\

Characterization of the IPFS Public Network
from DHT Requests

Bastien Confais, Benoit Parrein, Jérome Lacan, Francois Marques

» To cite this version:

Bastien Confais, Benoit Parrein, Jérome Lacan, Francois Marques. Characterization of the IPFS
Public Network from DHT Requests. Transactions on Large-Scale Data- and Knowledge-Centered
Systems, 2023, Lecture Notes in Computer Science, 14280, pp.87-108. 10.1007/978-3-662-68100-8 4 .
hal-04225517

HAL Id: hal-04225517
https://hal.science/hal-04225517v1
Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright

https://hal.science/hal-04225517v1
https://hal.archives-ouvertes.fr

Characterization of the IPFS public network
from DHT requests

Bastien Confais', Benoit Parrein?, Jérome Lacan®, and Francois Marques!

! Inatysco, 30 rue de I’Aiguillerie, 34000 Montpellier, France
{bastien.confais,francois.marques}@inatysco.fr
2 Nantes Université, Polytech Nantes, rue Christian Pauc, BP50609, 44306 Nantes,
France
benoit.parrein@univ-nantes.fr
3 ISAE Supaero, 10, Avenue Edouard-Belin, BP 54032, 31055 Toulouse, France

jerome.lacan@isae-supaero.fr

Abstract. Interplanetary File System (IPFS) is a file sharing network
relying on a Distributed Hash Table (DHT) to locate data and a BitTorrent-
like protocol to exchange blocks between the peers. However, in such a
network, all nodes can access information about the files stored or ac-
cessed by others. In this article, we use these public pieces of information
to try to characterize the IPFS network both in terms of nodes compos-
ing it and on the files stored in it. To that end, we set up an IPFS node
connected to the public IPFS network and saved all the DHT requests
forwarded through it. We show that nodes are mostly located in data-
centers and not on the end-users’ computers and therefore that files are
often accessed through public gateways. We also show that most files
are not replicated and are not accessed frequently (cold data) which can
question us about the relevance of using IPF'S in such use case scenarios.

Keywords: IPFS, Network monitoring, Kademlia DHT, Peer-to-Peer storage

1 Introduction

Distributed Storage solutions such as Google File System [10], often rely on a
centralized metadata server and require to trust in storage nodes. Therefore, they
can only be used within a single network provider or datacenter. To solve these
major drawbacks, new alternatives such as Interplanetary File System (IPFS) [5],
Sia [26] or Arweave [27] were developed in the last years. Some solutions are
even built as an overlay of IPFS like Filecoin [6]. These solutions enable anyone,
including non-trusted nodes to join the network. This is made possible thanks
to replication of data and protocols checking the integrity of the returned data,
preventing nodes from misbehaving. They also replace the centralized metadata
server with a distributed structure such as a Distributed Hash Table (DHT) or
a blockchain. IPFS was developed in 2014 [5] and relies on a BitTorrent-like
protocol [17] to exchange data between peers and on a Kademlia Distributed
Hash Table [18] to locate the replicas.

In this paper, we propose a deep analysis of the public IPFS network, ana-
lyzing the nodes composing it and the pieces of data that are stored. We show
that despite the need for the user to know the file identifier to retrieve the cor-
responding file, any node on the network can discover which files are stored and
where, questioning the lack of privacy of using such networks. The remaining
of the paper is organized as follows. Section 2, presents how IPFS works and
lists some use cases of the use of IPFS that we can find in the literature. Sec-
tion 3 presents the motivations of this work. Section 4 details how data was
collected and Section 5 analyzes the results. Section 6 tries to take a step back
and analyzes the consequences of the results before concluding in Section 7.

2 Interplanetary File System

IPFS [5] is a distributed storage solution relying on a BitTorrent-like protocol [17]
to exchange data between the peers and on a Kademlia DHT [18] to locate the
replicas. In the following, we explain how IPFS is working.

First, to join the network, a node connects to a bootstrap node in the DHT.
The address of the bootstrap node is embedded in the source code of the software
program as a default value for the node configuration. Once connected to the
bootstrap node, the node sends DHT requests to build its routing table and
determine which nodes it has to connect directly to. The neighboring nodes also
send a replica of the DHT records to the new node, so it can be stored and
served to other users. This is summarised in Figure 1.

2.1 Writing operation

When a user wants to write a new file, IPFS software program splits the file into
different blocks of 256 KB that are stored on the local node. The block identifiers
are the values of the hashes of the block contents. A Merkle tree is then built
from these different blocks. The root hash becomes the file identifier (CID) and
will be used to guarantee the integrity of the file (preventing the storage node to
act maliciously) when retrieved. For each data block, the node creates a DHT
record to indicate that it stores these blocks. This record is stored on the node
in charge of managing the key of the block identifier. Therefore, the different
records are spread within the IPFS network. Finally, the Merkle tree is also
stored in the DHT. Figure 2 shows the full process of file creation.

2.2 Read operation

To access a file, the user needs to know the value of the root hash of the Merkle
tree corresponding to the file. A request is sent to the DHT to retrieve the Merkle
tree. Then, a DHT request is sent for each block. This enables the node to get the
list of the available replicas for the block. Then, it can contact the nodes storing
a replica to retrieve it. Finally, the copy of the retrieved blocks are stored on the

User UserIPFS Node 1 |IPFS Node 2 (bootstrap) IPFS Node 3 IPFS Node 4

generate identifier A

-

connect

Y

look for identifier A

Y

_ contact ipfs node 3

update routing table

connect

Y

look for identifier A

Y

_ contact ipfs nede 4

update routing table

|

connect

Y

look for identifier A

Y

_ itis me, here are the records that must be stored by A

-

update routing table

User UserIPFS Node 1 |IPFS Node 2 (bootstrap) IPFS Node 3 IPFS Node 4

w

Fig. 1: Sequence diagram for the connection of a new node.

local node, and the DHT is updated accordingly. This process is illustrated in
Figure 3.

