
HAL Id: hal-04225504
https://hal.science/hal-04225504v1

Preprint submitted on 2 Oct 2023 (v1), last revised 30 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Parametrization and Cartesian representation
techniques for robust resolution of chemical equilibria

Maxime Jonval, Ibtihel Ben Gharbia, Clément Cancès, Thibault Faney,
Quang Huy Tran

To cite this version:
Maxime Jonval, Ibtihel Ben Gharbia, Clément Cancès, Thibault Faney, Quang Huy Tran.
Parametrization and Cartesian representation techniques for robust resolution of chemical equilib-
ria. 2023. �hal-04225504v1�

https://hal.science/hal-04225504v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Robust resolution of single-phase chemical equilibrium using
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October 2, 2023

Abstract
Chemical equilibria computations, especially those with vanishing species in aqueous phase, lead to
nonlinear systems that are difficult to solve due to blowing up gradients. Instead of the commonly used
ad hoc treatments, we propose two reformulations of the problem which are in line with the spirit of
preconditioning but whose actual aims are to guarantee a better stability of Newton’s method. The first
reformulation is a parametrization of the graph linking species mole fractions to their chemical potentials.
The second is based on an augmented system where this relationship is relaxed for the iterates by means
of a Cartesian representation. We theoretically prove the local quadratic convergence of Newton’s method
for both reformulations. From a numerical point of view, we demonstrate that the two techniques are
accurate, allowing to compute equilibria with chemical species having very low concentrations. Moreover,
the robustness of the Cartesian representation is superior to that of the literature.

1 Introduction
The simulation of reactive transport is a major issue in various fields: flows in porous media, combustion in
engines and gas turbines or the design of chemical reactors for processes. In particular, the computation of
reactive transport in porous media plays a central role in CO2 and H2 storages or geothermal energy. The
performance of current simulators is however limited by the chemical modeling of the problem considered.
Most notably, the resolution of nonlinear equations for chemical equilibria is very costly, since it has to
be done at each time-step and in each cell of the mesh. In this respect, even the slightest improvement
in their resolution may have a direct positive impact on the overall performance.

For chemical modeling, there are mainly two types of reactions: equilibrium reactions and kinetic
reactions. The reactions we are interested in are those of equilibrium. Given quantities of chemical ele-
ments, a pressure and a temperature, a chemical equilibrium calculation consists in finding the quantities
of chemical species minimizing a state function, called Gibbs free energy, and satisfying the conservation
of the quantity of matter. This problem involves solving linear equations expressing the conservation of
mass as well as non-linear equations related to the chemical reactions involved. The first ones depend
on the mole numbers of the species while the second ones are functions of their logarithms. The use
of Newton’s algorithm for the linearization of these equations encounters a number of difficulties: the
iterates can take negative values, which leads to incompatibilities with the logarithm; the values of the
solution cover a wide range of values, leading to conditioning problems; the convergence of the algorithm
is not ensured if one starts far from the solution. A classical trick consists in using the logarithm of
the numbers of moles as unknowns in order to manage the constraint of positivity and to reduce the
orders of magnitude between species. However, it is sometimes preferrable to use the number of moles
as unknowns. In this article, the parametrization technique developed by Brenner and Cancès [5] is used
to automatically switch between the two formulations while ensuring that the partial derivatives of the
Jacobian remain bounded, see also [6, 3]. A second approach developed in the article is the well-balanced
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Cartesian representation. This method consists in choosing both the numbers of moles and their loga-
rithms as unknowns, a function establishing the relation between these two quantities is then introduced.
This function has properties that allow to overcome the problems mentioned above and to control the
derivatives of the Jacobian.

1.1 State of the art
Chemical equilibrium was first conceptualized by Berthollet in 1803 [4]. In 1864 Guldberg and Waage [43]
defined the law of mass action, which allowed for the calculation of chemical equilibrium. In 1873, Gibbs
showed [18] that the minimization of a functional, now known as Gibbs free energy, also enabled this
calculation. He demonstrated that the global minimum of this state function is reached for a composition
of chemical species at equilibrium. Until the 1940s the calculations of chemical equilibrium involved only
a few species and were done analytically [23]. After World War II, Brinkley [7] proposed an algorithm
for computer calculation. Storey and Van Zeggeren [42] note that the development of chemical equilib-
rium resolution methods at this time was mainly motivated by calculation of properties of propellants
and rockets motors [37], explosives [11, 41], applications in chemical processing and in the behaviour of
multiphase biological cell systems [12]. Smith reviewed the methods of this period [35], and later Smith
and Missen [36] proposed a classification of different approaches into two categories: stoichiometric meth-
ods and non-stoichiometric methods. Stoichiometric methods are based on the mass action equations
while non-stoichiometric methods are based on the minimization of the Gibbs free energy. Our approach
belongs to the latter category, according to this classification. As mentioned by Leal et al [26], many
computational codes use this kind of method, including ChemSage [17, 16], THERIAK [13, 14], HCh
[33, 34], FactSage [2, 1], PERPLEX [10, 9], GEM-Selektor [20, 21, 19, 24, 44] and Reaktoro [25]. Sub-
sequent developments in this field have been reviewed by Leal et al. [26], Tsanas et al. [40, 39], and
Coatléven and Michel [8].

1.2 Outline
Section 2 presents the mathematical modeling of the chemical equilibrium problem. In section 3, the
mathematical details of the parametrization and Cartesian representation techniques are presented. A
link between these two approaches is also established. Section 4 presents different results concerning the
invertibility of the Jacobian close to convergence, ensuring the local quadratic convergence of Newton’s
method. In section 5 are presented the results of numerical experiments validating our methods and
comparing their robustness. Section 6 concludes and opens to future works.

2 Mathematical description of the chemical equilibrium problem
This section is devoted to the presentation of the chemical equilibrium problem and the equations derived
from it.

2.1 Chemical system
The type of system considered in this article are diluted solutions of aqueous species, they are composed
of a strongly majority species called solvent, typically water, as well as diluted aqueous species that are
present in very small quantities. For a given fixed temperature T and pressure P, such a chemical system
S := SP,T = {C, E ,R} is a collection of three sets:

– a set of N chemical species C = (C1, . . . , CN );

– a set of M chemical elements E = (E1, . . . , EM ), M < N ;

– and a set of N −M chemical reactions R = (R1, . . . , RN−M ).

The set E contains all the elements that compose the species of the set C and the reactions in R describe
how these species interact with each other. A chemical reaction Rj can be written as

N∑
i=1

sijCi = 0,
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where sij is the stoichiometric coefficients that represents the number of molecules of the species Ci

involved in the reaction Rj .
The systems we are studying are closed, so there is conservation of the quantities b = (b1, . . . ,bM )

of each elements of E . To express this conservation, let ai be the formula vector of Ci ∈ C in the element
basis E – meaning that if E=(H, C, O) and Ci =HCO−

3 , then ai = (1, 1, 3)T – then the set of species C
can be subdivided into two particular sets CPr and CSd such that:

– CPr = {C1, . . . , CM} is the primary species set composed of species which have linearly independent
formula vectors (a1, . . . ,aM ). This set is the primary basis for the system and its size is equal to
M which is also the number of element in the system;

– CSd = {CM+1, . . . , CN} is the secondary species set containing species which formula vectors can be
obtained by linear combinations of primary species and its size is equal to N−M which corresponds
to the N −M chemical reactions of R.

Note that the choice of the primary species is not unique. Since the primary species are linearly in-
dependent, it is useful to have an ordered set of species with the primary species first followed by the
secondary species. The formula matrix A is the matrix composed of the formula vectors. Its first M
columns correspond to the formula vectors of the primary species and the last N − M columns to the
secondary species. This matrix is then written as

A = [APr,ASd],

where APr is a M × M invertible matrix and ASd is a M × (N − M) rectangular matrix. A simple
example of such a problem is the case of the dissociation of water which is composed of elements H and
O, and of species H+, OH− and H2O verifying the equilibrium reaction

H2O = H+ +OH−.

The corresponding formula matrix is

A =

[H+ OH− H2O
1 1 2 H
0 1 1 O

]
Let n = (n1, . . . , nN ) be the vector of quantities of mole of each species of C, the conservation of

elements can then be written as
An = b.

The matrix A has interesting properties and allows to define the stoichiometry matrix S, sometimes
referred to as N in the literature, which is very useful to simplify the formulation of the chemical equi-
librium problem. This matrix is defined as

S :=

[
A−1

PrASd

−ISd

]
. (1)

It is composed of the stoichiometry coefficients involved in the chemical reactions of R with Sij = sij .
The following lemma formalizes the fundamental link between the matrix A and S.

Lemma 2.1. One has the following result:

kerST = (kerA)⊥ = Im AT .

Proof. Let n = (nPr,nSd) ∈ kerA where nPr and nSd are respectively the vector of quantities of the
primary and the secondary species. We have the following link between A and S:

An = 0 ⇔ nPr = −A−1
PrASdnSd ⇔ n = −

[
A−1

PrASd

−ISd

]
nSd = −SnSd.

It follows that Im S = kerA, then (Im S)⊥ = (kerA)⊥. The result is obtained using the property
kerST = (Im S)⊥ and (kerA)⊥ = Im AT from linear algebra.

More details on the stoichiometry matrix and its link with the formula matrix can be found in the
book of Smith and Missen [36].

Our second lemma characterizes the kernel of the formula matrix A.
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Lemma 2.2. The components of an element in kerA \ {0} do not all have the same sign, in particular

kerA ∩ RN
+ = {0}.

Proof. Let n ∈ kerA ∩ RN
+ , then for each k ∈ {1, . . . ,M},

∑N
i=1 akini = 0. Since A is composed of

formula vectors, all its components are positive and so the previous sum is a sum of positive terms. It
follows that akini = 0,∀i,∀k. Moreover, each species is composed of at least one element, hence for each
i there exists k such that aki is non-zero. Therefore ni = 0, ∀i.

