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NONCOMMUTATIVE SYMMETRIC FUNCTIONS AND

LAGRANGE INVERSION II:

NONCROSSING PARTITIONS AND THE FARAHAT-HIGMAN

ALGEBRA

JEAN-CHRISTOPHE NOVELLI AND JEAN-YVES THIBON

Abstract. We introduce a new pair of mutually dual bases of noncommutative
symmetric functions and quasi-symmetric functions, and use it to derive generaliza-
tions of several results on the reduced incidence algebra of the lattice of noncrossing
partitions. As a consequence, we obtain a quasi-symmetric version of the Farahat-
Higman algebra.

1. Introduction

By the Lagrange series, we shall mean the (unique) formal power series

(1) g(t) =
∑

n≥0

gnt
n

solving the functional equation

(2) g(t) = f(tg(t)) =
∑

n≥1

fnt
ng(t)n where f(t) =

∑

n≥0

fnt
n, f0 = 1.

Besides its numerous applications in enumerative combinatorics, where the fn are
specified numbers, the generic Lagrange series (where the fn are indeterminates) is
of great interest in algebraic combinatorics. Specifically, if one interprets the fn as
the homogenous symmetric functions fn = hn(X), the symmetric function gn(X)

(i) is the Frobenius characteristic of the representation of the symmetric group
Sn on the set PFn of parking functions of length n [11];

(ii) provides an isomorphism between the reduced incidence Hopf algebra HNC of
the family of lattices of noncrossing partitions and the Hopf algebra Sym of
symmetric functions by sending the class yn of [0n+1,1n+1] to gn [7];

(iii) provides an isomorphism between the Farahat-Higman algebra of symmetric
groups and symmetric functions by identifying1 the reduced classes cµ with
the dual basis of gµ := gµ1 · · · gµr

[15, 9, 10].
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1Actually, Macdonald uses the equivalent basis h∗

µ(X) = gµ(−X).
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The Lagrange series has a natural noncommutative version, already apparent in the
original version of Raney’s combinatorial proof [21]: if in (2) the fn are interpreted as
non-commuting variables, including f0, gn becomes the sum of all  Lukasiewicz words
of length n+ 1: writing for short fi1i2··· for fi1fi2 · · · ,
(3) g0 = f0, g1 = f10, g2 = f200 + f110, g3 = f3000 + f2100 + f2010 + f1200 + f1110, . . .

i.e., the Polish codes for plane rooted trees on n vertices (obtained by reading the
arities of the nodes in prefix order). These words also encode in a natural way
various Catalan sets. Setting fi = aib, we obtain Dyck words (with an extra b

at the end). Seeing fi1i2···ir as encoding the nondecreasing word 1i12i2 · · · rir , we
obtain a nondecreasing parking function, which can itself be decoded as a noncrossing
partition, whose blocks are encoded by their minimal elements repeated as many
times as the lengths of the blocks.

For example, the word f2100 encodes the plane tree , the Dyck word aababb · b, the nonde-

creasing parking function 112 and the noncrossing partition 13|2.

The noncommutative Lagrange series can be interpreted as a noncommutative
symmetric function: keeping the functional equation (2), we set fn = Sn = Sn(A)
with f0 = 1, and obtain

(4) g0 = 1, g1 = S1, g2 = S2 + S11, g3 = S3 + 2S21 + S12 + S111, . . .

and we may ask whether there are analogues for these noncommutative symmetric
functions of Properties (i), (ii), (iii).

Point (i) has been dealt with in [17]: gn(A) is the noncommutative Frobenius
characteristic of the natural representation of the 0-Hecke algebra Hn(0) on parking
functions. Various consequences of this fact, including a noncommutative q-Lagrange
formula and generalisations to (k, ℓ)-parking functions have been derived there. Other
applications have been given in [18, 19, 13].

The aim of the present paper is to investigate points (ii) and (iii) in the noncom-
mutative setting. Introducing the multiplicative basis gI := gi1 · · · gir of Sym, and
computing its coproduct and antipode, we obtain natural noncommutative versions
of these results.

Definition 1.1. The ordered type of a noncrossing partition is the composition
formed by the length of its blocks, ordered by increasing values of their minima. Its re-
duced ordered type is the composition obtained from its ordered type by subtracting 1
to its components and removing the zeros.
We define the ordered cycle type and the reduced ordered cycle type of a permu-

tation similarly.

We have then the following interpretation of the coproduct:

Theorem 1.2. The coefficient aIJ in the coproduct

(5) ∆gn =
∑

I,J

aIJ g
I ⊗ gJ
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is equal to the number of noncrossing partitions π of [n+1] of reduced ordered type I,
and whose (right) Kreweras complement π′ has reduced ordered type J .

This implies a quasi-symmetric refinement of Macdonald’s realization of the graded
Farahat-Higman algebra. For a composition I = (i1, . . . , ir), define the canonical
permutation σI as the permutation of S|I|+r whose nontrivial cycles are

(6) (12 . . . i1 + 1)(i1 + 2 . . . i1 + i2 + 2) . . . (i1 + · · ·+ ir−1 + r− 1 . . . i1 + · · ·+ ir + r)).

Corollary 1.3. Let cI ∈ QSym be the dual basis of gI . The coefficient aIJK in the
product

(7) cJcK =
∑

I

aIJKcI

is equal to the number of minimal factorizations σI = αβ of the canonical permuta-
tion σI of reduced cycle type I with α of reduced cycle type J and β of reduced cycle
type K.

While this gives back the result of Macdonald by summing over compositions with
the same underlying partitions, the aIJK only count factorizations of particular per-
mutations, and this result is rather to be interpreted as providing a noncommutative
version of the reduced incidence algebra of the lattices of noncrossing partitions.

For example, ∆g5 contains the terms 7g12 ⊗ g11 and 11g21 ⊗ g11, so any 6-cycle in Sn has

18 = 7 + 11 factorizations into permutations of cycle types (321n−5) and (221n−4), but the refined

coefficients 7 and 11 are only meaningful for the particular 6-cycle (123456).

Theorem 1.2 is a noncommutative analogue of the main result of [7], which estab-
lishes an isomorphism of Hopf algebras between the reduced incidence algebra HNC

of noncrossing partitions and symmetric functions. Another result of [7] is a combi-
natorial description of the antipode of HNC. This amounts to computing g(−X) in
the basis gµ.

Rather than working with the antipode, we shall work with the automorphism
Sn(A) 7→ Sn(−A) = (−1)nΛn(A), and prove the equivalent result

Theorem 1.4. Define coefficients aI by

(8) gn(−A) =
∑

I�n

(−1)ℓ(I)aIg
I

Then,

(9) aI =
∑

J≤2I

〈MJ , g2n〉 = 〈E2I , g2n〉

where E is the so-called essential basis of quasi-symmetric functions. It is equal to
the number of sylvester classes of words of evaluation 2Ī [18, 19] or alternatively, to
the number of parking quasi-ribbons of shape (2I)∼ [17], and also to the number of
nondecreasing parking functions of type 2I + 1r := (2i1 + 1, . . . , 2ir + 1), which is the
same as the number of plane trees whose arities of internal nodes read in prefix order
form the composition 2I + 1r.
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For example, the term 5g21 in

(10) g3(−A) = −g3 + 5g21 + 3g12 − 12g111

corresponds to the 5 parking quasi-ribbons of shape (42)∼ = 12111 which are

(11) 1|23|4|5|6, 1|22|4|5|6, 1|22|3|5|6, 1|22|3|4|6, 1|22|3|4|5,

and the term 3g12 corresponds to the 3 parking quasi-ribbons of shape (24)∼ = 11121

(12) 1|2|3|45|6, 1|2|3|44|6, 1|2|3|44|5.

The term 5g21 corresponds also to the 5 sylvester classes of evaluation 24, which are those of the
words

(13) 112222, 211222, 221122, 222112, 222211,

which can be read by filling the sectors of the plane trees of skeleton 53 as in [12].

The coefficient ãI in the antipode

(14) ω̃(gn) =
∑

I�n

(−1)ℓ(I)ãIg
I

also has an explicit, but more complicated interpretation.

(15) 〈cI , ω̃(gn)〉 = (−1)n
∑

J�n

〈VI , gJ〉〈MJ , g〉.

The factor 〈MJ , g〉 is a number of nondecreasing parking functions and the 〈VI , gJ〉
count parking quasi-ribbons and have all the same sign. This is therefore a cancel-
lation-free combinatorial formula.

For example,

(16) ω̃(g3) = −12g111 + 4g12 + 4g21 − g3

and the contributions to the coefficient of g21 are

(17) 〈V21, g3〉〈M3, g〉 = −3× 1

where the factor −3 counts the parking quasi-ribbons 11|2, 11|3, 12|3, and

(18) 〈V21, g
21〉〈M12, g〉 = −1× 1

where, dualizing, 〈V21, g
21〉 = 〈V2 ⊗ V1, g2 ⊗ g1〉 = −1× 1.

Similarly, the contributions to the coefficient of g12 are

(19) 〈V12, g3〉〈M3, g〉 = −2× 1,

the −2 counts the parking quasi-ribbons 1|22, 1|23, and

(20) 〈V12, g
12〉〈M21, g〉 = −1× 2,

where, dualizing, 〈V12, g
12〉 = 〈V1 ⊗ V2, g1 ⊗ g2〉 = −1× 1.
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Byproducts. The proofs of the aforementioned results rely on a couple of elementary
combinatorial properties that we have not been able to find in the literature and
appear to be of independent interest.