Because of the DHT, many nodes are informed of the existence of the file,
which is so not private. From a user’s point of view, this can be counter-intuitive
because the user can think that when the file identifier is not divulged, nobody
except him can access the file.

2.3 Main uses of IPFS

IPFS is currently used in different situations. A first use case is file sharing, that
can benefit from the efficiency of the BitTorrent protocol and especially in video

@

-

User User IPFS Node 1 IPFS Node 2 (bootsirap) IPFS Node 3

e

i
send file |
i split file into block

=}

i

ompute merkle tree

i

| loop / Iforeach block]

| store block

i

i compute block identifier = sha256(block)

lookup block identifier (dht)

1 lookup block identifier (dht) N
| create record block_identifier == user IPFS Node 1
T
| lookup merkle tree root value -
b >
| create record root_value =» merkle tree of blocks identifiers -
1

_ return merkle tree root value |

- 1

User User IPFS Node 1 IPFS Node 2 (bootstrap) IPFS Node 3

Fig. 2: Sequence diagram of the writing operation: the creation of the file on the
storage node and the update of the DHT spreads among all nodes of the network

(]

User User IPFS Node 1 IPFS Node 2 (bootstrap) IPFSNode 3 IPFS Node 4
j

get file "merkle tree root value

|
i
| lookup merkle tree raot value
| merkle tree

h

looj [for each block]
' lookup block identifier (dht)

1 lockup block identifier (dht)

| replicas in IPFS Nnode 4

get block

block

ﬂu [for each block]

| store block

update DHT record block_identifier == user IPFS Node4 & user IPFS Node 1

| retum file

h
Usér User IPFS Node 1 IPFS Node 2 (bootstrap) IPFS Node 3 IPFS Node 4

®

Fig. 3: Sequence diagram of the reading operation implying....

streaming application [9] or in the Internet of Things (IoT) to collect and store
measurements [2,11]. Hosting a website [19], managing file revisions [14, 20] or
storing large container files are other use cases mentioned on the IPFS website?.
However, coupled with a blockchain, IPFS can also be used for non-repudiation
storage [24] providing a proof that a certain file exists and has been stored by a
specific user. In practice, IPFS is used for traceability in supply chains [3] or for
pieces of data produced by the devices of the IoT [16].

Monitoring IPFS software program has been done in many works. Shen et
al. [22] or Abdullah et al. [1] evaluated the I/O performance of the program,
but they deployed their own IPFS network and have the control over all nodes
composing it. Public IPFS network has also been studied. For instance, it has
been done in 2021 by Balduf et al. [4], Daniel et al. [8], Henningsen et al. [12] or
even more recently by the organisation that develops the IPFS software program
in Trautwein et al. [25]. We will present at the end of Section 4 the difference
between their methodology and ours.

3 DMotivations and objectives

Before launching this study, we were interested in developing a software program
that uses IPFS as a back-end for file exchanges between users. However, we
quickly realised that the DHT could leak privacy information about the partners
that are exchanging files but also that everybody could access the content of
the file if it was not encrypted. The first goal of the paper is to demonstrate
by experimentation that IPFS does not preserve the privacy of users. For that
purpose, we would like to know if we can identify some peers that work together,
that access the same files, indicating the movement of the user or two users that
collaborate on a regular basis. The second goal of the paper is to gather as much
information as possible about the nodes that are present in the network: what
nodes are composing the network, when are they exchanging, but also on the files
that are exchanged: their types, the number of replicas in order to characterize
the network. The idea behind this is to try to determine the standard usage of
IPFS, if people use it for its BitTorrent properties, or a storage like an alternative
to Google Drive. We also want to make stable observations that are valid and
reproducible. Therefore, we made the data collection from different nodes hosted
on different providers.

4 Material and Methods

This study was made on the IPFS public networks that anybody can join and
where all files are publicly available. We connected a IPFS node to the Internet
for an entire year, from mid-December 2021 to January 2023 and saved the DHT
requests that were forwarded by our node. The monitoring node was deployed on

* https://docs.ipfs.tech/concepts/usage-ideas-examples,

the Google Kubernetes platform® [7] that could be reached using a public IPv4
address (Internet Protocol address) and by installing a full IPFS node (using the
implementation developed in Golang®, version 0.9.1). The node was deployed in
region “europe-west3” located in Frankfurt, Germany. To validate the results
and be assured that they are reproducible, we set up a second node on Amazon
AWS. This node was located in Europe, Ireland.

We simply collected the DHT requests forwarded by our node by enabling
the verbosity of the IPFS process.

Each saved record contains the date when the request was made, the file
identifier (Content Identifier also known as “CID”) and the identifier of the node
which originally sent it (“PeerID”). In other words, a user using the node with
the identifier “PeerID” is trying to locate the replicas of the file with the identifier
“CID”. We add that the DHT requests that were not resolved have been ignored.
We used a Python script to extract more information from these records. For
each line of log, we sent our own DHT request to the file identifier in order to
retrieve all the peer identifiers that stores a replica. Then, we downloaded one of
the replicas in order to identify the file type (MIME type). However, in order to
preserve the privacy of users, we only stopped the download after the first few
bytes (1000 bytes). For most of the file types can be determined with only the 24
first bytes. Nevertheless, some file types like Microsoft Office document require
at least 512 bytes to be correctly identified”. Finally, for each peer identifier that
stores a replica of the file, we resolved the identifier using the DHT in order
to determine the corresponding IP address. With this piece of information, we
could determine the network operator of the node and its geographical region
thanks to the public databases published by the different Local Internet Registry
(LIR) and aggregated in search trees by specific companies like MaxMind 8. This
whole process (capture of DHT requests and analysis of observed records) is
summarised in Figure 4. The source code of the developed scripts can be found
at the following URL: https://github.com/Inatysco/IPFS-network-analysis. We
also made our dataset available alongside with the source code but, we replaced
all files identifiers, node identifiers and IP addresses with random strings.

