
HAL Id: hal-04225360
https://hal.science/hal-04225360

Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rapid Prototyping of Complex Micro-architectures
Through High-Level Synthesis

Sara Sadat Hoseininasab, Caroline Collange, Steven Derrien

To cite this version:
Sara Sadat Hoseininasab, Caroline Collange, Steven Derrien. Rapid Prototyping of Complex Micro-
architectures Through High-Level Synthesis. ARC 2023 - 19th International Symposium on Applied
Reconfigurable Computing, Sep 2023, Cottbus, Germany. pp.19 - 34, �10.1007/978-3-031-42921-7_2�.
�hal-04225360�

https://hal.science/hal-04225360
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Rapid Prototyping of Complex
Micro-architectures Through High-Level

Synthesis

Sara Sadat Hoseininasab(B) , Caroline Collange, and Steven Derrien

Inria, Univ Rennes, CNRS, IRISA, Rennes, France
{sara-sadat.hoseininasab,caroline.collange}@inria.fr,

steven.derrien@irisa.fr

Abstract. Register-Transfer Level (RTL) design has been a traditional
approach in hardware design for several decades. However, with the grow-
ing complexity of designs and the need for fast time-to-market, the design
and verification process at the RTL level can become impractical. This
has motivated for raising the abstraction level in hardware design. High-
Level Synthesis (HLS) provides higher-level abstraction by automatically
transforming a behavioral specification of a circuit into a low-level RTL,
making it easier to design, simulate and verify complex digital systems.
HLS relies on static scheduled data paths which can limit its effective-
ness. This limitation makes it difficult to design the micro-architectural
features of processors from an Instruction Set Architecture described in
high-level languages. This work aims to demonstrate how the available
features of HLS can be deployed in designing various pipelined processors
micro-architecture. Our approach takes advantage of the capabilities of
HLS and employs multi-threading and dynamic scheduling techniques
to overcome the limitation of HLS in pipelining a processor from an
Instruction Set Simulator written in C.

Keywords: High-Level Synthesis · Pipelined Micro-architecture ·
Multi-threading

1 Introduction

Field-programmable gate arrays (FPGAs) are flexible devices that offer numer-
ous advantages for fast prototyping and evaluating complex designs, including
CPUs and multi-cores [15]. During the hardware design process, prototyping
serves as a crucial preliminary step to explore and evaluate designs before com-
mitting to the costly and time-consuming process of application-specific inte-
grated circuit (ASIC) design. This approach enables designers to swiftly evalu-
ate their designs on physical hardware, pinpoint any issues in the design process,
and address them early on, prior to finalizing them for ASIC implementation.

Designing an FPGA-based soft-core processor using Register-Transfer Level
(RTL) spans both software and hardware designs. First, the designer usually

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Palumbo et al. (Eds.): ARC 2023, LNCS 14251, pp. 19–34, 2023.
https://doi.org/10.1007/978-3-031-42921-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42921-7_2&domain=pdf
http://orcid.org/0009-0003-3407-944X
http://orcid.org/0000-0002-6281-083X
https://doi.org/10.1007/978-3-031-42921-7_2


20 S. S. Hoseininasab et al.

expresses the Instruction Set Architecture (ISA) execution model using pro-
gramming languages such as C/C++ to verify the functional correctness of the
processor. Then they develop the processor with its micro-architectural features
in Hardware Description Languages (HDLs) such as Verilog and VHDL for syn-
thesis which requires detailed digital design knowledge at a low abstraction level.
These two design steps are performed sequentially, resulting in a time-consuming
and challenging design flow and verification process, particularly for individu-
als lacking a background in hardware engineering. However, with the advent of
High-Level Synthesis (HLS), the design and verification steps can now be con-
ducted in parallel, thereby streamlining the process and enhancing its efficiency.
By increasing the abstraction level from RTL to the behavioral level in HLS,
software developers can also program FPGAs by focusing on their algorithm
rather than individual registers and cycle-to-cycle operations. HLS automati-
cally translates a design written in high-level languages (e.g., C/C++) into a
hardware description, making FPGA programming easier and accessible for all
developers, reducing the design time, facilitating design exploration and evalua-
tion, and simplifying debugging compared to the manual RTL [12].