First, given a binary tree T and its infix labeling (i.e., its corresponding binary
search tree), we decribe a straightforward algorithm for visiting cyclically its nodes
(i.e, going from the node labelled i to that labelled i + 1 mod n): move one step
down the right branch of i (if i is at its bottom, then go to the top of the branch),
then move one step up the current left branch (again, if i is at its top, go to the
bottom of the branch). This property is easily proved by observing that any such
tree hides two permutations whose product is the standard long cycle, see Note 4.10.

Second, we prove that a noncrossing partition can be reconstructed from its or-
dered type and the ordered type of its right Kreweras complement, and provide an
algorithm doing this. This property is the key ingredient in the calculation of ∆gn,
see Theorem 4.11.

This paper is a continuation of [17], to which the reader is referred for background
and notation.

2. The Lagrange bases of Sym and QSym

2.1. The Lagrange basis in Sym. The Lagrange series in Sym(A) is defined by

(21) g(A) = 1 +
∑

n≥1

Sn(A)g(A)n

and we denote by gn its homogenous component of degree n. If X = (xi) is a sequence
of mutually commuting variables, gn(X) becomes an ordinary symmetric function.
It is equal to h∗n(−X) where ∗ is Macdonald’s involution [15, Ex. 24 p. 36].

As mentioned in the introduction, it was shown in [17] that

(22) gn(A) =
∑

π∈NDPF(n)

SEv(π),

where NDPF is the set of nondecreasing parking functions and Ev(π) is the evaluation
of π, that is, the ordered sequence of number of occurrences of i in π for i ≥ 1. Since
by convention S0 = 1, we can replace Ev(π) by the packed evaluation, or type t(π) of
π, which is the composition obtained by removing the zeros in Ev(π).

For example, there are five nondecreasing parking functions: 111, 112, 113, 122, and 123. For-
getting the trailing zeroes, their respective evaluations are respectively 3, 21, 201, 12, and 111, so
that,

(23) g3 = S3 + 2S21 + S12 + S111.

Since gn begins with a term Sn, their products gI = gi1 . . . gir are triangular on the
SI hence form a basis of Sym.

Since the coefficient of SJ in gn is the number of nondecreasing parking functions
of type J , or equivalently the number of noncrossing partitions of ordered type J ,
the coefficient of SJ in gI is the number of nondecreasing parking functions of type
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J having breakpoints at the descents of I, or the number of noncrossing partitions of
ordered type J finer than the interval partition of type I.

Ordering compositions in reverse lexicographic order, e.g., [3, 21, 12, 111] for n = 3, the matrix of
the gJ on the SI is

(24)









1 0 0 0
2 1 0 0
1 0 1 0
1 1 1 1









2.2. A related basis. This combinatorial description suggests to introduce another
basis

(25) f I :=
∑

J≥I

(−1)ℓ(I)−ℓ(J)gJ ,

where J ≥ I means that J is finer than I, or that the descents of I are descents of J .
The transition matrix from the f to the S is much simpler: the coefficients are

nonnegative integers and each nondecreasing parking function contributes to the row
indexed by its type and to the column indexed by its breakpoints.

For example, at n = 3, the combinatorial description and the matrix from f to S are as follows:

(26)









111
112 113

122
123









and









1 . .

1 1 . .

. . 1 .

. . . 1









This basis will be investigated in a separate paper in relation to the quasi-symmetric
Farahat-Higman algebra.

2.3. The dual Lagrange basis in QSym. We denote by cI ∈ QSym the dual basis
of (gI).

By definition of the duality between Sym and QSym the transpose of the matrix
in (24) is the matrix of the monomial quasi-symmetric functions MI in the basis cJ .

2.4. Some other relevant properties. The expansions of gn on the bases SI , ΛI

and RI are given in [17]. It is also proved in this reference that g is invariant under
the involution SI 7→ SI∼ , and that g(−A) satisfies the functional equation

(27) g(−A)−1 =
∑

n≥0

Sn(A)g(−A)n,

that is, gn(−A) is the image of Sn(A) by the antipode of the Hopf algebra of non-
commutative formal diffeomorphisms of [3].
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2.5. The k-Lagrange series. We shall also need the series g(k), defined by the
functional equation

(28) g(k) =
∑

n≥0

Sn

[

g(k)
]kn

.

It can also be defined as g(k) = φk(g), where φk is the adjoint of the power-sum
plethysm operator ψk : MI 7→MkI on QSym.

Recall that a k-parking function is a word over the positive integers whose nonde-
creasing rearrangement a1a2 · · · an satisfies ai ≤ k(i− 1) + 1. Its k-evaluation Evk(a)
is essentially the classical evaluation of a word but we will here define it as the num-
ber of occurrences of all letters from 1 to kn+ 1. In particular, the k-evaluation of a
nonempty k-parking function ends with a sequence of at least k zeros.

Indeed, we have proved in [17] that the solution of (28) where S0 is an indeterminate
is

(29) g(k) =
∑

π∈NDPF(k)

SEvk(π),

where NDPF(k) stands for nondecreasing k-parking functions.

In particular, if one sends S0 to 1, the coefficient of SI in g
(k)
n of degree n is the

number of nondecreasing k-parking functions of type I.

For example, setting h = φ2(g) = g(2),

(30) h0 + h1 + h2 + h3 + · · · = S0 + S1(h0 + h1 + h2 + . . . )2 + g2(h0 + h1 + . . . )4 + g3(h0 + . . . )6

yields, by iterated substitutions

(31) h0 = 1, h1 = S1, h2 = S2 + 2S11, h3 = S3 + 4S21 + 2S12 + 5S111,

The 2-parking functions of size 3 are

(32) 111, 112, 113, 114, 115, 122, 133, 123, 124, 125, 134, 135,

and one can check that their types indeed encode the expansion of h3.

The k-evaluations of k-parking functions are generalized  Lukasiewicz words. They
are the words w1 . . . wkn+1 of length kn+1 whose partial sums k(w1 + · · ·+wi)− i are
always nonnegative except when i = kn+1 where the sum becomes strictly negative.
This property is easily translated in terms of generalized Dyck paths: send wi to wi

times the step (1, k) followed by a step (1,−1). The conditions on the evaluations
mean that the path stays weakly above the axis on all steps but the last.

2.6. Connecting the k-Lagrange series. There is a simple but useful connection
between k-parking functions and (k − 1)-parking functions. Let a be a k-parking
function and let a′ be its largest prefix that is a (k − 1)-parking function.

In terms of evaluations, this means that Ev(a′) is a prefix of Ev(a). If a′ is con-
sidered as a (k− 1)-parking function, the corresponding path ends at height −1, and
ends at height k − 1 as a k-parking function. Now, since each downstep decrements
the height by one, one can cut the remainder of the path of a the first time it reaches
each height from k−2 down to 0. One then gets a total of k (possibly one-downstep)
paths, all encoding a k-parking function. Conversely, given a (k−1)-parking function
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of length i and a list of i k-parking functions, one obtains a k-parking function by
concatenating their evaluations.

For example, consider the 2-parking function 1 2 2 4 6 9 11 14 17 17. Its evaluation (up to 21) is

(33) 120101001010010020000

Its largest 1-parking prefix is 1224. It is of size 4 and its evaluation (as a 1-parking function) is
12010. We then remove the prefix and cut the remainder into four parts as

(34) 1001010010020000 = 100.10100.100.20000,

that all are evaluations of 2-parking functions.

Thus, a k-parking function can be uniquely decomposed as a = a′b1 · · ·bi where a′

is its maximal (k − 1)-parking prefix of length i and the bj are k-parking functions.
This translates into the following functional equation:

Lemma 2.1. The series g(k) := φk(g) satisfies

(35) g(k) =
∑

n≥0

g(k−1)
n

[

g(k)
]n
.

For example, setting h = φ2(g) = g(2),

(36) h0 + h1 + h2 + h3 + · · · = g0 + g1(h0 + h1 + h2 + · · · ) + g2(h0 + h1 + · · · )2 + g3(h0 + · · · )3

yields

h0 = 1, h1 = g1 = S1, h2 = g1h1 + g2 = S2 + 2S11,

h3 = g1h2 + 2g2h1 + g3 = S3 + 4S21 + 2S12 + 5S111,
(37)

where gi is replaced by its expansion on the SI as in (4).

2.7. Base change from S to g. To compute the change of basis from S to g, we
proceed as in [13]. In this reference, “noncommutative free cumulants” Kn are defined
by the functional equation

(38) σ1 =
∑

n≥0

Knσ
n
1

and it is proved that

(39) K(A) =
∑

n≥0

Kn(A) = g(−A)−1.

Setting g(A) = σ1(B), we see that Kn(B) = Sn(A) and that

(40) Kn =
∑

I

kIS
I ⇔ Sn =

∑

I

kIg
I .

To expand Sn on the basis gI , we can therefore apply the recipe given in [13, Eq.
(50)]: start from the expansion of gn−1 on the elementary basis, as given in [17], and
replace each ΛI by gi1+1,i2,...,ir − g1I .

For example, starting with

(41) g3 = Λ3 − 3Λ21 − 2Λ12 + 5Λ1111,
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this substitution yields

(42) S4 = (g4 − g13)− 3(g31 − g121)− 2(g22 − g112) + 5(g211 − g1111).