4.1 Difference with previous studies

The global approach of exploiting the requests that we received from the DHT
is not original and is similar to Balduf et al. [4], Henningsen et al. [12], Daniel et
al. [8] Trautwein et al. [25]. For instance, Balduf et al. [4] showed that by in-
‘Eercepting the DHT requests, it is possible to determine the size of the network
(the number of connected nodes), the activity levels, the structure and the con-
tent popularity distribution. Daniel et al. [8] made a similar work in 2022 by
collecting passively the DHT requests to determine the network size and churn.

® https://cloud.google.com/

5 https://github.com/ipfs/kubo

" https://www.garykessler.net/library /file'sigs.html

8 https://dev.maxmind.com/geoip/geolite2-free-geolocation-data?lang=en

Henningsen et al. [12] also proposed to exploit the Kademlia DHT used by IPFS
to crawl the network. The major difference with our work is that they use a
software program called “Hydra” which is a DHT indexer that manages multi-
ple “PeerID” in order to provide them a more global vision of what the DHT
contains. Finally, Trautwein et al. [25] published an article in collaboration with
the organisation that develops the IPFS software to analyze the distribution of
requests made in the network. This last study has perhaps the approach which
is the most similar to ours, by analysing nodes using their IP addresses and
determining the number of requests received on a daily basis. However, all these
studies focused on the nodes and none of them considered the files that were
exchanged. The first originality of our approach is to send extra requests to
complete the pieces of information that are collected directly from the DHT
logs. For instance, we send the same request ourselves in order to receive the
response and determine the place of all the replicas of the requested file. This
led us to analyze the number of replicas or the position of the different replicas
of a file in the network. Secondly, our study was made on a longer period of time
(1 year) while Balduf et al. [4] was made on only 2 months and Daniel et al. [8]
presents their results on only 10 days and Trautwein et al. [25] have a 7-months
long analysis. This leads to detect much more nodes (three times more actu-
ally) in the public IPFS network than in these previous studies as we will see in
the next section of results. Finally, our approach did not require using multiple
“PeerID” and different positions in the DHT like in Henningsen et al. [12]. The
long period of capture enabled us to see the environment changes and gave more
opportunities for every node to contact ours. And secondly, the extra requests
sent to complete the analysis were sent uniformly to the different peers, so that
we could have contacts to the different zones of the DHT.

4.2 Ethical question on data collection

Collecting such metrics is not uncommon for an analysis of a public network.
It was already done to test peer-to-peer networks like BitTorrent [28] or Bit-
coin [15].

Ethical concerns of such data collection from public networks has been stud-
ied by Small et al. [23] and by Partridge et al. [21]. Both studies show that the
risk to identify the real person behind a node is small and that the possibility
to exploit the collected pieces of information to cause harm to users is limited.
They also distinguish active from passive data collection. When data is obtained
passively and that by using the public network, users consent to see their pieces
of information accessed by other nodes and they are free to leave the network.
Generally speaking, the explicit consent of users of large-scale public networks
as public IP network or P2P network is very difficult to obtain.

Our approach is semi-passive as we collect passively requests from the DHT
but, we also send request to determine the type of stored files and the location
of the replicas. However, these pieces of information are insufficient to identify
the users (it would require us to know that a specific user stores a certain set of
files).

Logfile analysis

For each line a

1
logfile | Extract CID
& peerlD IPFS Node

Get CID

l«

List peerid storing
areplicate

Public networld

Get replicate

Determine
filetype IPFS Node
Get PeerlD .

1P address/port
Determine country/region

of IP address using
maxmind Database
MAXMIND P

|

Save in Database

Fig. 4: Analysis process of the captured DHT requests.

If we compare our approach to previous papers, Badulf et al. [4] published a
privacy policy on the website of their organisation to inform the users about the
data collection. But there is no information about how IPFS users are concretely
informed about their policy.

Trautwein et al. [25] added a paragraph in their paper to indicate that they
have not tried to identify the real users behind the collected IP addresses. All
the other works on IPFS mentioned in the previous section have not mentioned
any information on ethics as recommended in [21].

5 Results

We collected 9278089 DHT requests that have been forwarded by our node
(63 548 requests per day on average). In each request, we can see the identifier
of the node sending it (“PeerID”) and the “CID” (Content Identifier) of the file
requested.

We also found that the node rebooted several times during the period, leading
to observe few minutes without collecting any requests, but it also unexpectedly
enabled it to change its position on the DHT because at each reboot, the node
identifier of the node was modified.

The first general observation is that 13,5 % of file exchanges are requested by
only 10 nodes. These nodes probably correspond to public gateways, allowing
any user to access files stored in IPFS, even if the user has not installed IPFS
in his computer and does not actively participate in the network.

By observing the IP addresses associated to the node identifiers, we discov-
ered in a second general observation that the network is composed of more than
147000 nodes, that are mostly connected through providers operating in France,
United States and Germany (detailed in Figure 5). As a comparison, Balduf et
al. [4] detect 48000 different nodes in the period of their study. In the follow-
ing, we will focus on the types of files that are stored in the network and their
distribution among the nodes.

5.1 Type of the requested files

We collected approximately 230 000 file identifiers (CID) for which we could reach
one of the replicas. After having downloaded the first 1000 bytes of each file, we
could access to 7074 files in plain text (TXT, JSON, ...), 5199 PNG images and
3953 PDF documents. All the types of file are summarised in Table 1.

