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Potential for bias in effective climate sensitivity from state-dependent energetic imbalance

To estimate equilibrium climate sensitivity from a simulation where a step change in carbon dioxide concentrations is imposed, a common approach is to linearly extrapolate temperatures as a function of top-ofatmosphere energetic imbalance to estimate the equilibrium state ("effective climate sensitivity"). In this study, we find that this estimate may be biased in some models due to state-dependent energetic leaks. Using an ensemble of multi-millennial simulations of climate model response to a constant forcing, we estimate equilibrium climate sensitivity through Bayesian calibration of simple climate models which allow for responses from subdecadal to multi-millennial timescales. Results suggest potential biases in effective climate sensitivity in the case of particular models where radiative tendencies imply energetic imbalances which differ between pre-industrial and quadrupled CO 2 states, whereas for other models even multi-thousand-year experiments are insufficient to predict the equilibrium state. These biases draw into question the utility of effective climate sensitivity as a metric of warming response to greenhouse gases and underline the requirement for operational climate sensitivity experiments on millennial timescales to better understand committed warming following a stabilization of greenhouse gases.

Introduction

Equilibrium climate sensitivity (ECS) is the theoretical equilibrium increase in global mean temperature experienced in response to an instantaneous doubling in Earth's carbon dioxide concentrations over pre-industrial levels. Introduced as a metric of response of the Earth System to greenhouse gases in the early years of computational climate science [START_REF] Charney | Carbon dioxide and climate: a scientific assessment[END_REF][START_REF] Hansen | Climate Sensitivity: Analysis of Feedback Mechanisms[END_REF], it remains a very common metric of the sensitivity of the Earth to greenhouse gas forcing (Knutti et al., 2017;[START_REF] Masson-Delmotte | Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF].

Measuring ECS in a coupled climate model, however, is difficult owing to the time required for the equilibration of the system to a change in forcing [START_REF] Wetherald | Committed warming and its implications for climate change[END_REF][START_REF] Solomon | Persistence of climate changes due to a range of greenhouse gases[END_REF][START_REF] Jarvis | The contribution of timescales to the temperature response of climate models[END_REF] necessitating simulations of multiple millennia to obtain a nearequilibrated estimate of temperature response [START_REF] Rugenstein | Equilibrium climate sensitivity estimated by equilibrating climate models[END_REF]. The computational burden of conducting such simulations implies that standard practice for model assessment is to measure an "effective climate sensitivity" (EffCS) using feedbacks extrapolated from those simulated in the first 150 years forced with a step-wise quadrupling of CO 2 [START_REF] Gregory | A new method for diagnosing radiative forcing and climate sensitivity[END_REF][START_REF] Murphy | Transient response of the Hadley centre coupled oceanatmosphere model to increasing carbon dioxide. Part 1: control climate and flux adjustment[END_REF]IPCC, 2013;[START_REF] Forster | Inference of climate sensitivity from analysis of Earth's energy budget[END_REF]Andrews et al., 2012).

A core assumption in the calculation of EffCS is that the system will ultimately stabilize in a state of energetic balance [START_REF] Gregory | A new method for diagnosing radiative forcing and climate sensitivity[END_REF]. However, in practice a number of models exhibit energetic radiative top-of-atmosphere imbalances in the control state in both CMIP5 [START_REF] Hobbs | An energy conservation analysis of ocean drift in the CMIP5 global coupled models[END_REF] and CMIP6 [START_REF] Irving | A mass and energy conservation analysis of drift in the CMIP6 ensemble[END_REF], and as such the effective climate sensitivity is calculated using net flux anomalies relative to the control mean top-of-atmosphere net radiative fluxes. However, it remains untested as to whether such models will ultimately converge to the same state of imbalance.

In the present study, we consider an alternative approach for calculating climate sensitivity from a climate simulation Published by Copernicus Publications on behalf of the European Geosciences Union. B. M. Sanderson and M. Rugenstein: State-dependent energetic imbalance in which there is a step change in carbon dioxide concentrations. We consider how the method of calculating effective climate sensitivity, either from initial response or from millennial-scale simulations, may be potentially subject to biases arising from assumptions regarding the equilibrated radiative state. Finally, we consider how these uncertainties relate to our confidence in the relationship between transient and equilibrium climate feedbacks.

We consider the role of non-equilibrated models in the context of recent research, which has highlighted potential uncertainties in the EffCS approximation of ECS -studies have found that net radiative feedbacks can exhibit both timescale and state dependencies (e.g., [START_REF] Senior | The time-dependence of climate sensitivity[END_REF][START_REF] Armour | Time-Varying Climate Sensitivity from Regional Feedbacks[END_REF][START_REF] Andrews | The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models[END_REF]Rugenstein et al., 2016;Proistosescu and Huybers, 2017;[START_REF] Pfister | State-Dependence of the Climate Sensitivity in Earth System Models of Intermediate Complexity[END_REF][START_REF] Dunne | Comparison of equilibrium climate sensitivity estimates from slab ocean, 150-year, and longer simulations[END_REF][START_REF] Andrews | Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity[END_REF][START_REF] Bloch-Johnson | Climate sensitivity increases under higher CO 2 levels due to feedback temperature dependence[END_REF] both of which draw into question the implicit constant feedback assumption used to calculate EffCS.

The LongRunMIP project set out in part to quantify this error by running a subset of Earth system models (ESMs) in idealized carbon dioxide perturbation experiments with simulations of millennial-timescale response (Rugenstein et al., 2019). Initial studies compared the EffCS as derived using the first 150 years of the simulation with that derived using the last 15 % of warming in multi-thousand-year experiments, finding that the accuracy of the EffCS varied by model, but the two methods differed by 5 %-37 % in the estimate of ECS [START_REF] Rugenstein | Equilibrium climate sensitivity estimated by equilibrating climate models[END_REF]. A follow-up study [START_REF] Rugenstein | Three flavors of radiative feedbacks and their implications for estimating Equilibrium Climate Sensitivity[END_REF]) considered a range of approaches for characterizing feedbacks on different timescales and found that feedbacks assessed in the period of 100-400 years after the initial quadrupling of CO 2 concentrations may provide a practical prediction of equilibrium response accurate within 5 % or less. They found also, however, that there were large inconsistencies in some models between estimates of climate sensitivity derived from extrapolation to radiative equilibrium and those methods which relied on a fitting of exponentially decaying temperature trend, leaving uncertainty in the best practice for integrating model-derived EffCS distributions into uncertainty in long-term warming trajectories.

A general assessment of the likely range of EffCS (Sherwood et al., 2020) (which itself informed the [START_REF] Forster | The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity[END_REF], assessed likely EffCS range) rested strongly on combined historical and paleo-evidence, contributing to the headline result that values of EffCS of greater than 4.7 K are unlikely. These findings somewhat challenge the use of the CMIP6 ensemble of climate models as a proxy for climate projection uncertainty in assessment, given approximately one-third of the ensemble have apparent EffCS values of greater than 4.7 K (O'Neill et al., 2016;Eyring et al., 2016;[START_REF] Meehl | Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models[END_REF][START_REF] Zelinka | Causes of higher climate sensitivity in CMIP6 models[END_REF] -leading to arguments that such "hot models" should be excluded from assessment (Hausfather et al., 2022).