2.2 Gibbs free energy and chemical potentials
The state of a closed system S at constant pressure and temperature can be described by the Gibbs free
energy function G : RN

+ → R, also known as the Gibbs energy. This function is extensive with respect to
the number of moles, meaning that it is a homogeneous function of degree 1. Its standard expression for
the study of chemical equilibrium is as follows:

G(n) =

N∑
i=1

ni
∂G(n)

∂ni
=

N∑
i=1

niµi(n), (2)

where µi(n) = ∂G(n)/∂ni is the chemical potential of the species Ci expressing the variation of energy
induced by a variation of the quantity ni. There are a variety of different analytical expressions for
chemical potentials that depend on the physics of the problem under study. Here, for an aqueous species
Ci, we consider a chemical potential of the form

µi := µi(n) = µ◦
i (P, T ) +RT ln ai(n). (3)

In (3), µ◦
i (P, T ) is the chemical potential of the species Ci in its standard state at pressure P and

temperature T, to be computed from thermodynamic tables, whereas ai is the activity of species Ci that
depends on the concentration of all the species.

The activity of a species Ci is generically written as ai = γixi, where γi is refereed to in the literature
as the activity coefficient and xi stands for the mole fraction of Ci defined by

xi := xi(n) = ni/
∑N

j=1 nj = ni/⟨n,1⟩.

There are several, increasingly complex activity models for γi in the scientific literature [28, 45], the
most simple of which being the ideal activity model γi = 1. It corresponds to a theoretical ideal solution
where the mean strength of inter-molecular interactions are the same between all the molecules of the
system. The activity in (3) is then reduced to the mole fraction. The resulting ideal Gibbs energy

G(n) =

N∑
i=1

ni[µ
0
i +RT lnxi(n)]

is a convex function on RN
+ (see [36]).

2.3 Equilibrium equations
In a closed system at constant pressure and temperature, chemical reactions occur spontaneously by
decreasing the Gibbs free energy.. A chemical equilibrium computation consists in finding the quantities
n of mole for each species of C in a system S which minimizes, for a fixed temperature T, pressure P and
element quantities b, the function G, under constraints of element conservation and nonnegativity. This
calculation is often referred to as a speciation and is written as:

min
An=b, n≥0

G(n). (4)

The existence and uniqueness of a solution to the chemical equilibrium problem (4) for a multi-phase
ideal system has been studied by Shapiro and Shapley in [32], in particular they provide a proof for
the single-phase ideal problem in their Corollary 12.3. Furthermore, let us prove that the inequality
constraint is never saturated at the solution. Let

Ω := {n ∈ RN | ni > 0, i = 1, . . . , N}
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be the set of positive vectors of RN , one defines the set of vectors verifying the constraints of conservation
of elements and positivity by

MA,b := {n ∈ Ω | An = b}.
One assumes that MA,b ̸= ∅. It is a necessary condition to the existence of a minimizer of G in MA,b.
The set MA,b is convex and its closure MA,b is bounded.

Lemma 2.3. The set MA,b is convex and its closure MA,b is compact.

Proof. The set MA,b is convex as the intersection of the two convex sets Ω and {n ∈ RN | An = b}.
We will know demonstrate that the set MA,b is bounded. Indeed one has

||b||1 = ||An||1 =

M∑
i=1

∣∣∣∣∣∣
N∑
j=1

Aijnj

∣∣∣∣∣∣ =
M∑
i=1

N∑
j=1

Aijnj ,

since Aij ≥ 0 and nj ≥ 0 for all i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Moreover, none of the columns of
the matrix A is zero, so

min
j∈{1,...,N}

(
M∑
i=1

Aij

)
︸ ︷︷ ︸

>0

||n||1 ≤
N∑
j=1

(
M∑
i=1

Aij

)
nj = ||b||1.

Therefore MA,b is bounded. It follows that MA,b is compact, as it is a closed and bounded subset of
RN .

Lemma 2.4. The minimum of G obtains from (4) is in MA,b = {n ∈ Ω |An = b}.

Proof. From Lemma 2.3, the set MA,b in compact. According to the Weierstrass theorem, since G is a
continuous function on a compact set, there exists at least one minimum value of G on MA,b.

Lemma 2.5. If n⋆ ∈ MA,b minimises G on MA,b, then n⋆ ∈ MA,b.

Proof. We know from Lemma 2.4 that there exists n⋆ ∈ {argminG(n) | n ∈ MA,b}. Let us assume
that n⋆ ∈ MA,b \ MA,b, meaning that there exists j ∈ {1, . . . , N} such that n⋆j = 0. Let n ∈ MA,b

and ε ∈ (0, 1), then one defines n0 := n − n⋆ and nε := n⋆ + εn0. The vector nε is a convex linear
combination of vectors of MA,b which is a convex set according to Lemma 2.3, hence nε ∈ MA,b.
Furthermore, nε ∈ MA,b since nε = εn+ (1− ε)n⋆ ≥ εn > 0. By convexity of G on Ω,

G(n⋆) ≥ G(nε) + ⟨µ(nε),n⋆ − nε⟩ ⇔ G(n⋆)−G(nε)

ε
≥ −⟨µ(nε),n0⟩, (5)

where µ(nε) := (µ◦
i +RT lnxε

i )i=1,...,N .
We will now take the limit when ε tends to 0 in the inequality (5). In the right-hand side one has:

lim
ε→0

−⟨µ(nε),n0⟩ = −n0
j lim
ε→0

µj(n
ε)−

N∑
i=1, i ̸=j

n0
i lim
ε→0

µi(n
ε) (6)

Noting that limϵ→0 n
ε = n⋆ and in particular that limε→0 n

ε
j = n⋆j = 0, it follows from the continuity of

µj that
lim
ε→0

µj(n
ε) = −∞ and lim

ε→0
µi ̸=j(n

ε) = µi(n
⋆) ∈ R. (7)

By combining (6) and (7) with n0
j = nj > 0, one finds that the right-hand side of (5) tends to +∞.

However if n⋆ minimises G on MA,b then the left-hand side of (5) is non-positive which is a contradiction.
Therefore n⋆j > 0 and n⋆ ∈ MA,b.

Thanks to Lemma 2.5, the problem can be simplified to

min
An=b

G(n). (8)

The first order optimality conditions are given by the Euler-Lagrange equations which state that if n⋆ is
the unique solution of the problem (8), it must satisfy

An⋆ − b = 0, (9)
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∇G(n⋆) +ATΛ = 0, (10)

where ∇G is the gradient of G and Λ = (λ1, . . . , λM )T is the Lagrange multiplier vector, also known as
dual variables. These equations imply that n⋆ is a critical point of the Lagrangian function

L(n,Λ) = G(n) + ⟨An− b,Λ⟩.

associated to the problem (8). Indeed, (9) corresponds to ∇ΛL = 0, while (10) corresponds to ∇nL = 0,
where the subscripts Λ (or n) under ∇ means that only the part of the gradient ∇L corresponding to
the derivatives according to Λ (or n) is taken.

In the case we are considering, we can simplify the Euler-Lagrange equations by eliminating the dual
variables. To do so, we multiply (10) by ST . As shown by Lemma 2.1, the matrix product STAT vanishes.
Thus, the equations become ST∇G(n⋆) = 0. Therefore, denoting by µ = ∇G the vector of chemical
potentials, the system (9)-(10) can be written as

An⋆ = b,

STµ(n⋆) = 0.
(11)

Proposition 2.1. The system (11) admits a unique solution, which coincides with the solution to the
problem (8).

Proof. The existence of a solution to (11) is guaranteed by the existence of a solution to (8). Furthermore,
this solution is unique, it remains to show that it is the only one to satisfy the (11). To do so, assume the
existence of n⋆1 ,n⋆2 ∈ Ω that satisfy (11). Then, one has n⋆1 − n⋆2 ∈ kerA and µ(n⋆1 )− µ(n⋆2 ) ∈ kerST .
By Lemma 2.1, we know that kerST = (kerA)⊥, it follows that

⟨n⋆1 − n⋆2 ,µ(n
⋆
1 )− µ(n⋆2 )⟩ = 0.

Therefore, by the strict monotonicity of the gradient of G inherited from its strict convexity on MA,b,
it follows that n⋆1 = n⋆2 .

2.4 Reformulation of the system in terms of mole fractions
To reduce the strong nonlinearities in the expression of chemical potentials in (11), it is interesting to
introduce the following new variable:

ω := 1/

N∑
i=1

ni. (12)

Then, multiplying the element conservation equations by ω leads to Ax = ωb, where x = ωn is the
vector of mole fractions. The unknowns become the N + 1 variables x and ω. Furthermore, since there
is only N equations, the addition of one more equation is needed. A fundamental property of the mole
fractions is that

∑N
i=1 xi = 1 which can be the additional equation. Thus the problem to solve becomes

: find (x, ω) such that
Ax− ωb = 0,

STy(x) = d,

⟨x,1⟩ = 1,

(13)

where
(y(x))i = y(xi) := lnxi and d := −STµ◦/(RT ).

Proposition 2.2. The system (13) is equivalent to the system (11) and its solution is unique.

Proof. Let n⋆ be the unique solution of (11) and let ω = 1/
∑N

i=1 n
⋆
i > 0. Then by construction it is

clear that (ωn⋆, ω) solves (13). In particular, this ensures the existence of a point (x, ω) verifying (13).
Moreover, if (x, ω) solves (13), then ω ̸= 0. Indeed, if this were not the case, then x would belong to
kerA, implying from Lemma 2.2 that its coefficients are not all of the same sign, which is not compatible
with the logarithm. Thus n = x/ω verifies (11). Now suppose there are (x1, ω1) and (x2, ω2) satisfying
(13). Then by uniqueness n⋆ = x1/ω1 = x2/ω2. It follows that

1∑N
i=1 n

⋆
i

=
1∑N

i=1 x
1
i /ω

1
= ω1 and

1∑N
i=1 n

⋆
i

=
1∑N

i=1 x
2
i /ω

2
= ω2,

meaning that ω1 = ω2. Therefore x1 = x2.
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2.5 Other types of constraint considered
System (13) is the simplest form of chemical equilibrium calculation that can be performed, it is possible
to replace one or more of the constraints on element conservation with others. There is a wide choice of
constraints [45], but the ones we will use are charge conservation and the redox constraint.