The first values are

S1 = g1

S2 = g2 − g11

S3 = g3 − 2g21 − g12 + 2g111

S4 = g4 − 3g31 − g13 − 2g22 + 5g211 + 3g121 + 2g112 − 5g1111

and one checks that the inverse matrix of (24) is indeed

(43)









1 0 0 0
−2 1 0 0
−1 0 1 0
2 −1 −1 1









2.8. An involution. It is not immediate that there is an analogue of Macdonald’s
star involution in the noncommutative setting. Indeed, g does not commute with the
Sn, and writing (21) in the (ambiguous) form g = σg(A) does not allow to conclude
that g−1 = λ−g(A). However, this relation does hold, and we have:

Proposition 2.2. The algebra automorphism F 7→ F̃ defined on the elementary
symmetric functions by

(44) Λn 7→ Λ̃n = gn

is an involution of Sym.

Proof – The noncommutative free cumulants being given by

(45) Kn(A) = ḡn(−A) where ḡ(A) := g(A)−1,

we have therefore

(46) σ1(−A) =
∑

n≥0

ḡn(A)σ1(−A)n

so that

(47) (−1)nΛn(A) = Sn(−A) = gn|Sk 7→ḡk =
∑

I�n

cI ḡ
I where gn =:

∑

I�n

cIS
I ,

and if on the one hand we define coefficients bIJ by

(48) (−1)|I|ΛI =
∑

J

bIJS
J ,

then ḡI =
∑

J b
I
Jg

J , and

(49) Λn =
∑

I,J

cIb
I
Jg

J .

But on the other hand

(50) (−1)n
∑

I,J

cIb
I
JΛJ = (−1)n

∑

I

cI(−1)|I|SI = gn.
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2.9. Proof of Theorem 1.4. With this at hand, we can compute the first values of
gn(−A):

g1(−A) = −g1
g2(−A) = −g2 + 3g11

g3(−A) = −g3 + 5g21 + 3g12 − 12g111

g4(−A) = −g4 + 7g31 + 5g22 + 3g13 − 25g211 − 18g121 − 12g112 + 55g1111.

One can observe that the sum of the absolute values of the coefficients build up
the sequence 1,4,21,126,... [23, A003168] and that the coefficients refine the triangle
[23, A102537], which occurs in [19, Sec. 5.3]. This suggests that the coefficient of
±gI should count sylvester classes of packed words of evaluation 2Ī.

We propose to show

(51) gn(−A) =
∑

I�n

(−1)ℓ(I)

(

∑

J≤2I

〈MJ , g〉
)

gI =
∑

I�n

(−1)ℓ(I)

(

∑

J≤I

〈MJ , φ2(g)〉
)

gI ,

where φ2 is the adjoint of ψ2 : MI 7→M2I [19]. Equivalently, we want to prove that

(52) gn(−A) =
∑

I�n

〈MI , φ2(g(−A))〉 gI .

We start from the expansion

(53) gn(−A) = (−1)n
∑

I�n

〈MI , g〉ΛI .

Let VI be the dual basis of ΛI . According to the previous considerations, we can
write

gn(−A) = (−1)n
∑

I�n

〈MI , g〉
∑

I1�i1,...,Ir�ir

〈VI1 , g〉 · · · 〈VIr , g〉gI1I2···Ir

= (−1)n
∑

J�n

gJ
∑

I≤J

〈MI , g〉〈∆rVJ , gi1 ⊗ · · · ⊗ gir〉(54)

= (−1)n
∑

J�n

(

∑

I≤J

〈MI , g〉〈VJ , gI〉
)

gJ .

We are thus reduced to show

(55) 〈MI , φ2(g(−A))〉 = (−1)n
∑

J≤I

〈VI , gJ〉〈MJ , g〉.
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Summing the right-hand sides multiplied by SI yields
∑

I

(−1)|I|
∑

J≤I

〈VI , gJ〉〈MJ , g〉SI =
∑

I

∑

J≤I

〈VI , gJ〉〈MJ , g〉ΛI(−A)

=
∑

J

〈MJ , g〉
∑

I≥J

〈VI , gJ〉ΛI(−A)

=
∑

J

〈MJ , g〉gJ(−A).

Doing the same with the left-hand sides, we have finally to show that

(56) φ2(g(−A)) =
∑

J

〈MJ , g〉gJ(−A),

or equivalently, that

(57) h :=
∑

J

〈MJ , g〉gJ

satisfies

(58) h =
∑

n≥0

gnh
n.

which follows from Lemma 2.1, since h defined as above is obtained by substituting
gn to Sn in g.

This concludes the proof of Theorem 1.4.

2.10. Another argument. Instead of Lemma 2.1, we can rely upon the tilde invo-
lution. This leads to a different combinatorial interpretation of the coefficients.

Recall that

g(−A)−1 =
∑

n≥0

Sn(A)g(−A)n ⇔ g(−A) = 1−
∑

n≥1

Sn(A)g(−A)n+1

:=
∑

n≥0

Sn(B)g(−A)n,
(59)

setting S1(B) = 0 and Sn(B) = −Sn−1(A) for n ≥ 2. Hence, the coefficient of SI in
g(−A) is equal to

(60) 〈MI , g(−A)〉 = (−1)ℓ(I)〈MI+1r , g(A)〉,
where I + 1r = (i1 + 1, . . . , ir + 1). Applying the involution Λ̃n = gn, and setting
h = g(−A), we have

(61) h̃ =
∑

n≥0

S̃n(−A)h̃n =
∑

n≥0

(−1)nΛ̃nh̃
n =

∑

n≥0

gn(−h̃)n.

This is, up to signs, the functional equation for g(2) = φ2(g), so that

(62) gn(−A) = (−1)ng̃(2)n .

Hence, the coefficient of gI in gn(−A) is

(63) 〈cI , gn(−A)〉 = (−1)n〈VI , g(2)n 〉 = (−1)n〈V2I , g2n〉
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for which a combinatorial interpretation in terms of parking quasi-ribbons is given in
[17]:

(64) gn(A) =
∑

I�n

(−1)n−ℓ(I)cI∼ΛI ,

where cI is the number of parking quasi-ribbons of shape I.
We can also give a third combinatorial interpretation of g(−A). The dual basis

of ΛI is

(65) VI = (−1)n−ℓ(I)
∑

J≤I

MJ

so that the coeffficient of gI in g(−A) is equal to 〈V2I , g〉, hence, replacing A by −A,
to the coefficient of (−1)2nS2I = S2I in g(−A).

We have seen that the coefficient δI of SI in g and the coefficient λI of SI in g(−A)
are related by

(66) λI = (−1)ℓ(I)δi1+1,i2+1,...,ip+1.

We have therefore for the absolute value of the coefficient of gI in g(−A)

(67)
∑

J≤2I

〈MJ , g〉 = 〈M2I+1r , g〉

which is the number of nondecreasing parking functions of type (2i1 + 1, . . . , 2ir + 1),
or equivalently, to the number of plane trees whose arities of the internal nodes read
in infix order yield this composition.

2.11. The antipode of g. The antipode ω̃(g) can be obtained by a slight adaptation
of the argument of Section 2.10.

Let h = ω̃(g) = g(−A). Then,

(68) h̃ =
∑

n≥0

h̃n(−1)ngn(A)

which is, up to signs,

(69) f =
∑

n≥0

fngn

whose solution is f = χ(g(2)), where χ is the involution gI 7→ gĪ . Hence,

(70) ω̃(gn) = (−1)n
˜
χ(g

(2)
n ).

The coefficient de gI in ω̃(gn) is therefore

(71) 〈cI , ω̃(gn)〉 = (−1)n
∑

J�n

〈VI , gJ〉〈MJ , g〉.

The factor 〈MJ , g〉 is a number of nondecreasing parking functions, and 〈VI , gJ〉
counts parking quasi-ribbons with a common sign. This is therefore a cancellation-
free combinatorial formula.
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To compute the antipode of gn :

• Express g
(2)
n on the basis gI

(72) g
(2)
3 = g3 + 2g21 + g12 + g111

• apply the involution χ : gI 7→ gĪ and multiply by (−1)n

(73) (−1)3χ(g(2)3 ) = −(g3 + 2g12 + g21 + g111)

• then expand it on the basis ΛI

(74) (−1)3χ(g(2)3 ) = −(Λ3 − 4Λ21 − 4Λ12 + 12Λ111)

• and finish by applying the tilde involution ΛI 7→ gI

(75) ω̃(g3) = −(g3 − 4g21 − 4g12 + 12g111).

3. Expansion of the coproduct of gn on the basis gI

3.1. Background: the Hopf algebra of nondecreasing parking functions.

One can also rewrite (22) in Sym as

(76) gn =
∑

I

δIS
I ,

where δI is the number of nondecreasing parking functions of type I.

For example,

(77) g3 = S3 + 2S21 + S12 + S111

is obtained from 111, 112, 113, 122, 123.

We have defined in [20] an algebra PQSym based on symbols Fa, where a runs over
all parking functions. One can show that PQSym has a Hopf subalgebra CQSym

whose basis is defined by

(78) Pπ =
∑

a↑=π

Fa,

where π is any nondecreasing parking function and the sum runs over all parking
functions with the same nondecreasing rearrangement π.