So can these models be ruled out? Although studies suggest that post-1980 warming may help constrain the transient climate response [START_REF] Jiménez-De-La Cuesta | Emergent constraints on Earth's transient and equilibrium response to doubled CO 2 from post-1970s global warming[END_REF]Nijsse et al., 2020;[START_REF] Tokarska | Past warming trend constrains future warming in CMIP6 models[END_REF], recent historical warming alone is only weakly correlated with EffCS in the CMIP5 and CMIP6 ensemble (Tokarska and Gillett, 2018). In the present study, we find that this might in part be due to the fact that a key assumption in EffCS (that the model will return to the radiative balance observed in the control simulation) may not hold in a number of CMIP class models.

Methods

We consider fits of a simple multi-timescale model to idealized climate change experiments from LongRunMIP (Rugenstein et al., 2019), which in general provide an estimate of the multi-millennial response of the Earth System to a constant radiative forcing level. The Supplement also illustrates results from CMIP5 [START_REF] Taylor | An overview of CMIP5 and the experiment design[END_REF] and CMIP6 (Eyring et al., 2016), but in general these simulations are insufficiently long to constrain the simple model response.

We assume that the temperature and radiative response to a step change in forcing can be modeled by a sum of exponential decay terms, a basis set which is consistent with the general solution of two-layer simple climate models and one which holds for the solution of a number of proposed multi-layer linear energy balance models in response to constant forcings (Caldeira and Myhrvold, 2013;Proistosescu and Huybers, 2017;Sanderson, 2020;Geoffroy et al., 2013a;[START_REF] Winton | Importance of ocean heat uptake efficacy to transient climate change[END_REF]Smith et al., 2018;Geoffroy et al., 2013b). It has been shown also that some non-linear models have a solution set which can also be expressed in the same exponential basis (Proistosescu and Huybers, 2017;[START_REF] Bastiaansen | Projections of the Transient State-Dependency of Climate Feedbacks[END_REF]. We consider N exponential response modes, such that

T p (t) = N n=1 S n 1 -e -(t/τ n ) + T 0 , (1a) R p (t) = N n=1 R n -e -(t/τ n ) + R 4x extrap , (1b) 
where T p (t) and R p (t) are the global annual mean surface temperature and net top-of-atmosphere radiative flux time series in response to an assumed F 4x = 7.2 W m -2 step change in forcing (F 4x corresponding approximately to a quadrupling of CO 2 ; [START_REF] Zhang | Radiative forcing of quadrupling CO 2[END_REF], τ n is the decay time associated with the timescale n, S n and R n are scaling factors, and T 0 and R 4x extrap are constant terms. T 0 represents the pre-pulse temperature, taken here as the mean temperature in the last available 500 years of the control simulation. R 4x extrap is the radiative flux imbalance as t → ∞ in the forced simulation and is calibrated during the calculation.

We distinguish between the radiative flux imbalance, R CTRL 0 , in the Pre-Industrial Control Simulation (PICTRL) and imbalance R 4x extrap in the asymptotic limit of the instantaneous CO 2 quadrupling experiment (ABRUPT4X). For models which provided constant forcing extensions of transient experiments, we assume R 4x extrap is a fixed property of the fitted pulse-response function. R CTRL 0 is calculated as the time average of net top-of-atmosphere (TOA) flux from the last 500 years of PICTRL. In fully equilibrated models with no energetic leaks, it would be expected that R CTRL 0 = 0, but it has been noted previously that this is not always the case and small energetic imbalances remain in some models even after the model global mean temperature trends have ceased (Rugenstein et al., 2019).

Existing studies differ in the number of independent equilibration timescales (N) which describe the joint evolution of top-of-atmosphere net radiative balance (R p (t)) and the global mean surface temperature (T p (t)) in response to a step change in forcing, generally using two (Smith et al., 2018;[START_REF] Rugenstein | Three flavors of radiative feedbacks and their implications for estimating Equilibrium Climate Sensitivity[END_REF] or three timescales (Proistosescu and Huybers, 2017;[START_REF] Rugenstein | Three flavors of radiative feedbacks and their implications for estimating Equilibrium Climate Sensitivity[END_REF]Caldeira and Myhrvold, 2013). Here we consider solutions ranging from two to five timescales allowing for a range of thermal responses corresponding approximately to subdecadal, decadal, centennial, millennial and multi-millennial (see Tables 1 and2).

For LongRunMIP models which provide an experiment with an abrupt quadrupling of CO 2 (ABRUPT4X hereafter), we take T p (t) and R p (t) as global annual mean values from ABRUPT4X simulations to directly calibrate the parameters in Eqs. ( 1) and (1b). Some models, however, do not provide ABRUPT4X, instead providing constant forcing extensions of other climate change experiments (see [START_REF] Rugenstein | Equilibrium climate sensitivity estimated by equilibrating climate models[END_REF]. For these models, we further assume a linear pulseresponse formulation to represent the thermal global mean response to the corresponding forcing time series as the convolution of the thermal response to a step change in forcing, combined with the forcing time series itself (Joos et al., 2013).

T (t) = t t =1 T p (t -t ) F (t ) -F (t -1) F 4x , (2a) 
R(t) = t t =1 R p (t -t ) F (t ) -F (t -1) F 4x , (2b) 
where F (t) is the forcing time series of the corresponding experiment. Here we assume approximate logarithmic forcing dependencies [START_REF] Myhre | New estimates of radiative forcing due to well mixed greenhouse gases[END_REF] for carbon dioxide (a dependency which is an empirical outcome of more complex radiative transfer models; Huang and Bani Shahabadi, 2014) and integrated forcing estimates (Meinshausen et al., 2011) for the one model (ECEARTH) which extended a multiforcer future scenario experiment in LongRunMIP. The latter forcing estimate is an approximation with central estimates for aerosol and greenhouse gas forcing rather than model-specific values, but the effective forcing time series experienced by ECEARTH under RCP85 is not knowable without dedicated simulations (Pincus et al., 2016).

Bayesian calibration of model response parameters

We fit the response equations detailed in Eqs. ( 2a) and (2b) to the output of each ensemble member's global mean radiative flux and surface temperature time series using a Markov chain Monte Carlo (MCMC) optimizer (Foreman-Mackey et al., 2013; as implemented in the "lmfit" Python module), sampling models which allow for a range of N = [2, 3, 4, 5] representative decay timescales.

Results

Assessment of model response timescale

The following section is used to assess the simplest acceptable multi-timescale model for the emulation of different ESMs in the LongRunMIP archive. We quantify this using the root mean square error (RMSE) associated with the least-square fit optimization (assessed as the best performing member of the MCMC posterior solution). If the addition of an additional, longer timescale in the fit corresponds to a reduction in combined RMSE of 0.5 % or more, the longer timescale model is used.