2.5.1 Charge conservation constraint

When defining the matrix formula A, it is possible to consider the conservation of charge instead of the
conservation of one of the elements. It is thus common to replace the hydrogen conservation line H by
the charge Z. The matrix formula for water dissociation becomes

A =

[H+ OH− H2O
0 1 1 O
1 −1 0 Z

]
It is also necessary to adapt the coefficient of the vector b corresponding to the charge.

2.5.2 Redox constraint

In the case of oxidation-reduction reactions, the system (13) can be modified by introducing the notion
of electron potential [38]. This potential, denoted pE, is written as

pE = − log10(ae−), (14)

where ae− is the electron activity. In (14), the pE value is set by the user, so it is necessary to define the
notion of electron activity. To do this, we consider the electron chemical potential:

µe− = µ◦
e− +RT ln ae− , (15)

where µ◦
e− is a standard chemical potential for the electron to be computed from a thermodynamic

database. Thus, by integrating (14) into (15), it follows that

µe− = µ◦
e− − pE ×RT ln 10. (16)

To take account of this constraint on the electron potential, we need to consider the electron as a
fictitious secondary species and introduce a half-reaction involving species present in our system. As an
example, let us consider the following chemical system:

C = {H2O,H+, H2(aq), HO−
2 , O2(aq),OH−, H2O2(aq)},

E = {O,H},
R = { HO−

2 = 2H2O−H+ −H2(aq),

O2(aq) = 2H2O− 2H2,

OH− = H2O−H+,

H2O2(aq) = 2H2O−H2(aq)}.

associated to the half reaction
−H+ +

1

2
H2(aq) = e−(v).

For this kind of system, the number of chemical elements involved is different from the number of
primary species. However, it is possible to define the formula and stoichiometric matrices using charge
conservation. In addition, the electron is introduced as a virtual secondary species, resulting in the
creation of an associated secondary matrix. We thus define the matrices

APr =


H2O H+ H2(aq)
1 0 0
2 1 2
0 1 0

, ASd =


O2(aq) HO−

2 OH− H2O2(aq)
2 2 1 2
0 1 1 2
0 −1 −1 0

, ApE
Sd =


e−(v)
0 O
0 H
−1 Z


and

A = [APr, ASd], S =

[
A−1

PrASd

−ISd

]
, SpE =

[
A−1

PrA
pE
Sd

−IpE
Sd

]
.

7



The system to solve is written as
Ãx− ωb = 0,

STy(x) = d,

ST
pE

[
y(xPr)
µe−

]
= dpE,

⟨x,1⟩ = 1,

with
µe− := µ◦

e−/(RT )− pE × ln 10 and dpE := −ST
pE

[
µ◦

Pr/(RT )
0

]
where Ã is obtained by deleting either the Z line or the H line, depending on the quantity we want to
conserve.

3 Towards more robust numerical algorithms
After a brief review of Newton’s method, this section presents the parametrization and Cartesian repre-
sentation techniques and their advantages for solving the chemical equilibrium problem.

3.1 Newton’s method
There are many methods to solve the nonlinear system of equations (13) as detailed in [29], however our
study will focus on Newton’s method which is known for its fast convergence as well as for its lack of
stability in many contexts. Let us recall the considered system: find (x, ω) ∈ RN+1 such that

Ax− ωb = 0,

STy(x) = d,

⟨x,1⟩ = 1,

(17)

where (y(x))i = y(xi) = lnxi. The resolution of the system (17) can be viewed as the search for the
zeros of a function G : RN+1 → RN+1, associated to a function F : R2N+1 → RN+1, which are defined as
follows:

G(x, ω) := F(x,y(x), ω) =

 Ax− ωb
STy(x)− d
⟨x,1⟩ − 1

 . (18)

The function G is called residual.
Let u := (x, ω), we recall that the Newton method is an iterative algorithm that from an initial value

u(0) builds a sequence (u(k))k>0 defined by solving the linear system

∇G(u(k))δu(k) = −G(u(k)), (19)

to compute the Newton increment δu(k) used to update the sequence as

u(k+1) = u(k) + δu(k). (20)

In (19), ∇G(u(k)) stands for the Jacobian matrix of G evaluated at u(k). An important result about
Newton’s method concerns its local quadratic convergence [22]. It requires the following assumptions:

1. The equation (18) has a solution u⋆.

2. ∇G : RN → RN×N is Lipschitz continuous near u⋆: there exists a neighborhood V of u⋆ and L > 0
such that

∥∇G(u1)−∇G(u2)∥2 ≤ L∥u1 − u2∥2
for all u1,u2 in V.

3. ∇G(u⋆) is nonsingular, i.e. invertible.

The local quadratic convergence theorem is as follows [22, Theorem 1.1].
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Theorem 3.1. Let the previous assumptions hold. If u(0) is sufficiently close to u⋆, then Newton’s
sequence (19)–(20) is well defined for all k ≥ 0 and converges to u⋆. Moreover, there exist C > 0 and
kC ∈ N such that

∥u(k+1) − u⋆∥2 ≤ C∥u(k) − u⋆∥22, ∀k ≥ kC . (21)

The property (21) together with u(k) → u⋆ is referred to as q-quadratic convergence in the monograph
[22].

3.2 A family of parametrizations
The Newton’s method applied to the function (18) yields the following Jacobian matrix:

∇G(x, ω) =

 A −b
ST∇y(x) 0

1T 0

 , (22)

where ∇y(x) = diag {1/xi}i=1,...,N . The jacobian in (22) diverges when xi tends to zero, possibly leading
to trouble in Newton’s algorithm. Beyond the blow up of the Jacobian when one species vanishes, the
iterates can become negative and yield the algorithm failure due to the domain of y. A classic cure to
these problems is to consider yi = y(xi) as the unknowns and to define H : RN+1 → RN+1 as follows

H(y, ω) := F(x(y),y, ω) = 0 ⇔
Ax(y)− b = 0,

STy − d = 0,

⟨x(y),1⟩ − 1 = 0,

(23)

with x(y) = (x(yi))i=1,...,N where x(yi) := y−1(yi) = exp yi, F being defined as in (18). In this case the
Jacobian matrix becomes

∇H(y, ω) =

A∇x(y) −b
ST 0

1T∇x(y) 0

 , (24)

where ∇x(y) = diag{exp yi}i=1,...,N . The Jacobian in (24) diverges when yi tends to the infinity, and
numerical issues can appear already for moderate positive values of yi. However the positivity constraint
on the iterates is not necessary anymore.

The formulation in y is better behaved than the one in x, but it is possible to do even better with the
parametrization. The idea of parametrization is to make the best of both formulations while ensuring
that the values of the coefficients of the system’s Jacobian are controlled. For this purpose, the graph

Γ = {(x, y) ∈ R2 | y = ln(x)} (25)

will be parameterized by two monotonic Lipschitz continuous functions X : R → R and Y : R → R such
that xi = X(τi) and yi = Y (τi) and in such a way that Γ = (X,Y )(R). The problem to solve becomes:
find (τ , ω) ∈ RN+1 such that

F(τ , ω) := F(X(τ ),Y(τ ), ω) = 0 ⇔
AX(τ )− ωb = 0,

STY(τ )− d = 0,

⟨X(τ ),1⟩ − 1 = 0,

where X(τ ) = (X(τi))i=1,...,N and Y(τ ) = (Y (τi))i=1,...,N . The associated Jacobian matrix is written as
follows:

∇F(τ , ω) =

Adiag{X′(τ )} −b
STdiag{Y′(τ )} 0
1Tdiag{X′(τ )} 0

 ,

where X′(τ ) = (X ′(τi))i=1,...,N and Y′(τ ) = (Y ′(τi))i=1,...,N . Note that the parametrization is a non-
linear right preconditioning, indeed

F(τ , ω) = 0 ⇔
G(X(τ ), ω) = 0

or
H(Y(τ ), ω) = 0.
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We will now introduce the conditions that enable us to control the coefficients of the Jacobian. For
the problem we are considering, the ∇X(τ )F and ∇Y(τ )F terms do not depend on τ , so the Jacobian
is bounded if the X′(τ ) and Y′(τ ) terms are. Moreover, if any of X ′(τ) and Y ′(τ) vanish for the same
value of τ , then the corresponding column in the Jacobian will be zero and the Jacobian will become
singular. To ensure correct parametrization, we need to satisfy the following conditions, for each τ ∈ R:

(A1) Y (τ) = ln(X(τ));

(A2) X ′ and Y ′ are strictly monotonic bounded Lipschitz continuous functions;

(A3) X ′(τ) and Y ′(τ) do not vanish for the same value of τ .