If one denotes by t(π) the packed evaluation of π, which coincides with the ordered
type of the noncrossing partition encoded by π, then, the map φ : Pπ 7→ St(π) is an
epimorphism of Hopf algebras from CQSym to Sym [20], and

(79) g = φ(G), where G :=
∑

a∈PF

Fa =
∑

π∈NDPF

Pπ

is the formal sum of all parking functions.

For example,

(80) G3 = P
111 +P

112 +P
113 +P

122 +P
123,

so that one recovers (23) and (77) by sending P
π to St(π).

Thus, ∆g = (φ⊗ φ)(∆G) and one can get ∆g from ∆G which is simpler, since, as
we shall see shortly, it has an intermediate multiplicity-free expression.
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3.2. Computation of the coproduct in CQSym. The coproduct in CQSym in
the P basis is given by

(81) ∆Pπ =
∑

π=(uv)↑
u,v nondecreasing

PPark(u) ⊗PPark(v)

where Park denotes the operation of parkization as described in [20], and the sum
runs over all nondecreasing words u, v such that the nondecreasing rearrangement of
uv is π.

For example,

∆P
1124 = 1⊗P

1124 +P
1 ⊗

(

P
112 +P

113 +P
123
)

+P
11 ⊗P

12

+P
12 ⊗

(

P
11 + 2P12

)

+
(

P
112 +P

113 +P
123
)

⊗P
1 +P

1124 ⊗ 1 .
(82)

Now, as an intermediate computation, we could “forget” to parkize u and v and
write the coproduct of Pπ as the sum of all terms Pu⊗Pv, over all pairs on nondecreas-
ing words such that uv = π. This amounts to making the convention Pw = PPark(w)

for an arbitrary nondecreasing word w.

For example, with this convention, the coproduct ∆P
1124 becomes

∆P
1124 = 1⊗P

1124 +P
1 ⊗P

124 +P
2 ⊗P

114 +P
4 ⊗P

112

+P
11 ⊗P

24 +P
12 ⊗P

14 +P
14 ⊗P

12 +P
24 ⊗P

11

+P
112 ⊗P

4 +P
114 ⊗P

2 +P
124 ⊗P

1 +P
1124 ⊗ 1 .

(83)

Note 3.1. With this convention, if one forgets to parkize all terms, this expression
of ∆Gn becomes multiplicity-free, since a term Pu ⊗Pv can only come from a ∆Pπ

where π is obtained by sorting u · v.
In other words, ∆Gn is the sum of terms Pu ⊗Pv, over all pairs on nondecreasing

words such that uv is a parking function.

Define GI = Gi1 · · ·Gir . We shall prove that ∆G is actually a sum of terms GI⊗GJ .

3.3. Profiles of nondecreasing words. Any nondecreasing word w admits a min-
imal factorization into shifted parking functions

(84) w = w1w2 · · ·wk

i.e., each wi is obtained by shifting a parking function ai by some integer bi, which
we write as wi = (ai)bi and each wi is of maximal length.

For example,

w = 2336799 = (1225688)1 = (122)1 · 6799
= (122)1 · (1244)5 = (122)1 · (12)5 · 99
= (122)1 · (12)5 · (11)8,

(85)

so that w decomposes as

(86) 2336799 = 233 · 67 · 99
and the ais and the bis can be read above.
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Definition 3.2. The profile pf(w) of a word w is the pair
(

s

c

)

=
(

s1s2···sk
c1c2···ck

)

, where si
is the first letter of wi, that is, 1 + bi and ci its length.
We shall say a biword is a profile if there is a word w whose profile is that biword.

On our example, pf(w) =
(

2 6 9
3 2 2

)

.

There is a simple characterization of profiles:

Lemma 3.3. A biword
(

s1...sk
c1...ck

)

is a profile iff si+1 > si + ci for all i ∈ [1, k − 1].

Proof – Let w be a nondecreasing word. Decompose it as w1 . . . wk as above, and let
ci be the length of wi.

Since wi and wi+1 are different blocks of the decomposition of w, after shifting
the suffix of w starting with wi, its largest prefix which is a parking function will be
exactly wi. So the first letter of wi+1 has to be far enough from the first letter of
wi, more precisely, si+1− si has to be strictly greater than their distance in the word
which is ci, whence the condition.

Conversely, given a biword satisfying the required conditions, it is easy to exhibit
a word with that profile:

(87) w = sc11 s
c2
2 . . . s

ck
k .

3.4. Biprofiles of pairs of nondecreasing words. Given two nondecreasing words
u and v, we define their biprofile as the pair (pf(u), pf(v)).

Lemma 3.4. Let (u, v) be a pair of nondecreasing words of respective profiles S =
(

s1...sk
c1...ck

)

and T =
(

t1...tℓ
d1...dℓ

)

.

Rearrange the biword
(

s1...skt1...tℓ
c1...ckd1...dℓ

)

as a joint profile, so that the top line is weakly
increasing. If some si = tj, put the biletter of si to the left of the one of tj and write
the result as

(

x1...xk+ℓ

y1...yk+ℓ

)

.

Then, the concatenation uv is a parking function iff

(88) ∀m ∈ [1, k + ℓ], xm ≤ y1 + · · ·+ ym−1 + 1.

In that case, we say that the biprofile is a parking biprofile.

Note that in general, the joint profile is not a profile.

For example, let u = 2336799 and v = 11. Then the concatenation of their profiles gets reordered
as

(89)

(

2 6 9 1

3 2 2 2

)

=

(

1 2 6 9

2 3 2 2

)

.

We have the inequalities

(90) x1 = 1 ≤ 1, x2 = 2 ≤ 3, x3 = 6 ≤ 6, x4 = 9 > 8,

so that uv is not a parking function and indeed, there are only 7 values smaller than or equal to 8
in uv.

One can also check that if u is the same and v = 116 = 11 · 6 then the joint profile is
(

12669
23212

)

, all

inequalities are satisfied and uv is indeed a parking function.
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Proof – Let us write as before u = (u1) · · · (uk) and v = (v1) · · · (vℓ). Then rearrange
uv as blocks matching the rearranged concatenated biword in the statement:

(91) w = (a1)(a2) . . . (ak+ℓ)

where the (ai) run over all factors of both u and v (the i-th block ai comes from u if
xi is some si). Writing the blocks ai as words, (91) becomes

(92) w = (wz0+1 . . . wz1)(̇wz1+1 . . . wz2) . . . (wzk+ℓ−1+1 . . . wzk+ℓ
),

where zi = y1 + · · ·+ yi with the convention z0 = 0.
Let us now assume that some xm > zm−1+1. In this case, wzm−1+1 = xm > zm−1+1

and it has no letter strictly smaller on its right since the xi are weakly increasing and
among each block, the values are weakly increasing too. So w cannot be a parking
function: it has less than zm−1 values smaller than or equal to zm−1 + 1.

Conversely, assume that all xm ≤ zm−1 + 1. In that case, each letter beginning a
block satisfies wzm−1+1 ≤ zm−1 + 1. Now, any wzi+j with j ≤ yi is at most zi + j

since the subword wzi+1 . . . wzi+j is a nondecreasing parking function shifted by a
fixed value and wzi+1 ≤ zi + 1. So w is a parking function (wj ≤ j for all j), and so
is uv, since it is a rearrangement of w. This concludes the proof of the statement.

Note that w is not in general nondecreasing but it satisfies nonetheless wi ≤ i for
all i.

The lemma shows that whether uv is a parking function or not depends only on
the biprofile of (u, v), so that

Corollary 3.5. If u and v are nondecreasing words such that uv is a parking function,
then any pair (u′, v′) of nondecreasing words with the same biprofile as (u, v) is also
such that u′v′ is a parking function.

For example, consider the biprofile

(93)

(

2 5

2 2

)

and

(

1

3

)

.

There are four different choices for u: 2255, 2256, 2355, and 2356 and five choices for v: 111, 112,

113, 122, and 123. One can check that all 20 crossed concatenations are parking functions: write

down any w = v.u and observe that even if w is not always weakly increasing, wi ≤ i for all i.

3.5. Regrouping terms in ∆Gn. We can now regroup the terms Pu ⊗ Pv in the
“unparkized” multiplicity-free expression of ∆Gn according to their biprofiles, and
write

(94) ∆Gn =
∑

(s

c),(
t

d)

∑

pf(u)=(sc)
pf(v)=(t

d)

Pu ⊗Pv

where the sum runs over the parking biprofiles.
Now, given a parking biprofile

(

s

c

)

,
(

t

d

)

and identifying w with Park(w), each sum
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(95)
∑

pf(u)=(s
c)

pf(v)=(t
d)

PPark(u) ⊗PPark(v)

contributes exactly one term Gc ⊗ Gd to ∆G. Indeed, given the profile
(

s

c

)

, the
list of nondecreasing words having that profile gives as parkized exactly all parking
functions of size c1 contatenated with all parking functions of size c2, etc., so that we
get a term Gc.

Continuing the example from Equation (93), the term corresponding to its biprofile is G22⊗G3.

Finally,

Theorem 3.6. ∆Gn is the sum of all GI ⊗ GJ , where I, J run over the bottom
elements of all pairs (b1, b2) of parking biprofiles of size n.

Note in particular that if one swaps the profiles, one still has a parking biprofile,
which reflects the fact that ∆ is cocommutative.

We shall also represent a profile as the minimal lexicographic nondecreasing word
associated with it.