The performance of fitted multi-timescale models for GMT (global annual mean surface temperature) and NET (global annual mean net top-of-atmosphere radiative imbalance) time series is summarized in Fig. 1, which shows the combined error in the fits for GMT and NET associated with the absolute least-square fit for each of the model variants described in Table 1. The associated time series for the best fitted model in the context of the original model data for GMT and NET are shown in the Appendix (Figs. A1 andA2).

We find that for all LongRunMIP models, the N = 2 timescale model performs significantly worse than N ≥ 3 timescale models allowing for centennial and longer response timescales. This is both evident by the significantly larger best fit errors (Fig. 1) as well as visibly poor fits (Figs. A1 andA2).

Differences between the N = 3, 4 and 5 timescale models are dependent on the ESM being fitted. For some models (CCSM3, CNRMCM61, ECEARTH, ECHAM5MPIOM, GISSE2R, HadCM3L, IPSLCM5A, MPIESM12), no significant improvement in fit is seen beyond the centennial timescale model (Fig. 1). For other models, fits are further improved by allowing a millennial (CESM104, FAMOUS, GFDLCM3) or multi-millennial timescale (HadGEM2, MIROC32). Parameters associated with the best-fitting models are listed in Table A1, and fitted MCMC ensembles corresponding to the selected class of model illustrated in red in Fig. 1 

Assessment of climate sensitivity

The conventional effective climate sensitivity (EffCS) is calculated using the first 150 years of simulation, linearly extrapolating GMT as a function of NET to R CTRL 0 . Control global mean temperatures and TOA energetic imbalances are expressed as anomalies relative to T 0 . We assess errors Ef-fCS due to state-dependent radiative imbalance by calculating EffCS corr , where feedbacks in the first 150 years are instead linearly extrapolated to R extrap 4x

. A third estimate of equilibrium warming, T best-est , follows [START_REF] Rugenstein | Equilibrium climate sensitivity estimated by equilibrating climate models[END_REF], by calculating the effective climate sensitivity based on the years corresponding to the last 15 % of warming in the simulation (that is, for all years following the point when the simulation first exceeds 85 % of the average global mean temperature anomaly in the last 20 years of the ABRUPT4X simulation). For models which do not directly provide ABRUPT4X (GFDLCM3, GFDLESM2M and MIROC32), T best-est is calculated by scaling by the ratio of radiative forcing in ABRUPT4X relative to that in the multi-thousand-year constant forcing period in the experiment provided (following [START_REF] Rugenstein | Equilibrium climate sensitivity estimated by equilibrating climate models[END_REF]; see Table 3).

We finally calculate a fourth estimate of climate sensitivity T extrap as in Eq. (3) in the equilibrated (ABRUPT4X) simulation using the ensemble of fitted parameters from Bayesian calibration of Eq. ( 1), using again global mean temperature anomalies from ABRUPT4X relative to T 0 (taken as mean temperatures over the last 100 years of PICTRL).

T extrap = N n=1 S n + T 0 (3)
We estimate the long-term radiative imbalance in the ABRUPT4X simulation from the fitted values for R 4x extrap (along with R n , the amplitude of the decay in forcing at the timescale corresponding to τ n ) from Eq. ( 1b). Previous studies have assumed in the calculation of T best-est that R 4x extrap = R CTRL 0 [START_REF] Rugenstein | Equilibrium climate sensitivity estimated by equilibrating climate models[END_REF], an assumption we test here.

We follow convention by reporting climate sensitivities for a doubling of carbon dioxide from pre-industrial levels. As such, we follow standard practice in dividing ABRUPT4X sensitivities by 2 to obtain EffCS, T extrap and T best-est [START_REF] Meehl | Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models[END_REF], though we note that in some models this approximation introduces minor errors [START_REF] Jonko | Climate feedbacks in CCSM3 under changing CO 2 forcing. Part I: Adapting the linear radiative kernel technique to feedback calculations for a broad range of forcings[END_REF][START_REF] Bloch-Johnson | Climate sensitivity increases under higher CO 2 levels due to feedback temperature dependence[END_REF] these are not the focus of the present study). Dec., Cen., Mil. and m.m. are decadal-, centennial-, millennial-and multi-millennial-timescale models, respectively. RMSE values for each variable (NET and GMT) are normalized relative to the best overall fit for that variable, each multiplied by 0.5 to give a combined error. The shortest timescale model with errors within 0.5 % tolerance of the overall best performing model is illustrated in red. Included modes and parameter priors are detailed in Tables 1 and2. In cases where the error is truncated by the vertical axis, the value is printed in white.

Relevance of energetic leakages

We consider first the radiative tendencies of the models in the climate change experiments, compared with the control state. Figure 2 shows the evolution of the top-of-atmosphere net radiative imbalance in the LongRunMIP climate change experiments, as well as the control simulation -together with the projected evolution of a simulated ABRUPT4X simulation using the fitted multi-timescale model. We note that there is significant model diversity in the behavior of models in the approach to equilibrium. Some models (CESM104, GISSE2R, GFDLESM2M, GFDLCM3 and MPIESM11) = 0 (Fig. 2).

A second class of model exhibits a radiative imbalance in the control simulation, but the ABRUPT4X simulation converges to the same state (R CTRL , e.g., CCSM3, CNRMCM61, ECEARTH, HadCM3L, MIROC32, MPIESM12 and IPSLCM5A) -implying that effective climate sensitivity may be biased in these models if calculated assuming that the ABRUPT4X https://doi.org/10.5194/esd-13-1715-2022
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Figures 3 and4 show the impact of these biases on the derived value for equilibrium climate sensitivity. The relationship between temperature and TOA fluxes for the fitted multi-timescale models for ABRUPT4X simulations in the LongRunMIP archive is presented in Fig. 3, while Fig. 4 shows the temperature evolution as a function of time.

Models with exact agreement between R CTRL 0 and R extrap 4x also tend to exhibit similar values for T best-est and T extrap , and in cases where there is little or no difference in feedbacks in the early and late stages of the simulation (e.g., CESM104, GISSE2R, MPIESM11), Ef-fCS is also similar to T best-est and T extrap . Other models (e.g., ECEARTH, ECHAM5MPIOM, FAMOUS, GFDLCM3, GFDLESM2M, IPSLCM5A) show significant differences in early and late stage feedbacks, manifested as a T best-est , which differs from EffCS. Models with significant differences between R CTRL 0 and R extrap 4x (CNRMCM61, FAMOUS, ECEARTH, HadCM3L, IPSLCM5A, MPIESM12) exhibit similar biases in both T best-est and EffCS. For example, CNRMCM61 exhibits relatively constant feedbacks on century and millennial timescales, so T best-est and EffCS are similar (5.42 and 5.51 K, respectively), but T extrap , which is well fitted by the data, is significantly lower (4.47±0.01 K; Fig. 4 andTable 4) due to the differing estimated equilibrium energetic imbalance in ABRUPT4X and PICTRL simulations. The fitting process for HadGEM2 determined that a multi-millennial response mode was necessary, which remains unconstrained by the fit, so it is not possible to estimate T extrap with confidence for this model (the simulation length for HadGEM2 is 1299 years, so it remains possible that a 5000-year simula-tion as provided by a number of other models could rule out the need for the multi-millennial response mode).