We then say that a parametrization is admissible if it satisfies conditions (A1)–(A3). To ensure that con-
ditions (A2) and (A3) are satisfied, we introduce the following normalization condition on the derivatives:

(|X ′(τ)|p + |Y ′(τ)|p)1/p = 1, p ≥ 1. (26)

This condition will allow us to determine the functions X and Y using the derivative

Y ′(τ) = X ′(τ)/X(τ) (27)

from the condition (A1). Indeed, combining (26) and (27), we get:

|X ′(τ)|p + |X ′(τ)/X(τ)|p = 1 ⇔ |X ′(τ)| = 1

(1 + |1/X(τ)|p)1/p
(28)

and
|Y ′(τ)|p = 1− |X ′(τ)|p ⇔ |Y ′(τ)| = 1/X(τ)

(1 + |1/X(τ)|p)1/p
. (29)

Furthermore, equation (29) can be expressed in terms of the function Y . To do this, we multiply (27) by
exp(Y (τ)) and using the derivative

exp(Y (τ))Y ′(τ) = X ′(τ)

from exp(Y (τ)) = X(τ), we obtain

X ′(τ) = exp(Y (τ))X ′(τ)/X(τ) ⇔ exp′(Y (τ))/X(τ) = 1. (30)

Thus, the equations (28), (29) and (30) enable us to express the following system of differential equations:

X ′(τ) = ± 1

(1 + |1/X(τ)|p)1/p
, (31)

Y ′(τ) = ± 1/X(τ)

(1 + |1/X(τ)|p)1/p
= ± 1

(1 + | exp(Y (τ))|p)1/p
. (32)

There is no explicit formula for generic values of p and it is difficult to calculate X and Y for an arbitrary
value of p. However, although it is possible to find solutions for certain values of p, the case with which
we obtain the best numerical results is that of the limit p → ∞, the condition (26) then becomes

max(|X ′(τ)|, |Y ′(τ)|) = 1

and the system (31)-(32) is rewritten as

X ′(τ) = ± 1

max(1, |1/X(τ)|
, (33)

Y ′(τ) = ± 1/X(τ)

max(1, |1/X(τ)|)
= ± 1

max(1, | exp(Y (τ))|)
. (34)

Since the logarithm function is increasing and strictly concave, a solution of this latter system is given
by the following statement, cf. [5].

Proposition 3.1. A solution of (33)-(34) is given by

(X(τ), Y (τ)) =

{
(exp(τ), τ) if τ < 0,
(τ + 1, ln(τ + 1)) if τ ≥ 0.

(35)

In the following, we will refer to this choice for the parametrization as the switch since it can be
thought as a mild way to implement the switch of variable procedure [15]. Figure 1 illustrates these
functions.
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τ = 0

τ → +∞

τ → −∞

y = lnx

X(τ) = τ + 1

Y (τ) = ln(τ + 1)

X(τ) = exp(τ)

Y (τ) = τ

x

y

Figure 1: The switch function.

3.3 A family of Cartesian representations
The Cartesian representation technique is based on an augmented system where the relation y = ln(x),
or the equivalent exp(y) = x, is relaxed. The resolution is then on (x,y, ω) and the systems are written
as

F(x,y, ω) = 0,

y − ln(x) = 0,

⟨x,1⟩ − 1 = 0

or
F(x,y, ω) = 0,

exp(y)− x = 0,

⟨x,1⟩ − 1 = 0.

The corresponding Jacobian matrices are
A 0 −b
0 ST 0

−∇φ(u) I 0
1T 0 0

 or


A 0 −b
0 ST 0
−I ∇ψ(v) 0
1T 0 0

 .

These matrices present problems of the same nature as the matrices ∇G(x, ω) and ∇H(y, ω) respectively.
To tackle these issues, the idea of Cartesian representation is to introduce two Lipschitz continuous
functions H : R → R and G : R → R such that G = H ◦ ln, and to rewrite the system as

F(x,y) = 0,

H(y)−G(x) = 0,

where H(y) = (H(yi))i=1,...,N and G(x) = (G(xi))i=1,...,N . The aim of this technique is to control the
partial derivatives of the function

f(x,y) = (f(xi, yi))i=1,...,N := H(y)−G(x).

The problem to solve becomes: find (x,y, ω) ∈ R2N+1 such that

G(x,y, ω) :=

F(x,y, ω)
f(x,y)
⟨x,1⟩ − 1

 = 0 ⇔

Ax− ωb = 0,

STy − d = 0,

H(y)−G(x) = 0,

⟨x,1⟩ − 1 = 0

The associated Jacobian matrix is written as follows:

∇G(x,y) =


A 0 −b
0 ST 0

∇xf ∇yf 0
1T 0 0

 =


A 0
0 ST

−diag{G′(x)} diag{H′(y)}
1T 0 0

 ,

where G′(x) = (G′(xi))i=1,...,N and H′(y) = (H ′(yi))i=1,...,N . To avoid the problems mentioned above
and to ensure that the coefficients of the Jacobian are bounded, we wish to satisfy the following conditions
on the H and G functions, ∀x, y ∈ R:
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(H1) G(x) = H(y) if and only if y = ln(x);

(H2) ∂xf = −G′(x) and ∂yf = H ′(y) are strictly monotonic bounded Lipschitz continuous functions;

(H3) ∂xf = −G′(x) and ∂yf = H ′(y) do not vanish for the same value of τ .

We then say that a Cartesian representation is admissible if it satisfies conditions (H1)–(H3). As for the
parametrization, we introduce a normalization condition that takes the following form:

(|H ′(y)|p + |G′(x)|p)1/p = 1, p ≥ 1, y = ln(x). (36)

Using the same reasoning as we did for the parametrization, we can combine equations (36) with the
derivative

G′(x) = H ′(ln(x))/x, (37)

from G(x) = H ◦ ln(x), to obtain a system of differential equations:

G′(x) = ± 1/x

(1 + |1/x|p)1/p
, (38)

H ′(v) = ± 1

(1 + |1/ exp(y)|p)1/p
= ± exp(y)

(1 + | exp(y)|p)1/p
. (39)

The case of interest for numerical experiments is that of the limit p → ∞, the condition (36) then becomes

max(|H ′(x)|, |G′(y)|) = 1, ,

while the differential equations (38)–(39) become

G′(x) = ± 1/x

max(1, |1/x|)
, (40)

H ′(y) = ± 1

max(1, |1/ exp(v)|)
= ± exp(v)

max(1, | exp(v)|)
. (41)

A first interesting property for studying the Jacobian of this system is the following.

Lemma 3.1. Let f(x, y) = H(y) − G(x) be an admissible Cartesian representation in the sense of
(H1)–(H3). If y = ln(x), then

− (∂xf)
−1

∂yf = (G′(x))−1H ′(y) = x

Proof. Using y = ln(x) in (37), it follows that

(G′(x))−1H ′(y) = (H ′(y)/x)−1H ′(y) = x.

The Cartesian representation is naturally associated to the switch parametrization. In particular, the
link between parametrizations and Cartesian representations is given in the two following propositions.

Proposition 3.2. Let X(τ), Y (τ) be an admissible parametrization in the sense of (A1)–(A3). Then
there exists a Cartesian representation f(x, y) = H(y)−G(x) such that, for all (x, y) ∈ R2,

G′(x) = Y ′(X−1(x)),

H ′(y) = X ′(Y −1(y)).
(42)

This Cartesian representation is admissible in the sens of (H1)–(H3). Moreover, it satisfies the normal-
ization (36) if the parametrization satisfies the normalization (26).

Proof. If x = X(τ) and y = Y (τ), by the invertibility of X and Y one can recover τ = X−1(x) = Y −1(y).
A natural Cartesian representation is then Y −1(y)−X−1(x) = 0 or

Ψ(Y −1(y))− Ψ(X−1(x)) = 0

12



for a suitable function Ψ. Setting H(y) = Ψ(Y −1(y)) and G(x) = Ψ(X−1(x)), one has

G′(x) =
Ψ′(X−1(x))

X ′(X−1(x))
and H ′(y) =

Ψ′(Y −1(y))

Y ′(Y −1(y))
.

The result (42) is obtained by taking

Ψ(τ) =

∫ τ

X ′(θ)Y ′(θ) dθ.

Proposition 3.3. Let f(x, y) = H(y)−G(x) be an admissible Cartesian representation in the sense of
(H1)–(H3). Then, there exists a parametrization X(τ), Y (τ) such that, for all τ ,

X ′(τ) = H ′(Y (τ)),

Y ′(τ) = G′(X(τ)).
(43)

This parametrization is admissible in the sense of (A1)–(A3) and satisfies the normalization (26) if the
Cartesian representation satisfies the normalization (36).

Proof. The existence of a solution to the ODE (43) is guaranteed by the hypothesis on H ′ and G′ and
the Cauchy-Lipschitz theorem. Therefore

d

dτ
f(X(τ), Y (τ)) = H ′(Y (τ))Y ′(τ)−G′(X(τ))X ′(τ) = 0,

and it follows that f(X(τ), Y (τ)) = cst. Moreover if f(X(0), Y (0)) = 0, then cst = 0.

Let us go back to the case we are interested in, if y = ln(x) then (ln(x))′ = 1/x > 0 and x = exp(y) > 0,
then we impose that G′(x) > 0, H ′(y) > 0 and H(0) = 0, G(1) = 0. We can then remove the absolute
values in (40)-(41) and the system is rewritten as

G′(x) =
1/x

max(1, 1/x)
, H ′(y) =

exp(y)

max(1, exp(y))
.

Therefore
y > 0 ⇒ exp(y) > 1 ⇒ H ′(y) = 1 ⇒ H(y)−H(0)︸ ︷︷ ︸

=0

= y − 0,

y ≤ 0 ⇒ exp(y) ≤ 1 ⇒ H ′(y) = exp(y) ⇒ H(y)−H(0)︸ ︷︷ ︸
=0

= exp(y)− 1,

leading to
H(y) = y1{y>0} + (exp(y)− 1)1{y≤0}. (44)

It follows that:
G(x) = H(lnx) = lnx1{x>1} + (x− 1)1{x≤1}. (45)

The function f is then defined in four areas as

f(x, y) =


ey −x, if x ≤ 1, y ≤ 0,

y − x+ 1, if x ≤ 1, y ≥ 0,
y − lnx, if x ≥ 1, y ≥ 0,

ey − lnx− 1, if x ≥ 1, y ≤ 0.

(46)

This function belongs to C1,1(R2): it is continuous differentiable and its gradient is Lipschitz continuous
on R2. The function f , referred to as the discrepancy function and depicted on Figure 2, can readily be
shown to be convex.
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y = lnx

f = ey −x
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f = ey − lnx− 1

x

y

Figure 2: The discrepancy function.