Three quarters of requests (76% exactly) are about JSON files. These mostly
correspond to indexes: IPFS lets users send an entire hierarchy of files. All the
identifiers of the files that are parts of the directory are added to a JSON struc-
ture and the JSON document is then stored in IPFS with its own file identifier.
We have not specifically analysed the content of the directories (number of files,
depth of the hierarchy, ...) but if a user accesses a file within a directory, a new
DHT request is sent that could be captured and analyzed separately if our node
receives the request for this resolution. In other words, when a user accesses a

MIME type Number of occurrences|percentage
application/json 180997 76 %
application/octet-stream 35012 14 %
text/plain 7074 2.9%
image/png 5199 2.2%
application /pdf 3953 1.7%
text/html 1614 0.68 %
image/jpeg 1396 0.59 %
application/gzip 812 0.34 %
application/x-dosexec 366 0.15%
image/svg+xml 274 0.11%
image/gif 231 0.097 %
video/mp4 227 0.095 %
application/zip 162 0.06 %
image/webp 116 0.049 %
application/zlib 94 0.039 %
text/x-java 78 0.033 %
application/wasm 50 0.021 %
audio/midi 39 0.016 %
application/x-xz 39 0.016 %
text /xml 39 0.016 %

Table 1: Types of files observed in the IPFS network (top 20)

file like “QmXXXX/file.txt”, a first request is sent to the DHT to resolve the
CID of the directory: “QmXXXX”. This returns a JSON object containing the
filenames present in the directory, as well as the corresponding CID of the files.
Then a second request is sent to the CID of the file to locate the replicas of
it. In the worst case, if every file is accessed through a directory, we should see
the directories representing 50% of all accesses. Because we see 76%, it means
that either the position of our node led us to not capture the request for more
than 2/3 of files access, or some users load the content of a directory without
accessing any file. A third explanation and perhaps the most probable is that
some files are under a deep hierarchy of folder (folderA /folderB/folderC/file.txt)
leading to locate several JSON files before accessing the real file.

The 14 % of total files that are binary files (application/octet-stream) corre-
spond to files without recognisable header. It can be portions of a bigger file that
have been split into several parts in order to enable users to perform random
accesses, or it can be files that have been encrypted because the owner does
not want anybody to read it. But most probably, these are tied to the fact that
we only downloaded the first bytes of the files to preserve the privacy of users
and we did not get sufficient information to determine the real type of the file.
Therefore, it is difficult for us to understand what these files are about.

Although PDF or ZIP files can have an encrypted payload, most files with
an identified type can be read by everyone. This illustrates and justifies the
need of managing access permissions in such a network. Regarding the PDF

10

files, we downloaded some of them and found that the immutability property of
IPFS led some people to use it to store administrative documents such as proofs
of delivery, invoices, etc. These private documents are made publicly available
but probably without the consent of their owner. Medias like images (PNG,
JPEG, WEBP) or videos (MP4) are stored on IPFS probably for optimising the
distribution to several receivers’. In this case, the BitTorrent aspect of IPFS is
probably what was looking for. We also note that many websites seem hosted
using IPFS because we observe a lot of HTML files, but also Web assembly
(WASM). These websites are usually reached through an IPFS gateway that
can either be private or publicly accessible, like “ipfs.io”.

The conclusion of this, is that most IPFS files are accessed through folders
and that binary files from which we cannot determine the content, is the most
common file type on the network. Then, we have a long tail with different kinds
of files corresponding to different usages (PDF, images or websites).

5.2 Geolocalisation of the nodes

We identified 147 003 node identifiers in the network but all the nodes have not
the same importance. For instance, we identified 3 nodes announcing more than
2000 IP addresses (mostly IPv6 addresses) that belong to a unique 64-bits long
prefix network for each host. These nodes probably reconnect very often and
announce a different address/port each time they reconnect.

In the same way, some IP addresses host different IPFS nodes, with different
“peerID”s. This can correspond to nodes connected through NAT devices or
IPFS nodes that reinstall their configuration on a regular basis. It can even be
several IPFS daemons running on the same computer. A reason for this last case
could be to improve the performance of IPFS as the daemon is only able to deal
with one request at a time. Approximately 5000 IP addresses host more than a
single IPFS node.

From the node IP address, we determine a country to each node. As said
in Section 4, countries are deduced from the Local Internet Registry (LIR)
databases which can only reflect the administrative country of the network op-
erator and not the real location of IPFS node. We luckily did not find any node
with different IP addresses associated with different countries, therefore, if a
node has several IP addresses, it is counted only once. However, if a node is
restarted and has its identifier (“peerID”) modified, it is counted as a new node.

Figure 5 shows the number of IPFS nodes that have been identified in each
country. The figure shows that most IPFS nodes are located in the biggest eco-
nomic zones of the world, which is not surprising. In Furope, most nodes are
located in France (and Germany) and on the American continent, most nodes
are located in the United States of America. The situation is different in Asia
where nodes are more evenly distributed among the countries. But this can come
from the fact that our node was located in Europe, prioritized connections to

9 https://ipfs.video/

11

Fig.5: Number of IPFS nodes per country.

nodes with low latency. Therefore, connection to nodes in Asia were made only
when no other choice was possible leading to this map.

