesian: if (X;);cs is an at most countable family of PCSs, then

(& jes Xis (pj)Jej) is the cartesian product of the Xj's, with [ &, Xj| = U e {7} X |X; |
(PF)(koay,ar = 1if j = k and a = ' and (pj)(x,a), a/ = 0 otherwise, and x € P(&cs X;
if pj-z € PX; for each j € J (for z € R‘&JEJ ) Given (t; € Pcoh(Y, X)) e, the

unique HlOI‘phlSHl t = (t;)jes € Pcoh(Y, &]EJ ) such that pjt = ¢; is simply defined by
th,(.a) = (tj)a,p- The dual operation .. ; Xj, wh1ch is a coproduct, is characterized by

|@jeJ X;| = U_jej{j}x|Xj| and z € P( jeJ X;)ifz € P(&jeJ X;) and Zjej [pj-zllx; <
1.

As to the exponentials, one sets [!X| = Mg, (| X]) and P(1X) = {z' | z € PX}++ where,
given m € Mgy, (|X]), 2}, = 2™ = [Toe x| 27@ A morphism t € Pcoh(!X,Y) =P(1X —
Y') is completely characterized by the associated analytic function

t:PX — PY

!
T t-x = E tmpT™ €
me|lX|,be|Y]|

Lemma 31. Lett € R\>!)O(1®~~®!kaY\_ One has t € Pcoh(! X1 ® --- ® ! Xy,Y) iff for all
(z; € PX;)k | one hast- (2} ®---®a}) € PY.
Lemma 32. Ifs,t € Pcoh(!1X; ®---®!X},Y) satisfy s- (2} @ ®@z}) =t (v} @---®@x})
for all (z; € PX;)k_| then s =t.

This very useful property uses crucially the local boundedness property of PCSs.

Then given ¢ € Pcoh(X,Y), we explain now how to define 1t € Pcoh(!X,!Y). Let
m € Mgn(|X]) and p € Mg, ([Y]). We use L(m,p) for the set of all r € Mg, (| X]| x |Y])
such that

Va €|X|m(a)= > r(a,b) and Vbe[Y|p(b)= > r(ab).

be|Y| a€lX]|

Notice that if r € Mg, (|X| x |Y]) then #r = #m = #p so that L(m,p) is non-empty iff
#m = #p. When r € L(n,p) we set

be|Y|
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which belongs to N\ {0}; this is a generalized multinomial coefficient. Then we have

D Sl

reL(m,p)

where we recall that t" = H(a Be|X|x|Y] tz(g’b). The main feature of this definition is that

for all x € PX one has Q(x) = lt-2' = (t-z). This property fully characterizes !t.

X —X]|
>

The comonad structure is given by derx € Ryj given by (derx)m,a = 0m,[q 0 that

Vr € PX dery -2' = 2 € PX and therefore dery € P(!X,X). Similarly, one defines
digx € RS ™" by (dig) (m.fms..omu]) = Omoma 4ty 50 that Va € PX digy -2' = 2" and
hence, again, digy € P(!X,!'X). The equations required to prove that (! ,der, dig) is indeed
a comonad result from Lemma 32. For instance, let ¢t € P(X,Y), we have (digy !t) - 2' =
digV - (t-2') =digy - (t-2)' = (t-2)" and (Mtdigy)-2' =Nt (digy -2') = Nt-a" = (1t-2') =
(t - )" which shows that dig is a natural transformation. As another example, we have
(dig! X digy)-2' = diglX 2" = 2" and (Idigy digy)-2' = ldigy-2" = (digy-2')' = (z")' = 2™
and hence dig!X digy = !digy digy which is one of the required comonad commutations.
The others are proven similarly.

The monoidality Seely isomorphisms m® € Pcoh(1,!T) and m%, y, € Pcoh(!X; ®
1X5,(X1& X2)) are given by m{ |, = 1 and m
m = [ay,...,ar] weset i-m = [(i,a1),...,(i,ax)], see Section 5.1. It is obvious that m® is an

iso. To check that mg(hm is a morphism we use Lemma 31: let z; € PX; for i = 1,2, one has

m%, x, - (2] ®xh) = (z1,32)" € PI(X1 & X3). Conversely, defining s € Rgé{1&X2)—0(!X1®!X2)

by S (mi1,ms) = O1-my+2-ma,m We have s- (x1,12)' = 2} @b € P(1X; ®!Xy) for all z; € PX;
(1 =1,2), and hence s € Pcoh(!(X; & X3), (X1 ®!X3)). It is obvious that s is the inverse of
mgﬁ) x, Which is therefore an iso in Pcoh. Proving that it is natural and that it satisfies all
the required commutations for turning Pcoh into a model of LL is routine (using crucially
Lemma 32).

The induced lax monoidality u* € Pecoh(!X; ® -+ ® !X, (X7 ® -+ ® X},)) is such that
(Mk)(ml.,...,mk),m =1lifm=[(al,...,at),...,(a},...,a?))] and (m; = [a},...,a?])k_,, and

(/’Lk)(ml,...,mk)_’m = 0 otherwise.
Theorem 23. The SMC Pcoh is a Lafont category.

mayma)m) = 01-m4 +2-ms,m Where, for a multiset

Proof. This is the object of [CEPT17]. O

5.5.1 Elementary analytic structure of Pcoh

The category Pcoh has zero-morphisms (we have the 0 matrix in Pcoh(X,Y") for any two
objects X and V).

The object D = &7;cy1 can be described as [D| = N and PD = {z € RY, | Vi €
N z; € [0,1]}. The morphisms (7; € Pcoh(1,D));en are characterized by 7; - u = ue; for
u € P1 = [0,1]. These morphisms are jointly epic because, for any ¢ € Pcoh(D, X) and
r€PDonehast -z =73 yoi(t-e).

Given an at most countable set A, let A\ogA = &7, 41, that is Ao A is the PCS whose
web is 4, and P(AcA) = [0,1]4, and let Ay A = @, 4 1, that is Ay A is the PCS whose web
is A, and P(\A) ={z € Rg‘o | > acaTa < 1}. We have \jA = Ao AL and Ao A = M AL,
Lemma 33. Ao A ® Ao B = Ao (A X B). In particular D@D = Ao (N x N).

72



Proof. Since (AowA @ Ao B)t = (MAooA — (AoB)Y) = (AuoA — A1 B), an element of
PAoA ®@ A\ooB)L is a t € RAXP such that t - Y wcaa € P(AB) which means that

Z(mb)eAxB tap <1, that is t € \;(A x B) which proves our contention. O
Let ¢ : N2 — N be an injection, and let k € R@;@@@\ be defined by k; (; j) = 01,4(i,j), it
results from Lemma 33 that k£ € Pcoh(D,D ® D). So Pcoh satisfies (D-flat).

An element of Pcoh(D, X) is an s € Rié‘xl such that ), s-e; € PX, that is, a family

(2(i) € PX);en is summable iff }°, _ #(i) € PX. The fact that Pcoh satisfies (D-wit) follows

easily from this observation. Let indeed (s(i) € Pcoh(DD, X));en be such that (3, s(i) -

ej € PX);en is summable, that is (3, ;o 5(1)j,a)ae|x) € PX. Let then t € R@OXN)XIX‘ be

given by t(; ;.o = 5(i)j,a, we have t € Pcoh(D®D, X) by Lemma 33 and ¢ (ToD) AL = s(i)
for each i € N which shows that (s(7));en is summable.
So Pcoh is an elementary w-summable category.

The bimonoid structure of D is identical to that of D in Scs, replacing relations with

{0, 1}-valued matrices. For instance § € Pcoh(D,D ® D) is the element of Rié MR guch

that §(n7(i,j)) = 0pn,i+; and A € Pcoh(1,D) is the element of R{;O}XN such that A, ; =1 for
all i € N (the diagonal morphism of D = &, 1).