4 Elements of theoretical analysis
In this section, we demonstrate the local quadratic convergence of Newton’s algorithm applied to parametriza-
tion and Cartesian representation techniques for the chemical equilibrium problem.

4.1 About the parametrization
Let X(τ), Y (τ) be an admissible parametrization for the formulation (13) in the sense of (A1)–(A3). One
defines the function W : RN+1 → RN+1 such that

W(τ , ω) = 0 ⇔
AX(τ )− ωb = 0,

ST [µ◦/(RT ) +Y(τ )] = 0,

⟨X(τ ),1⟩ − 1 = 0.

(47)

The Jacobian matrix ∇W = ∇W(τ , ω), associated to (47), is written as

∇W =

Adiag{X′(τ )} −b
STdiag{Y′(τ )} 0

X′(τ )T 0

 .

Let us demonstrate that this Jacobian is invertible at the solution point.

Proposition 4.1. If (τ , ω) is solution of (47), then ∇W(τ , ω) is nonsingular.

Proof. Let (δτ , δω)T ∈ ker∇W(τ , ω), then

Adiag{X′(τ )}δτ − δωb = 0, (48)

STdiag{Y′(τ )}δτ = 0, (49)
⟨X′(τ ), δτ ⟩ = 0. (50)

Since (τ , ω) is solution of (47), one has b = AX(τ )/ω with ω > 0. The equation (48) then becomes

A

[
diag{X′(τ )}δτ − δω

ω
X(τ )

]
= 0. (51)

Moreover, equation (49) means that diag{Y′(τ )}δτ ∈ kerST which can also be expressed as diag{Y′(τ )}δτ ∈
(kerA)⊥, as indicated by Lemma 2.1. Consequently, using (51), the following equality holds:

⟨diag{X′(τ )}δτ , diag{Y′(τ )}δτ ⟩ = δω

ω
⟨X(τ ), diag{Y′(τ )}δτ ⟩

=
δω

ω
⟨diag{Y′(τ )}X(τ ), δτ ⟩ .

(52)

By deriving the relationship X(τ) = exp(Y (τ)), we get that

X′(τ ) = diag{Y′(τ )}X(τ ). (53)
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One deduces that the right-hand side of (52) vanishes thanks to (50). Therefore

⟨diag{X′(τ )}δτ ,diag{Y′(τ )}δτ ⟩ = 0,

which is only possible if δτ = 0. Indeed, using (53), it turns out that

diag{X′(τ )}diag{Y′(τ )} = diag{X(τ )}diag{Y′(τ )2}

is a positive-definite matrix since X(τ) > 0. Equation (48) finally allows to conclude that δω = 0,
meaning that the Jacobian is nonsingular.

Theorem 4.1. Let X(τ), Y (τ) be an admissible parametrization in the sense of assumptions (A1)–(A3).
If the Newton sequence (19)–(20) is applied to the function W defined as (47), then the local quadratic
convergence theorem holds.

Proof. The proof consists of verifying that the assumptions of Theorem 3.1 are satisfied. The existence of
a solution come from Proposition 2.2 and the assumptions (A1)–(A3) on X(τ) and Y (τ). The Jacobian
∇W is Lipschitz continuous since X ′ and Y ′ are Lipschitz continuous according to (A2). Moreover, from
Proposition 4.1, ∇W is nonsingular at the solution point.

4.2 About the Cartesian representation
Let f(x, y) be an admissible Cartesian representation for the formulation (13) in the sense of (H1)–(H3).
In order to apply Newton’s method, one defines the function H : R2N+1 → R2N+1 such that

H(x,y, ω) = 0 ⇔

Ax− ωb = 0,

ST [µ◦/(RT ) + y] = 0,

f(x,y) = 0,

⟨x,1⟩ − 1 = 0.

(54)

The associated Jacobian matrix ∇H := ∇H(x,y, ω) of this formulation is written as

∇H =


A 0 −b
0 ST 0

∇xf ∇yf 0
1T 0 0

 , with
∇xf := ∇xf(x,y) = diag{∂x

i
f(xi, yi)}i=1,...,N ,

∇yf := ∇yf(x,y) = diag{∂y
i
f(xi, yi)}i=1,...,N .

We will show that for the unique vector (x,y, ω)T satisfying (54), the Jacobian ∇H(x,y, ω) is invertible.

Lemma 4.1. The matrix defined as

J(x,y) := [∇H(x,y, ω)]1−2N,1−2N =

 A 0
0 ST

∇xf ∇yf

 ,

corresponding to the first 2N rows and columns of ∇H, is invertible for all (x,y) ∈ R2N .

Proof. The proof consists in showing that JT is injective. Let δU ∈ kerJT (x,y) be such that δU =
(δx1, δx2, δy)

T ∈ RM × RN−M × RN , and let (x,y) ∈ R2N , then

JT (x,y)δU = 0 ⇔
AT δx1 = −∇xfδy

Sδx2 = −∇yfδy
⇒

δxT
1 (AS)︸ ︷︷ ︸

=0

δx2 = δyT (∇xf∇yf)δy

⇒ δy = 0

since ∇xf∇yf is negative-definite. Hence δx1 ∈ kerAT = {0RM } and δx2 ∈ kerS = {0RN−M } given that
AT and S have full rank. Therefore JT (x,y) is invertible and it follows that J(x,y) is also invertible.

Proposition 4.2. If U = (x,y, ω)T is solution of (54), then ∇H(U) is nonsingular.
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Proof. Let α ∈ R be a parameter, for (x,y) ∈ R2N one denotes by δŨα = (δxα, δyα)
T the unique

solution of

J(x,y)δŨα =

 αb
0
0

 ,

which always exists thanks to the invertibility of J from Lemma 4.1. Noting that the solution satisfies
δŨα = αδŨ1, we define the vector δU := (δŨδω, δω)

T = δω(δŨ1, 1)
T . It follows that

∇H(x,y, ω)δU = 0 ⇔
δω
[
J(x,y)δŨ1 − (b,0,0)T

]
= 0

δω⟨δx1,1⟩ = 0.

By the definition of Ũ1 one has J(x,y)δŨ1 − (b,0,0)T = 0, hence the invertibility of ∇H is determined
by δω⟨δx1,1⟩ = 0:

– if ⟨δx1,1⟩ ≠ 0, then δω = 0 and it follows that the matrix J(x,y, ω) is invertible;

– otherwise if ⟨δx1,1⟩ = 0, δx1 ̸= 0, then ker∇H(x,y, ω) = Vect{(δŨ1, 1)
T }.

Therefore to prove that ∇H(x,y, ω) is invertible for (x,y, ω) solution of (54), it is sufficient to show that
⟨δx1,1⟩ ≠ 0 for (δx1, δy1) the unique solution of

Aδx1 = b, (55)

ST δy1 = 0, (56)
∇xfδx1 +∇yfδy1 = 0. (57)

By denoting D := −(∇xf)
−1∇yf , one has δx1 = Dδy1 from (57). Furthermore from (56) and

Lemma 2.1 one has that δy1 ∈ kerST = ImAT , so there exists δh1 such that δy1 = AT δh1. Therefore
(55) can be rewritten as

ADAT δh1 = b. (58)

The matrix ADAT = AD1/2
(
AD1/2

)T
is invertible since the rank of AD1/2 is maximal. Moreover one

has b = 1
ωAx since (x,y, ω) solves (54), then from (58) one finds that

δh1 =
1

ω
(ADAT )−1Ax.

By multiplying both sides of this equation by DAT one obtains

DAT δh1 = Dδy1 = δx1 =
1

ω
DAT (ADAT )−1Ax

=
1

ω
D1/2

[
(AD1/2)T (ADAT )−1AD1/2

]
D−1/2x.

(59)

Let B := AD1/2, then Π := BT (BBT )−1B is the orthogonal projection on (kerB)⊥. Thus (59) becomes

δx1 =
1

ω
D1/2ΠD−1/2x =

1

ω
D1/2Π2D−1/2x, (60)

since an orthogonal projection always satisfies Π2 =Π. Therefore since (x,y, ω) solves (54), Lemma 3.1
yields D = diag{xi}i=1,...,N , then 1TD1/2 = (D−1/2x)T = (x1/2)T . Hence the scalar product between
the vector 1 and (60) gives

⟨1, δx1⟩ =
1

ω

∥∥∥Πx1/2
∥∥∥2 .

Therefore
⟨1, δx1⟩ = 0 ⇔ x1/2 ∈ kerΠ

⇔ x1/2 ∈ kerB

⇔ AD1/2x1/2 = Ax = 0,

which is not possible since Ax = ωb ̸= 0. Thus ⟨1, δx1⟩ ≠ 0 and the Jacobian is invertible.
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Theorem 4.2. Let f(x, y) = H(y) − G(x) be an admissible Cartesian representation in the sense of
assumptions (H1)–(H3). If the Newton sequence (19)–(20) is applied to the function H defined as (54),
then the local quadratic convergence theorem holds.

Proof. The proof consists of verifying that the assumptions of Theorem 3.1 are satisfied. The existence of
a solution come from Proposition 2.2 and the assumptions (H1)–(H3) on H(y) and G(x). The Jacobian
∇H is Lipschitz continuous since H ′ and G′ are Lipschitz continuous according to (H2). Moreover, from
Proposition 4.2, ∇H is nonsingular at the solution point.

An interesting property of the Cartesian representation associated with the function (46) is that the
iterates of Newton’s method always lie above the logarithm graph.

Proposition 4.3. Let (x(k),y(k), ω(k)) be a Newton iterate for the Cartesian representation formulation
described in Section 3.3 with discrepancy function f defined by (46). Then, for k ≥ 1, the linear equations
Ax(k) = ω(k)b, STy(k) = d and ⟨x(k),1⟩ = 1 are satisfied, whereas f(x(k),y(k)) ≥ 0 componentwise.