Table 2 and Table 3 show the distribution of nodes according to network
operators. Like countries, the network operator of a node was determined from
its IP address. Table 2 shows surprisingly that only 11 % of the IPFS nodes are
hosted on Google cloud, Microsoft Azure or Amazon AWS. However, Table 3
shows that the vast majority of the nodes are hosted in traditional datacenters
and not in home networks. Providers like OVH, Packet, DigitalOcean hosts more
than 45 % of the IPFS instances. Only the last provider, T-Mobile is a provider
for home networks. This questions the true decentralization of the IPFS network.

cloud provider |number of nodes identifiers|percentage
Amazon AWS 5274 9.8%
Google 597 1.1%
Microsoft Azure 314 0.58 %

Table 2: Number of IPFS nodes hosted in famous cloud providers.

In conclusion, the nodes are located in the most developed regions of the
world which is not surprising. However, the more surprising result is that most
of the node of the IPFS network are located in datacenters and not on the
personal computers of the users.

12

network provider number of nodes identifiers|percentage
OVH SAS (FR) 20227 37 %
PACKET (US) 5737 10%
AMAZON-02 (US) 5274 9.7%
AS-CHOOPA (US) 4997 9.2%
DIGITALOCEAN-ASN (US) 3218 5.9%
Contabo GmbH (DE) 2995 55%
Verdina Ltd. (BLZ) 2083 3.8%
Hetzner Online GmbH (DE) 1950 3.6%
Hostkey B.v. (NLD) 1895 3.5%
T-MOBILE-AS21928 (DE) 1692 3.1%

Table 3: Number of IPFS nodes hosted in each Autonomous System (top 10).

5.3 Popularity of the files

There are two ways to define the popularity of files:

— by looking at the replicas of each file - the file with the highest number of
replicas is the most popular;

— by looking at the files that are requested the most in the captured DHT
requests.

If we look at the number of replicas available for each file, we can build the
Figure 6. The figure shows a graph bar where each bar corresponds to a different
file and the y-axis represents the number of replicas found for each file. We sorted
the bars by the number of replicas.

It unsurprisingly shows a Zipf distribution with a very small number of pop-
ular files with a high number of replicas and a extra large number of files that
are not popular and have fewer than 10 replicas. We can even see that 100612
files (100612 files over 330638, approximately 30%) have less than 3 replicas.

Contrary to Balduf et al. [4] and as mentioned in Section 4, the requests that
are not resolved are ignored. Therefore, we can observe a power-law distribution.

We observe that the file we found with the highest number of replicas has
11515 replicas, and the second highest has 4 597 replicas. These files correspond
to the “README?” files of IPF'S that are present by default on the nodes.

If we use the second criterion: by looking at the files requested in the in-
tercepted requests, we can build Table 7. Like in the previous graph, each bar
represents a file, and the height of the bar is the number of requests observed
for the considered file. The bars are sorted according to their height.

13

aaaaaaaaaaa

nnnnn

o) Fil dentler (GID)

Fig. 6: Graph bar showing the num- Fig. 7. Graph bar showing the num-

ber of replicas for each file (log scale ber of requests for each file (log scale
in Y). Blue line represents the av- in Y). Blue line represents the aver-
erage number of replicas (average of age number of requests (average of
4.61). 8.89).

The first thing that we observe is that the average number of requests for each
file is low (8.89 on average). If we look at the CID in the X-axis (not represented
for readability), we observe that most queries are not about the files with most
of the replicas (we do not observe any overlap in the 20 first CID of the two
graphs in Figure 6 and 7). In other words, the files with most of the replicas are
not the most requested ones. This result seems strange because in IPFS each
request on a new node leads to the creation of a new replica. This supposes that
the popularity of files is changing over time, that many replicas are created when
the file is popular, but then, the number of requests significantly reduces. This
can explain why the files with the highest number of replicas are not the files
with the most requests. We also note a bias in this figure. When a client requests
a file to a node, the node looks for file replicas in the IPFS network by sending a
DHT request. Then, a replica is downloaded, and a copy is created on the node
that has received the request. Therefore, when a second client requests the same
file to the node, no DHT request is sent in the network and can be captured.
As a consequence, popular files that are requested by only a small set of IPFS
nodes do not appear in the figure because DHT requests are not generated for
each file access.

To conclude, the popularity of files shows a power-law distribution.

5.4 Activity in the network

The fourth part of our analysis is about the use of IPFS network. We can show
in Figure 8 the number of requests intercepted for each day. We filtered the fact
that nodes can send the same request several times within an interval of few
seconds because it means that the node did not receive a response and retries
to send the request.

14

Furthermore, we observe that the number of requests varies greatly with the
days: 63 548 requests are sent on average each day, with a standard deviation
almost equal to the average: 54668 requests. However, we observe that, the
number of requests at the end of January, was reduced significantly but increased
again to reach the previous level on the 9th February.

1x10°

100000 1|

10000

1000

Number of requests

100

17/12/2021
01/01/2022
01/02/2022
01/03/2022
01/04/2022
01/05/2022
01/06/2022
01/07/2022
01/08/2022
01/09/2022
01/10/2022
01/11/2022
01/12/2022
01/01/2023

g
S

Fig.8: Number of DHT requests received for each day.

5.5 Overhead of the DHT

A last question on the IPFS network is about its overhead in terms of net-
work usage and energy consumption. In this part, we ignore the file transfer
because if IPFS was replaced with a centralized solution, the same amount of
data would have been exchanged. The only difference would have been that all
flows originated from the same source rather than being distributed throughout
the network. The real overhead of IPFS is the use of the DHT. DHT messages
are composed of a message type on 4 bytes and the key that is looked for (on 38
bytes) Adding the IP and TCP headers, messages are 82 bytes long.

We received 9278089 requests. Because each request is 82 bytes long, we
received 9278089 x 82 = 760803298 bytes in the period. From there, because

15

the capture lasted 379 days 19 hours 52 minutes, we can compute an average
overhead throughput of 185 bps. However, the average throughput is not a rele-
vant metric because, as it was shown in Figure 8, requests are not received on a
regular interval. If we look up at the peak of traffic on this figure, the maximum
we observe is 37687 requests on the 2nd February at 14:35. This corresponds
to 37687 x 82 = 3090334 bytes for 60 seconds. Which is 412044 bits per second
(412 Kbps).