The process of synthesizing a processor from a high-level programming lan-
guage involves expressing the behavioral description of the ISA as an Instruction
Set Simulator (ISS) model in C/C++ and utilizing the HLS tool to obtain the
hardware implementation. Although HLS works well with straightforward con-
trol flows, it encounters challenges when dealing with data-dependent control
flows [7]. As we will show in Sect. 2, current HLS tools cannot infer a fully
pipelined micro-architecture from this ISS. Since HLS relies on static scheduled
data paths, it conservatively considers dependencies on the program counter (pc)
and register file for all instructions and limits the performance to the worse-case
schedule data path. We will show in Sect. 4 how this work tackles the challenge
of designing pipelined micro-architecture of a processor.

This study serves as a use case to demonstrate the potential of HLS for
inferring the micro-architectural characteristics of processors from an ISS imple-
mented in C, with a particular focus on the RISC-V ISA. Our contributions are
outlined as follows:

– Exploiting automatic scheduling in HLS: We showcase the effective utilization
of the automatic scheduling feature offered by HLS, enabling the design of a
CPU without delving into the RTL implementation details.

– Designing various micro-architectures: We propose and implement vari-
ous classes of micro-architectures, including dynamic single-threaded, static
multi-threaded, dynamic multi-threaded, and multi-core designs.

– Performance and area evaluation: We thoroughly evaluate our designed micro-
architectures in terms of both performance and area metrics. Performance
assessment involves analyzing factors such as maximum clock speed (Fmax),
and Million Instruction Per Second (MIPS), while area evaluation includes
the examination of resource utilization on an FPGA.

The rest of the paper is organized as follows. Section 2 provides the necessary
background and the motivation of our work. We discuss related works in Sect. 3.



Rapid Prototyping of Complex Micro-architectures Through HLS 21

In Sect. 4, we dive into the details of our designs and implementations. The
experimental results and concluding remarks are presented in Sects. 5 and 6,
respectively.

2 Background and Motivation

A single-threaded in-order pipelined processor is a type of CPU that leverages a
pipeline to improve its performance by processing multiple instructions concur-
rently. The pipeline is single-threaded because it can only process instructions
from a single hardware thread (hart in RISC-V terminology). In case of two
consecutive instructions are dependent or require the same hardware resource
at the same time an hazard occurs, resulting in a delay or stall in the execution
of subsequent instructions. Designing the micro-architecture of this processor
at RTL level can be complex and challenging and requires careful attention to
ensure that all pipeline stages are well-coordinated.

2.1 Different Micro-architecture Design Tools

There are various methodologies for designing digital circuits, including HDL,
HLS and Hardware Construction Language (HCL). Using HDL, designers must
accurately describe the behavior of digital circuits using registers, logic gates
and other basic building blocks that operate on the data stored in the registers.
In addition, designers must introduce many of the performance and timing con-
straints in the design and carefully balance the trade-offs between performance,
area and power consumption. Designing process using HDL is time-consuming
and error-prone as it requires extensive manual coding and testing which can
lead to mistakes and delays.

On the other hand, HLS and HCL allows designers to describe the hard-
ware design at a higher level of abstraction than HDL. HLS achieves this by
enabling designers to describe hardware designs in C, C++, or SystemC, rais-
ing the level of abstraction and coping with design complexity [18]. HLS tools
then automatically translate this high-level code into low-level hardware descrip-
tion languages, resulting in faster design time, easier verification and simplified
DSE. In contrast to HLS which infers hardware from high-level software descrip-
tion, HCL allows designers to build complex hardware designs in a higher-level
programming paradigm [3], while operating at the same level as RTL. Chisel
as an HCL candidate allows designers to compose reusable components using
high-level constructs like object-oriented programming for describing the func-
tionality of a hardware [1]. However, prototyping and exploring different design
alternatives using Chisel is not straightforward and can be time-consuming.

Figure 1 illustrates the anticipated pipelined schedule derived from a vec-
tor addition example. Consider two arrays, namely A and B, both containing
three elements. The objective is to perform element-wise addition of Array A
with the corresponding elements of Array B, storing the results in Array D. The
pipeline approach enables concurrent execution of addition operations on differ-
ent elements. This figure also presents the code snippets in HLS, and RTL level



22 S. S. Hoseininasab et al.

necessary to achieve this scheduling. To achieve the desired scheduling using
HLS, the loop pipelining directive can be applied over a loop that iterates on
the size of the array, performing addition on the elements of arrays A and B.
The automatic pipeline scheduling feature provided by HLS facilitates the gen-
eration of the desired schedule. On the other hand, when working at RTL level,
it is necessary to carefully divide the various stages of the pipeline and describe
the operations that must be performed at each individual stage.