Proof. The fact that the linear equations are solved exactly by Newton’s method is a well-known fact.
As the discrepancy function f is convex, one has

f(x
(k)
i , y

(k)
i ) ≥ f(x

(k−1)
i , y

(k−1)
i ) + ∂xf(x

(k−1)
i , y

(k−1)
i )δx

(k−1)
i + ∂yf(x

(k−1)
i , y

(k−1)
i )δy

(k−1)
i = 0,

the last equality stemming from the definition of the increment δx(k−1) = x(k) − x(k−1) by Newton’s
method.

5 Numerical results
In this section we will present various test cases to validate our methods and compare them with the
Arxim geochemical modeling library [27]. Arxim is written in C++ and it is based on the log formulation
as described in (23). Moreover, Arxim uses a line search to globalize the Newton method, this strategy is
the one described in the chapter 9.7.1 of the book Numerical recipes [30]. Our code has been developed
with the Julia Programming Language and uses the automatic differentiation package ForwardDiff [31].
No globalization strategy for Newton’s method has been implemented in our code. The function X and Y
for the parametrization are those of the switch defined in (35). For the Cartesian representation technique,
the function f is the discrepancy function defined in (46). In all numerical experiments, pressure and
temperature values are set at P= 1 Bar and T = 298.15 K. Moreover, if N(X ) represents the function
whose root we seek, the convergence criterion for Newton’s algorithm is

∥N(X (k+1))∥∞ ≤ 1e−7 and ∥X (k+1) −X (k)∥∞ ≤ 1e−7

where k + 1 is the current Newton iteration.
All the systems we will be studying are dilute solutions with water as the solvent. In Arxim, the ideal

activity model corresponds to molalities, i.e. the quantity of solute present in 1 kg of solvent:

ai(n) =

 1 if i = 1 (solvent),
ni

n1MH
2
O

if i > 1 (solute), (61)

where n1 = nH
2
O and with MH

2
O = 0.0180152 kg/mol the molar mass of water. The activity (61) is an

approximation based on the fact that in a dilute solution the quantities of solute species are negligible
compared to the quantity of solvent. Therefore, the chemical potential of the solvent is reduced to its
standard chemical potential and for a dilute species, the transition from a chemical potential in mole
fraction to a chemical potential in molality is as follows:

µ◦
i +RT ln

ni∑N
j=1 nj

≈ µ◦
i +RT ln

ni

n1
= µ̃◦

i +RT ln
ni

n1MH
2
O
,

where µ̃◦
i := µ◦

i +RT lnMH
2
O.

In order to compare our results with those of Arxim, it is necessary to adapt the system (13) to the
molality activity model. We thus obtain

A

[
1
x

]
− ωb = 0,

ST

[
0

y(x)− ln(MH
2
O)

]
− d = 0.

(62)
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Compared to (13), the quantity of water is no longer a variable and xi = ωni where the associated ω is
defined as

ω =
1

n1
. (63)

It is important to mention the different ways of initializing the Newton algorithm, depending on the
method. Starting from an initial guess n = (n1, . . . , nN ), the initializations are as follows.

• In Arxim, the variables are the logarithm of the quantities, namely:

init_guess = [ln(n[1]), ..., ln(n[N])].

• For the parametrization, the variable ω is defined as in (12) or (63), depending of the ideal activity
model used, whereas the function X(τ), defined in (35), is inverted to define the others variables
from xi = ωni:

init_guess_molality = [1/n[1], Xinv(x[2]), ..., Xinv(x[N])],
init_guess_mole_frac = [1/sum(n), Xinv(x[1]), ..., Xinv(x[N])].

• For the Cartesian representation, the main question concerns the initialization of the vector y. The
first choice is to initialize with yi = ln(xi). However, we will see that this choice is too restrictive,
hence we propose the second initialisation yi = xi − 1. In this way, the point (xi, yi) always
lies above the curve yi = lnxi, which will always be the case during the iterations according to
Proposition 4.3. A comparison of these initializations will be made on the Seawater test case. The
resulting initializations are:

init1_guess_molality = [1/n[1], x[2], ..., x[N], ln(x[2]), ..., ln(x[N])],
init1_guess_mole_frac = [1/sum(n), x[1], ..., x[N], ln(x[1]), ..., ln(x[N])],
init2_guess_molality = [1/n[1], x[2], ..., x[N], x[2]-1, ..., x[N]-1],
init2_guess_mole_frac = [1/sum(n), x[1], ..., x[N], x[1]-1, ..., x[N]-1].

We present five different test cases. The first two, NaCl and Seawater, use the charge constraint
defined in section 2.5.1. For NaCl, a comparison of the solution will be made with Arxim to ensure the
accuracy of our methods. For Seawater, a comparison of the number of iterations over four different
initializations will test the robustness of our methods against Arxim. For each of these initializations, the
n1 value for water will be dictated by the amount of oxygen O, which is dominated by the presence of
H2O. The other quantities (n2, . . . , nN ) will all be initialized to the same value χ ∈ {1e−2, 1e−4, ϵ32, ϵ64}
where ϵ32 = 1.1920929e−7 and ϵ64 = 2.220446049250313e−16 are the machine epsilons in single and
double precision respectively. The three other test cases, H_2 pE, Water-Clay and Water-Concrete, use
the charge constraint and the pE constraint defined in section 2.5.2. The first is used to test the precision
of our methods, while the other two are intended to test their robustness.

We will additionally assess the precision of certain results represented by u and v by employing the
following estimation method for comparison:

εprec = max
i

∥ui − vi∥
max(∥ui∥, ∥vi∥)

.

5.1 The NaCl test case
This first test case, NaCl, will serve to validate our methods in terms of solution accuracy. The chemical
system is composed of 8 species, 4 elements and 4 reactions. This system corresponds to the following
three sets:

C = (H
2
O,Cl−, Na+, H+, NaCl,NaOH,OH−, HCl),

E = (H,O,Na,Cl),

R = (NaCl(aq) = Cl− +Na+,

NaOH(aq) = H
2
O+Na+ −H+,

OH− = H
2
O−H+,

HCl(aq) = Cl− +H+).
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Table 1: Number of moles of the solution for NaCl with 8 significant figures, computed with the
discrepancy function.

Feeds (mol)
O 55.5087
Na 0.1
Cl 0.1
Z (charge) 0
Results
Amount (mol) Molality model Mole fraction model
H2O 5.55086999e+01 5.55086999e+01
Cl− 9.83824576e-02 9.83880354e-02
Na+ 9.83824536e-02 9.83880313e-02
H+ 1.61754040e-03 1.61196265e-03
NaCl(aq) 1.03490312e-07 1.03668102e-07
NaOH(aq) 9.94371673e-08 9.96214123e-08
OH− 6.03710854e-09 6.02709662e-09
HCl(aq) 1.98396398e-09 1.98040700e-09

Our two methods give the same results with a precision of εprec ≈ 7.47e−14 for the molality models
and εprec ≈ 3.089e−13 for the mole fraction models. A comparison between the results obtained from
the discrepancy function and Arxim gives a precision of εprec ≈ 5.73e−11, meaning that our methods
are accurate. Moreover, a comparison of the results in Table 1 gives εprec ≈ 0.0035, which is the loss of
precision between the two activity models.

5.2 The Seawater test case
The Seawater test case aims to compare the required number of iterations for the Newton’s method to
converge. The associated system comprises 37 species, 10 elements and 27 reactions. It is composed of
the three sets described in appendix Appendix B.1.

The results of Table 2 demonstrate the robustness of our methods to the input data. In particular, the
Cartesian representation always converges in 23 iterations with the second initialization. The robustness of
this second initialization is better than the first. In the following, we will only use this second initialization.
It is worth noting that Arxim’s line search method reduces the number of iterations on the first two
initializations, but there is a notable degradation in convergence when initializing with the epsilon machine
ϵ64.

A comparison between the results obtained from the discrepancy function and Arxim gives a precision
of εprec ≈ 3.0024e−12. A comparison of between the two activity models gives εprec ≈ 0.029.

5.3 The H_2 pE test case
The H_2 pE test case is a system for testing the accuracy of our method when adding a pE constraint.
The system is composed of 16 species, 4 elements and 11 reactions. The corresponding sets are described
in appendix Appendix B.2.

Our two methods give the same results with a precision of εprec ≈ 3.98e−13 for both activity models.
A comparison between the results obtained from the discrepancy function and Arxim gives a precision of
εprec ≈ 3.17e−12, meaning that our methods are also accurate when using a pE constraint. A comparison
of between the two activity models in Table 3 gives εprec ≈ 5.67e−5.

5.4 The Water-Clay and Water-Concrete test cases
The purpose of the Water-Clay and Water-Concrete test cases is to test the robustness of our method
when adding a pE constraint. They are both based on the same chemical system, but differ in their
quantities of chemical elements. This system is composed of 88 species, 12 elements and 75 reactions
distributed in the sets detailed in appendix Appendix B.3.

The results in Table 4 show that the Cartesian representation method is robust to the input data.
Furthermore, the number of iterations is almost always the same. The parametrization method converges
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Table 2: Number of iterations of Newton’s method before convergence for Seawater, computed with the
discrepancy function.

Feeds (mol)
O 55.5087
Na 0.469
Mg 0.0528
S 0.0282
Ca 0.0103
K 0.0102
C 0.00206
Sr 1e-5
Cl 0.546
Z (charge) 0
Initial guess (mol)
H

2
O 55.5087 55.5087 55.5087 55.5087

Other species 1e-2 1e-4 ϵ32 ϵ64
Results (Mole fraction)
Switch 18 29 31 29
Discrepancy init1 18 24 24 ×
Discrepancy init2 23 23 23 23
Results (Molality)
Arxim 16 13 22 33
Switch 18 25 27 28
Discrepancy init1 18 24 24 24
Discrepancy init2 23 23 23 23

Table 3: Number of moles of the solution for H_2 pE with 8 significant figures.