For example, the biprofile
(

2 6 9
3 2 2

)

is now 2226699. With this notation, the parking biprofiles of
size 3 correspond to the following pairs of words:

(111, ∅), (11, 1), (11, 2), (11, 3), (22, 1), (13, 1), (13, 2),
(1, 11), (2, 11), (3, 11), (1, 22), (1, 13), (2, 13), (∅, 111).(96)

so that sending a word to its packed evaluation,

∆G3 = G3 ⊗ 1 + (4G2 + 2G11)⊗G1 +G1 ⊗ (4G2 + 2G11) + 1⊗G3.(97)

Note 3.7. Note that the number of terms in ∆G3 is C4 = 14 (Catalan numbers), and
in general ∆Gn has Cn+1 terms. A first easy but not very satisfactory explanation
goes as follows: since ∆Gn is a sum of positive terms and that each Gn is sent to the
usual gn when taking the commutative image from Sym to Sym, each term gives
rise to one term of ∆gn. Since this coproduct is known to have Catalan terms, so
does ∆Gn.

We will provide a complete combinatorial proof of this same result in the Appendix
through a bijection between parking biprofiles, pairs of ”compatible” compositions
and then Motzkin paths. It is also possible to make a simple bijection between pairs
of compositions and nondecreasing parking functions but since this bijection does not
provide any combinatorial insight, we will only sketch it (see Note 4.8).
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4. Combinatorial interpretations of ∆Gn

In the commutative case, it is known [7] that

(98) ∆gn =
∑

π∈NCn+1

gα(π) ⊗ gα(K(π))

where α(π) is the reduced type of π and K stands for the right Kreweras complement.
We shall now see that this expression can be extended to the noncommutative case,
replacing the type by the ordered type.

4.1. From parking biprofiles to pairs of compositions. We have seen that the
coproduct of gn (or Gn, its pre-image in CQSym) can be expanded in the basis
gI ⊗ gJ and that the terms are parametrized by parking biprofiles.

We shall now encode a profile p by an integer composition I.

Definition 4.1. Let p =
(

s1...sk
c1...ck

)

be a profile, and let n ≥ sk + ck. Define C : p 7→ I

as follows:

• If s1 = 1 then I = (1 + c1, I
′) where I ′ is the composition associated with the

profile
(

s′2...s
′
k

c2...ck

)

where s′i = si − c1 − 1.

• If s1 6= 1 then I = (1, I ′) where I ′ is the composition associated with the profile
(

s′1...s
′
k

c1...ck

)

where s′i = si − 1.

Then, define Cn(p) as the composition of n obtained by adding n − sk − ck ones at
the end of I.

For example, with n = 12,

C

((

269

221

))

= 1, C

((

158

221

))

= 1, 3, C

((

25

21

))

= 1, 3, 1, C

((

14

21

))

= 1, 3, 1, 3, C

((

1

1

))

= 1, 3, 1, 3, 2,

(99)

and finally C12(p) = (1, 3, 1, 3, 2, 1, 1). Similarly,

(100) C10

((

16

31

))

= (4, 1, 2, 1, 1, 1).

Note 4.2. Thanks to Lemma 3.3, we know that a profile satisfies si+1 > si + ci.
Thus, at each step of the previous algorithm, the s′i are positive integers, so that one
indeed gets an integer composition in the end.

Moreover, before adding ones at the end of I, one easily checks that I was a
composition of sk + ck so that I itself is a composition of n.

The map C is easily inverted:

Lemma 4.3. Let I = (i1, . . . , ik) be a composition of n. Define a map C ′ by

(101) C ′(i1, . . . , ik) =

(

d1 . . . dk

i1−1 . . . ik−1

)

,

removing the biletters when the bottom letter is 0 and where dj = 1 + i1 + · · ·+ ij−1.
Then C ′ is the inverse map of C.
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For example, with I = (4, 1, 2, 1, 1, 1), one gets D = (1, 5, 6, 8, 9, 10), so that C ′(I) =
(

16
31

)

and
n = 4 + 1 + 2 + 1 + 1 + 1 = 10.

It will be useful to represent I as a sequence of dots separated by bars, such as

(102) (4, 1, 2, 1, 1, 1)⇐⇒ ....|.|..|.|.|.
On this representation, one easily reads C ′(I), and also the lexicographically minimal word u with
profile C ′(I): write an integer equal to the position of the beginning of the block on each dot that
is not immediately followed by a bar. On the example, we get

(103) Afirsteasybutnotverysatisfactoryexplanationgoesasfollows....|.|..|.|.|. =⇒ 111.|.|6.|.|.|.

which indeed encodes
(

16
31

)

and also its minimal word 1116.

Proof – By induction on the number of biletters of p. Let I = Cn(p). If the first
part of I is not 1, then we had s1 = 1, its number of occurrences c1 being exactly
i1 − 1 by definition, so C ′ records the correct biletter at the beginning of its image.
The inductive definitions of the s′ and the d are shifted in the same way from I to
I ′, which ensures that C ′(I ′) is the remaining part of p by induction.

If I begins with a 1, then s1 was not 1 and d1 = 1 appears through C ′ with a 0
at its bottom, so the biletter does not appear in C ′(I). As before, the s′ and the d
change in the same way from I to I ′, so C ′(I ′) will translate as p by induction.

Now, given a parking biprofile p =
(

s

c

)

, q =
(

t

d

)

, we map it to a pair of compositions
by computing Cn(p) and Cn(q) with n = 1 + c1 + · · ·+ ck + d1 + · · ·+ dℓ. Let us also
denote this map by C. Note that condition (88) ensures that n is greater than both
sk + ck and tℓ + cℓ so the map is well-defined and we get two compositions of n.

For example,

(104) C

((

269

221

)

,

(

16

31

))

= ((1, 3, 1, 3, 2), (4, 1, 2, 1, 1, 1)) .

Definition 4.4. A pair of compositions is compatible if it is in the image of C, that
is, the image of a parking biprofile.

Note 4.5. Both I and J are compositions of the same integer n. Moreover, the
number of parts of I is n − (c1 + · · · + ck) whereas the number of J is accordingly
n− (d1 + · · ·+ dℓ), so that their total number of parts is n+ 1.

Not all pairs satisfying this condition are compatible, but we shall see that I and
its mirror conjugate Ī∼ always are.

Lemma 4.6. A pair of compositions (I, J) of the same integer n is compatible iff their
total number of parts is n+ 1 and if the word z obtained by sorting the concatenation
of the descent sets of I and J satisfies zℓ ≥ ℓ for all its values.

For example, given the pair I = (1, 3, 1, 3, 2) and J = (4, 1, 2, 1, 1, 1), the concatenation of their
descents is [1, 4, 4, 5, 5, 7, 8, 8, 9] and it satisfies the conditions of the statement.

As a counterexample, consider the pair I = (1, 2, 1, 1, 2) and J = (2, 1, 4). The sorted concatena-

tion of their descents is [1, 2, 3, 3, 4, 5] and z4 = 3 < 4 so that it does not satisfy the conditions of

the statement and indeed, uv = 261444 has only two letters smaller than or equal to 3.
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Proof – We shall analyse the way in which the action of C ′ on uv depends on z. To
this aim, we shall represent a pair of compositions by two sequences of dots separated
by bars.

If zℓ ≥ ℓ, there are at most ℓ− 1 bars among the (ℓ− 1) first dots in the encodings
of both I and J . So there are at least 2ℓ − 2 − (ℓ − 1) = ℓ − 1 values smaller than
ℓ− 1 in uv, and the parking constraint is fulfilled for ℓ− 1.

So, if zℓ ≥ ℓ for all ℓ, then C ′(I, J) is a parking function.
Conversely, if some zℓ < ℓ, consider the smallest one zk. Then, zk−1 was at least

k − 1 but since the word z is weakly increasing, we must have zk−1 = zk = k − 1. In
other words, both compositions I and J have a bar after k − 1 dots and there are
also k − 2 bars in total to the left of both these bars. So among the k − 1 dots on
both lines of I and J , exactly (2k − 2) − k = k − 2 do not have a dot immediately
after them. Moreover, all the dots after the k-th dot cannot be decodes as a value
strictly smaller than k since both I and J have blocks beginning at position k − 1.
So there are exactly k− 2 values smaller than k− 1 in uv and so uv is not a parking
function.

At this point, we have mapped bijectively the parking biprofiles to particular pairs
of compositions, and provided a characterization of thoA first easy but not very
satisfactory explanation goes as followsse. We can now use these results to provide
an alternative description of the coproduct of Gn.

Lemma 4.7. Through the bijection C, the map sending a parking biprofile to Gc⊗Gd

translates as the map sending a pair of compositions (I, J) to Gi1−1,...,ir−1⊗Gj1−1,...,jr−1

and removing the zeroes.

Proof – Immediate by definition of C.

Here follows the whole list of compatible pairs of compositions of size 4:

(4, 1111), (31, 211), (31, 121), (31, 112), (22, 211), (22, 121), (211, 31),

(211, 22), (211, 13), (13, 211), (121, 31), (121, 22), (112, 31), (1111, 4).
(105)

and one can then check the expression of G3 of (97) by sending each composition I to Gi1−1,...,ir−1.

Note 4.8. We shall provide in the Appendix (Section 7) a meaningful bijection
proving that pairs of compositions are enumerated by Catalan numbers but we can
provide a very simple but dumb one that also proves that: given a pair (I, J) of n
of respective descent sets (d1, . . . , dk) and (d′1, . . . , d

′
ℓ), sort the word w given by the

concatenation of the 2 ∗ di− 1 with the 2 ∗ d′i and the value 2n− 1. Now compute w′

where w′
n+1−i = n+ i− wi.