By Theorem 23 the category Pcoh has a canonical Taylor structure de Pcoh(D, D),
which is given by 5717[1-1 ,,,,, in] = Onyig+ootig -

This coalgebra structure induces the distributive law dx = cur(d%) € Scs(ISX,S!X)
where 9% € Scs(I(D — X)®D,!X) is

I(D—X)®D
Bt |

2
(D — X)®D (D — X)® D 45 (D — X)®D) 2% 1X

One checks very easily that

(12 ({D —o X) @ 0))([(51,a1) 1000y (i 001

1 1fq: [((aluil)ujl)w"7((ak7ik)7jk)]
= with ji,...,jk € Nsuch that j1 +---+jr =n
0 otherwise,

observe that this morphism p? (I(D — X) ® d) has only 0 and 1 coefficients.

Notice that ev € Pcoh((D — X) ® D, X) is characterized by ev((; o) j),5 = 9 j0a, and
hence if levy,, # 0 with ¢ € Mg,((N x |X|) x N) and m € Mgy(|X]), we must have
m = [a1,...,a;] and ¢ = [((41,61),%1), .-, ((ik,ak),ik)] for some k € N, aq,...,a; € |X|
and i1, ...,i; € N. For such multisets m and ¢, the set L(q, m) has exactly one element r €
M ((Nx|X])xN)x | X|) such that ev” # 0, namely r = [(((¢1,a1),%1),a1), - - -, ((ik, a), ix), ar )],
and we have therefore

o= 7] = T 20
ac|X]| [Lienp(i, a)! p:

where p € Mg, (N x |X|) is defined by p(i,a) = ¢((i,a),) = r(((3,a),7),a). It follows that,
for p € Man(N x |X|), n € Nand m = [aq,...,ar] € Man(|X]), we have

o
0 otherwise.

0,

p,

{m! if p=[(i1,a1), ..., (ig, ap)] with iy + - +ip =n
(nym) =
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Remark 30. It is interesting, and a bit puzzling, to observe that the numerical coefficients
associated with the computation of derivatives (the 42 in the derivative 4224 of 24?) are
generated, in the definition of 9, by the exponential combined with the evaluation map
when computing !ev — which btw. is a purely LL morphism, not using any differential
structure —, and not by the 0 morphism itself, which seems to be “the truly differential
part” of this definition

It follows that the functor T : Pcoh; — Pcoh,, which maps a PCS X to SX (such
that [SX| = N x |X| and P(SX) ~ {Z € PXV | Yicox(i) € PX}) maps a morphism
s € Pcoh(X,Y) to t = T(s) € Pcoh(SX,SY') which is given by

[a1,...,ak]!
T(8)[(11,01) 000 (i s00)), (1,0) = Orayia oo o), G an] ool
Notice that a multiset p = [(i1,a1), ..., (ir, ax)] can be written in a unique way p = j1-m1+
-+ g -my where j; < --- < j; € Nand (m; € ./\/l{i"m(|X|))li:1 are such that m; +---+m; =
m = [a1,...,ak]. The condition that the m;’s are non-empty is crucial for this enumeration

to be bijective: the only way to get p = [] is by choosing [ = 0. It follows that the associated
function T(s) : P(SX) — P(SY) satisfies, for each @ € P(SX) and (n,b) € |SY|

TS (@D =Y, > 3 N (TS y o 52 (1) ™ - - 2 ()™

=0mem, (X))t i<e<aeN
Ji#EML+ i #EM=n

where we recall that mn(7) = % € N is the multinomial coeflicient of the sequence
7 of multisets.

For n = 0, there are two ways to fulfill the condition jy#m1+- - -+ j;#m; = n: either with
[ =0, or with { =1 and j; = 0, and then m; can be any element of M (|X]). Therefore,
we have

T()(@)o = 5110 + S smapz(0)™ =5(2(0))

meME (1X])
so that T(s)(7)(0) = 5(z(0)).
The map 5 has derivatives of all orders; more precisely, for d € Nt and z,u', ..., u% € PX

such that 2 +u' +--- +u? € PX, the d-th derivative computed at = and d-linearly applied
to (u',...,u?) is 8D (z)(u',...,u?) € PY given by

_>
m+ [d])! m
SD(z)(ul, .. ul)y = Z Z %Ser[?],bx Ug, U,
meMan(|X]) @e|X |4 '

by iterating the computation shown in [Ehr22b] and [Ehr23] for the first order derivative.
Theorem 24. For all n € NT

@ =3 3 S s o) ) )

1, na!
k=07 e(N+)k 0<i;<--<ixeN i=1 """
nii1 4 Fngig=n

nx

where T is the list of repeated arguments T, ..., 2.
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The right-hand expression above is the same as Equation (9) upon identifying a pair
(?,ﬁ) € N*¥ x (NT)* such that 0 < i; < --- < i with the element m of Mg, (NT)
such that supp(m) = {i1,...,ix}, which maps i; to n; for j = 1,...,k. We explained in
Section 2.1 how this formula indeed corresponds to a compositional formulation of Taylor
expansion, thanks to the Faa di Bruno formula.

Proof. Let v be the right-hand expression, we have
1
DY PO DD

|
k=07 e(N+t)k 0<i1<-<ir€N Hi:l ”Z'meMﬁn(\XD
nii1 4+ +ngig=n

m+ (@) na . nyte oy,
T (m# St (2120 Hx e, T (i), -
de|x|mt e ' j=n1+1 j=ni+tng_1+1

oo
1
-y D D
k=07 e(N+t)k 0<i1<-<ir€N i=1"""" meMgn (1 X])
nii1+-+ngig=n

k
> : : %) Smtmate4mpp@(0) " 2 (i)™ - 2 (ig) ™ 111 mi

m)!
MEMen(IX|)*
(#mi=n;)k_|

because i!, is the number of enumerations of the elements of m; (taking multiplicities into

account). So we have

v=> > 2. D

k=0T e(N+)k  0<ii<--<ix€N meMin(|X])
niti+-Angir=n

Z MmN (1, 18) Sty oo p2(0) (i)™ - - (i)™

mEMiin (| X|)F
(#m’i:ni)?:l

= Z Z Z Z mn(m, m)sm+m1+...+mk,bx(O)mx(il)ml e

k=0 + + 0<iy <+ <ipEN
meMg, (IX]) mer:n ?)k #m1i1141r"'+#17?1kik:n

> > > (], ) Sy 02 (62) ™ - (i)™

E=0memt (X)) 0<ii<--<ip€N
fin #mii1+-+#Hmpig=n

oo
=2 X > M, )it b 02(01)™ (i)™
k=1 + i1=0<i2<---<ip EN
er"‘ ?)k #iwlnilJrZ.?.jL#ml:ik:n

> > > (], 7)1yt 02 (61)™ - (i)™

k=0 + (X)k 0<i1<---<ix €N
eM 1 k
fin #mii1+-+#HmEig=n

=T(s)(7).0

It follows in particular that T/(Z) (2,0,0,...) = (5(x),0,0,...) and that, as motivated in
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Section 2.1, we recover all the terms of the usual Taylor expansion by taking

-F(;)(I; u, O, O, .. ) = (%g{n) (x)(ﬂn))nEN

and the models makes it explicit that these terms are summable, because x and u are.

6 Annex: distributive laws

The goal of this section is to study under which condition it is possible to extend some
structure on a category to the Kleisli category of a monad or a comonad on this category.

If M = (M,n,p) is a monad on C, then its Kleisli category Cas is the category with
the same objects as C and such that Cy(X,Y) = C(X,MY). The identity is given by
nx € Cy(X,X) and the composition of f € Cp(X,Y) with g € Capr(Y, Z) is defined as
gom f=py oMgo f. There is a functor Ky : C = Cp such that K X = X and for any
felCX)Y), Kuf =nofeCu(X,Y). Then for any f € Cu(X',X), h € C(X,Y) and
g€ Cu(Y,Y),

Kyhoy f=Mho f gom Kyh=goh (15)

These equations are obtained by a straightforward computation using naturality and the
triangle identities of the monad.

The co-Kleisli category of a comonad D is defined in a dual way. Let M, and M, be two
monads (or two comonads) on a category C; and C. We will write C v, and Cpy, the Kleisli
category of M, and M, respectively (in order to avoid overloading the 1ndexes)

Definition 53. A functor F : Cnm, — Cu, is an extension of the functor F': C; — Cq if the
following diagram commutes.