Of these models with apparently state-dependent energetic balance, some (HadCM3L, FAMOUS, ECEARTH) appear to show a control simulation where R CTRL 0 ≈ 0 but an ABRUPT4X simulation which converges to a state of energetic imbalance (Fig. 2). This, in turn introduces a source of potential bias in the estimate of effective climate sensitivity if the system is converging to a non-equilibrated state, implying that the control simulation may be tuned to exhibit energetic balance but the equilibrated 4xCO 2 state is subject to an energy leak. A particularly extreme example is FA-MOUS, where a small difference in extrapolated energetic balance, combined with a large feedback parameter, results in a much larger values of T best-est (9.27 K) than T extrap (6.99 K; see Table 4 and Fig. 4) or EffCS (7.13 K). 1 Similarly for HadCM3L, the fitted extrapolated sensitivity T extrap (3.03 K; see Table 4 and Fig. 4) is lower than T best-est (3.49 K) and EffCS (3.29 K).

T extrap differs from EffCS both due to the presence of state-dependent energetic biases but also due to feedbacks which occur over the multi-thousand-year timescales resolved in the LongRunMIP experiments. We can isolate the bias in EffCS induced by state-dependent energetic imbalance in the LongRunMIP cases by using a different extrapolated energetic state (Figs. 5 and3). As in the standard calculation of EffCS, we take a least-squares linear fit of temperature as a function of N in the first 150 years but instead linearly extrapolate to N = R 4x extrap rather than N = R CTRL 0 in the standard calculation to produce a bias-corrected 1 Using R 4x extrap = -0.16 W m -2 rather than R CTRL 0 = -0.01 W m -2 would result in a value of T best-est = 7.01 K, broadly consistent with EffCS and T extrap . ), while dashed black line shows the predicted ABRUPT4X radiative imbalance (R 4x extrap ). Semi-transparent blue and green points show annual mean upgoing net radiative flux from PICTRL and the submitted simulation (printed in blue text), respectively. Black line shows the simulated response to ABRUPT4X for the multi-timescale model, while shaded gray regions and thin lines show the 10th and 90th percentiles of the fitted ensemble projections for ABRUPT4X. If the submitted simulation was not ABRUPT4X, the thick blue line shows the MCMC posterior median TOA time series for the submitted simulation using the chosen multi-timescale model (see Table 1).

EffCS corr . We find that two models in LongRunMIP are significantly impacted by this correction (see Figs. 5 andA3): CNRMCM61 (EffCS = 5.42 K, EffCS corr = 4.42 K) and IP-SLCM5A (EffCS = 4.33 K, EffCS corr = 3.65 K). A number of other models are impacted to a lesser extent (see Table 4).

The analysis was repeated for the wider CMIP5 and CMIP6 ensembles. However, the standard CMIP5 and CMIP6 simulations are insufficiently long to fit response timescales of centennial or longer; hence T extrap (or R 4x extrap ) is not constrained using the multi-timescale fitting approach (see Fig. 5). It is notable that flux imbalances are present in the control state of a number of models in both CMIP5 and CMIP6, but longer simulations are required to assess whether these represent structural imbalances or an insufficiently long spinup. The centennial and longer timescales are not constrained in 150-year simulations; hence it is not possible to estimate T extrap and R 4x extrap with any confidence. We note, however, that in most cases the uncertainties in the fitted three-timescale solution generally allow for equilibrium values which are higher than the effective climate sensitivity as https://doi.org/10.5194/esd-13-1715-2022

Earth Syst. Dynam., 13, 1715-1736, 2022 assessed over the first 150 years of simulation. Only a small number of models allow for fitted solutions which have a lower T extrap than the EffCS (CESM2, CCSM4, MIROC5, CNRMESM2.1, ACCESS-CM2). One of these cases (CN-RMCM6.1) is a close relative of the CNRMESM2.1, the LongRunMIP simulation which we identified to be potentially subject to biases owing to energetic imbalances in the 4xCO 2 equilibrium state.

Conclusions

We have considered an alternative approach for calculating long-term tendencies of temperature and planetary energetic imbalance from simulations in which atmospheric carbon dioxide concentrations are instantaneously perturbed. This approach relies on the assumption that the evolution of the system can be represented as a sum of decaying exponential terms with differing timescales. An existing project, Lon-gRunMIP, provides multi-millennial simulations which allow for the fitting a multi-timescale simple model, which allows for annual, decadal, centennial and millennial responses. We find that this approach highlights some potential limitations and biases associated with using effective climate sensitivity to predict equilibrium warming. It has been observed before that energetic imbalances exist in some models in the CMIP archive (Rugenstein et al., 2019;[START_REF] Hobbs | An energy conservation analysis of ocean drift in the CMIP5 global coupled models[END_REF][START_REF] Irving | A mass and energy conservation analysis of drift in the CMIP6 ensemble[END_REF], and in this study we show that such control state radiative imbalances are relatively widespread in CMIP5 and CMIP6. The conventional assumption used to calculate effective climate sensitivity in these cases is that such imbalances remain constant, such that radiative anomalies from the control state can be used to calculate the ef-fective climate sensitivity. Critically, in some LongRunMIP simulations, we observe that energetic imbalances are themselves state-dependent. This undermines the concept of effective climate sensitivity -if we do not know what the radiative imbalance will be when temperatures stabilize in an ABRUPT4X simulation, we in turn cannot predict the climate sensitivity (using this method) with precision.

In practice, only some models in CMIP5 and CMIP6 appear to exhibit significant radiative imbalances in the control state (see Fig. 5), and although the 150-year ABRUPT4X simulations are insufficient to assess whether these energetic imbalances are state-dependent, these are the cases where we might be least confident in the effective climate sensitivity value. Models may exhibit non-equilibrium fluxes in the control state for a number of different reasons -either the model has not been run for sufficiently long in the control configuration to reach a state of energetic balance or there is a persistent energetic leak in the model, which may be constant or evolving [START_REF] Hobbs | An energy conservation analysis of ocean drift in the CMIP5 global coupled models[END_REF]. In either case, the results presented in this study draw into doubt whether such imbalances can be assumed to remain constant in a climate perturbed through alteration of climate forcers.

Further, we find that some models which are in or close to energetic balance in the control state do not converge to energetic balance following the step change in climate forcing. This implies that models fall into two potential categories: those where the energetic budget of the model is structurally closed through the elimination of all leaks and those where the model parameters have been adjusted to produce nearzero net TOA fluxes in the control state. The latter case is still potentially subject to errors in the estimation of effective climate sensitivity because if energetic imbalances are dependent on climate forcers, then the calibrated minimizahttps://doi.org/10.5194/esd-13-1715-2022
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tion of net TOA fluxes may be inappropriate for the perturbed climate state. A simple analysis of the net fluxes in the control simulation cannot distinguish between structurally balanced models and tuned balanced models, but centers which operationally adjust parameters to minimize energetic losses should be aware of this potential bias in effective climate sensitivity. Models with state-dependent energetic imbalance will not reach true energetic equilibrium (as defined by a state of radiative balance of the system) in response to a climate forcing. This still allows for the model to reach an asymptotic stable state (effectively including an energy leak), but it does not allow for the derivation of effective climate sensitivity which requires prior knowledge of the asymptotic equilibrium TOA balance. The method suggested here presents an alternative approach for deriving climate sensitivity, but it is clearly less than ideal -requiring simulations of 5000 years of simulation to produce a stable estimate for some models. We must also consider the possibility for these models that there is no stable state. If energy leaks are a function of the climate state, and the system is not tending towards a state of radiative equilibrium, our evidence that models are converging to a stable temperature is empirical and longer simulations will be required to investigate these multi-millennial dynamics and confirm that a stable asymptotic solution exists.