The complexity of designing vector addition at the RTL level, as shown in
Fig. 1, highlights the challenges and difficulties faced in designing the micro-
architecture of a processor at this level of abstraction. Although HCL provides
a higher level of design methodology compared to HDL, designers still need to
focus on the explicit description of micro-architecture and manage the pipeline
stages in their design, resulting in complicated hazard detection and resolution.

In summary, HLS technology presents several advantages over HDL and HCL
by increasing the level of abstraction. First, HLS can significantly reduce design
time by eliminating the need for manual coding of hardware descriptions, result-
ing in rapid prototyping and simulation. Second, HLS can enable designers to
explore multiple design options quickly and efficiently, allowing them to identify
the optimal design solution. Third, HLS can provide a more intuitive and easier-
to-understand design flow, allowing designers to focus on system-level behavior
rather than implementation details [14].

Fig. 1. The expected 3-stage pipeline schedule of vector addition.

2.2 HLS Limitation in Pipelining an Instruction Set Simulator

The code snippet displayed in Fig. 2 shows the ISS of an in-order single-threaded
processor. To boost the processor’s performance, a pipelined architecture can



Rapid Prototyping of Complex Micro-architectures Through HLS 23

Fig. 2. Static pipelining of a single-threaded processor by HLS

be constructed by utilizing the loop pipelining directive in HLS. The schedule
provided by HLS from this kernel as an input is depicted in this figure, where
each stage corresponds to the line(s) in the code with the same color.

Loop pipelining is a technique that allows for the execution of different
instructions to overlap, resulting in better throughput and ideally leading to
a new instruction commencing execution every cycle. However, the read-after-
write (RAW) dependency over the pc and the content of the register file presents
significant obstacles for generating a pipelined micro-architecture by HLS tools.
As demonstrated in the figure, HLS is unable to generate a fully pipelined micro-
architecture from a single-threaded ISS because of its reliance on static schedul-
ing and consideration of worst-case scenarios, where dependencies exist between
all two instructions in a row. Therefore, HLS has to increase the Initiation Inter-
val (II) - the number of cycles between the execution of two consecutive iterations
of a loop - to 4 in order to respect these dependencies.

Over the years, pipeline hazards have emerged as a major challenge in micro-
architecture design using HLS, significantly limiting the achievable throughput.
This work takes advantage of dynamic scheduling and hardware multi-threading
to handle the data dependencies in the pipeline.

3 Related Work

This section examines some of the approaches to tackle the challenges posed by
static pipelining in HLS. Furthermore, this section also explores relevant works
in dynamic multi-threading micro-architecture designs.

3.1 Deploying Speculative and Dynamic Techniques in HLS

Several recent researches focus on developing scheduling methods to address the
conservatism in static scheduling of HLS. Two such methods proposed by All et



24 S. S. Hoseininasab et al.

al. [2] and Dai et al. [6] involve introducing a mechanism for resolving pipeline
hazards at run-time, thus enabling pipelining of loops with dynamic data depen-
dencies. Josipović et al. [9] propose generating elastic data flow circuits that allow
for dynamic scheduled pipeline, which leads to increased throughput in scenar-
ios involving variable-latency operations or dynamic data dependencies. On the
other hand, [7] and [10] present works on speculative scheduling. Derrien et al. [7]
propose a mechanism for supporting control and memory speculation in static
loop pipelining. Their approach involves tracking all speculated data, which can
be discarded if a misspeculation occurs. Josipović et al. [10] incorporate spec-
ulation into data flow circuits by allowing parts of the circuit to execute with
speculated data, while also employing a rollback mechanism to switch back to
correct data when needed.

3.2 Pipelined CPU Designs Using HLS

In recent years, there have been several endeavors to generate pipelined proces-
sors using HLS. Researches such as those discussed in [16] and [13] concentrate
on exposing the pipeline and hazard detection unit at the C level to enhance per-
formance, necessitating coding that directly presents the pipeline stages. Addi-
tionally, a pipelined multi-threaded processor introduced in [8] using a similar
approach but it partitioned all arrays in design, such as register file, into the
registers in order to achieve II = 1. Moreover the design’s generality is limited,
as it can accommodate a maximum of 8 harts, and scaling it to support a larger
number of hart is a tedious task as it needs to adapt the hart scheduling unit at
every stage of the pipeline. All these approaches described the pipeline stages at
a programming level and forced HLS tool to adhere to this schedule, rather than
relying on its automatic scheduling. Despite their use of high-level languages,
they can be seen as RTL designs in disguise, with a level of complexity simi-
lar to RTL, as they require identification and handling of pipeline stages and
pipeline hazards.