ClL}CQ

| [

CM1 —_— CM2
F

That is, for any X € Obj(C1), FX = FX, and for any f € C1(X,Y), FKu, f = Kur, Ff.
Definition 54. Let F,G : C; — Cy with respective extensions ﬁ G : CM — CM2. Let
a: F'= G be a natural transformation. Then Ky, ax € Cu, (FX GX) We say that «
extends to F and G if K M, is a natural transformation F=Q.

This notion of structure extension is deeply related to the notion of distributive laws. Dis-
tributive law were introduced in [Str72]. See [PW02] for a more accessible yet comprehensive
introduction in the general 2-categorical setting.

6.1 Distributive law between a monad and a functor

Throughout this section, we always assume that M, = (M7, n', u!) is a monad on a category
Ci1, My = (Mz,n?, 4?) is a monad on a category Cq, and M, = (M3, n3, 43) is a monad on
a category Cs.

Definition 55. A natural transformation A : FM, = M,F is a distributive law of F' on
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two monads M, and M, if the following two diagrams commute.

FM2 2 L Ev M2 M2E

F
1l XQF:
Fn F;Lll J(HZF

FMy —— MyF M, MyF

A

Remark 31. We write FM, = M,F instead of F'M; = M because it makes obvious what
part is playing the role of the monad. We will keep this convention through the article.

Definition 56. Let \f' : FM, = M,F and A\ : GM, = M,G two distributive laws. A
morphism between A’ and A is a natural transformation a : F' = G such that the diagram
below commutes.

)\F
FM1 E— MQF

OdVIIJ, J{JVIQOL

GM1 T MQG

The theorem below is a well known result, that is proved in [PW02] for example.
Theorem 25. Any extension F Cum, — Cu, induces a distributive law X : FM, = My F.
This law is given by the image of idar, x € Cur, (M1 X, X) by F

Ax = F(ida, x) € Cu, (FMi X, FX) = Co(FM; X, MyFX).
Conversely, any distributive law X : FM, = MyF induces an extension F: Cum, — Cu,
that maps an object X to FX :=FX and a morphism f € Cy (X,Y) = Ci (X, M1Y) to

o Ff Ay

Ff:= FX —— FMY —— MyFY €Cpy,(FX,FY)

Those two constructions are inverse of each other, so there is a bijection between extensions
and distributive laws.

The result below is also proved in [PWO02], but it seems to be less considered in the
literature. Although the proof is simple, this result will be crucial in the development of
this article.

Theorem 26. Let \I' : FM, = M,F and \° : GM, = M,G be two distributive laws

and let 13,@ be their associated extensions. Then a natural transformation F = G is a
morphism between the distributive laws A¥' and A& if and only if it extends to F and G.

Proof. The naturality of Kjra means that for any f € Ca(X,Y),
Gf oum, Kur,(ax) = Kar, (ay) opr, Ff
By Eq. (15) and by definition of F and G from AF and M@, this is equivalent to the equation
M oGfoax = Myay oA o Ff
By naturality of « in C, this is equivalent to the equation
MNoay o Ff = Myay oA, o Ff

It follows easily that K s« is natural if and only if o is a morphism of distributive law. [
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Remark 32. We can define a category Ext whose objects are the monads M, on small
categories', and whose morphisms Ext(M,, M,) are the pairs (F, F') where F : C; — Cs
is a functor and F : Cy, — Cup, is an extension of F. The identity arrow is the pair
(Ide,, ey, ) € Ext(M,,M,). The composition of (F,F) € Ext(M,, M,) with (G,G) €
Ext(M,, M;) is defined as the pair (GF, GF) e Ext(M;, M) (we can check that GF is
an extension of GF'). In fact, Ext is a 2-category. A 2-cell (F, ﬁ) = (G, é) is a natural
transformation a : F' = G that extends to F and G in the sense of Definition 54.

We can also define a category Mon* whose objects are also the monads M on small
categories. A morphism between M, and M, consists in a pair (F,\I") where F : C; —
Cy is a functor and \f' : FM, = M,F is a distributive law. The identity on M, is
the pair (Id,idM;) where Id : C; — C; is the identity functor and (idM;)x = idy,x €
C1 (M1 X, M;X). Given (F,\I') € Mon*(M;, M,) and (G,\%) € Mon*(M,, M), we can
define their composition as (GF,\¢F) where A\“% is defined with the following pasting
diagram.

C1L>Czi>(/’3

S

61T>CQ?>03

In other word, AG¥ = AGF o GAF. That is,
ACF .— GFM, G5 aMuF 255, M,GF

This category Mon™ is a 2-category. Its 2-cells are the morphisms of distributive laws.

Then we can check that if F is the extension of F associated to AF and G is the extension
of G associated to A&, then AT defined above is the distributive law associated to the
extension GF. In other word, the bijection of Theorem 25 is an isomorphism between
the categories Mon* and Ext. Besides, Theorem 26 ensures that this isomorphism is an
isomorphism of 2-categories.

6.2 Distributive law between a comonad and a functor

Similar results stand for comonads. Throughout this section, we always assume that D; =
(D1, €', 6%) is a comonad on a category Cy, Dy = (Da, €2,52) is a comonad on a category Ca,
and D3 = (D3, €3,6%) is a comonad on a category C3. The notion of structure extension is
also related to a distributive law, except that this time around the natural transformation
is the dual of the one of the previous section and is of shape Do F = FD;.

Deﬁnition_ 57. A natural transformation A : Do F = FD; is a distributive law of F on two
comonads D; and Ds if the following two diagrams commute.

DoF —2 FD, DyF A FD,

\ lpel 62FJ( J{F62
EF
F

10For foundational issues
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Definition 58. Let AF : DoF = FD; and A€ : DoG = GD; two distributive laws. A
morphism between A’ and A is a natural transformation a : F' = G such that the diagram
below commutes.

)\F
D2F E— FD1

D2 OéJ/ J,OCDI

DyG T GD,

Theorem 27. Any extension F CBI — (,’52 induces a distributive law )\ : DoF = FD;.
This law is given by the image of idp, x € Cx (X, D1X) by F

Ax = F(idp, x) € Cp,(FX,FD1X) = Co(D2FX, FD1 X).

Conwersely, any distributive law X : Do F = F Dy induces an extension F: Cp, — Cp, that
maps an object X to FX := FX and a morphism f € Cp,(X,Y) =Ci(D1X,Y) to

Ffi= DyFX 25 FD,X L5 FY e Cu (FX,FY)

Those two constructions are inverse of each other, so there is a bijection between extensions
and distributive laws.

Theorem 28. Let M DoF = FD; and \© : DyG = GD1 be two distributive laws and let
F, G be their associated extensions. Then a natural transformation F = G is a morphism
between the distributive laws NF' and \C if and only if it extends to F and G.

Remark 33. We can again define a 2-category coExt in the exact same way as Ext, except
that the objects are now comonads. We can also define a 2-category coMon™ similar to
Mon* whose objects are the comonads D on small categories, whose morphisms are the
pairs (F, A\I") where F : C; — Cz is a functor and A\ : DoF = FD; is a distributive law,
and whose 2-cells are the morphisms of distributive laws. The composition of (F,\f) €
coMon* (D1, D) with (G,\%) € coMon*(Da, D3) is defined as (GF, \“") where A\¢F" is
defined as the following pasting diagram.

Cl L CQ L> Cg
Dll ’\T/ DL ’\ci/ ng
+
Cl T> CQ T Cg

In other word, AGF = GAF o A6 F. That is,
AGF = DyGF 2°Fy gDyF A GFD;

Again, we can check that if F is the extension of F associated to A and G is the
extension of G associated to A, then AGF defined above is the distributive law associated
to the extension GF'. In other word, the bijection of Theorem 27 is an isomorphism between
the categories coMon™ and coExt. Besides, Theorem 28 ensures that this isomorphism is
an isomorphism of 2-categories.
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Distributive law | Role of H and K Type of extension
FH = KF Monads Extension of F' to Kleisli
FH = KF Comonads Liftings of F' to co-Eilenberg-Moore
KF=FH Monads Liftings of F' to Eilenberg-Moore
KF=FH Comonads Extension of F' to co-Kleisli

Figure 2: Configurations for distributive laws

6.3 Distributive law between a monad and a comonad

Let M = (M,n, 1) be a monad on a category C, and D = (D, ¢,§) be a comonad on C.