This is a bijection from the pairs of compositions to their image set since both
set are easily revertible. And it is an exercice to check that w′ is a nondecreasing
parking function and conversely that any parking function gives rise to a valid pair
of compositions.

Given the pair (13132, 412111), one gets the descents sets (1, 4, 5, 8) and (4, 5, 7, 8, 9) hence the
word

(106) w = 1, 7, 8, 9, 10, 14, 15, 16, 18, 19 and w′ = 1, 1, 2, 2, 2, 5, 5, 5, 5, 10
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that is indeed a nondecreasing parking function.

4.2. From pairs of compositions to noncrossing partitions.

4.2.1. Noncrossing partitions and permutations. Recall that a noncrossing partition
π can be interpreted as a permutation wπ whose cycles are the blocks of π read in
increasing order. The right Kreweras complement [14] π′ = K(π) can then be defined
as the noncrossing partition such that wπ′ = w−1

π γn, where γn = (123 . . . n) is the
canonical long cycle. The permutations wπ are called noncrossing permutations.

For example, given the noncrossing partition π,

(107) π =

1 2 3 4 5 6 7 8 9

we get

(108) wπ = [(1, 5, 7)(2, 3, 4)(8, 9)] = [5, 3, 4, 2, 7, 6, 1, 9, 8]

so that

wπ′ = [7, 4, 2, 3, 1, 6, 5, 9, 8].[2, 3, 4, 5, 6, 7, 8, 9, 1]

= [4, 2, 3, 1, 6, 5, 9, 8, 7] = [(1, 4)(5, 6)(7, 9)]
(109)

and π′ is

(110) π′ =

1 2 3 4 5 6 7 8 9

The canonical ordering of a permutation is the list of its cycles in increasing order
of their minimal elements.

4.2.2. Planar binary trees and the Kreweras complement. There are many bijections
between noncrossing partitions and binary trees. But actually, on a binary tree t,
one can directly read two noncrossing partitions π′, π′′.

Let ϕ be the map sending a tree T to a pair (π′, π′′) as follows : label the nodes of
T in infix order, so as to obtain a binary search tree:

(111) •

• •

• • •

• • •

• •

•

6

2 12

1 3 10

5 7 11

4 9

8
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Then the blocks of π′ are the sets of labels of the left branches of T :

(112) π′ =
1 2 3 4 5 6 7 8 9 10 11 12

and the blocks of π′′ are those of its right branches:

(113) π′′ =
1 2 3 4 5 6 7 8 9 10 11 12

.

Both π′ and π′′ are obviously noncrossing partitions. Moreover, if one traverses the
tree in infix order and records the labels of each branch the first time it is encountered
(that is, by its smallest value), both partitions π′ and π′′ come up with their canonical
ordering. It is also easy to see that ϕ is also bijective since one can easily rebuild T

from either π′ or π′′. This means that one of the elements should be fully recoverable
from the other, or, in other words, that they have a direct link with one another, and
indeed:

Interpreting π′ and π′′ as permutations,

(114) π′ = [(126), (3), (4, 5), (7, 10, 12), (8, 9), (11)] = [2, 6, 3, 5, 4, 1, 10, 9, 8, 12, 11, 7]

and

(115) π′′ = [(1), (2, 3, 5), (4), (6, 12), (7, 9), (8), (10, 11)] = [1, 3, 5, 4, 2, 12, 9, 8, 7, 11, 10, 6]

and one can check that

(116) π′π′′ = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1]

so that π′′ is the right Kreweras complement of π′.

It is easy to see that this is true in general:

Lemma 4.9. Let T be a binary tree and let ϕ(T ) = (π′, π′′). Then π′′ is the right
Kreweras complement of π′.

Proof – The property holds for trees with at most 2 nodes and also for trees with no
right or left branches since in these cases, either π′ or π′′ is the cycle γn and the other
is the identity.

Assume by induction that the property holds for trees with at most n − 1 nodes.
Let T be a tree whose left subtree TL has k−1 nodes and whose right subtree TR has
n − k nodes. Its root has therefore label k. By induction hypothesis (or the special
case mentioned above), the product of the cycles of the tree T ′

L with root k, left
subtree TL and an empty right subtree is the cycle σ′

1 = (1 · · · k− 1k). Similarly, the
product of the cycles of the tree T ′

R with root k, empty left subtree and right subtree
TR is σ′

2 = (k k + 1 · · ·n). The complete product is therefore σ′
1σ

′
2 = (12 · · ·n).

Note 4.10. Lemma 4.9 amounts to saying that, inside a binary search tree, one gets
from the position of i to the position of i+ 1 modulo its number of nodes by

• moving one step down its right branch (and cycling if i is at the bottom of
it),
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• moving then one step up its left branch (and cycling if it is at the top of it).

This property is easily checked, and provides an alternative proof of the lemma.

4.2.3. From trees and permutations to pairs of compositions. As we have seen, reading
the left branches and the right branches in infix order, the blocks of the partitions
come naturally ordered with respect to their minima in increasing order, so that the
compositions recording their lengths are the ordered types of π′ and π′′.

It turns out that the tree T , and therefore π′ and π′′ can be unambiguously recon-
structed from this pair of compositions.

Theorem 4.11. Let t(π) denote the ordered type of a noncrossing partition. The
map

(117) τ : π 7→ (t(π), t(K(π))

is injective.

The map τ goes from a noncrossing partition to a pair of compositions. Since one
can easily go from a noncrossing partition to a tree, we shall also write τ as the map
sending a tree to a pair of compositions and it is that map, sending a tree T to the
lengths of the ordered types of ϕ(T ), that we will prove injective.

Let us consider the following backwards algorithm:

Algorithm 4.12. Input: a pair of compositions I = (i1, . . . , ir) and J = (j1, . . . , js)
obtained as the ordered lengths of the respective left and right branches of a tree.
We shall build a tree one branch at each step. When gluing a branch on a node,

mark this node.
Create a left branch of i1 nodes. Then glue a right branch of j1 nodes at the first

unmarked node in infix order (in that case, it is the leftmost node since no one was
marked yet).
Then move to the first unmarked node in infix order, which can be either a left or

a right child (if it is the root, consider it as a left child), and create a new branch in
the opposite direction ( e.g., right if it is a left child) of the corresponding size, using
the next unused part of I or of J depending on the direction. Iterate until there are
no unmarked nodes left.

An example of this algorithm with I = 312321 and J = 1312212 is given on Fig. 1. Note that

when a part is 1, we just mark the leftmost node and add no new node.

Proposition 4.13. If I and J are the ordered lengths of the left and right branches
of a tree T , then Algorithm 4.12 rebuilds T from I and J .

Proof – Let T be a tree and let τ(T ) = (I, J).
Apply Algorithm 4.12 to I and J . We shall prove by induction that after step k the

partial tree is exactly the tree T ′ consisting of the first k left and/or right branches
of T .

This is true at steps k = 0 and k = 1. Assume that this is true until step k and
add a new (left or right) branch to T ′ as described in Algorithm 4.12. Let T ′′ be
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∅ i1−→ j1−→ j2−→ i2−→ i3−→ j3−→

j4−→ i4−→ j5−→ i5−→

j6−→ j7−→ i6−→

Figure 1. Algorithm 4.12 applied to the image of the tree in Equa-
tion (111). Unmarked nodes are white.

the resulting tree. Note that if T ′ is not equal to T , there are necessarily unmarked
nodes so that step k + 1 is well-defined.

By construction, this branch has been added to the leftmost unmarked node x in
infix order. By definition of this order, all marked nodes strictly before x will all be
read in the same order as in T ′, all read before x and its added branch. So the first
k+ 1 branches associated with T ′ are the first k branches of T followed by the added
new branch.

Proof – [of the theorem] Thanks to Lemma 4.13, the map τ from binary trees to pairs
of compositions induces a bijection with its image set.

We finally need to characterize the image set of τ .

Lemma 4.14. Let T be a tree and τ(T ) = (I, J).
Then I and J are compatible in the sense of Definition 4.4.

Proof – First of all, it is well-known that if π′ and π′′ satisfy π′π′′ = γn and ℓ(π′) +
ℓ(π′′) = n, then their total number of cycles is n + 1. So I and J , being the images
of two such permutations have a total of n descents.

Now, let us consider two compositions I and J whose total number of descents is
n. Sort these descents, and let d = d1 . . . dn be the corresponding word. Either they
satisfy the criterion or there is a smallest value k such that dk < k. Since dk−1 ≥ k−1,
both dk−1 = dk = k − 1 and I and J both have a descent in k − 1.

Let I ′ = (i1, . . . , ik1) and J ′ = (j1, . . . , jk2) be the prefixes of I and J such that
i1 + · · ·+ ik1 = j1 + · · ·+ jk2 = k− 1. Then I ′ and J ′ are both compositions of k− 1
whose total number of descents is k − 2, since we do not take into account their last
descent. Moreover, their own descents are the first dks so I ′ and J ′ are compatible.
By induction, they correspond therefore to a tree T ′.
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Let us no apply Algorithm 4.12 to I and J . Since the algorithm proceeds step
by step, if it used part ik1+1 or part jk2+1 before going through I ′ and J ′ fully, the
algorithm would have failed on the pair (I ′, J ′), which is not the case. So it ends
with T ′ at this exact step, there is no unmarked node left and the algorithm stops.