Our results highlight the potential for error in the estimation of effective climate sensitivity through the assumptions on the asymptotic radiative balance of climate models. In the case of LongRunMIP, there is a significant difference between the distribution of fitted asymptotic values of energetic imbalance in ABRUPT4X compared with the mean energetic balance in PICTRL in 11 of 15 models (see Table 4). In 5 out of 15 cases, this results in a bias in effective climate sensitivity of 0.3 K or more, but this bias is not universally in the same direction. Quantifying the presence of such biases in the wider CMIP6 ensemble is not possible without multithousand-year control and ABRUPT4X simulations. However, their relatively common occurrence in LongRunMIP suggests that more models could be impacted.

This directly impacts our ability to accurately measure Ef-fCS from short simulations and draws into question whether EffCS should be used as a factor at all in assessing the fidelity of climate models (Hausfather et al., 2022). Effective climate sensitivity has the known limitation that it describes effective feedbacks at a certain representative timescale following a change in forcing [START_REF] Rugenstein | Three flavors of radiative feedbacks and their implications for estimating Equilibrium Climate Sensitivity[END_REF], but our results here highlight another issue, namely, that Ef-fCS can only be used if we can be confident in the asymptotic energetic balance of the model. Such confidence can arise either from a ground-up demonstration of structural energy conservation in the model [START_REF] Hobbs | An energy conservation analysis of ocean drift in the CMIP5 global coupled models[END_REF] or by running sufficiently long simulations to be empirically confident both in the pre-industrial energetic balance and in the asymptotic multi-millennial tendencies of the model following a change in climate forcing. Such experiments are currently difficult to achieve for CMIP class models; the multi-millennial-year simulations conducted in [START_REF] Rugenstein | Equilibrium climate sensitivity estimated by equilibrating climate models[END_REF] were significantly longer than any experiments conducted previously, and we find in the present study that even a 1300-year simulation is too short to have confidence in the asymptotic state for some models.

Given this, our study has multiple recommendations. Firstly, a greater emphasis in climate model design and quality checking needs to be placed on structural closure of the energy budget in the climate system. Models which can demonstrate that energy is conserved in the model equations can allow confidence that the system as a whole will converge to a state of true radiative equilibrium following a perturbation, which would allow a robust calculation of EffCS. For models which cannot demonstrate this, longer simulations are required to be confident in the asymptotic state. These simulations may be prohibitively time and resource consuming. but such limits could potentially be alleviated through the use of lower-resolution configurations [START_REF] Kuhlbrodt | The low-resolution version of HadGEM3 GC3. 1: Development and evaluation for global climate[END_REF][START_REF] Shields | The low-resolution CCSM4[END_REF] (with the risk that such models will exhibit different feedbacks from their high-resolution counterparts) or by considering analytical approaches to accelerate convergence of complex systems (Xia et al., 2012).

However, in the short term, a more practical approach may be to consider alternative climate metrics which do not require assumptions about the equilibrium state of the system. Transient climate response does not require assumptions about radiative flux, but it does not provide direct information on the warming expected under stabilizing forcing. A possible alternative is A140 (the warming observed 140 years after a step quadrupling in CO 2 concentrations; Sanderson, 2020;[START_REF] Andrews | The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models[END_REF], which requires no assumption on equilibrated state and is more informative on the warming expected under high-mitigation scenarios than EffCS itself (even if EffCS is known without bias due to energetic leaks). In conclusion, the use of effective climate sensitivity as a metric in assessing the response of the climate system should be treated with caution, both due to its lack of relevance to projected warming under mitigation scenarios (Knutti et al., 2017;[START_REF] Frame | Alternatives to stabilization scenarios[END_REF]Sanderson, 2020) but also due to the fact that its derivation requires assumptions about the asymptotic state of the climate system which do not hold in a number of Earth system models. 1; shaded areas indicate the 5th-95th percentile range in the MCMC fit to the time series. Text indicates the model scenario used in the fit (as detailed in Table 3). 

Table A1.