Definition 59. A distributive law of the comonad D on the monad M is a natural trans-
formation A : DM = MD that is both a distributive law A : DM = MD (Definition 55)
and a distributive law A : DM = M D (Definition 57).

Note that the following assertions are equivalent

e ) is a distributive law of the comonad D on the monad M
e )\ is a distributive law DM = M D and € and ¢ are morphisms of distributive laws

e )\ is a distributive law DM = M D and 1 and p are morphisms of distributive laws
By Theorems 27 and 28, a distributive law between a monad and a comonad ensures that
M extends to a monad M on Cz. By Theorems 25 and 26, it also ensures that D extends
to a comonad D on C 'v. We can also check that (Cﬁ)ﬂ = (C M)ﬁ’ so a distributive law
between a monad and a comonad allows to combine them in arbitrary ways.

6.4 Distributive laws and lifting to Eilenberg-Moore category

There are two other notions of distributive law, by taking the dual direction of Definitions 55
and 57.

Definition 60. A natural transformation A : M, F = FM, is a distributive law of F on
two monads M, and M, if two diagrams analogue to Definition 55 commute. A natural
transformation A : FD; = DyF is a distributive law of F on two comonads D; and D if
two diagrams analogue to Definition 57 commute. Morphism of distributive law are defined
in the same way as Definition 56

Those notions of distributive law are tied to the notion of lifting of a functor and natural
transformations to the Eilenberg-Moore categories CM: and CM2. A lifting of a functor
C1 = Cy is a functor F : CM1 — CM. gych that the diagram below commutes.

C1L>CQ

ul Ju

CMl ? CM2

Where U is the forgetful functor. More details on [PW02]. We can summarize the different
configurations for a distributive law, depending on the direction of the natural transforma-
tion and the choice between monads and comonads, see Fig. 2.

There is also a notion of a distributive law of the monad M on the comonad D similar
to the one of Definition 59. This time, such distributive laws are associated to lifting of the
monad M to the Eilenberg-Moore category of D, and lifting of D to the Eilenberg-Moore
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category of M.

Definition 61. A natural transformation MD = DM is a distributive law of the monad
M on t}E comonad D if it is both a distributive law M D = DM, and a distributive law
MD = DM in the sense of Definition 60.

7 Annex: symmetric monoidal monads and distributive
law

An important concept in the theory of monads (and in our present article) is the concept
of lax (symmetric) monoidal functor and lax (symmetric) monoidal monad. It is important
because if £ is a (symmetric) monoidal category and M is a monad on £, then £y inherits
from L the structure of a (symmetric) monoidal category. As expected, this notion is
then deeply connected to the notion of distributive laws, and we discuss this connection
in this section. Lax monoidal structures can also be expressed in terms of strength, see
[Koc70, Koc72]. We detail this process as the notion of strength crucially allow us to define
a theory of Taylor expansion with regard to only one parameter in Section 3.2.

7.1 Distributive laws on product categories

Let us recall first some fact and notation about product categories. The category Cat is a
cartesian category, with terminal object the category 1 which contains one object and one
morphism, and whose cartesian product is defined as in Definition 62 below.

Definition 62. Given two categories C; and Cs, the product category C; x Cs is the category
whose objects are the pairs (X7, X») with X; € Obj(C;) and X2 € Obj(C2) and whose
morphisms are the pairs (f1, f2) with f1 € C1(X1,Y1) and fo € Co(X2,Ya).

For any functors F; : C; — Dy and Fy : Co — Do, we can define the functor Fy X Fy : C1 X
CQ — Dl X DQ by (Fl X FQ)(Xl,XQ) = (Fle,FQXQ) and (F X FQ)(fl,fQ) = (Flfl,FQfQ).

Given Fy : C — Dy and Fy : C — Dy, we can define (Fy,Fy) : C — Dy x Dy by
(F1, Fo)X = (F1 X, FoX) and (Fy, Fo) f = (F1f, Fof). For any category C, we can define the
functor A€ :C — C x C by A®(X) = (X, X) and A®f = (f, f). That is, A® = (Id, Id).

Given the functors F1, Gy : C1 — Dy and Fy, G5 : Co — D5 and two natural transformation
a1 1 F1 = G1 and as : F» = (5, we can define the natural transformation (o7, 2) :
F1 X FQ = G1 X G2 by (041,042)(X17X2) = (OLLXI,OLQJQ).
Definition 63. Given a monad M, = (My,n', ') on C; and a monad M, = (Ma, n?, u?)
on Cq, we can define the monad M, x M, on C; x C2 whose unit is (n',1?) and whose sum
is (u', u?). We can check that (Cy x Co)pr xnr, = Caa, X Caa,-

Lemma 34. The functor A4 : Cpr — Car xCay is an extension of AC (recall that Cay xChy =
(CxC)mxn ). Its associated distributive law is id(M, M) : (M, M) = (M, M) (observe that
A°M = (M x M)AC = (M, M)).

Proof. Straightforward computation. O

Lemma 35. Let F' : C; — Dy and G : Co — Dy. We assume thatACl,Dl,Cg,Dg are all
equipped with a respective monad that we keep implicit. Assume that F is an extension of F'
associated to the distributive law M and G is an extension of G associated to the distributive
law \G. Then F x G is an extension of (F,G) whose associated distributive law is (AT, \).

Proof. Straightforward computation. O
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Lemma 36. Let F': C — Dy and G : C — Dy. We assume that C, D1, Dy are all equipped
with a respective monad that we keep implicit. Assume that F is an extension of F' associated
to the distributive law M and G is an extension of G associated to the distributive law \&.
Then (F,G) is an extension of (F,G) whose associated distributive law is (A, \9).

Proof. Observe that (F,G) = (F x G)A® . By Lemmas 34 and 35 we know that F' x G is
an extension of F' x G and that A®M is an extension of AC, so by compositionality <ﬁ , @}
is an extension of (F' x G)A® = (F,G) and its distributive law is given by the composition
of the two respective distributive laws. O

Lemma 37. Let M be a monad on C. For any object A of C, the constant endofunctor
Al Cu — Cum is an extension of the constant endofunctor A : C — C. Its associated
distributive law is n € C(A, M A)

Proof. The fact that ACM is an extension of A is immediate. Its associated distributive law
is A (idpyx ) = id = 1. O
7.2 Lax monoidal functor and lax monoidal monads

Definition 64. A lax monoidal functor from a monoidal category (£,®,1) to another
monoidal category (L', e,1) is a tuple (F,m°, m?) where F' : £ — L' is a functor, m® €
L'(I,F1) and m% y € L'(FX ¢ FY,F(X ®Y)) is a natural transformation such that the
diagrams below commute.

FXeI™XW px o p1 ™ (X ®1) ITeFX™ ¥ FlerX ™ F(1® X)

| e | [

FX FX rx FX

(FXoFY)o FZ™* 4 p(X ®Y)e FZ —™ F(X®Y)® Z)

.| [

FXe(FY oFZ) — FXeF(Y®2) — F(X® (Y ©2))

A lax monoidal functor from a symmetric monoidal category (£, ®, 1) to another symmetric
monoidal category (L', e,I) (with respective symmetries v® and ~*) is symmetric if the
additional diagram below commutes.

m2
FXeFY =5 F(X®Y)

W;X,FYJ lF’ygy

FY e FX —— F(Y ® X)

My, x

A strong (symmetric) monoidal functor is a lax (symmetric) monoidal functor such that m?°
is an iso, and m? is a natural isomorphism.

Definition 65. A monoidal natural transformation between two monoidal functors (F, m%, m%)
and (G,m%,m%) is a natural transformation o : F' = G such that the following diagram
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comimutes.
m2
FXeFYy —& F(X®Y)

NG e

F1l ————— Gl GXeGY —— G(X®Y)
ma

There is in fact a 2-category in which the objects are the (small) monoidal categories,
the morphisms are the lax monoidal functors, and the 2-cells are the monoidal natural
transformations. The composition of two lax monoidal functors is given by the composition
of the functor and a suitable composition of their associated natural transformations. The
composition of 2-cells is the same as the composition in Cat.