However, we saw in the previous section that more than 90% of nodes are
hosted on a cloud computing platform and less than 10 % are hosted on a com-
puter connected to a consumer Internet Service Provider. Therefore, we can
make the hypothesis that 90% of nodes are dedicated to IPFS and turned on
only to run IPFS while 10 % of nodes use the extra resources of computers used
for other purposes. Nevertheless, all nodes are not necessarily physical ones, and
the network is probably composed of virtual machines. The consequence is that
running IPF'S is not very different from running a cloud computing application
in terms of energy consumption. The difference is mostly due to the fact that all
nodes are not under the control of a single person with IPFS.

In conclusion, the overhead of the IPFS DHT in terms of network traffic is
very low, but it is difficult to evaluate the number of dedicated physical nodes
that have been added to the Internet to run the IPFS application.

5.6 Storage

In this last section, we study how the replicas are distributed among the IPFS
nodes. We establish the list of peers, and for each file, we create a binary vector
like (0 1 1) if we found that the file has a replica on the IPFS node 2 and IPFS
node 3 but not on the IPFS node 1.

We therefore obtain a vector per file, and we can then compute correlations
between files. A correlation of 1 indicates that the two files have their replicas
on the same server, and a correlation of -1 indicates that the two files are stored
on two complementary nodes.

Figure 9 shows a graph where each point is a file and the distance between two
points is depending on the correlation value distance = (1 — correlation). This
distance means that two files that are stored on the same set of IPFS nodes are
represented by two points at the same position (correlation=1; distance=0). On
the contrary, two files that are stored on complementary nodes are represented
far from each other (correlation=-1; distance=2). We selected 200 files randomly.

It shows two clusters of files: one in the upper-right zone of the image and one
in the bottom-left zone. The cluster of dots represented at the top of the figure
corresponds to files that have only one replica on an IPFS server hosted on the
network of DigitalOcean. The other cluster of dots, we can identify in the bottom
of the figure, corresponds to the files that have a first replica on the node of the
DigitalOcean network but also a second replica on a IPFS server hosted in the
OVH network. All other files are files that have a unique placement of replicas:
often a replica on a public gateway and another replica on the node of the
user. These correspond to files that are not largely shared. This figure highlights

16

Fig.9: Correlation between the storage of each file. Each dot represents a file
and the edges between the nodes are depending on the servers the replicas are
stored on.

17

different applications that use the IPFS network and have the tendency to place
the file replicas on the same nodes.

5.7 Replication of results on Amazon Web Services platform (AWS)

In this last part, we try to determine if the observed results are reproducible. We
run the same study by collecting DHT requests from a node hosted on Amazon
Web Services!®. This study was made over a shorter period of time: only 10
months from January to November 2022. Results show similar observations to
those made using the node hosted on Google Cloud Platform in Table 1. We
collected 593451 DHT requests. We collected far fewer requests than on the
Google node because of its latency and therefore probably a low score in the
buckets of the Kademlia DHT.

File type distribution is similar to the distribution we observed on Google
node. 75 % of observed files are JSON objects and 18 % are binary files as illus-
trated in Table 4.

Regarding the distribution of requests received, we observe the same Zipf
distribution as we saw previously. Few files are requested many times and many
others are requested only once. This is illustrated in Figure 10. This short anal-
ysis with another node reinforces the observations we made over a longer period
with the node hosted on Google Cloud Platform from Section 5.1 to Section 5.6.

6 Discussion

These results are surprising in the sense that IPFS is designed to share files
efficiently with a large number of users. However, we observe that most of the
files have few replicas and are therefore not shared with a large group of people.
We can therefore wonder why these people use the IPFS solution that does
not seem ideal because the BitTorrent-like protocol is not exploited to its full
capabilities: we have not observed files with many replicas spread on a large set
of nodes and we do not observe files becoming popular over time.

A possible reason is that IPFS is used for the use cases listed in Section 2.3 like
non-repudiation storage [24] or traceability in supply chains [3]. IPFS seems to be
more used for its immutability property that preserves files from modifications,
allowing users to guarantee the integrity of the distributed files than for the
file distribution around the globe. The distribution of accesses can also let us
think that IPFS might be used by technical people who try it by creating a file,
requesting it and leaving the network. In addition to this, we note that an IPFS
gateway provides HT'TP links to stored files, which can then be distributed easily
among the users, making IPFS an alternative to services like drives (Dropbox,
Onedrive, Google Drive) or File Transfer services (Wetransfer). Finally, as we
observed many HTML files and images, we can tell that IPFS is used as a web
hosting server. Websites are then accessed through IPFS gateways, achieving

10 https://aws.amazon.com/

18

MIME type Number of occurrences|percentage
application/json 5141 76 %
application/octet-stream 1222 18 %
text/plain 168 2.5%
image/png 82 1.2%
image/jpeg 55 0.81%
text/html 24 0.35%
application/pdf 21 0.31%
application/gzip 16 0.24 %
application/x-dosexec 12 0.18%
image/svg+xml 8 0.12%

Table 4: Types of files observed in the IPFS network from the AWS-hosted node
(top 10)

Number of requests for the il

File identiier (CID)

Fig. 10: Graph bar showing the number of requests for each file (log scale in Y).
Blue line represents the average number of requests (8.22).

the scalability of web services with almost no extra cost (IPFS is acting like a
Content Delivery Network).