3.3 Dynamic Hart Scheduling in Multi-threaded CPU and GPU

Many studies focus on dynamic hart scheduling in multi-threaded CPUs.
Notably, the research presented in [11] and [4] implement a dynamic hart sched-
uler that effectively switches to the next hart in case of long latency events, such
as a cache miss.

Simty [5] and Vortex [19] are two RTL-based GPU cores that employ a
dynamic scheduling methodology to effectively select a warp - a group of harts -
to proceed within their architectures. The adaptive warp scheduling enables the
GPU core to dynamically prioritize and schedule warps based on their readiness
for execution and available resources.

4 Proposed Approach

In this section, the aim is to demonstrate the feasibility and challenges of design-
ing an in-order pipelined processor at a higher level of abstraction by HLS.



Rapid Prototyping of Complex Micro-architectures Through HLS 25

Fig. 3. Instruction Set Simulator of a static multi-threaded processor with four harts

4.1 Static Multi-threaded RISC-V Core

Figure 3 represents the high-level description of a multi-threaded processor where
several harts (nh) are interleaved in a round-robin fashion at left and its cor-
responding schedule provided by HLS tool at right. This processor architecture
allows each hart to have a unique identifier (hid), as well as a private pc and
register file, which can support hardware multi-threading.

The round-robin scheduling of the harts means that switching to a different
hart at each cycle, eliminating the need for dependency checking on the register
file and branch prediction logic. Additionally, since the number of harts within
the core is greater or equal the pipeline’s depth, the processor does not fetch
an instruction from the same hart until all control and data dependencies are
resolved. This method offers a significant benefit by enabling the processor to
mask the latency involved in accessing off-chip memory, a potential bottleneck
that can limit the performance of high-computing applications [17]. By using
a round-robin scheduling approach for multiple harts, the processor can ensure
that each hart can execute its instructions without delay, even if another hart is
engaged in a memory operation with high latency.

4.2 Dynamic Single-Threaded RISC-V Core

To ensure the effectiveness of static multi-threading, it is important to have an
adequate number of harts within the processor. This number depends on the
specific architecture of the design and the latency of the off-chip memory, and it
is predetermined during the design phase. If the number of harts falls below this
threshold, the performance of the processor will diminish as it is not possible to
achieve II = 1 anymore. Hence, it is crucial to use dynamic scheduling to mitigate
the impact of the dependencies and memory latency by effectively leveraging as
many harts as available within a processor.



26 S. S. Hoseininasab et al.

To pipeline a processor with a single hart, a specific sequence of actions must
be implemented to ensure efficient instruction fetching and execution. First, the
processor must be forced to initiate the instruction fetching process when its pc
is ready, and then execute it whenever its source registers are available. In cases
where an instruction is not a conditional branch, the next pc will be available
after the instruction is fetched. On the other hand, in cases where the instruction
is a conditional branch, the branch pc will only be available during the execution
stage.

To address the dependency on pc, a scoreboard is utilized to determine when
the pc will become available. During each cycle, the processor first checks the
scoreboard to verify if the pc is ready. If the pc is not yet ready, the processor
must wait before proceeding with instruction fetching. On the other hand, if
the pc is available, the processor can proceed with fetching the instruction. The
processor utilizes a similar mechanism to tackle the dependency on the register
file: when an instruction depends on the result of a load instruction, the processor
must wait until the write back stage is completed. However, if the dependency
is on a non-load instruction, the forwarding path comes into play, and the value
from the previous execution stages is forwarded to the current execute stage.

4.3 Dynamic Multi-threaded RISC-V Core

In a dynamic single-threaded environment, CPU experiences idle cycles while
awaiting the valid pc or write back of the previous instructions in case of the
dependency on register file. Therefore, it is important to find ways to maximize
CPU usage and minimize idle cycles. One effective approach is to engage the
CPU in productive tasks rather than waiting for dependency resolution. This
can be achieved by initiating execution from another hart that is ready at a
given cycle. By making the most of idle cycles and leveraging multiple harts, it’s
possible to achieve significant improvements in overall efficiency and processing
speed.

The Input code in Fig. 4 provides an illustration of an efficient approach to
pipeline the execution of instructions from two harts by dynamically interleav-
ing them. This algorithm involves a few key steps that enable the processor to
operate efficiently. The first step is to select a single hart from a pool of avail-
able harts. In this case, the pool contains two harts. Once a hart is selected, the
processor can proceed with the fetch of an instruction from the selected hart
and subsequently execute it. This allows for the processor to take full advantage
of the available harts and execute instructions in a parallel and efficient man-
ner. However, in the event that no hart is chosen (idle state), the processor will
encounter a stall in its operation.