Definition 66. A lax (symmetric) monoidal monad on a (symmetric) monoidal category
(£, ®,1) is the data of (M, n, u, m°, m?) such that (M, m°, m?) is a lax (symmetric) monoidal
functor from (£, ®, 1) to itself, (M, n, 1) is a monad on £, and such that  and p are monoidal
natural transformations. Unfolding the diagram, this means that m® = n; € £(1, M1) and
the following diagrams commute.

X®Y

NXQY
nx ®7]YJ/ \

MX @MY —— M(X®Y)

mxy

2
My x, My
—_—

Mm?
M2X ® M?Y MMX @ MY) —=5 M*(X®Y)

1154 ®,uyl lﬂx&ay

MX @ MY M(XQY)

2
mx,y

A lax monoidal monad is symmetric if its underlying monoidal functor is symmetric.

Lax (symmetric) monoidal monads are a well studied notion because they are related to
the extension of the (symmetric) monoidal structure to the Kleisli category.

Theorem 29. If M is a (symmetric) monoidal monad on L, then the structure of (sym-
metric) monoidal category of L extends to L.

It turns out that lax monoidal monads are an example of distributive law. This shed light
on Theorem 29 above. The diagram of Definition 66 indeed corresponds to the fact that
the natural transformation m? : (_ ® )(M x M) = M(_® ) is a distributive law of the
functor ® on the monads M x M and M. By Theorem 25, it means that ®  extends
to a functor  ® : Ly x L — L.

The two diagram below that are part of the assumption that M is a (symmetric) monoidal
functor can be interpreted as the fact that A® and p® are morphisms of distributive law.
Indeed, see Proposition 40 below.

MX 1M yx oM ™ MX®1) 1eoMX ™ MieMx ™ M1 X)

‘| o el o

MX MX MX
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Proposition 40. For any objects X andY, the functor X@A@_ is an extension of X @ _ with
associated distributive law m? o (nx ® Mid). Similarly, the functor _®Y is an extension of
_ ®Y with associated distributive law m? o (Mid @ ny).

Proof. Observe that 1® = (_ ® )(1,1d) and 1® = (_®_)(1°, 1d). We conclude
by compositionality of extensions and distributive laws, using the results of Lemma 36 and
Lemma 37. O

Similarly, the two other diagrams mean that o® and v® are morphisms of distributive
laws. By Theorem 26 this ensures that they extend to natural transformations K (A®) :
1& = 1, KM( 2): @1 = M, Ky(e®): ((®_)®_ = _&(_®) and Ky (v®) :
1® o= ,® ,. Thisis why Ly 1nher1ts from £ the structure of a (symmetric) monoidal
category.

Remark 34. Dually, there is a notion of a (symmetric) oplax monoidal functor from a
monoidal category (£, ®, 1) to another monoidal category (L', e,1). It is a tuple (F,n°,n?)
where F': C1 — Cy is a functor, n° € Co(F1,1) and n%y € Co(F(X ® Y),FX o FY)
is a natural transformation, and such that diagrams similar to the ones of Definition 64
commute. There is also a notion of oplax monoidal monad (also called Hopf Monad). In the
same way that lax monoidal monads are related to the distributive laws of Definition 55,
Hopf Monad are related to the distributive laws of Definition 60, as observed in [Wis08§].
This is not surprising then that a monad M on £ is a Hopf monads if and only if the
symmetric monoidal structure of £ lifts to the Eilenberg-Moore category of M, see [Moe02].

Finally, an oplax monoidal comonad is a comonad D such that the functor D is oplax
monoidal, and such that ¢, are monoidal natural transformations. This yield a definition
very similar to the one of Definition 66.

7.3 Commutative monad

It is well-known that symmetric monoidal monads are the same as commutative monads,
see [Koc70, Koc72]. Let us recall what is a commutative monad. Let M be a monad on a
symmetric monoidal category L.

Definition 67. A left strength for M is a natural transformation txy € L(X@MY, M(X®
Y)) subject to commutation with the monoidal structure

txev,z

1o MX 2% M1eX) (XeY)eMZ M(X®Y)® Z)

® ®
\ lJVD\(@ aXYI\IZJ/ J{N[‘lx,y,z
MX

X© (Y ©MZ) oy XO MY ©2) oy M(X 8 (Y 8 2))

and commutation with the monad structure

tx, MY Mtx,y

XeY X @MY 225 M(X © MY) /% M2(X ®Y)
NxXey

X®nyl \ X®MY\L l}tx@y

X®MY—>MX®Y) XoMY e M(X®Y)

A right strength is a natural transformationsx y € L(MXQY, M(X®Y)) subject to similar
commutations. A strength!'! is the combination of a left strength and a right strength such

1 This terminology has nothing to do with the use of the word strong in strong monoidal functors
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that the two induced map in L(X @MY ® Z, M(X®Y ® Z)) obtained by combining t twice
or s twice agree (up to associativity of ®).

Remark 35. When the monoidal category is symmetric, any left strength t induces a right
strength sx y = ngx oty x o 7}8;,)/ and vice versa.

Definition 68. A commutative monad is a monad equipped with a strength (t,s) such that
the following diagram commutes.

MX®MY
M(MX®Y) M(X & MY)
MSXYYJ/ J/MtX'Y
M2(X ®Y) MX(X ®Y)

XRY
M(X®Y)

Any commutative monad is a (symmetric) monoidal monad, (see [Koc70]), defining m? €
LIMXQMY,M(X®Y)) as the diagonal of the square above. Conversely, any (symmetric)
monoidal monad is a commutative monad, see [Koc72|. The strengths are defined as

tyy = X oMY 2 vx oMy % M(X eY)

m2
sxyy = MXoY" XY X oMy % M(X®Y)

Recall from Proposition 40 that tx is the distributive law associated to the extension
X® of X® ,ands .y is the distributive law associated to the extension QY of ®Y.
So the equivalence between (symmetric) monoidal monads and commutative monads can
also be understood as the fact that an extension & _ is the same as two extensions X®
and _®Y compatible together that can be combined through the bifunctor lemma.

8 Annex: adjunction, mates and distributive law

The goal of this section is to describe the mate construction, and how it relates distributive
laws together. The main application of this section is in Section 4, where the functor S
developed in Section 1 is equal to D — | because of the central adjunction ®DAD —

8.1 Adjunctions and the mate construction

Definition 69. Two functors L : C — D and R : D — C are adjoint if there exists two
natural transformations 7 : lde = RL and € : LR = |dp such that the compositions

Ln

L LRL —L [, R, RLR B, R

are the identity natural transformations. Those two equations are called the triangle iden-
tities. The functor L is called the left adjoint, R is called the right adjoint, n is called the
unit, and e is called the co-unit. We write an adjunction n,e: L 4 R.
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An adjunction can also be characterized in terms of the existence of two natural bijections
Oxy : D(LX,Y) —» C(X,RY) and ¥Uxy : C(X,RY) — D(LX,Y) inverse of each other.
There are defined respectively as ®x y(f) = Rf onx and Ux y(g) = ey o Lg. Conversely,
the unit and co-unit can be obtained from ® and ¥ taking nx = ®x rx(idrx) and € =
Vpx x(idrx)-

Definition 70. There exists a category whose objects are the (small) categories, and whose
morphisms are the adjoint pairs. The identity is the trivial adjoint pair id,id : Id 4 Id. The
composition of an adjoint pair 7;,€; : L1 < Ry with an adjoint pair 72,€2 : Lo - Rs is
defined as the adjoint pair n, € : LyL; 4 R; Ry where

ni= 1d —"5 R L "5 R RyLoLy

€ := Lol RoR; 229 IRy —2 4 1d.

It is straightforward to check that n and e follow the triangle equalities. If ®¢, ¥ are the
natural bijections associated to n;,¢; : L; 74 R;, then the natural bijections associated to
m€: LaLy A Ry Ry are ®(f) = ©1(%(f)) and ¥(g) = ¥*(¥'(g)).

We assume throughout this section that we have the following adjunctions, of respective
units 1,7, " and respective counits €, €', ”.