Fitted parameters and uncertainties for the LongRunMIP experiments. -(-, -) 4. 1 (3.7, 4.5) 1.2 (1.0, 1.4) 1.0 (0.8, 1.2) 0.6 (0.6, 0.7) -(-, -) 4.8 (4.0, 5.6) 78. 1 (56.7, 94.9) 326 (260, 403) 4092 (3138, 4824) -(-, -) -0.11 (-0.16, -0.049) CNRMCM61 2.7 (2.6, 2.9) 2.7 (2.6, 2.9) 3.5 (3.5, 3. -0.6 (-0.64, -0.58) ECHAM5MPIOM 1.7 (1.4, 1.9) 4.1 (3.8, 4.3) 5.1 (5.0, 5.1) -(-, -) -(-, -) 3.2 (2.1, 5.6) 2.0 (1.6, 2.4) 2.5 (2.3, 2.7) -(-, -) -(-, -) 2.4 (1.1, 5.4) 37.4 (28.6, 50.8) 744 (567, 931) -(-, -) -(-, -) 1.9 (1.6, 2.2) FAMOUS 3.0 (2.9, 3.2) 5.6 (5.4, 5.7) 3.6 (3.5, 3.7) 1.8 (1.8, 1.8) -(-, -) 3.9 (3.4, 4.4) 1.9 (1.5, 2.4) 0.4 (0.3, 0.5) 0.1 (0.0, 0.1) -(-, -) 5.3 (4.0, 6.9) 36.5 (28.5, 46.4) 346 (239, 474) 3079 (1320, 4661) -(-, -) 0.24 (0.19, 0.26) GFDLCM3 0.4 (0.2, 0.7) 2.3 (2.1, 2.6) 3.9 (3.2, 4.4) 3.4 (2.9, 4.1) -(-, -) 5.6 (1.9, 9.1) 1.6 (1.1, 2.5) 2.0 (1.7, 2.3) 0.9 (0.5, 1.3) -(-, -) 4.2 (1.3, 8.0) 66.4 (36.2, 91.5) 852 (609, 971) 2865 (1723, 4397) -(-, -) -0.2 (-0.28, -0.12) GFDLESM2M 2.1 (2.0, 2.2) 0.0 (0.0, 0.1) 3.9 (3.7, 4.1) 0.7 (0.6, 0.9) -(-, -) 4.6 (1.7, 7.8) 0.6 (0.1, 1.5) 2.3 (2.0, 2.5) 0.3 (0.1, 0.5) -(-, -) 4.0 (1.4, 7.6) 56.0 (17.5, 91.2) 392 (262, 465) 3230 (1562, 4572) -(-, -) -0.22 (-0.28, -0.18) GISSE2R 2.4 (2.4, 2.5) 0.9 (0.9, 1.0) 1.4 (1.4, 1.4) -(-, -) -(-, -) 5.4 (4.9, 5.9) 1.4 (1.3, 1.5) 1.5 (1.4, 1.5) -(-, -) -(-, -) 2.1 (1.9, 2.4) 92.0 (85.0, 97.7) 732 (709, 754) -(-, -) -(-, -) 0.11 (0.1, 0.11) HadCM3L 2.3 (2.2, 2.5) 1.8 (1.6, 1.9) 1.9 (1.9, 1.9) -(-, -) -(-, -) 3.9 (3.2, 4.4) 0.5 (0.2, 1.1) 1.4 (1.2, 1.5) -(-, -) -(-, -) 5. 0 (3.7, 6.1) 45.5 (13.2, 91.5) 327 (277, 454) -(-, -) -(-, -) 0.8 (0.7, 0.85) HadGEM2 4. 1 (3.8, 4.5) 1.2 (1.1, 1.7) 1.9 (1.6, 2.0) 1.6 (0.3, 4.3) 3.7 (0.5, 7.6) 4.1 (2.8, 7.2) 2.4 (1.9, 2.7) 1.3 (1.2, 1.4) 0.7 (0.1, 1.6) 1.7 (0.3, 3.2) 1.3 (0.7, 2.4) 11.2 (10.2, 13.6) 242 (207, 289) 3574 (1539, 4779) 7540 (5516, 9531) -0.95 (-2.1, 0.003) IPSLCM5A 2.4 (2.3, 2.6) 2.6 (2.5, 2.7) 2.4 (2.4, 2.5) -(-, -) -(-, -) 2.3 (1.9, 2.7) 1.5 (1.2, 1.9) 1.3 (1.1, 1.4) -(-, -) -(-, -) 5.9 (3.9, 8.3) 38.0 (27.2, 59.5) 343 (292, 453) -(-, -) -(-, -) 1.1 (1.1, 1.2) MIROC32 4.6 (2.1, 5.4) 0.9 (0.0, 3.4) 3.1 (3.0, 3.1) 0.1 (0.0, 0.2) 0.1 (0.0, 0.2) 3.9 (1.0, 8.3) 1.7 (0.4, 3.1) 2.0 (1.9, 2.1) 0.2 (0.0, 0.5) 0.3 (0.1, 0.4) 4.4 (0.6, 8.6) 15.8 (11.3, 26.3) 586 (552, 617) 3125 (1493, 4693) 7820 (5638, 9575) 1.0 (0.96, 1.1) MPIESM11 2.4 (2.2, 3.2) 1.5 (1.0, 1.8) 1.7 (1.6, 1.7) 1.3 (1.3, 1.4) -(-, -) 4.3 (3.4, 4.8) 1.0 (0.4, 2.5) 1.4 (1.2, 1.5) 1.0 (0.8, 1.1) -(-, -) 5. 4 (2.5, 7.1) 31.8 (12.8, 93.2) 247 (203, 434) 1516 (1276, 2948) -(-, -) 0.41 (0.31, 0.44) MPIESM12 2.7 (2.5, 2.9) 1.5 (1.3, 1.7) 2.2 (2.2, 2.3) -(-, -) -(-, -) 4.3 (3.5, 5.2) 1.8 (1.1, 2.7) 1.9 (1.8, 2.0) -(-, -) -(-, -) 3.1 (1.6, 4.9) 21.1 (13.7, 42.8) -2.7 (-4.6, 0.57) IPSL-CM5A-LR 2.2 (1.9, 2.5) 2.4 (2.2, 2.6) 2.0 (1.9, 2.2) -(-, -) -(-, -) 2.6 (1.6, 4.5) 2.8 (0.5, 6.9) 2.7 (0.5, 6.6) -(-, -) -(-, -) 2.6 (0.7, 7.8) 48.2 (18.8, 88.4) 561 (188, 912) -(-, -) -(-, -)

S 3 S 4 S 5 R 1 R 2 R 3 R 4 R 5 τ 1 τ 2 τ 3 τ 4 τ 5 R 4x extrap ACCESS1-0 2 
-2.3 (-4.5, 1.2) IPSL-CM5A-MR 2.2 (1.8, 2.6) 2.7 (2.4, 2.9) 5.2 (2.8, 7.4) -(-, -) -(-, -) 2.3 (1.6, 2.9) 2.3 (1.7, 2.8) 1.3 (0.2, 3.0) -(-, -) -(-, -) 3.5 (1.8, 6.0) 21.6 (15.4, 31.0) 661 (268, 933) -(-, -) -(-, -)

1.4 (-0.13, 2.3) IPSL-CM5B-LR 2.1 (1.9, 2.3) 1.4 (1.2, 1.7) 3.3 (1.4, 5.5) -(-, -) -(-, -) 3.4 (2.5, 4.9) 1.4 (0.7, 1.8) 2.4 (0.6, 4.9) -(-, -) -(-, -) 2.8 (1.4, 4.9) 36.3 (16.8, 78.8) 684 (309, 945) -(-, -) -(-, -)

-0.57 (-2.8, 0.85) MIROC-ESM 2.4 (2.1, 2.9) 2.8 (2.5, 3.1) 3.9 (2.5, 7.9) -(-, -) -(-, -) 6.5 (5.1, 8.7) 2.9 (2.4, 3.3) 4.2 (2.3, 5.4) -(-, -) -(-, -) 1.2 (0.9, 1.8) 11.2 (10.2, 14.4) 578 (296, 799) -(-, -) -(-, -)
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Table A5.

Fitted parameters and uncertainties for the CMIP6 experiments.

Model 

Figure 1 .

 1 Figure1. Illustration of the root mean square error for the fit to global mean temperature and net TOA radiative balance using models allowing for a range of timescales. Dec., Cen., Mil. and m.m. are decadal-, centennial-, millennial-and multi-millennial-timescale models, respectively. RMSE values for each variable (NET and GMT) are normalized relative to the best overall fit for that variable, each multiplied by 0.5 to give a combined error. The shortest timescale model with errors within 0.5 % tolerance of the overall best performing model is illustrated in red. Included modes and parameter priors are detailed in Tables1 and 2. In cases where the error is truncated by the vertical axis, the value is printed in white.

  behave as expected, showing R CTRL 0 = 0 and R extrap 4x

  ., MIROC32, MPIESM11). Finally, a third class appears to converge to different states in PICTRL and ABRUPT4X (R CTRL 0 = R extrap 4x

Figure 2 .

 2 Figure 2. Top-of-atmosphere net radiative imbalance plotted as a function of time (log scale) for the members of the LongRunMIP ensemble. Dashed green line shows the control radiative imbalance (R CTRL 0

Figure 3 .