Each individual hart in the processor is equipped with a dedicated score-
board that displays the readiness of the private pc to initiate the retrieval of
an instruction, as well as the anticipated readiness of the source registers. This
allows for efficient execution of instructions in a parallel fashion. In cases where
the previous load instruction has yet to commit its result to the register file,
this scoreboard serves as an indicator of potential dependencies. The scoreboard



Rapid Prototyping of Complex Micro-architectures Through HLS 27

Fig. 4. Instruction Set Simulator of a dynamic multi-threaded processor with two harts

helps to identify potential data hazards that may occur during the execution of
instructions. By examining the scoreboard, the processor can determine whether
the instruction can proceed or if it needs to wait until the dependent instruction
commits its result (reg dependency). By detecting these hazards early, the pro-
cessor can take corrective actions to ensure that the execution of instructions
proceeds smoothly without any stalls. Additionally, each hart features a forward-
ing buffer that retains the outcomes of executed ALU instructions. The length of
this buffer is correlated with the maximum number of preceding instructions on
which the current instruction has dependency on based on the register file con-
tent and influenced by off-chip memory latency. The forwarding buffer is crucial
in reducing the latency of dependent instructions. In cases where an instruction
requires a value that has not yet been written to the register file, the proces-
sor executes a thorough examination of the forwarding buffer. Subsequently, the
required value is forwarded to the instruction, thereby circumventing the need to
wait for the instructions to write their results into the register file. This reduces
the delay caused by the need to access the register file and improves the overall
performance of the processor.

4.4 Thread Synchronization

In the previous sections, we have explored the possibility of hiding the depen-
dency between two instructions from the same hart by either statically or



28 S. S. Hoseininasab et al.

dynamically interleaving harts. However, when it comes to memory dependen-
cies between harts, we need to consider a different approach. Assuming that
all harts access distinct memory regions, as done in [8], is not realistic since
harts require sharing information at certain points. In modern parallel comput-
ing systems, it is crucial to ensure that multiple processors or harts operate in
a synchronized and coordinated manner to avoid race conditions and guaran-
tee correct program behavior. In parallel computing, data races can occur when
multiple threads attempt to access the same memory location simultaneously.
This can lead to unexpected program behavior, such as incorrect values being
read or written, or even crashes. To prevent such issues, it is important to use
synchronization mechanisms to ensure that different harts access shared mem-
ory locations in a coordinated way and they are operating on consistent memory
states.

One approach to synchronize harts, as proposed in this work, is to introduce
a new instruction called Barrier to the processor. When a hart reaches the
Barrier instruction, it will enter a sleep state, waiting for the other harts to
arrive. The idea is to pause execution until all harts have reached the Barrier
instruction. Once all harts have reached the Barrier, they can then be woken up
one by one in sequence, ensuring that all harts proceed from the synchronization
point together in a consistent manner. It is important to note that during this
synchronization process, any hart in a sleep mode must not be included in the
scheduling process. This ensures that the harts have already hit the Barrier are
waiting for other harts to arrive, preventing any potential data races or incorrect
program behavior. The Barrier instruction provides a way for harts to coordinate
their actions and ensure that they are operating on consistent memory states.
This is particularly important in parallel computing, where harts can execute in
a non-deterministic order, leading to potential data races and incorrect program
behavior.

From the software perspective, developers can easily integrate the Barrier
instruction into their code using inline assembly where it is needed. Doing so,
all executing threads are forced to pause and wait until all other threads reach
the same point in the program before continuing.

4.5 Shared-Memory RISC-V Multi-core

The multi-threaded multi-core processor offers an efficient solution for handling
different program instructions simultaneously. Each core in this processor has
its own Instruction memory (I-Mem) and Data Scratchpad Memory (D-SPM ),
while sharing a single Data memory (D-Mem) with all other cores. The ability to
perform multiple tasks at the same time significantly boosts the overall process-
ing power of the system, making it a desirable option for various applications.