L L' L"

~ — —
C . D (¢ L+ D C'" L+ D".
R R/ R//

Proposition 41. Let H : C — C' and K : D — D' two functors. There exists a bijection
called the mate construction between the natural transformations A\ : L'H = KL and the
natural transformations u : HR = R'K. This bijection is given by the following pasting
diagrams.

c—H, ¢ D_E, c%c"
LJ [ Heﬁ/v’Z/H
DD D=—=D D —C
DK, p C%D%D’
LA Ll WS N A H
C— ¢ CiCTC'TD’

In other word, \ and p are mates if they are defined from each other by u = R'"Keo R'ARo
n"HR and A= KLo L'nL o L' Hy.

p= HR MR prpr B8 pirr BKs pig

A= 'H EE pprp ERE prikn <KL KT

Remark 36. Observe that if @y : D'(L'X,Y) — C'(X,R'Y) is the natural bijection
associated to ', ¢’ : L' 4 R/, then nx = (I)}{RX,X(KGX o Arx). This alternative definition
of the right mate will be useful latter on when considering the mate construction applied
through the adjunction ® A4 A —

One particular case is when C = C’, D =D’ and H = K = Id so that there is a bijection
between the natural transformations A : L' = L and u: R = R'.
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o= R%R’LR#R’LR R’

Ll piprp, €Ly

A= L' — I'RL —
Then Ux = (I)/RX,X(EX o )\RX)-

One can define a double category associated to those constructions. A definition of double
category can be found in [KS74]. Let us unfold this definition in our setting. We can define a
category of horizontal morphisms by taking the category Cat whose objects are the (small)
categories and whose morphisms are the functor. We can also define a category of vertical
morphisms by taking the category Definition 70. Then we can define a square as two vertical
morphisms L 4 R and L’ 4 R/, two horizontal morphisms H, K and a natural transformation
A: L’H = KL. The fact that those are a square become apparent when writing A with a
pasting diagram.

There are identity squares defined below, both in the horizontal and vertical directions. We
can check that the left square instantiated in L = R = Id is the same as the right square
instantiated in H = Id.

g:q c ¢
v o4 | A
D——=1D C—0C

It is then possible to compose two squares horizontally or vertically, using pasting diagrams.

c ¢
C H c’ H’ c" Ll lL
| 1
| Ay Al P
/ !
D — D *>K, D’ Ll ~ J{L
& — &'

That is, the horizontal composition of the two squares is given by the natural transformation
K'XoNH: L"H'H 2~ K''H =23 K'KL
And the vertical composition of the two squares is given by the natural transformation

NeLio by« LLLLH 229 pokr, 225 gr,1,

By property of pasting diagrams, we know that the horizontal/vertical identity squares
are neutral with regard to the horizontal/vertical composition, that the horizontal and
vertical compositions are associative, and that the squares follow the interchange law of
double categories (that is, all the possible ways to compose blocks of multiple squares are
equivalent).

Similarly, there is a double category with the same horizontal and vertical morphisms as
above, but where the squares are natural transformations ¢ : HR = R'K. So a square
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corresponds to the following pasting diagram.

H , o
R X TR’
—= D

/

O —Q

The composition of squares is also given by the composition of the pasting diagrams, and
the identity squares are similar.

Theorem 30 ([KS74]). The bijection of mate is an isomorphism of double categories be-
tween the two double categories described above.

The fact that it is an isomorphism means that if the following squares are mate

C H c’ C H c’ c’ H' c c’ H' c
, T e : , TS Y
oA A NG e vl g [ e N
D——7D D——7D D —— D D —— D
K K K’ K’
then their horizontal compositions are also mates
[ N C o ¢ 1, cr
| matcs
oAy A A N N
D——D —— D D—>D’ D"
K K’ K K

Furthermore, if the following squares are mate

c ¢ c -t DK, p DK, p
/ m{l\a/\t/gs M1 ’ ’ m{l\a/\t/gs H2
Lll )//\1 lLl RJ X |R Lgl )//\2 lL2 T \ TR

then their vertical compositions are also mates.

c—tsc ¢t
l A1 lL mates RIT \M TR;
D—-xk>D 7 D—-k=37D
w Al m N
E*HE” Eﬁé”

Here is a reformulation of the results that does not use pasting diagrams.
Proposition 42. If \: I'H = KL, u: HR = R'K are mates and if N : L"H' = K'L’,
w : HR' = R"K' are mates, then their horizontal compositions

K'XoNH: I"H'H XL K'I'H % K'KL

WKoH'u: HHR — HRK 5 R'K'K

are also mates.
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Proposition 43. If A\, : L'H = KLy, u1 : HRy = R K are mates and if \o : LHK =
JLsy, ps : KRy = R4J are mates, then their vertical compositions

NoLioLh\ : LLLAH 22 [k D, 225 Jr,1,

7 R
Rlpiz o py Ry : HRiRy “2 RIKRy —% RIR,J

are also mates.

Definition 71. We call Adj the double category where vertical morphisms are adjunction,
horizontal morphisms are functors, and squares are pairs (A, u) of mates. By Theorem 30,
it is isomorphic to the two categories described above.

8.2 Mate construction between a monad and a comonad

Assume that n,e : L 4 R. Then as seen in Definition 70, there is an adjunction id,id :
Id 4 Id and an adjunction LL 4 RR of unit RnL on and counit € o LeR. Then the mate
construction induce a bijection between the natural transformations nf : I|d = R and the
natural transformations ¢ : L = Id, given by
R
=L IR —<51d  gf=1d "5 RL B R

It also induces a bijection between the natural transformations ' : R? = R and the natural
transformations §* : L = L? given by

R
st = L -y LrL Y rRRLL ™ LRLL —<£Ly LI

= RR PP RLRR ®"RE RrLRR PLR RLp By R

The compositionality of the mate construction ensures that (R,n%, ) is a monad if and
only if (L,e” 6%) is a comonad. It means that the mate construction induces a bijection
between the monad structures on R and the comonad structures on L.

Definition 72. A monad R and a comonad L such that L 4 R are called mates if their
structure are related through the bijection defined above.

Similarly, the mate construction induces a bijection between the comonad structures on
R and the monad structures on L. A comonad R and a monad L are called mate if their
structure are related through this bijection.

Definition 73 ([MW11]). Assume that H = (H,n, ) is a monad on C and H = (H, ¢, d) is
a comonad on C. Then (H,n, p,€,9) is a 7-bimonad if 7 is a distributive law HH = HH of
the monad H on the comonad H (see Definition 59) and a distributive law HH = HH of

the comonad H on the monad H (see Definition 61), and if the diagrams below commute.

HH Id —" 5 H id ——~ H
NN ol N
H — 3 Id HH id
HH —" g 9% . HH
5*5l TM*M
HHHH ————— HHHH
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Recall that * is defined as the horizontal composition of natural transformations: if F, G :
C—D F.G:D—& a:F=Gand B: F' = G’ then Bxa: GF = G'F’ is defined as
(B*a)x :=Brx oGax = G'ax o frx.

Remark 37. The four diagram making 7 is a distributive law HH = HH are exactly the
same as the diagrams making 7 a distributive law HH = HH, except that the arrows
involving 7 are reversed. In particular, if 7 is involutive then any of the two assumptions
implies the other.

Theorem 31 (7.7 of [MW11]). The mate construction induces a bijection between bimonads
structure on L and bimonad structures on R.

Proof. We already know that the mate construction relates monads structure on L with
comonad structures on R, and comonad structures on L with monads structures on R.
The compositionality of the mate construction then allows to prove that it preserves the
commutation of the bimonad diagrams. It then suffices to prove that it relates distributive
law LL = LL with distributive laws RR = RR, and distributive laws LL = LL with
distributive laws RR = RR. The proof of this observation can be found in section 7.5 of
[MW11], and is very similar to the development of Section 8.3. O

8.3 Application to distributive laws

The mate construction relates distributive laws and morphism of distributive laws together.
The reason is that they preserve compatibility, in the sense below. It is possible that the
results of this section and Section 8.5 can be seen as a particular instance of doctrinal
adjunction, see [Kel74].