 3 Figure3. Global mean net radiative imbalance as a function of surface temperature for different members of the LongRunMIP archive. Vertical axis shows absolute top-of-atmosphere net radiative imbalance; horizontal axis shows surface temperature relative to the final 500 years of the control simulation. Models marked " * " did not provide ABRUPT4X directly (see Table3). Solid black lines show the median simulation of ABRUPT4X for the fitted MCMC posterior of the multi-timescale model; shaded gray areas show 5 %-95 % confidence intervals. Light blue points are individual years from ABRUPT4X (if available). For * models, gray points show years in the latter portion of the simulation after which forcing is constant, scaled according to Table3. Light green points are annual means from PICTRL. Yellow solid line shows the regression fit in years 0-150 for the original ABRUPT4X data if available (or simulated ABRUPT4X median model for models marked " * "), corresponding to the EffCS dashed yellow vertical line and EffCS (corrected) dotted yellow vertical line. Purple solid line shows regression fit to the last 15 % of warming following[START_REF] Rugenstein | Equilibrium climate sensitivity estimated by equilibrating climate models[END_REF], corresponding to the T best-est vertical dashed line. Horizontal green line shows PICTRL net energy imbalance averaged over the final 500 years of the simulation. Horizontal solid blue line shows R 4x extrap , while vertical dashed blue line shows T extrap ; shaded areas illustrate uncertainty in these values.

Figure 4 .

 4 Figure 4. Global mean temperature anomaly with respect to the last 500 available years of the PICTRL simulation, plotted as a function of time (log scale) for the members of the LongRunMIP ensemble. Green points show annual global mean surface temperature anomalies from the LongRunMIP PICTRL simulation, while blue points show data from the submitted climate change experiment (printed in blue text for each model). Thick blue lines show the median top-of-atmosphere time series using the MCMC posterior fit for the multi-timescale model selected to represent the corresponding ESM (see Sect. 2 and Fig. 1). Black lines show the median response of the fitted multi-timescale model to an ABRUPT4X forcing, while shaded gray regions and thin dotted lines show the 10th and 90th percentiles of the fitted ABRUPT4X ensemble projections. Dashed black horizontal line illustrates T extrap (median), yellow solid line is EffCS, pink solid is T best-est and dashed green line shows T 0 . Readers should note y axis differs by subplot.

Figure 5 .

 5 Figure 5. Bar plots summarizing results for three model ensembles, CMIP5 (top row), CMIP6 (middle row) and LongRunMIP (bottom row). Left-hand column shows different estimates of equilibrium climate sensitivity. Solid blue bars show EffCS (see text). Light blue diamond and whiskers show the median, 5th and 95th percentiles of T extrap . For LongRunMIP, T best-est (following Rugenstein et al., 2020), is shown in violet diamonds, while EffCS corr is shown with red circles. The right-hand column shows R 4x extrap (light blue diamond and whiskers) and R CTRL

Figure A2 .

 A2 Figure A2. Results fitting multi-timescale models to output of LongRunMIP multi-thousand-year experiments for global top-of-atmosphere radiative imbalance. Different colors represent different models as detailed in Table 1; shaded areas indicate the 5th-95th percentile range in the MCMC fit to the time series. Text indicates the model scenario used in the fit (as detailed in Table3).

Figure A3 .

 A3 Figure A3. (a) Corrected EffCS plotted as a function of uncorrected EffCS. (b) EffCS (crosses) and corrected EffCS (circles) plotted as a function of transient climate response.

Model

  

  -(-, -) -(-, -)3.5 (3.0, 4.1) 2.3 (1.9, 2.6) 4.7 (2.6, 6.5) -(-, -) -(-, -) 1.9(1.4, 2.6) 13.5 (11.2, 17.2) 695 (325, 948) -(-, -) -(-, -) -2.3 (-4.0, -0.095) -(-, -) -(-, -) 3.6 (2.0, 6.0) 2.9 (0.5, 6.6) 2.8 (0.5, 6.1) -(-, -) -(-, -) 3.3 (0.8, 8.2) 58.4 (20.5, 92.9) 574 (194, 910) -(-, -) -(-, -) 

  -(-, -) -(-, -)3.4 (3.1, 3.7) 0.2 (0.0, 0.6) 1.9 (0.8, 3.0) -(-, -) -(-, -) 4.5 (3.7, 5.1) 49.6 (13.1, 90.2) 724 (377, 949) -(-, -) -(-, -) 0.72(-0.34, 1.7) 

  

Table 1 .

 1 are carried through for the remainder of the study. Table showing the included modes from Table 2 for each model variant considered.
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Table 2 .

 2 Parameters and prior ranges considered in the Bayesian calibration of Eq. (1a). Parameters marked * are optionally included according to the model under consideration (see Table1).

	Parameter Long name	Units	Min value Max value
	S 1			Subdecadal timescale sensitivity	K	0	10
	S 2			Decadal timescale sensitivity	K	0	10
	S 3	*	Centennial timescale sensitivity	K	0	10
	S 4	*	Millennial timescale sensitivity	K	0	10
	S 5	*	Multi-millennial timescale sensitivity	K	0	10
	R 1		Subdecadal timescale energetic scaling W m -2	-10	10
	R 2		Decadal timescale energetic scaling	W m -2	-10	10
	R 3	*	Centennial energetic scaling	W m -2	-10	10
	R 4	*	Millennial energetic scaling	W m -2	-10	10
	R 5	*	Multi-millennial energetic scaling	W m -2	-10	10
	τ 1				Subdecadal timescale	Years	0	10
	τ 2				Decadal timescale	Years	10	100
	τ 3	*	Centennial timescale	Years	100	1000
	τ 4	*	Millennial timescale	Years	1000	5000
	τ 5	*	Multi-millennial timescale	Years	5000	100 000
	R 4x extrap	Asymptotic energy imbalance	W m -2	-10	10

Table 3 .

 3 Table showing assumed forcing evolution for experiments in LongRunMIP. * Logarithmic CO 2 forcing dependency is assumed following[START_REF] Myhre | New estimates of radiative forcing due to well mixed greenhouse gases[END_REF]. * * F historical (t) and F RCP85 (t) forcing are taken according toMeinshausen et al. (2011).

	Scenario	F (t) (W m -2 )	Time range (years) Models	Forcing scaling for T best-est
				CCSM3, CESM104,
				CNRMCM61, ECHAM5MPIOM
	ABRUPT4X 0	(t < 0)	GISSE2R, HadCM3L,	1
		(5.35)log(4)	(t ≥ 0)	HadGEM2, IPSLCM5A,
				MPIESM11, MPIESM12
		0	(t < 0)	
	1pct2x *	(5.35)log(1.01 t ) (0 ≤ t < 70)	GFDLCM3, GFDLESM2M	2
		(5.35)log(2)	(t ≥ 70)	
		0	(t < 0)	
	1pct4x *	(5.35)log(1.01 t ) (0 ≤ t < 140)	MIROC32	1
		(5.35)log(4)	(t ≥ 140)	
		F historical (t)	(t < 2005)	
	RCP85 * *	F RCP85 (t)	(2005 ≤ t < 2300) ECEARTH	0.583
		F RCP85 (2300)	(t ≥ 2300)	

Table 4 .

