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Optical Control of Cardiac Rhythm by In Vivo 
Photoactivation of an ERG Channel Peptide 
Inhibitor
Jérôme Montnach , Hugo Millet , Antoine Persello , Hervé Meudal , Stephan De Waard , Pietro Mesrica , Barbara Ribeiro ,  
Jérémie Richard, Agnès Hivonnait, Agnès Tessier , Benjamin Lauzier , Flavien Charpentier , Matteo E. Mangoni ,  
Céline Landon , Chris Jopling , Michel De Waard

Cardiac rhythm, conduction, and electrical activity 
synchronization require the coordinated action of 
several ion channel types that differ according to 

the transmural and regional specificities. Classical phar-
macology affects these channels in a nonregionalized 
way, which explains the limited efficacy in treating focal-
ized arrhythmias in addition to negative side-effects on 
nontargeted organs. Through spatio-temporal control of 
channel activity by light, optogenetics and photopharma-
cology are promising approaches to solve the selectivity 
and temporal issues in treating arrhythmias. While con-
vincing reports illustrate the power of optogenetics for 
terminating arrhythmias,1 this approach is irreconcilable 
with clinical applications because genetic modification 
of the heart are required to express photosensitive ion 
channels. In contrast, photopharmacology counteracts 
the negative aspects of classical pharmacology and 
optogenetics by restricting drug activity in a spatio-tem-
poral manner.2 As previously described, photoactivatable 
caged peptides are engineered by grafting a UV-pho-
tocleavable o-nitroveratryloxycarbonyl protecting group 
(the cage) onto an amino-acid key for channel interac-
tion3 (Figure [A]). Caged natural peptides are advanta-
geous because small quantities can be used in vivo owing 
to the high target affinity of the uncaged compounds and 
the preservation of the pharmacokinetics, thanks to lim-
ited peptide size modification. Here, a caged version of 
BeKm-1, a natural ether-a-go-go-related gene channel 

peptide inhibitor, was used to regulate heart activity. 
Caged-BeKm-1 was produced by addition of o-nitrove-
ratryloxycarbonyl to the lateral chain of K18 because it 
is key for BeKm-1/hERG (human ether-a-go-go-related 
gene) interaction.4 According to docking modeling and 
nuclear magnetic resonance analyses, o-nitroveratry-
loxycarbonyl induces severe van der Walls steric clashes 
with hERG and chemical rearrangements in the lateral 
chains of K18-surrounding amino-acids within BeKm-1 
pharmacophore, all factors diminishing peptide activity. 
As a result, caged-BeKm-1 no longer inhibits hERG K+ 
currents in human embryonic cells (HEK293) at 0.1 to 
100 nmol/L concentrations at which noncaged BeKm-1 
is highly potent, while production of uncaged-BeKm-1 
by 365-nm illumination restores peptide potency (non-
caged BeKm-1: concentration providing 50% inhibi-
tion [IC50]=1.6 nmol/L; caged-BeKm-1: IC50=3847 
nmol/L; uncaged-BeKm-1: IC50=1.5 nmol/L; Figure 
[A]). In acute experiments, 100 nmol/L caged-BeKm-1 
has no effect on hERG K+ currents, whereas a 3-min-
ute illumination at 365-nm (45 mW/cm²) produces a 
gradual inhibition (Figure [B]). Photoactivation of caged-
BeKm-1 was investigated on human iPS-derived cardio-
myocytes, dynamically clamped at −80 mV and paced at 
1000-ms cycle length. The 200 nmol/L caged-BeKm-1 
has no effect on action potential duration at 90% 
repolarization (action potential duration90: 279.1±47.2 
ms versus 276.7±44.9 ms), whereas caged-BeKm-1 
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photoactivation induces a significant 1.3-fold increase 
in both action potential duration70 (322.9±54.2 ms ver-
sus 256.7±46.9 ms) and action potential duration90 
durations (358.4±55.7 ms versus 279.1±47.2 ms). 
Uncaging of BeKm-1 also induces early afterdepolar-
ization in 47% of the cells (Figure [C]) demonstrating 
our ability to control hERG currents by UV-illumination 
in several cell models. Langendorff-perfused rat hearts 
were used to assess hERG channel control by illumina-
tion of caged-BeKm-1 in cardiac tissue. Perfusing 250 
nmol/L caged-BeKm-1 has minimal effects on inter-
beat intervals (IBIs), whereas a 3-minute illumination 
of the right atrium produces bradycardia (IBI increase: 
25.7±2.9 ms for uncaged-BeKm-1 versus 8.6±2.5 ms 
for caged-BeKm-1 compared with IBI before caged-
BeKm-1 perfusion; Figure [D]), indicating that caged-
BeKm-1 is photoactivatable in adult rat heart ex vivo. 
Next, based on ERG blockade bradycardic effects in 
zebrafish,5 we studied how photoactivation interferes 
with cardiac rhythm in vivo in zebrafish larvae. About 2 
nL of 50 µmol/L caged-BeKm-1 injected into larvae has 
no effect on IBI, whereas larvae illumination (365 nm, 3 
minutes) induces an increase in IBI (648.7±75.2 ms in 
illuminated condition versus 379.7±13.8 ms nonillumi-
nated one and 420.2±13.6 ms in control) and episodes 
of atrio-ventricular desynchrony in 7 of 11 larvae. As 
control, 2-hour white-light illumination of larvae injected 
with caged-BeKm-1 does not induce any functional 
effect (Figure [E]). Heart rhythm control by photophar-
macology was demonstrated in anesthetized rats under-
going right mini-thoracotomy, enabling visualization and 
illumination of the right atrium. Intravenous injection of 
350 µg/kg caged-BeKm-1 produces a minor effect on 
sinus rhythm with a ΔRR of 6.6±1.5 ms, while a 10-min-
ute UV-illumination with a 1-mm diameter light guide 
(365 nm, 75 mW/cm²) led to a final ΔRR of 15.9±2.9 
ms compared with control condition (Figure [F]). Thirty 
minutes after illumination, bradycardia further increased 
(final ΔRR of 54.2±9.3 ms versus control condition), 
indicating delayed in situ binding of uncaged-BeKm-1 
on cardiac ERG. Within this time frame, no reversibility 
was observed. These results highlight that cardiac heart 
rhythm can be controlled experimentally in mammals by 
peptide-based photoactivation in vivo.