Feeds (mol)
O 55.5087
C 0.001
Ca 0.001
Z (charge) 0
pE 10
Results
Amount (mol) Molality model Mole fraction model
H2O 5.55053359e+01 5.55053359e+01
Ca2+ 5.89499320e-04 5.89504780e-04
CaCO3(aq) 4.06465710e-04 4.06460327e-04
CO2−

3 3.24657039e-04 3.24660881e-04
HCO−

3 2.67101320e-04 2.67102894e-04
OH− 2.66618250e-04 2.66619835e-04
O2(aq) 4.75961472e-05 4.75956445e-05
CaOH+ 2.28144885e-06 2.28140520e-06
CaHCO+

3 1.75352116e-06 1.75348751e-06
CO2(aq) 2.24095166e-08 2.24102849e-08
H+ 3.85927676e-11 3.85938635e-11
H2O2(aq) 1.66424972e-19 1.66421236e-19
HO−

2 8.92582992e-21 8.92568259e-21
H2(aq) 1.15434611e-44 1.15437203e-44
CO(aq) 2.93159368e-54 2.93176001e-54
CH4(aq) 3.35322590e-150 3.35341170e-150

in only 7 out of 16 cases, and is therefore not robust to this type of system. It should be noted that
Arxim does not converge for initializations using the epsilon machines ϵ64.

Comparisons of the number of moles of the solution for Water-Clay and Water-Concrete with Arxim
gives a precision of εprec ≈ 1.89e−10 and εprec ≈ 1.71e−11 respectively. Comparisons of between the two
activity models gives εprec ≈ 0.043 and εprec ≈ 0.104 respectively.
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Table 4: Number of iterations of Newton’s method before convergence for Water-Clay and Water-
Concrete.

Feeds (mol)
Water-Clay Water-Concrete

O 55.5078 55.5078
Na 0.0401 0.0601
Mg 0.0057449 1.5079e-09
K 0.000523301 0.1402
Ca 0.00846445 0.00196384
Fe 7.5646e-05 4.58364e-07
C 0.003783 5.29145e-05
Al 8.32493e-08 3.80016e-05
S 0.0126881 0.000974141
Cl 0.04096 1.42825e-10
Sr 0.000231597 1e-10
Z (charge) 0 0
pE -2.807 -2.98873
Initial guess (mol)
H

2
O 55.5078 55.5078 55.5078 55.5078 55.5078 55.5078 55.5078 55.5078

Others 1e-2 1e-4 ϵ32 ϵ64 1e-2 1e-4 ϵ32 ϵ64
Results (Mole fraction)
Switch 31 31 × 35 63 × × ×
Discrepancy 34 34 34 34 50 68 68 68
Results (molality)
Arxim 28 25 28 × 65 47 34 ×
Switch 31 29 × × × × 59 ×
Discrepancy 32 32 32 32 52 52 52 52

6 Conclusion and future works
We have presented parametrization and Cartesian representation techniques for stabilizing Newton’s
algorithm in the context of calculating chemical equilibria in an aqueous phase. For each of them, we
have proved the local quadratic convergence of Newton’s procedure. The numerical results demonstrate
excellent accuracy on the solution of the chemical systems considered. The Cartesian representation
technique is particularly robust with respect to the system data and the initial Newton point. Moreover,
contrary to existing approaches, no globalization strategy is required for the Cartesian representation to
converge, even on challenging test cases. Although the robustness results of the parametrization are not
satisfactory for difficult test cases, they are still notable for simpler chemical systems. Future work will
focus on extending these methods to multiphase chemical equilibrium problems.

Appendix A Standard chemical potentials
The standard chemical potentials µ̃◦

i (P, T) of a species Ci for a constant pressure P and temperature T
is calculated using the Helgeson-Kirkham-Flowers (HKF) model.

Table 5: Standard chemical potentials based on molality at P= 1 Bar and T = 298.15 K

Formula µ̃◦
i (P,T) Formula µ̃◦

i (P,T)
H2O -237138.97589284607 H+ 0.0
O2(aq) 16543.49301855645 Na+ -261880.68093357404
Mg2+ -453984.787558262 K+ -282461.78508303704
Ca2+ -552789.9276571237 Fe2+ -91504.0330259397
HCO−

3 -586939.7841306784 Al3+ -483707.8898133192
SO2−

4 -744458.9698933255 Cl− -131289.73255268394
Sr2+ -563835.6855778407 AlO+ -661858.4374760946
AlOH2+ -692347.2367805466 HAlO2(aq) -869016.6094354176
AlO−

2 -831331.3317788806 CaOH+ -716719.0378653684
CO(aq) -120005.50268817003 CO2(aq) -385973.95119834674
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CO2−
3 -527983.0213240985 CaHCO+

3 -1.1457044648801715e6
CaCl+ -682410.2459630198 CaCl2(aq) -811695.8491350176
CaSO4(aq) -1.3092988132949607e6 HClO(aq) -79914.41801087881
ClO− -36819.196554506314 ClO−

2 17154.36282858776
ClO−

3 -7949.650116475296 ClO−
4 -8535.41943368159

Fe3+ -17238.03459232613 FeCl+ -221877.47047403525
FeCl2(aq) -307440.2827514088 FeOH2+ -241835.11351838848
FeOH+ -275516.3143866307 FeO+ -222170.29366991075
FeO -212212.40732728643 HFeO−

2 -399153.4930723803
HFeO2(aq) -423002.3083502744 FeO−

2 -368191.91758807504
H2(aq) 17723.386991291925 H2S(aq) -27919.871309964183
HO−

2 -67320.55211902864 HS− 11966.205458423023
HSO−

3 -527727.8413605248 HSO−
4 -755755.7895325182

HSO−
5 -637515.9968599698 KCl(aq) -399279.0752045903

KHSO4(aq) -1.0183854278434662e6 KOH(aq) -437227.9151528983
KSO−

4 -1.031941553491834e6 CH4(aq) -34451.09621924444
Mg(CO3)(aq) -998971.5788823196 Mg(HCO3)

+ -1.0468365642174666e6
MgCl+ -584504.6645023803 MgOH+ -624482.7757953044
NaCl(aq) -388735.37877663504 NaOH(aq) -417981.50464769645
OH− -157297.44203625448 S2−2 79495.94491610056
S2O

2−
3 -522581.52176511387 HS2O

−
3 -532204.7153883826

H2S2O3(aq) -535551.9268921935 S2O
2−
4 -600403.9032858713

HS2O
−
4 -614629.5094590015 H2S2O4(aq) -616721.5194100296

S2O
2−
5 -790775.8644150125 S2O

2−
6 -966503.8308009355

S2O
2−
8 -1.1150358451560326e6 S2−3 73638.33479142259

S3O
2−
6 -958135.8346519175 S2−4 69035.92450587676

S4O
2−
6 -1.0405606330002927e6 S2−5 65688.7139146296

S5O
2−
6 -958135.8391056098 SO2(aq) -301164.29824334016

SO2−
3 -486599.08954829833 Sr(HCO3)

+ -1.1577962219631393e6
SrCl+ -693707.0438437777 SrOH+ -725087.0372310993
H2O2(aq) -134013.53088829323 HClO2(aq) 5857.54132274524
NaSO−

4 -1.0103353876813294e6 MgSO4(aq) -1.211171480195382e6
HCl(aq) -127235.40484114335 CaCO3(aq) -1.0997641162865811e6
SrCO3(aq) -1.10817395483314e6 FeCl2+ -156975.24998697112
e− -16.315331966024218

Appendix B Chemical reaction equations

Appendix B.1 The Seawater test case
C = (H

2
O,Na+,Mg2+, SO2−

4
, Ca2+, K+, HCO−

3
, Sr2+, Cl−, H+,

CaOH+, CO
2
(aq), CO2−

3
, CaHCO+

3
, CaCl+, CaCl

2
(aq), CaSO

4
(aq), HSO−

4
, KCl(aq),

KHSO
4
(aq),KOH(aq),KSO−

4
,Mg(CO

3
)(aq),Mg(HCO

3
)+,MgCl+,MgOH+, NaCl(aq),

NaOH(aq),OH−, Sr(CO
3
)(aq), Sr(HCO

3
)+, SrCl+, SrOH+, NaSO−

4
,MgSO

4
(aq),

HCl(aq), CaCO
3
(aq), SrCO

3
(aq)),

E = (H,O,Na,Mg, S, Ca,K,C, Sr, Cl),

and the set R composed of the reactions:

CaOH+ = H2O+Ca2+ −H+; CO2(aq) = −H2O+HCO−
3 +H+;

CO2−
3 = HCO−

3 −H+; CaHCO+
3 = Ca2+ +HCO−

3 ;

CaCl+ = Ca2+ +Cl−; CaCl2(aq) = Ca2+ + 2Cl−;

CaSO4(aq) = SO2−
4 +Ca2+; HSO−

4 = SO2−
4 +H+;

KCl(aq) = K+ +Cl−; KHSO4(aq) = SO2−
4 +K+ +H+;

KOH(aq) = H2O+K+ −H+; KSO−
4 = SO2−

4 +K+;

Mg(CO3)(aq) = Mg2+ +HCO−
3 −H+; Mg(HCO3)

+ = Mg2+ +HCO−
3 ;
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MgCl+ = Mg2+ +Cl−; MgOH+ = H2O+Mg2+ −H+;

NaCl(aq) = Na+ +Cl−; NaOH(aq) = H2O+Na+ −H+;

OH− = H2O−H+; Sr(HCO3)
+ = HCO−

3 + Sr2+;

SrCl+ = Sr2+ +Cl−; SrOH+ = H2O+ Sr2+ −H+;

NaSO−
4 = Na+ + SO2−

4 ; MgSO4(aq) = Mg2+ + SO2−
4 ;

HCl(aq) = Cl− +H+; CaCO3(aq) = Ca2+ +HCO−
3 −H+;

SrCO3(aq) = HCO−
3 + Sr2+ −H+.