Designing such a multi-core processor in HLS can be achieved by using two
nested loops, as described in Input code in Fig. 5. The outer loop iterates on
the number of harts interleaved within a core, while the inner loop iterates on
the number of cores (nc). Unrolling the inner loops by the factor of the number
of cores will instantiate nc cores, and by pipelining the outer loop, one hart of



Rapid Prototyping of Complex Micro-architectures Through HLS 29

Fig. 5. Instruction Set Simulator of a Shared-memory multi-core system with two cores,
each core has four harts

all cores starts execution at each cycle. However, designing such a processor in
HLS can be challenging, because the HLS tool has no prior knowledge about the
different instructions from different cores until run-time, it expects nc memory
instructions at the same cycle. This leads to resource conflicts on the shared
memory, II bigger than one, and poor performance.

To overcome the challenge of multiple cores accessing a shared port, an arbiter
unit has been designed. The arbiter unit employs a round-robin algorithm to
ensure that each core has an equal opportunity to access the port at each cycle.
In addition, the pipeline is decomposed to separate the memory and write back
stages from other stages, thereby ensuring that there is no more than one mem-
ory transaction at any given cycle. If multiple memory requests are received at
the same cycle, the core that is granted access to the port (Chosen cid) can pro-
ceed with its execution, while the other cores will have to wait until their turn
comes up. Ultimately, only the cores that execute non-memory instructions or
manage to acquire the port for the memory transaction (passed) will write back
the results to their register file and update their pc. This approach allows design-
ing the multi-threaded multi-core processor using HLS tools to handle multiple
program instructions simultaneously in a highly efficient and effective manner.

5 Experimental Validation

In this section, we present an experimental study aimed at evaluating the perfor-
mance and area utilization of our proposed micro-architecture designs. To con-
duct these experiments, we utilize the Vitis HLS 2022.2 tool, targeting a Kintex7
XQ7K410TRF9002L FPGA board. It is important to note that the data mem-
ory is considered off-chip and is accessed through an M-AXI port with a latency
of 8 cycles. To assess the performance of our designs, we employ the matrix



30 S. S. Hoseininasab et al.

multiplication benchmark, which offers a comprehensive workload for evaluating
computational efficiency. The entire evaluation process, encompassing C simu-
lation, C synthesis, RTL simulation, and RTL synthesis, is seamlessly executed
using a single tool, Vitis HLS, streamlining the workflow. To measure the perfor-
mance of the proposed micro-architectures, we record the maximum frequency
achieved during RTL synthesis and the total number of clock cycles obtained
from RTL simulation. Additionally, we evaluate the area utilization based on
RTL synthesis, providing a comprehensive assessment of the micro-architectures’
efficiency. Furthermore, as a baseline for comparison, we synthesize the RV32I
configuration of the Comet processor [16].

Table 1. Area and performance evaluation: Comparison of proposed multi-threaded
micro-architectures and Comet using matrix multiplication benchmark

Approach nh II Fmax (MHz) MIPS LUTs FFs SRLs BRAMs

Comet [16] 1 1 134 48 2k 1.1k 0 2

Fully Dynamic 2 1 113 52 10k 5.8k 132 2

4 1 98 92 16k 7.2k 133 2

8 1 78 75 21.4k 8.6k 134 10

Hybrid 4 1 109 103 11.1k 2.2k 131 2

8 1 103 85 15.3k 3k 142 3

Fully Static 16 1 203 186 2.2k 1.4k 297 6

Table 1 presents the experimental results for our multi-threaded processor
with different numbers of harts, indicated by the nh column. We consider vari-
ous approaches, including Fully Dynamic, Hybrid, and Fully Static. When using
2 harts in the processor, dynamic scheduling is the only option to hide depen-
dencies. However, when the processor has at least 4 harts, we have the choice to
schedule them either dynamically or statically. In the static scheduling approach,
we can hide the dependency on pc, leaving only the dependency on the register
file. This allows us to dynamically resolve the register file dependency. In this
approach which is referred as Hybrid in the table, harts are scheduled using a
round-robin scheduling technique, which ensures fairness and balanced utiliza-
tion. Before the execution of each hart, a thorough verification of the scoreboard
is performed to ascertain the readiness of the source registers. In the event of
identifying a dependency, the scheduled hart is required to forfeit its turn, result-
ing in a temporary halt in processor activity. Upon the subsequent arrival of the
hart’s turn, the same instruction must be reissued.

The data presented in Table 1 clearly demonstrates that the proposed multi-
threaded micro-architectures exhibit superior performance in terms of MIPS
when compared to the Comet architecture. By employing multiple harts in the
processor, we are able to achieve a remarkable increase in MIPS, surpassing
Comet by at least 8%. Notably, the Fully static micro-architecture with 16 harts



Rapid Prototyping of Complex Micro-architectures Through HLS 31

demonstrates significantly better performance while occupying a comparable
area to Comet.