Definition 74. A pair of natural transformation « : Hy = Hs, 5 : K1 = K5 is compatible
with the squares A\; : L'Hy = KiL and \y : L'Hy = KoL if the diagram (1) below
commutes. Similarly, it is compatible with the squares p; : H1R = R'K; and ps : HyR =
R'K5 if the diagram (2) below commutes.

L'H, -2 KL H,R " R'K,
(1) L’al lﬁL (2) aRl JR’,@
L'HQ T> KQL HQR T R/Kg

Proposition 44. If A1, pu1 are mate and A2, pa are mate, then (o, 8) is compatible with A\
and A2 if and only if it is compatible with py and pe.

Proof. The proof is a straightforward computation using the definition of mate, but we
can also do a more generic proof by making full use of the isomorphism of Theorem 30.
The compatibility of (a, 8) with A\; and A2 can be expressed as the equality (1) of pasting
diagram. Similarly, the compatibility of (a, ) with p1 and ps can be expressed as the
equality (2) of pasting diagrams.

c ¢ c My c My c M
’ 1258 , o
Al |z Al N T | N
(1) D-K.sD = C—Hy=C(C ) D-k.+D = C—-Hy=>C(C
! Mz /
|z A | SN A N T
/ / / /
DTD DTD D?D DTD
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By assumption, A\; and p; are mates. Besides, 8 is mate with itself through the identity
adjunction. Thus, by Theorem 30, the two squares on the left-hand side of the equalities
are mate of each other. Similarly, the two squares at the right-hand side of the equalities
are mate of each other. Because the mate construction is a bijection, it implies that the two
equality are equivalent. O

Corollary 5. Assume that L can be endowed with a comonad structure L and R with a
monad structure R. Let F,G be two endofunctors on C. Assume that \f' : LF = FL and
ut : FR = RF are mates and distributive laws, and that \¢ : LG = GL and 1€ : GR =
RG are mates and distributive laws. Then o : F = G is a morphism from A\ to \& if
and only if it is a morphism from p* to u&. The same hold when L is endowed with the
structure of a monad L and R with the structure of a comonad R instead.

Proof. The diagrams corresponding to the fact that a is a morphism of distributive law are
the following.

F
LF 2 FL FR " RF

S P

LG —— GL GR —— RG
A Iz

They correspond respectively to the fact that («, a) is compatible with A¥ and A%, and to the
fact that (v, @) is compatible with " and p%, so they are equivalent by Proposition 44. [

Remark 38. We will see in Corollary 9 and Corollary 10 that whenever L (respectively L) is
the mate of R (respectively R), then A\ is a distributive law if and only if u¥ is a distributive
law, and AC is a distributive law if and only if x& is a distributive law, so the assumption
of the result above is not strong.

Corollary 6. Assume that L' = L and R' = R, that H, K can be equipped with a comonad
structure H = (H, e, 67) and K = (K, €%, 6%), and that \: LH = KL and i : HR = RK
are mate. Then \ : LH = KL is a distributive law (in the sense of Definition 60) if and
only if u: HR = RK is a distributive law (in the sense of Definition 57).

Proof. Notice that p : HR = RK is a distributive law as in Definition 57 if and only if
(e eX) is compatible with ; and id, and if (6, §%) is compatible with ;1 and the horizontal
composite puK o Hy. Similarly, A : LH = KL is a distributive law in the sense of Defini-
tion 60 if and only if (¢, e) is compatible with A and id, and if (67,6%) is compatible
with p and the horizontal composite KA o AH. But id and id are mate, A and p are mates,
and KXo AH and uK o Hu are mates thanks to Proposition 42. So by Proposition 44, y is
a distributive law if and only if A is a distributive law. O

Corollary 7. Assume that H, K can be equipped with a monad structure H and K. Assume
that A\ : LH = KL and n: HR = RK are mate. Then X\ : LH = KL is a distributive
law (in the sense of Definition 55) if and only if u: HR = RK is a distributive law (in the
sense of Definition 60).

Proof. Same proof as in Corollary 6. o

Definition 75. A pair of natural transformations a : Ly = L; and o' : L}, = L] is
compatible with the squares A; : LYH = KLj and Ay : LLH = KL if the diagram (1)
below commutes.
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A pair of natural transformations 8 : Ry = Ry and ' : R] = R is compatible with the
squares 1 : HRy = R{K and pg : HRy = R4 K if the diagram (2) below commutes.

LiH -2 K1, HR, 5 RIK
(1) a'HT TKa (2) Hﬁl LB’K
LhyH —— KLy HRy — RYK

Proposition 45. Assume that o, 3 are mates, that o/, 3 are mates, that A1, 1 are mates
and that A2, o are mates. Then («, ') is compatible with Ay and \e if and only if (B, 3')
s compatible with p, and po.

Proof. The compatibility conditions rewrite as the equality of the following pasting dia-
grams.

cts 00— C—xnc .,

I o | ,

Ow Zu 2 |[B=u] Ao 4 |8
D——D — D=—=D—— 7D

c ¢ c C ¢t

2 TR B8’ ;) = g8 = H2 ’
B el NN = a] N8N m
D?D’:C' D:D?D/

By Theorem 30 and assumption, the two pasting diagrams on the left-hand side of the
equalities are mate, and the two pasting diagrams on the right-hand side of the equalities are
mates. Because the mate construction is a bijection, the two equalities are equivalent. [l

Remark 39. Using pasting diagrams shed light on why Definition 74 and Definition 75 are
very similar yet different. They consist in the same kind of equation except that the first
one is vertical, and the second one is horizontal. This also explain why an alternative proof
consisting in unfolding the definition of the mate construction is very straightforward in
Proposition 44, but not straightforward at all in the case of Proposition 45. The reason is
that the functoriality of the mate construction for the vertical composition holds almost by
definition of the mate, whereas the functoriality of the mate construction for the horizontal
composition involves a non-trivial computation that would get duplicated multiple times in
the proof.

Corollary 8. Assume that L, = L; and R, = R;, that H, K can be equipped with a comonad
structure H and K, and that \; : L;H = KL; and Wi HR, = R,;K are distributive laws
and are mate. Assume that o : Lo = Ly and B : Ri = Ry are mates. Then « is a morphism
of distributive law (from Ag to A1) if and only if 5 is a morphism of distributive law (from
w1 to uz). The same property hold when taking a comonad structure H and K instead.

Proof. The commutation making o a morphism of distributive law is the same as the one
expressing that the pair (o, ) is compatible with the squares \; : LiH = KL; and ), :
LoH = KL;. The commutation making 3 a morphism of distributive law is the same as
the one expressing that the pair (3, 3) is compatible with the squares y; : HR; = R1 K
and po : HRy = Ry K. We conclude by Proposition 45. O

Corollary 9. Assume that L = (L,¢,68) is a comonad and R = (R,n,p) is a monad on
the same category C and that they are mate. Assume that T = (L', €,0") is a comonad
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and R' = (R',n',i') is a monad on the same category C' and that they are ‘mate. Let
F:C—C'. Assume that \: L'F = FL and p: FR = R'F are mate. Then \: L'F = FL
is a distributive law if and only if p: FR = R'F is a distributive law.

Proof. A is a distributive law if the following diagrams commute.

L'F -2 FL L'F A FL

P P Jrs

F F L'L'F —— L'FL —— FLL
L'A AL

The diagram on the left can be interpreted as the fact that (e, ¢’) is compatible with A and
id. The diagram on the right can be interpreted as the fact that (4,d’) is compatible with
the composite AL o L'\ and A\. On the other hand, p is a distributive law is the following
diagrams commute.

F ja FRR "%, rPR B4 ppp
Fnl ln'F Ful lM/F
FR —— R'F FR . R'F

The diagram on the left can be interpreted as the fact that (n,n’) is compatible with p and
id. The diagram on the right can be interpreted as the fact that (u,u') is compatible with
the composite R’y o uR and p. By Proposition 43, AL’ o L’\ and R'po R are mate. So we
can apply Proposition 45 to conclude that those two assumption are equivalent. O

Corollary 10. Under the same assumption as in Corollary 9 except that L,L are monads
and R, R’ are comonads, A : L'H = KL is a distributive law if and only if p: HR = R'K
is a distributive law.