A last remark is the concern about the need for security measures to preserve
the users’ privacy. In the current state of development, IPFS does not seem
to give more guarantees to protect users privacy than the big cloud providers
(GAFAM) do. It seems relatively easy for a malicious user to deploy many IPFS
nodes in order to track most activities on the network. This tracking can be
mitigated by spreading more replicas, even on nodes that do not access the
piece of data. This prevents the DHT from being used when access to the data
is made, because with IPFS, DHT requests are only sent when a local copy of
the requested data is not found on the local node.

Also, a simple solution would be to encrypt both DHT records and files. The
encryption key could be appended to the file identifier like “<CID>-<encryption
key>". The user would still look for the CID in the DHT (the key would not
be transmitted to the DHT) but the retrieved record is encrypted, and the key
in the second part of the identifier must be known to decrypt it and to locate

19

the replicates. Such a solution is not ideal because observing the requests in
the DHT still leads to knowing the list of users that are accessing files, but the
number of replicas, their location as well as the type of file could not be easily
determined. Some articles [13,29] and the IPFS website list different projects
that exploit content encryption'! but most of them only encrypt data without
considering the DHT.

Another solution would be to manage storage pools. The DHT would con-
tain “pooll managed on nodel, node2 and node3”. Then, the objects would be
identified with the pool they belong to “<CID>-<pool>". In this way, the user
locates the pool in the DHT, then directly contacts the nodes of the pool to
get the replica. In this way, the DHT requests do not indicate the file the user
is looking for, and observing the requests does not indicate how many files are
stored in the network. The drawback of such a solution is that it makes the
placement more difficult: many files must be stored together in order to avoid
having a pool for each file, which recreates the problem we are trying to solve.

7 Conclusion

This study exploits the pieces of information publicly available on the IPFS
network. These pieces of information led us to characterize the IPFS network by
identifying the network operators through which, nodes are connected. It also
enabled us to determine the popularity of files, the type of files exchanged, and
the number of replicas of each file. We showed in Section 5.1 that in addition
to the many PDF or image files stored, IPFS is also used as a hosting provider
for websites. In Section 5.2, we showed that most nodes are from France and
Germany in Europe and from the United States for the America continent. We
then studied in Section 5.3 and Section 5.4 the frequencies of requests and their
distribution along the days. We showed that a very small number of nodes send
a lot of DHT requests and that most of the files are not popular, questioning us
about the centralization of the network. In Section 5.5, we evaluated the overhead
of the DHT of IPFS and concluded that it only consumes 185 bps which is very
low even if peaks require more throughput. Before finishing, in Section 5.6, we
identified in a subset of files two sets of files with their replicas placed on the
same nodes. These files correspond to different applications relying on IPFS.
These results have been obtained using an IPFS node hosted on Google Cloud
Platform but were replicated on Amazon Web Services (AWS) in Section 5.7.
In this situation, we can wonder what the interest is, in using IPFS for storing
non-popular files because the main advantage of IPFS is the distribution of
popular files. We considered several hypotheses, like non-repudiation storage or
just because of the simplicity of sharing data compared to what cloud drives
propose. We can also question the security of the IPFS protocol because, with
few resources, it can be feasible for a malicious user to track many of the accesses
performed.

" https://docs.ipfs.tech/concepts/privacy-and-encryption/#encryption

20

We also note that this study has one major drawback: accessing files that have
a replica stored on the IPFS node interrogated did not generate a DHT request
and therefore could not be captured and analyzed. Evaluating the proportion of
this kind of request is a bit hard to do as IPFS is a decentralized network.

Finally, this work can be continued by designing mechanisms to manage
access permissions on files stored in IPFS or making improvements in the DHT
in order to prevent the possibility of tracking the users’ activity.

References

1. Abdullah Lajam, O., Ahmed Helmy, T.: Performance Evaluation of IPFS
in Private Networks. In: 2021 4th International Conference on Data Storage
and Data Engineering. p. 77-84. DSDE ’21, Association for Computing Ma-
chinery, New York, NY, USA (2021). https://doi.org/10.1145/3456146.3456159,
https://doi.org/10.1145/3456146.3456159

2. Ali, M.S., Dolui, K., Antonelli, F.: IoT Data Privacy via Blockchains and IPFS.
In: Proceedings of the Seventh International Conference on the Internet of Things.
TIoT ’17, Association for Computing Machinery, New York, NY, USA (2017),
https://doi.org/10.1145/3131542.3131563

3. Altmann, P., Abbasi, A.G., Schelén, O., Andersson, K., Alizadeh, M.: Creating a
Traceable Product Story in Manufacturing Supply Chains Using IPFS. In: 2020
IEEE 19th International Symposium on Network Computing and Applications
(NCA). pp. 1-8 (2020)

4. Balduf, L., Henningsen, S., Florian, M., Rust, S., Scheuermann, B.: Monitoring
Data Requests in Decentralized Data Storage Systems: A Case Study of IPFS
(2021), https://arxiv.org/abs/2104.09202

5. Benet, J.: IPFS - Content Addressed, Versioned, P2P File System. Tech. rep.,
Protocol Labs, Inc. (2014), http://arxiv.org/abs/1407.3561

6. Benet, J., Greco, N.: Filecoin: A decentralized storage network. Tech. rep., Protocol
Labs, Inc. (2018)

7. Bisong, E.: Containers and Google Kubernetes Engine, pp. 655-670. Apress, Berke-
ley, CA (2019), https://doi.org/10.1007/978-1-4842-4470-8 45

8. Daniel, E., Tschorsch, F.: Passively Measuring IPFS Churn and Network Size
(2022), https://arxiv.org/abs/2205.14927

9. Doan, T.V., Pham, T.D., Oberprieler, M., Bajpai, V.: Measuring Decentralized
Video Streaming: A Case Study of DTube. In: 2020 IFIP Networking Conference
(Networking). pp. 118-126 (2020)

10. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google File System. SIGOPS Oper.
Syst. Rev. 37(5), 29-43 (oct 2003), https://doi.org/10.1145/1165389.945450

11. Hasan, H.R., Salah, K., Yaqoob, 1., Jayaraman, R., Pesic, S., Omar, M.: Trustwor-
thy IoT Data Streaming Using Blockchain and IPFS. IEEE Access 10, 1770717721
(2022)

12. Henningsen, S., Rust, S., Florian, M., Scheuermann, B.: Crawling the IPFS Net-
work. In: 2020 IFIP Networking Conference (Networking). pp. 679-680 (2020)

13. Karapapas, C., Pittaras, 1., Polyzos, G.C.: Fully Decentralized Trad-
ing Games with Evolvable Characters using NFTs and IPFS. In:
2021 IFIP Networking Conference (IFIP Networking). pp. 1-2 (2021).
https://doi.org/10.23919/IFIPNetworking52078.2021.9472196

21

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Khatal, S., Rane, J., Patel, D., Patel, P., Busnel, Y.: FileShare: A Blockchain and
IPFS Framework for Secure File Sharing and Data Provenance. In: Patnaik, S.,
Yang, X.S., Sethi, I.K. (eds.) Advances in Machine Learning and Computational
Intelligence. pp. 825-833. Springer Singapore, Singapore (2021)

Koshy, P., Koshy, D., McDaniel, P.: An Analysis of Anonymity in Bitcoin Using
P2P Network Traffic. In: Christin, N., Safavi-Naini, R. (eds.) Financial Cryptogra-
phy and Data Security. pp. 469-485. Springer Berlin Heidelberg, Berlin, Heidelberg
2014

](E(rejci), S., Sigwart, M., Schulte, S.: Blockchain- and IPFS-Based Data Distribu-
tion for the Internet of Things. In: Brogi, A., Zimmermann, W., Kritikos, K. (eds.)
Service-Oriented and Cloud Computing. pp. 177-191. Springer International Pub-
lishing, Cham (2020)

Legout, A., Urvoy-Keller, G., Michiardi, P.: Understanding BitTorrent: An Exper-
imental Perspective. Technical report (2005), https://hal.inria.fr/inria-00000156
Maymounkov, P., Maziéres, D.: Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric”, booktitle="Peer-to-Peer Systems. pp. 53-65. Springer
Berlin Heidelberg, Berlin, Heidelberg (2002)

Nguyen, T.T., Do, B.L.: A Novel Model Using CDN, P2P, and IPFS for Content
Delivery. In: Dang, T.K., Kiing, J., Takizawa, M., Chung, T.M. (eds.) Future Data
and Security Engineering. Big Data, Security and Privacy, Smart City and Industry
4.0 Applications. pp. 51-62. Springer Singapore, Singapore (2020)

Nizamuddin, N., Salah, K., Ajmal Azad, M., Arshad, J., Rehman,
M.: Decentralized document version control using ethereum blockchain
and IPFS. Computers & Electrical Engineering 76, 183-197 (2019),
https://www.sciencedirect.com/science/article/pii/S0045790618333093

Partridge, C., Allman, M.: Addressing ethical considerations in net-
work measurement papers: Abstract. In: Proceedings of the 2015
ACM SIGCOMM Workshop on Ethics in Networked Systems Re-
search. p. 33. NS Ethics ’15, Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2793013.2793014,
https://doi.org/10.1145/2793013.2793014

Shen, J., Li, Y., Zhou, Y., Wang, X.: Understanding 1/O Performance of
IPFS Storage: A Client’s Perspective. In: Proceedings of the International Sym-
posium on Quality of Service. IWQoS ’19, Association for Computing Ma-
chinery, New York, NY, USA (2019). https://doi.org/10.1145/3326285.3329052,
https://doi.org/10.1145/3326285.3329052

Small, N.; Meneghello, J., Lee, K., Sabooniha, N., Schippers, R.: A discussion on
the ethical issues in peer-to-peer network monitoring (2012)

Sun, J., Yao, X., Wang, S., Wu, Y.: Non-Repudiation Storage and Access Control
Scheme of Insurance Data Based on Blockchain in IPFS. IEEE Access 8, 155145~
155155 (2020)

Trautwein, D., Raman, A., Tyson, G., Castro, I., Scott, W., Schubotz, M., Gipp, B.,
Psaras, Y.: Design and Evaluation of IPFS: A Storage Layer for the Decentralized
Web. In: Proceedings of the ACM SIGCOMM 2022 Conference. p. 739-752. SIG-
COMM ’22; Association for Computing Machinery, New York, NY, USA (2022),
https://doi.org/10.1145/3544216.3544232

Vorick, D., Champine, L.: Sia: Simple Decentralized Storage. Tech. rep., Nebulous-
Labs, Boston (2014)

Williams, S.A., Diordiiev, V., Berman, L.: Arweave: A Protocol for Economically
Sustainable Information Permanence. Tech. rep., Minimum Spanning Technologies
Limited (2019)

22

28.

29.

Wolchok, S., Halderman, J.A.: Crawling BitTorrent DHTs for Fun and Profit.
In: Proceedings of the 4th USENIX Conference on Offensive Technologies. p. 1-8.
WOOT’10, USENIX Association, USA (2010)

Zhou, C., Sun, G., You, X., Gu, Y.. A slice-based encryp-
tion scheme for IPFS. International Journal of Security and Net-
works 18(1), 42-51 (2023). https://doi.org/10.1504/I1JSN.2023.129898,
https://www.inderscienceonline.com/doi/abs/10.1504/1JSN.2023.129898

23