In our experimental evaluation, we observe that in the Fully Dynamic and
Hybrid approaches, the forwarding unit is in the critical path of the design and
becomes a limiting factor in terms of performance. This characteristic explains
why increasing the number of harts from 4 to 8 does not yield performance
benefits, despite increasing the utilized area. In the Fully Dynamic approach,
the scheduling unit is essential for resolving dependencies and ensuring proper
execution order, resulting in increased area usage. However, by adopting the
Hybrid approach, we are able to eliminate the scheduling unit, thereby reducing
the area overhead while achieving better performance compared to the Fully
Dynamic approach. To visualize the trade-offs between performance and area
utilization, a scatter plot is generated (see Fig. 6). The scatter plot represents
the Hybrid and Fully Dynamic approaches with 4 and 8 harts. The Pareto front
showcases the designs that offer the best compromise between performance and
area utilization. Upon examining the plot, it becomes evident that the Hybrid
approach with 4 harts (4H) occupies a position on the Pareto front. This posi-
tioning indicates that the Hybrid approach with 4 harts is a superior design
choice, as it achieves a desirable balance between performance and area utiliza-
tion compared to the other approaches.

In our investigation, we examine the impact of increasing the number of harts
to 16 on our micro-architecture. This expansion enables us to adopt a Fully Static
execution scheme, eliminating the need for scheduling, hazard detection, and for-
warding units. By statically interleaving multiple harts, we successfully conceal
dependencies on both pc and register file. Through coordination of instruction
execution in a predetermined order, we achieve static scheduling and hazard res-
olution. This approach significantly reduces the complexity of the design and the
required area for these units, leading to increased performance. While the config-
uration with 8 harts using Fully Dynamic approach is found to be inefficient, we
can utilize either 4 harts with a Hybrid approach or 16 harts with a Fully Static
approach instead. Our study demonstrates how different micro-architectures and
configurations, considering various numbers of harts and approaches, can be
designed to determine the optimal design based on silicon budget and desired
performance.

Figure 7 illustrates the scatter plot for proposed multi-core processor, where
each data point is labeled with the corresponding number of cores ranging from 1
to 8. It is important to note that each core in our design supports 16 harts, imple-
mented using the Fully Static approach. This configuration allows for increased
parallelism and enhanced performance within each core. The plot provides a
visual representation of the performance and area trade-offs associated with dif-
ferent core counts. It enables us to observe how the number of cores impacts
both performance and area utilization. A noticeable trend observed in the plot
is the linear increase in the used area as the number of cores is increased. This
observation aligns with our expectations, as each additional core contributes
to an incremental area overhead. However, it is essential to highlight that the



32 S. S. Hoseininasab et al.

performance does not scale linearly with the number of cores, as anticipated.
Notably, by utilizing our design, researchers and developers have the opportunity
to rapidly prototype various multi-core micro-architectures with different core
counts, tailored to their specific parallelism requirements and workloads. The
linear increase in the used area as the number of cores expands demonstrates
the flexibility of our design in accommodating diverse multi-core configurations.
By swiftly iterating through different core counts, designers can explore and
evaluate the performance and area trade-offs for their particular applications,
allowing for quick experimentation and optimization of the micro-architecture.
This capability to rapidly prototype different multi-core configurations empow-
ers designers to fine-tune their designs according to the specific demands of their
workloads, harnessing the potential benefits of parallel processing while consid-
ering the limitations imposed by sequential portions of the program.

Fig. 6. Relationship between perfor-
mance and area utilization for different
approaches in multi-threaded processor
with 4 and 8 harts

Fig. 7. Relationship between perfor-
mance and area utilization for different
number of cores in multi-core processor

6 Conclusion

This study demonstrates the benefits of using automatic scheduling in HLS
for rapid prototyping of CPU architectures. We identify limitations of exist-
ing HLS tools in inferring fully pipelined micro-architectures with dynamic data
dependency. Additionally, we showcase the successful design of complex micro-
architectures, such as static multi-threaded CPU, dynamic multi-threaded CPU,
and multi-core systems. These results emphasize the effectiveness of leveraging
HLS for advanced architectures.

Future work involves exploring GPU micro-architecture design using HLS to
uncover potential challenges and limitations.



Rapid Prototyping of Complex Micro-architectures Through HLS 33

Acknowledgements. This study is partially funded by the French National Research
Agency (ANR) as part of the project DYVE (ANR-19-CE25-0004-01).