Proof. The proof is the same as Corollary 9. O

8.4 Application to lax and oplax structures
Any adjunctions 01, €1 : Ly 4 Ry and 12, €3 : Lo 4 R, induces an adjunction (11, 12), (€1, €2) :
L1XL24R1 XRQ.
Proposition 46. If \; : LiHy = K1L1 and uy : H1Ry = R{K; are mates, and if Ao :
LLHy = KoLy and pg : HoRe = RL K5 are mates then

()\1,)\2) : (Lll X L/Q)(Hl X HQ) = (Kl X KQ)(Ll X LQ)

(/Ll,/l,g) : (Hl X HQ)(Rl X Rg) = (R/l X Ré)(Kl X Kg)

are mates.
Proof. Straightforward computation. O

Remark 40. It is very likely that the observation above means that Adj is monoidal, for a
suitable notion of monoidal double category.

Assume that (C,®,1) and (D, e, I) are (symmetric) monoidal categories. The adjunction
L - R induces a bijection between the morphisms m® € C(1, RI) and the morphisms n® €
D(LI,1). This can also be seen as an instance of the mate construction when taking H = K
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to be the constant functor 1 on C. The mate construction applied on the bifunctor _® :Cx
C — C and taking the adjunctions to be L 4 R and L x L 4 Rx R induces a bijection between
natural transformations n% y € D(L(X®Y), LX ¢ LY) and m% y € C(RX ® RY, R(X eY)).
The result below is well known, and is also a result of doctrinal adjunction, see [Kel74].

Theorem 32. The bijection above induces a bijection between lax monoidal structures on R
and oplax monoidal structures on L. Furthermore, if R is endowed with a monad structure
R = (R,n,p) and L with a comonad structure L = (L,¢,8) that are mate, R is a lax
symmetric monoidal monad if and only if L is an oplax symmetric monoidal comonad.

Proof. The two diagram below are equivalent.

LX eI ™ 1x el ™5 [(X@1) R(Xel) " RX @RI ™% RX ©1

o [ [

LX LX RX RX

Indeed, they express respectively that (p®, p®) is compatible with m?o (L X em°) and id, and
that (p®, p®) is compatible with (RX ®n%)on? and id. But m?o(LX em°) and (RX ®n)on?
are mates by compositionality of the mate construction and by Proposition 46. The other
equivalences are similar, so (R, m°,m?) is lax monoidal if and only if (L,n° n?) is oplax
monoidal.

Furthermore, if R is a monad and L is a comonad, n® = € if and only if m® = 7 because €
and 7 are mates. Finally, the two diagrams of Definition 66 mean that m? is a distributive
law. By Corollary 9, it is one if and only if n? is a distributive law, and the associated
diagrams are exactly the ones turning L into an oplax monoidal comonad. O

8.5 Extension of an adjunction

Let ,¢ : L 4 R be an adjunction, with L : C — D and R: D — C. Let M, = (My,n', ub)
be a monad on C, and M, = (Ma,n?, 4?) a monad on D.

Definition 76. The adjunction n,e: L 4 R extends to the Kleisli categories Cps; and Dy,
if there exists L : C M, = D M, and R : D M, = C M, extensions of L and R respectively, such
that n and € extend to natural transformations Ky 7 : ldc,, = RL and K e : LR =
IdDM This induces and adjunction KM 7, KM e: LR,

Proposition 47. The adjunction n,e: L - R extends to the Kleisli categories Cpr, and Dy,
if and only if there exists two distributive laws AL : LM, = M,L and A\® : RM, = MR
such that the following diagrams commute.

L)E MR
M1 M1 LRM2 E— LMlR —_— MQLR
anl lMln eM{ lee (16)
RLMl W RMQL W MlRL M2 M2

Proof. By Theorem 25, the existence of the two distributive laws is a necessary and sufficient
condition to ensure the existence of the two extension L and R. The diagrams of Eq. (16)
mean that 7 and € are morphisms of distributive laws for the distributive law associated
to the extensions LR and RL so by Theorem 25, it is equivalent to the fact that n and e
extend to natural transformations Ky 7 and Cp, €. O
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Proposition 48. Let A* : LM, = M>L and \® : RMy = MR be two natural transfor-
mations (we do not assume that they are distributive laws). Then the diagrams of Eq. (16)
commute if and only if A is the inverse of the mate u™ of \F:

ut = MR ™R pravnr PR panLr B2 g,

Proof. Assume that the diagrams of Eq. (16) commute. We show that AT is the inverse of
! with the following diagram chase.

RM> RM, MR MR
\ (a) / \ (a) /
nRMs ReM> MinR M Re

AR RLRM> RMae  nMiR MRLR AR
| EN
(b) RL\VAR (d) (e) AR‘LR (c)

Commutation (a) is the triangle identities of the adjunction, (b) is the naturality of n, (¢)
is the naturality of A, and (d) and (e) are the diagram of Eq. (16).

The converse direction is a similar computation. O

Theorem 33. The adjunction n,€ : L 4 R extends to the Kleisli categories Cpr, and Dy,
if and only if there exists A\ : LMy = MsL and A® : RMy = MR two natural trans-
formations such that \¥ : LM, = M,L is a distributive law and \® is the inverse of its
mate.

Proof. By Corollary 7, the mate u” of A\F is a distributive law M ;R = RM,. Since \F
is the inverse of p, it must be a distributive law A\? : RM, = M, R. Furthermore, by
Proposition 48 the diagrams of Eq. (16) hold, so by Proposition 47 the adjunction extends
to the Kleisli categories.

O

9 Conclusion

We have developed a theory of Taylor expansion in categories which are not necessarily
additive. The main motivations for this work are first that Taylor expansion has been
shown to be a useful tool in the analysis of functional programs, see for instance [BM20],
and second that most concrete denotational models of such languages (such as coherence
spaces, probabilistic coherence spaces etc) feature only a partial addition of morphisms
for the very good reason that full additivity prevents denotational models from accounting
for the determinism of computations. For instance, the values tt and ff of the object of
booleans should not be summable in a deterministic model. In the very same line of idea,
the uniformity of the Taylor expansion observed in [ER08] seems to be closely related to the
summability constraints observed in coherence spaces and non-uniform coherence spaces,
and accounts syntactically for to the fundamental determinism of the A-calculus (Church-
Rosser and Standardization theorems) and of the execution of terms in the Krivine machine.

It turns out that all the categorical axiomatizations of denotational models which account
for the Taylor expansion of morphisms, and are most often based on differential LL, make
the assumption that homsets are monoids where infinite summations are possible for the
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obvious reason that infinite summations are an essential ingredient of Taylor expansion.
We have shown in this paper that this strong form of additivity is not a fatality: Taylor
expansion can also exist in settings where only a partial version of (finite and infinite)
addition is available.

Differentiation was already accommodated in such partially additive categories in [Ehr23]
and the approach developed here follows a similar pattern. One main difference is that we
had to develop a more subtle notion of infinitary (countable) summability. Beyond this main
difference, the resulting theory of coherent Taylor expansion is strikingly similar to that of
coherent differentiation — and not essentially more complicated —, with one additional nice
feature: the resulting Taylor functor is not only a monad (just as the tangent functor in
the tangent categories of [Ros84]) but also a comonad. This comonad structure, and more
precisely the naturality of its counit, reflects the fact that nonlinear morphisms coincide
with their Taylor expansion, expressing abstractly that they are analytic.

We have developed this theory in a LL setting of resource categories, where the analytic
structure arises as a distributive law wrt. the resource comonad, and also in general cartesian
categories, following the main ideas of [EW23].

This first denotational investigation of coherent Taylor expansion is a strong incentive for
developing now a syntactic analysis of this operation, which might be similar to the coherent
differential PCF of [Ehr22al, this will be the object of further work. Another natural question
is whether this coherent Taylor expansion has an associated resource calculus, just like Taylor
expansion in the setting of differential LL, see [ER0S].

The connection between coherent differentiation and coherent Taylor expansion also de-
serves further study: such a study might be based on the observation in Section 5 that
there are simple models of LL which accommodate coherent differentiation but not coherent
Taylor expansion.
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