So, by induction, the algorithm fails if I and J are not compatible. Since we know
that the algorithm succeeds with the images of the binary trees, it means that the
image set of τ is included in the set of compatible pairs of compositions. But both
sets are Catalan sets (see Notes 3.7 and 4.8) so they coincide.

4.2.4. Conclusion of the proof of Theorem 1.2. We have succesfully expressed ∆Gn as
a sum over parking biprofiles Gc⊗Gd, then mapped parking biprofiles to compatible
pairs of compositions, and proved that such pairs record the ordered lengths of left and
right branches of binary trees. Such pairs of compositions in turn coincide with the
reduced types of (π,K(π)) for π ∈ NCn+1. This concludes the proof of Theorem 1.2.

Note 4.15. On the interpretation of ∆gn in terms of noncrossing partitions and
their Kreweras complement, it is not apparent that ∆ is cocommutative, since this
operation is not an involution. It would then be interesting, given a noncrossing
partition π of [n + 1] of reduced ordered type I whose Kreweras complement π′ has
reduced ordered type J , to build a noncrossing partition π′ of [n + 1] of reduced
ordered type J whose Kreweras complement π′ has reduced ordered type I.

The known involutions on noncrossing partitions, iterations of Kreweras and the
same up to reversal defined by Simion and Ullman in [22], do not have this property.

For example, with I = (4, 1, 1, 1, 2, 2, 1) and J = (3, 1, 3, 1, 2, 2), the map would exchange

(118) p := [4, 2, 3, 5, 9, 6, 8, 7, 1, 12, 11, 10] and p′ := [7, 2, 4, 5, 3, 6, 8, 1, 12, 11, 10, 9]

of respective cycles
(119)
c0 = [(1, 4, 5, 9), (2), (3), (6), (7, 8), (10, 12), (11)] and c′0 = [(1, 7, 8), (2), (3, 4, 5), (6), (9, 12), (10, 11)]

whose Kreweras complements have as cycles
(120)
c1 = [(1, 2, 3), (4), (5, 6, 8), (7), (9, 12), (10, 11)] and c′1 = [(1, 2, 5, 6), (3), (4), (7), (8, 12), (9, 11), (10)].

5. Coproduct of gn in the commutative case

The calculation of ∆gn is easier in the commutative case. We have seen in Lemma 4.9
that one can read a noncrossing partition π and its Kreweras complement on a binary
tree. This information is enough to compute the coproduct of g(X).

Indeed, g(X + Y ) satisfies the functional equation

g(X + Y ) = σg(X+Y )(X + Y ) = σg(X+Y )(X)σg(X+Y )(Y )(121)

=
∑

p≥0

hp(X)g(X + Y )p
∑

q≥0

hq(Y )g(X + Y )q,(122)
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i.e., the right-hand side factorizes. This is not true anymore in the noncommutative
case, and we had to rely upon a different argument, based on the possibility to
reconstruct π and K(π) from their ordered types.

In the commutative case, we shall show that this equation coincides with that
of the generating series of binary trees by lengths of the left and right branches.
The argument is similar to the one used by Goulden and Jackson in their proof
of Macdonald’s formula for the top connexion coefficients [9, 10]. This provides an
alternative (and simpler) proof of the result of [7].

For a binary tree t, set

(123) w(t; u, v) =
∏

ℓ∈L(t)

ue(ℓ)
∏

r∈R(t)

ve(r) ,

where L(t) and R(t) are respectively the sets of left and right branches of t, and e(b)
denotes the number of edges in a branch b (with the convention u0 = v0 = 1).

For example, we have w(t;u, v) = u2
2u

2
1 · v2v31 on the following tree

(124)

Let W be the generating series

(125) W (u, v) =
∑

t∈BT

w(t; u, v) = 1 + u1 + v1 + u2 + 3u1v1 + v2 + · · ·

Denote by tL and tR the left and right subtrees of t, and let U, V be the generating
series of the trees whose right (resp. left) subtree is empty:

(126) U =
∑

tR=∅

w(t; u, v), V =
∑

tL=∅

w(t; u, v).

These series satisfy the system

(127)



















V =
∑

n≥0

vnU
n

U =
∑

n≥0

unV
n,

and classifying trees by length of the left branch of the root, we can write

(128) W = V + u1V
2 + u2V

3 + u3V
4 + · · · = UV.

Recall that the commutative symmetric Lagrange series solves the equation

(129) t =
u

σu(X)
⇐⇒ u = tg(t;X) =

∑

n≥0

gn(X)tn+1.

If in (127) we set un = gn(X) and vn = gn(Y ), the system becomes, multiplying the
first equation by U and the second one by V
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(130)



















UV =
∑

n≥0

gn(Y )Un+1

UV =
∑

n≥0

gn(X)V n+1,

whence

(131) UV = Ug(U ;Y )⇔ U =
UV

σUV (Y )
⇔ V = σUV (Y )

and similarly

(132) UV = V g(U ;X)⇔ V =
UV

σUV (X)
⇔ U = σUV (X)

Therefore,

(133) W = UV = σUV (X + Y )

which is precisely the functional equation of ∆g.
This proves Equation (98).

6. Application to the reduced incidence Hopf algebra of

noncrossing partitions

In the commutative case, the calculation of ∆gn and gn(−X), of which we have
given new proofs, have important applications to the combinatorics of noncrossing
partitions. Although the results of this Section are known, it seems appropriate to
take the opportunity of giving a streamlined account of the theory in the light of the
previous considerations.

The reduced incidence Hopf algebra HNC of the hereditary family of lattices NCn

is the vector space spanned by isomorphism classes of intervals of the NCn for n ≥ 1.
The order is defined by π ≤ π′ if π is finer than π′. The minimal element 0n is
the partition into singletons, and the maximal element 1n is the partition with one
block. As is well-known [24], any such interval is isomorphic to a Cartesian product
of complete lattices NCk. An interval [0n, π] is isomorphic to

∏

B∈π NC|B|, and an
interval [π,1n] is isomorphic to [0n, K(π)]. Finally, if σ = {B1, . . . , Br}, [π, σ] is
isomorphic to

∏

i[π ∩ Bi,1Bi
].

The product ofHNC is the Cartesian product. Thus, HNC is the polynomial algebra
on the variables yn = [NCn+1], and the coproduct is defined as

(134) δyn =
∑

π∈NCn+1

[0n+1, π]⊗ [π,1n+1].

One of the main results of [7] shows that yn 7→ gn(−X) is an isomorphism of Hopf
algebras from HNC to Sym. This is precisely what we have just proved (using gn(X)
instead) by a different method.

Another result of [7], which has been reproved by a different method in [6] is
equivalent to the computation of the antipode gn(−X) in Sym. It is implied by
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our calculation of g(−A) (in [7] the coefficients are interpreted as counting poly-
gon dissections, but our formula is cancellation-free as well, and produces the same
coefficients).

It should be noted that these calculations imply a great deal of classical results
about noncrossing partitions. In particular, the multiplicative functions on noncross-
ing partitions are the characters of HNC. Such a function φ is completely determined
by its values an = φ(yn) on the generators.

Using the above isomorphism, we can set yn = gn, and φ is entirely determined by
the formal series (the Nica-Speicher Fourier transform [16])

(135) Φ(t) = φ(g(t)) =
∑

n≥0

ant
n.

Since g(t) =
∑

n≥0 t
nhng(t)n, we have

(136) Φ(t) =
∑

n≥0

tnφ(hn)φ(g(t))n =
∑

n≥O

αnt
nΦ(t)n, with αn = φ(hn).

Let ψ be another multiplicative function such that ψ(gn) = bn and ψ(hn) = βn, and
Ψ(t) = ψ(g(t)). Their convolution η = φ ⋆ ψ is determined by

H(t) = φ ⋆ ψ(g(t)) = (φ⊗ ψ)∆g(t))(137)

=

(

∑

k≥0

αkt
kH(t)k

)(

∑

ℓ≥0

βℓt
lH(t)ℓ

)

(138)

=
∑

n≥0

tn

(

∑

k+ℓ=n

αkβℓ

)

H(t)n.(139)

Thus, convolution corresponds to the ordinary product of formal series

(140) φ̂(t) =
∑

n≥0

αnt
n, ψ̂(t) =

∑

n≥0

βnt
n, η̂(t) = φ̂(t)ψ̂(t) =

∑

n≥0

γnt
n

since H(t) satisfies

(141) H(t) =
∑

n≥0

γnt
nH(t)n.

As an illustration, the Möbius function of the NCn+1 is the convolution inverse
of the ζ function, which is defined by ζ([σ, π]) = 1 if σ ≤ π and 0 otherwise. It is
therefore characterized by ζ([0n+1, 1n+1]) = ζ(yn) = 1.

If ζ(hn) = αn, then

(142) Z(t) =
1

1− t =
∑

n≥0

ζ(hn)tnZ(t)n =
∑

n≥0

αn

(

t

1− t

)n
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yields ζ̂(t) = 1 + t. Hence,

(143) µ̂(t) =
1

1 + t
and M(t) =

1

1 + tM(t)
,

so that

(144) M(t) =
−1 +

√
1 + 4t

2t
.