References

1. Chisel Homepage. https://www.chisel-lang.org
2. Alle, M., Morvan, A., Derrien, S.: Runtime dependency analysis for loop pipelining

in high-level synthesis. In: Proceedings of the 50th Annual Design Automation
Conference, pp. 1–10 (2013)

3. Bachrach, J., et al.: Chisel: constructing hardware in a scala embedded language.
In: Proceedings of the 49th Annual Design Automation Conference, pp. 1216–1225
(2012)

4. Borkenhagen, J.M., Eickemeyer, R.J., Kalla, R.N., Kunkel, S.R.: A multithreaded
powerPC processor for commercial servers. IBM J. Res. Dev. 44(6), 885–898 (2000)

5. Collange, C.: Simty: generalized SIMT execution on RISC-V. In: CARRV 2017–1st
Workshop on Computer Architecture Research with RISC-V, vol. 6, p. 6 (2017)

6. Dai, S., et al.: Dynamic hazard resolution for pipelining irregular loops in high-level
synthesis. In: Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 189–194 (2017)

7. Derrien, S., Marty, T., Rokicki, S., Yuki, T.: Toward speculative loop pipelining
for high-level synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
39(11), 4229–4239 (2020)

8. Goossens, B.: Guide to Computer Processor Architecture: A RISC-V Approach,
with High-level Synthesis. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-18023-1

9. Josipović, L., Ghosal, R., Ienne, P.: Dynamically scheduled high-level synthesis.
In: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 127–136 (2018)

10. Josipovic, L., Guerrieri, A., Ienne, P.: Speculative dataflow circuits. In: Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 162–171 (2019)

11. Kvatinsky, S., Nacson, Y.H., Etsion, Y., Friedman, E.G., Kolodny, A., Weiser,
U.C.: Memristor-based multithreading. IEEE Comput. Archit. Lett. 13(1), 41–44
(2013)

12. Liu, S., Lau, F.C., Schafer, B.C.: Accelerating FPGA prototyping through predic-
tive model-based HLS design space exploration. In: Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1–6 (2019)

13. Mantovani, P., Margelli, R., Giri, D., Carloni, L.P.: HL5: a 32-bit RISC-V proces-
sor designed with high-level synthesis. In: 2020 IEEE Custom Integrated Circuits
Conference (CICC), pp. 1–8. IEEE (2020)

14. Meeus, W., Van Beeck, K., Goedemé, T., Meel, J., Stroobandt, D.: An overview
of today’s high-level synthesis tools. Des. Autom. Embed. Syst. 16, 31–51 (2012)

15. Ravindran, K., Satish, N., Jin, Y., Keutzer, K.: An FPGA-based soft multipro-
cessor system for IPv4 packet forwarding. In: International Conference on Field
Programmable Logic and Applications, pp. 487–492. IEEE (2005)

16. Rokicki, S., Pala, D., Paturel, J., Sentieys, O.: What you simulate is what you syn-
thesize: designing a processor core from C++ specifications. In: 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1–8. IEEE
(2019)

https://www.chisel-lang.org
https://doi.org/10.1007/978-3-031-18023-1
https://doi.org/10.1007/978-3-031-18023-1


34 S. S. Hoseininasab et al.

17. Smith, B.J.: Architecture and applications of the HEP multiprocessor computer
system. In: Real-Time Signal Processing IV, vol. 298, pp. 241–248. SPIE (1982)

18. Takach, A.: High-level synthesis: Status, trends, and future directions. IEEE Des.
Test 33(3), 116–124 (2016)

19. Tine, B., Yalamarthy, K.P., Elsabbagh, F., Hyesoon, K.: Vortex: extending
the RISC-V ISA for GPGPU and 3D-graphics. In: MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 754–766 (2021)


	Rapid Prototyping of Complex Micro-architectures Through High-Level Synthesis
	1 Introduction
	2 Background and Motivation
	2.1 Different Micro-architecture Design Tools
	2.2 HLS Limitation in Pipelining an Instruction Set Simulator

	3 Related Work
	3.1 Deploying Speculative and Dynamic Techniques in HLS
	3.2 Pipelined CPU Designs Using HLS
	3.3 Dynamic Hart Scheduling in Multi-threaded CPU and GPU

	4 Proposed Approach
	4.1 Static Multi-threaded RISC-V Core
	4.2 Dynamic Single-Threaded RISC-V Core
	4.3 Dynamic Multi-threaded RISC-V Core
	4.4 Thread Synchronization
	4.5 Shared-Memory RISC-V Multi-core

	5 Experimental Validation
	6 Conclusion
	References