In conclusion, this report demonstrates that photo-
pharmacology, using the caged peptide strategy, can 
be used for regulating cardiac electrical activity in vivo 
in a time-defined manner and that spatial illumination 
restriction dissociates the bradycardic effect from the 

arrhythmic one. This technology is applicable to other 
channels also involved in cardiac pacemaker activity 
such as G protein-activated K+, hyperpolarization-acti-
vated cyclic nucleotide-gated, Cav3.1, Cav1.3, and Nav1.1 
channels. Several candidate peptides exist (tertiapin Q 
for G protein-activated K+ channels and huwentoxin-IV 
for Nav1.13) that can be caged. Photoactivation of natu-
ral peptides will also help defining and outlining proar-
rhythmic cardiac areas with regard to the distribution of 
a given channel type.

All animal care and experimental procedures were per-
formed in animal facilities accredited by the French Minis-
try of Agriculture (APAFIS 34541-2022010310194375 
and APAFIS 4054-2016021116464098 v5). All data 
analyses were performed in a blinded manner.
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hERG human ether-a-go-go-related gene
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Figure. Cardiac optical control of ether-a-go-go-related gene (ERG) using photoactivatable BeKm-1 analogue.
A, Left: Schematic of the BeKm-1 uncaging process. Right: hERG (human ether-a-go-go-related gene) current recordings in human embryonic 
cells (HEK293) illustrating kinetics of current inhibition by incubation with 100 nmol/L noncaged (blue, n=46), caged- (orange, n=94) and 
uncaged-BeKm-1 (purple, n=180 cells). Average dose-response curves for hERG current inhibition. B, Left: hERG current recordings (Continued)
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Figure Continued. in control (black), after 100 nmol/L caged-BeKm-1 (orange) and after various illumination times (purple). Middle: 
Average normalized time course of hERG current before, during, and following light application (n=26 cells). Right: Quantification of current 
inhibition induced by illumination at steady-state. C, Left: Traces and quantification of action potential duration (APD) at 30%, 70%, and 90% 
(APD30, APD70, and APD90) repolarization from IK1-clamped human induced pluripotent stem cells (hiPS)-derived cardiomyocytes in control 
condition (CTL), after perfusion with 200 nmol/L of caged-BeKm-1 (caged) and after illumination (365 nm). Right: Occurrence of early 
afterdepolarizations ([EADs]; arrows) after BeKm-1 uncaging in hiPS-derived cardiomyocytes and percentages of cells displaying EADs. D, 
Left: Right atrium-focused illumination area in perfused rat heart. Middle: multielectrode array (MEA) recordings from the right atrium in control 
(black), after perfusion of 250 nmol/L caged-BeKm-1 (orange) and after uncaging (purple). Right: Quantification of light-induced increase in 
interbeat interval (IBI). E, Quantification of IBI in zebrafish larvae after injection of 50 µmol/L of caged-BeKm-1 (orange), or after additional 
3-min 365-nm (purple) or 2-hours white-light illumination (gray). Quantification of atrio-ventricular (A-V) desynchrony in the same larvae. F, 
Left: Illustration of the mini-thoracotomy and the illumination of the right atrium (arrow) in anesthetized rat. Middle: Electrocardiograms in 
control condition, after intravenous injection of 350 µg/kg caged-BeKm-1 (orange), after 10 minutes of illumination (purple) and additional 30 
minutes after end of illumination (gray). Right: Quantification of light-induced increase in RR interval in anesthetized rats. Data are presented as 
mean±SEM, and the number of samples are indicated. Statistical analyses were performed with Prism8 (GraphPad Software Inc.). P values are 
indicated and obtained by Friedman repeated measure ANOVA with Dunn’s multiple comparison tests (B, C left, and E left), Fisher exact test (C 
right and E right), and Wilcoxon test (D and F). SR indicates sinus rhythm.
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