One can also count intervals and multichains. Set ζk = ζ⋆k. Then, ζ̂k(t) = (1 + t)k.
Hence Zk(t) satisfies

(145) Zk(t) = (1 + tZk(t))k,

or alternatively

(146) Xk(t) = 1 + tXk(t)k with Xk(t) = 1 + tZk(t),

and we recover the fact that multichains of length k are in bijection with (k+ 1)-ary
trees [5].

In [4], Edelman obtains a formula for the number of chains with prescribed ranks
0n+1 < π1 < . . . < πr < πr+1 = 1n+1. To derive it, one can compute

(147) ψ := ϕu1 ⋆ ϕu2 ⋆ · · · ⋆ ϕur+1 ,

where ϕu(gn) = un. Then, ϕ̂u(t) = 1 + tu and

(148) ψ̂(t) = (1 + tu1)(1 + tu2) · · · (1 + tur+1) = λt(U).

Lagrange inversion yields

(149) ψ(gn) =
1

n+ 1
en[(n+ 1)U ]

and extracting the coefficient of a monomial, we obtain the number of chains such
that rk(πi)− rk(πi−1) = si is equal to

(150)
1

n+ 1

(

n+ 1

s1

)(

n+ 1

s2

)

· · ·
(

n+ 1

sr+1

)

.

This is

(151)
1

n+ 1
[us11 u

s2
2 · · · usr+1

r+1 ]λ1[u1 + · · ·+ ur+1]
n+1

which is equal to the coefficient of mµ in ω(g), where µ is the partition obtained by
reordering the si, i.e., to the scalar product 〈eµ, g〉.

This last expression can be interpreted in terms of the Farahat-Higman algebra.
Let cµ be the dual basis of gµ in Sym (i.e. cµ(−X) is what is denoted by gµ in
Macdonald’s book [15, Ex. 24-25, p. 131-133]). Then, the elementary symmetric
functions are

(152) ek =
∑

κ⊢k

cκ.
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Indeed,

(153) 〈ek, gκ〉 =
∏

i

eκi
[κi + 1]

κi + 1
= 1

for all κ ⊢ k. Thus, it represents the sum of all permutations which can be writ-
ten as a minimal product of k transpositions. Identifying NCn+1 with the interval
[idn+1, (12 · · ·n + 1)] of the Cayley graph of Sn+1 as in [2], noncrossing partitions
are identified with the permutations lying on the minimal paths between the identity
and the full cycle, the rank being the transposition length. If µ = (s1, . . . , sr+1), the
scalar product 〈eµ, gn〉 is equal to the coefficient of cn in the product es1ss2 · · · esr+1 ,
hence to the number of factorisations of the full cycle into a product of permutations
minimally factorisable into s1, s2, . . . transpositions, that is, to the number of chains
of noncrossing partitions with the prescribed ranks.

As another example, since cn = Mn = pn, we can recover a result of Biane [2]:
the number of minimal factorizations of an n-cycle into a product of cycles of orders
a1, . . . , ar is the coefficient of cn−1 in the product ca1−1ca2−1 · · · car−1, that is,

(154) 〈pa1−1 · · · par−1, gn−1(X)〉 = 〈pa1−1 · · · par−1,
1

n
hn−1(nX)〉 = nr−1.

7. Appendix

7.1. Generating compatible pairs of compositions. Given a composition I, the
list of compositions J compatible with I can be computed as follows.

The composition whose descent set is the complement of the descent set of I is
Ī ,̃ the mirror conjugate of I. Then, since we required that the sorted concatenation
of the descent sets of I and J form a word greater componentwise than the sorted
concatenation of I and Ī∼, the J that are compatible with I are those obtained from
Ī˜ by iterating the following process: given C = (c1, . . . , cn), for any i > 1 such that
ci > 1, change C into C ′ by adding 1 to ci−1 and subtracting 1 to ci.

In particular, the set of compositions compatible with I is equipped with a natural
order, its top element being Ī˜ and its bottom element being (|I| − k + 1, 1k−1) if k
is the length of Ī .̃
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For example, with I = 321, its reverse conjugate is 1122 and the whole list of possibilities for J
contains 9 elements which can be drawn on the following diagram

(155) 1122

1212 1131

2112 1221

2121 1311

2211

3111

1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

7.2. Descent words and Motzkin paths. We have seen that the compatible com-
positions are those whose concatenation of descent sets are greater than 1 . . . n. The
map sending compatible compositions to such descent words is of course highly non
injective and its image set consists in the sorted words s such that si ≥ i, si ≤ n,
and no value can be taken more than twice. Let us denote by Sn this set of words.

For example, with n = 4, we get the word 123 eight times, and all other words 133, 223 and 233
twice each, for a total of 14. For general n, the number of pairs of compositions with a given word
s as image is obviously 2k where k is the number of values used only once in s. Moreover, if one
counts the number of words by their number of doubled letters (so that the first column is 1 and
represents s = 1 . . . n with no repeated letters), we find the following triangle:
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(156)

1
1
1 3
1 6 2
1 10 10
1 15 30 5
1 21 70 35
1 28 140 140 14

which is Sequence A055151 of [23], the triangular array of Motzkin paths of length n and with k up
steps.

In one wants to see how powers of 2 come into play, one has to represent the table as follows:

(157)

1
1

1 1
3 1

2 6 1
10 10 1

5 30 15 1
35 70 21 1

14 140 140 28 1

Here, column k corresponds to the number of words appearing 2k times. For example, the fifth line

reads 2 · 20 + 6 · 22 + 24 = 42.

We shall prove that Sn is indeed equinumerous with Motzkin paths, even with
the extra parameter introduced above, but it will be easier to work with the set S ′

n

defined as the image of Sn by the map

(158) w = w1 . . . wn 7→ (n+ 1− wn) . . . (n+ 1− w1).

The condition on the words of Sn translates in S ′
n as wi ≤ i, so that the wi are parking

functions. Now, the classical bijection between nondecreasing parking functions and
noncrossing partitions sends a noncrossing partition c to the nondecreasing word
where i appears as many times as the cardinality of the i-th part of c.

So S ′
n corresponds to the noncrossing partitions with parts at most 2. Read such

a noncrossing partition from left to right and draw an up step if we begin a part
with two elements, a down step if we close such a part, and a horizontal step if we
have a singleton. This is the natural bijection between these particular noncrossing
partitions and Motzkin paths. Moreover, the statistic of the number of repeated
letters is sent to the number of parts with two elements in the noncrossing partition,
and then to the number of up steps in the Motzkin path.

We then have

Proposition 7.1. The set S ′
n and Motzkin paths Mn of n are equinumerous and the

statistic of the number of repeated letters in S ′ corresponds to the number of up steps
in Mn.
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For example, here is the whole of sublist S5 consisting in words with two pairs of repeated letters

(10 elements) and their successive images by the bijections.

34455 ←→ 11223 ←→ 1 2 3 4 5 ←→

24455 ←→ 11224 ←→ 1 2 3 4 5 ←→

14455 ←→ 11225 ←→ 1 2 3 4 5 ←→

33455 ←→ 11233 ←→ 1 2 3 4 5 ←→

22455 ←→ 11244 ←→ 1 2 3 4 5 ←→

23355 ←→ 11334 ←→ 1 2 3 4 5 ←→

13355 ←→ 11335 ←→ 1 2 3 4 5 ←→

22355 ←→ 11344 ←→ 1 2 3 4 5 ←→

33445 ←→ 12233 ←→ 1 2 3 4 5 ←→

22445 ←→ 12244 ←→ 1 2 3 4 5 ←→

(159)

Following [23], there is a simple formula for |Sn,k|, the number of elements of
Sn with k repeated values: |(Sn,k)| =

(

n

2k

)

Ck, so that the cardinality of the set of
compatible pairs of compositions is

(160)
∑

k≥0

2n−2k

(

n

2k

)

Ck = Cn+1,

thanks to Touchard, cited by several authors on the Catalan webpage of [23]. So
we have proved by a simple and meaningful bijection that indeed ∆Gn has Catalan
terms.
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operads, Advances in Applied Mathematics 88 (2017), 92–119.

[14] G. Kreweras, Sur les partitions non croisées d’un cycle (French), Discrete Math. 1 (1972),
333–350.

[15] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press,
1995.

[16] A. Nica, R. Speicher, A “Fourier transform” for multiplicative functions on noncrossing par-
titions, J. Algebraic Combin. 6 (1997), 141–160

[17] J.-C Novelli, J.-Y. Thibon, Noncommutative symmetric functions and Lagrange inversion,
Adv. Appl. Math. 40 (2008), 8–35.

[18] J.-C. Novelli, J.-Y. Thibon, Duplicial algebras and Lagrange inversion, arXiv:1209.5959.
[19] J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking

functions, Advances in Applied Mathematics 117 (2020) 102019.
[20] J.-C. Novelli, J.-Y. Thibon, Hopf algebras and dendriform structures arising from parking

functions, Fund. Math. 193 (2007), 189–241.
[21] G. N. Raney, Functional composition patterns and power series reversion, Trans. Amer. Math.

Soc. 94 (1960), 441–451.
[22] R. Simion, D. Ullman, On the structure of the lattice of noncrossing partitions, Disc. Math.

98 (1991), 193–206.
[23] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,

http://www.research.att.com/ njas/sequences/.
[24] R. Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolu-

tion, Math. Ann. 298 (1994), 611–628.



NONCOMMUTATIVE SYMMETRIC FUNCTIONS AND LAGRANGE INVERSION II 35

Laboratoire d’Informatique Gaspard Monge, Université Gustave Eiffel, CNRS,
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