Appendix B.2 The H_2 pE test case

C = (H
2
O,H+, CO

2
(aq), Ca2+, H

2
(aq), CaOH+, CO(aq), CO2−

3
,

CaHCO+
3
, HCO−

3
, HO−

2
, CH

4
(aq),O

2
(aq),OH−, H

2
O

2
(aq), CaCO

3
(aq)),

E = (H,O,C,Ca),

and the set R composed of the reactions:

CaOH+ = H2O−H+ +Ca2+; CO(aq) = −H2O+CO2(aq) + H2(aq);

CO2−
3 = H2O− 2H+ +CO2(aq); CaHCO+

3 = H2O−H+ +CO2(aq) + Ca2+;

HCO−
3 = H2O−H+ +CO2(aq); HO−

2 = 2H2O−H+ −H2(aq);

CH4(aq) = −2H2O+CO2(aq) + 4H2(aq); O2(aq) = 2H2O− 2H2(aq);

OH− = H2O−H+; H2O2(aq) = 2H2O−H2(aq);

CaCO3(aq) = H2O− 2H+ +CO2(aq) + Ca2+.

Appendix B.3 The Water-Clay and Water-Concrete test cases
C = (H

2
O,H+, O

2
(aq), Na+,Mg2+, K+, Ca2+, Fe2+, HCO−

3
, Al3+,

SO2−
4

, Cl−, Sr2+, AlO+, AlOH2+, HAlO
2
(aq), AlO−

2
, CaOH+, CO(aq),

CO
2
(aq), CO2−

3
, CaHCO+

3
, CaCl+, CaCl

2
(aq), CaSO

4
(aq), HClO(aq), ClO−,

ClO−
2
, ClO−

3
, ClO−

4
, Fe3+, FeCl+, FeCl

2
(aq), FeOH2+, FeOH+, FeO+,

FeO,HFeO−
2
, HFeO

2
(aq), FeO−

2
, H

2
(aq), H

2
S(aq),HO−

2
, HS−, HSO−

3
, HSO−

4
,

HSO−
5
, KCl(aq),KHSO

4
(aq),KOH(aq),KSO−

4
, CH

4
(aq),Mg(CO

3
)(aq),Mg(HCO

3
)+,MgCl+,

MgOH+, NaCl(aq), NaOH(aq),OH−, S2−
2

, S
2
O2−

3
, HS

2
O−

3
, H

2
S
2
O

3
(aq), S

2
O2−

4
,

HS
2
O−

4
, H

2
S
2
O

4
(aq), S

2
O2−

5
, S

2
O2−

6
, S

2
O2−

8
, S2−

3
, S

3
O2−

6
, S2−

4
,

S
4
O2−

6
, S2−

5
, S

5
O2−

6
, SO

2
(aq), SO2−

3
, Sr(CO

3
)(aq), Sr(HCO

3
)+, SrCl+, SrOH+,

H
2
O

2
(aq), HClO

2
(aq), NaSO−

4
,MgSO

4
(aq), HCl(aq), CaCO

3
(aq), SrCO

3
(aq), FeCl2+)

E = (H,O,Na,Mg, S, Ca,K,C, Sr, Cl),

and the set R composed of the reactions:

AlO
+

= H
2
O − 2H

+
+ Al

3+
; AlOH

2+
= H

2
O − H

+
+ Al

3+
;

HAlO
2
(aq) = 2H

2
O − 3H

+
+ Al

3+
; AlO

−
2

= 2H
2
O − 4H

+
+ Al

3+
;

CaOH
+

= H
2
O − H

+
+ Ca

2+
; CO(aq) = −H

2
O + H

+ − 0.5O
2
(aq) + HCO

−
3
;

CO
2
(aq) = −H

2
O + H

+
+ HCO

−
3
; CO

2−
3

= −H
+

+ HCO
−
3
;

CaHCO
+

3
= Ca

2+
+ HCO

−
3
; CaCl

+
= Ca

2+
+ Cl

−
;

CaCl
2
(aq) = Ca

2+
+ 2Cl

−
; CaSO

4
(aq) = Ca

2+
+ SO

2−
4

;

HClO(aq) = H
+

+ 0.5O
2
(aq) + Cl

−
; ClO

−
= 0.5O

2
(aq) + Cl

−
;

ClO
−
2

= O
2
(aq) + Cl

−
; ClO

−
3

= 1.5O
2
(aq) + Cl

−
;

ClO
−
4

= 2O
2
(aq) + Cl

−
; Fe

3+
= −0.5H

2
O + H

+
+ 0.25O

2
(aq) + Fe

2+
;

FeCl
+

= Fe
2+

+ Cl
−
; FeCl

2
(aq) = Fe

2+
+ 2Cl

−
;

FeOH
2+

= 0.5H
2
O + 0.25O

2
(aq) + Fe

2+
; FeOH

+
= H

2
O − H

+
+ Fe

2+
;

FeO
+

= 0.5H
2
O − H

+
+ 0.25O

2
(aq) + Fe

2+
; FeO = H

2
O − 2H

+
+ Fe

2+
;

HFeO
−
2

= 2H
2
O − 3H

+
+ Fe

2+
; HFeO

2
(aq) = 1.5H

2
O − 2H

+
+ 0.25O

2
(aq) + Fe

2+
;
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FeO
−
2

= 1.5H
2
O − 3H

+
+ 0.25O

2
(aq) + Fe

2+
; H

2
(aq) = H

2
O − 0.5O

2
(aq);

H
2
S(aq) = 2H

+ − 2O
2
(aq) + SO

2−
4

; HO
−
2

= H
2
O − H

+
+ 0.5O

2
(aq);

HS
−

= H
+ − 2O

2
(aq) + SO

2−
4

; HSO
−
3

= H
+ − 0.5O

2
(aq) + SO

2−
4

;

HSO
−
4

= H
+

+ SO
2−
4

; HSO
−
5

= H
+

+ 0.5O
2
(aq) + SO

2−
4

;

KCl(aq) = K
+

+ Cl
−
; KHSO

4
(aq) = H

+
+ K

+
+ SO

2−
4

;

KOH(aq) = H
2
O − H

+
+ K

+
; KSO

−
4

= K
+

+ SO
2−
4

;

CH
4
(aq) = H

2
O + H

+ − 2O
2
(aq) + HCO

−
3
; Mg(CO

3
)(aq) = −H

+
+ Mg

2+
+ HCO

−
3
;

Mg(HCO
3
)
+

= Mg
2+

+ HCO
−
3
; MgCl

+
= Mg

2+
+ Cl

−
;

MgOH
+

= H
2
O − H

+
+ Mg

2+
; NaCl(aq) = Na

+
+ Cl

−
;

NaOH(aq) = H
2
O − H

+
+ Na

+
; OH

−
= H

2
O − H

+
;

S
2−
2

= −H
2
O + 2H

+ − 3.5O
2
(aq) + 2SO

2−
4

; S
2
O

2−
3

= −H
2
O + 2H

+ − 2O
2
(aq) + 2SO

2−
4

;

HS
2
O

−
3

= −H
2
O + 3H

+ − 2O
2
(aq) + 2SO

2−
4

; H
2
S
2
O

3
(aq) = −H

2
O + 4H

+ − 2O
2
(aq) + 2SO

2−
4

;

S
2
O

2−
4

= −H
2
O + 2H

+ − 1.5O
2
(aq) + 2SO

2−
4

; HS
2
O

−
4

= −H
2
O + 3H

+ − 1.5O
2
(aq) + 2SO

2−
4

;

H
2
S
2
O

4
(aq) = −H

2
O + 4H

+ − 1.5O
2
(aq) + 2SO

2−
4

; S
2
O

2−
5

= −H
2
O + 2H

+ − O
2
(aq) + 2SO

2−
4

;

S
2
O

2−
6

= −H
2
O + 2H

+ − 0.5O
2
(aq) + 2SO

2−
4

; S
2
O

2−
8

= −H
2
O + 2H

+
+ 0.5O

2
(aq) + 2SO

2−
4

;

S
2−
3

= −2H
2
O + 4H

+ − 5O
2
(aq) + 3SO

2−
4

; S
3
O

2−
6

= −2H
2
O + 4H

+ − 2O
2
(aq) + 3SO

2−
4

;

S
2−
4

= −3H
2
O + 6H

+ − 6.5O
2
(aq) + 4SO

2−
4

; S
4
O

2−
6

= −3H
2
O + 6H

+ − 3.5O
2
(aq) + 4SO

2−
4

;

S
2−
5

= −4H
2
O + 8H

+ − 8O
2
(aq) + 5SO

2−
4

; S
5
O

2−
6

= −4H
2
O + 8H

+ − 5O
2
(aq) + 5SO

2−
4

;

SO
2
(aq) = −H

2
O + 2H

+ − 0.5O
2
(aq) + SO

2−
4

; SO
2−
3

= −0.5O
2
(aq) + SO

2−
4

;

Sr(HCO
3
)
+

= HCO
−
3

+ Sr
2+

; SrCl
+

= Cl
−

+ Sr
2+

;

SrOH
+

= H
2
O − H

+
+ Sr

2+
; H

2
O

2
(aq) = H

2
O + 0.5O

2
(aq);

HClO
2
(aq) = H

+
+ O

2
(aq) + Cl

−
; NaSO

−
4

= Na
+

+ SO
2−
4

;

MgSO
4
(aq) = Mg

2+
+ SO

2−
4

; HCl(aq) = H
+

+ Cl
−
;

CaCO
3
(aq) = −H

+
+ Ca

2+
+ HCO

−
3
; SrCO

3
(aq) = −H

+
+ HCO

−
3

+ Sr
2+

;

FeCl
2+

= −0.5H
2
O + H

+
+ 0.25O

2
(aq) + Fe

2+
+ Cl

−
.
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