 4 Fitted parameters and uncertainties for the LongRunMIP experiments. Median values, with 5th and 95th percentiles in brackets where relevant. The "Difference" column shows EffCS corr -EffCS. EffCS corr is not calculated for HadGEM2 due to large uncertainties in

	R 4x extrap .								
	Model	Years EffCS EffCS corr Difference	T best-est	T extrap	R 4x extrap	R CTRL 0
	CCSM3	2120	2.68	2.55	-0.13	2.73 2.56 (2.55, 2.56)	0.09 (0.07, 0.1)	-0.04
	CESM104	5900	3.37	3.38	0.01	3.39 3.44 (3.43, 3.45) -0.03 (-0.04, -0.01)	-0.02
	CNRMCM61	1850	5.42	4.42	-0.99	5.51 4.47 (4.47, 4.48)	1.26 (1.25, 1.27)	0.73
	ECEARTH	1271	3.44	3.79	0.35	3.50 3.75 (3.74, 3.76)	-0.3 (-0.32, -0.28)	-0.06
	ECHAM5MPIOM	1001	5.84	5.73	-0.10	5.81	5.4 (5.37, 5.45)	0.97 (0.79, 1.14)	0.92
	FAMOUS	3000	7.13	6.68	-0.45	9.27 6.99 (6.96, 7.05)	0.12 (0.09, 0.13)	0.03
	GFDLCM3	5000	3.19	3.28	0.08	4.66 5.05 (5.02, 5.07) -0.09 (-0.11, -0.05)	-0.01
	GFDLESM2M	4500	2.35	2.39	0.04	3.22	3.4 (3.39, 3.41)	-0.1 (-0.13, -0.09)	-0.05
	GISSE2R	5001	2.40	2.39	-0.01	2.42	2.4 (2.4, 2.41)	0.05 (0.05, 0.06)	0.04
	HadCM3L	1000	3.28	2.93	-0.35	3.48 3.01 (2.99, 3.03)	0.4 (0.31, 0.43)	0.10
	HadGEM2	1299	4.69	-	-	4.77 6.01 (4.87, 6.58)	-0.24 (-0.63, 0.16)	0.19
	IPSLCM5A	1000	4.33	3.65	-0.68	4.80 3.71 (3.69, 3.72)	0.57 (0.51, 0.59)	0.12
	MIROC32	2002	4.39	4.31	-0.08	4.49 4.31 (4.29, 4.36)	0.55 (0.52, 0.58)	0.49
	MPIESM11	4459	3.42	3.46	0.03	3.42 3.47 (3.46, 3.53)	0.21 (0.14, 0.23)	0.24
	MPIESM12	1000	3.35	3.18	-0.17	3.34 3.21 (3.19, 3.22)	0.41 (0.34, 0.45)	0.24

Table A2 .

 A2 Fitted parameters and uncertainties for the CMIP5 experiments.

	Model	Years EffCS	T best-est	T extrap	R 4x extrap	R CTRL 0
	ACCESS1-0	150	3.87	-	5.6 (3.92, 6.82)	0.33 (-1.21, 1.04)	0.31
	ACCESS1-3	151	3.54	-	4.52 (3.14, 6.22)	0.5 (-0.55, 1.03)	0.13
	CCSM4	104	3.98	-	2.98 (2.54, 3.69)	1.26 (-0.28, 1.98)	-0.01
	CNRM-CM5	150	3.26	-	4.18 (3.22, 4.79)	1.16 (0.12, 2.15)	1.84
	CSIRO-Mk3-6-0	150	4.15	-	6.12 (4.87, 6.71)	0.22 (-1.13, 1.09)	0.33
	CanESM2	5	-	-	4.48 (3.42, 5.6)	-1.23 (-2.39, 0.98)	0.11
	FGOALS-s2	150	4.23	-	5.74 (4.16, 7.0)	0.36 (-1.18, 1.44)	0.47
	GFDL-CM3	150	3.94	-	3.89 (3.23, 5.69)	-0.24 (-2.08, 0.75)	0.18
	GFDL-ESM2G	300	2.57	-	2.71 (2.52, 3.33)	-0.22 (-0.79, 0.32)	-0.01
	GFDL-ESM2M	300	2.68	-	3.87 (3.25, 4.41)	-0.18 (-0.91, 0.38)	0.02
	GISS-E2-H	151	2.43	-	4.19 (3.12, 5.07)	-1.15 (-2.15, 0.17)	0.54
	GISS-E2-R	151	2.36	-	2.73 (2.15, 4.44)	-0.5 (-1.99, 0.63)	0.13
	HadGEM2-ES	5	-	-	5.58 (3.63, 7.22)	-1.34 (-2.41, 0.69)	0.20
	IPSL-CM5A-LR	5	-	-	3.23 (3.18, 3.99)	-1.14 (-2.37, 1.04)	0.17
	IPSL-CM5A-MR	140	4.10	-	5.07 (3.56, 6.33)	0.72 (-0.3, 1.18)	0.22
	IPSL-CM5B-LR	160	2.63	-	3.43 (2.42, 4.69)	-0.28 (-1.77, 0.5)	0.14
	MIROC-ESM	150	4.65	-	4.61 (3.72, 6.95) -1.75 (-2.42, -0.61)	-1.41
	MIROC5	6	-	-	2.79 (2.38, 3.88)	-1.45 (-2.42, 0.33)	-0.37
	MPI-ESM-LR	150	3.63	-	6.09 (4.34, 7.19)	-0.23 (-1.84, 0.91)	0.27
	MPI-ESM-P	150	3.45	-	5.86 (3.79, 7.03)	-0.46 (-1.99, 0.78)	0.28
	NorESM1-M	150	2.80	-	4.6 (3.12, 5.58)	1.03 (-0.12, 1.83)	1.12
	bcc-csm1-1-m	150	2.82	-	3.29 (2.76, 5.23)	-1.1 (-2.27, -0.14)	-0.35
	inmcm4	150	2.04	-	1.92 (1.65, 2.16)	0.36 (-0.3, 0.96)	0.36

Table A3 .

 A3 Fitted parameters and uncertainties for the CMIP6 experiments.

	Model	Years EffCS	T best-est	T extrap	R 4x extrap	R CTRL 0
	ACCESS-CM2	150	4.70	-	3.61 (3.4, 4.28)	-0.28 (-1.5, 0.98)	0.25
	AWI-CM-1-1-MR	151	3.13	-	4.47 (3.18, 5.82)	-0.25 (-1.83, 0.6)	0.20
	BCC-CSM2-MR	151	2.98	-	5.48 (3.62, 6.61) -1.43 (-2.38, -0.02)	-0.21
	CAMS-CSM1-0	150	2.30	-	3.52 (2.51, 4.38)	-0.3 (-1.83, 0.77)	0.59
	CESM2	400	6.08	-	5.45 (5.29, 5.72)	0.36 (-0.21, 0.88)	0.41
	CESM2-WACCM	150	4.71	-	6.59 (5.47, 7.15)	-0.24 (-1.86, 0.86)	0.10
	CIESM	150	5.65	-	7.25 (6.08, 7.86)	1.93 (0.7, 2.24)	1.19
	CMCC-CM2-SR5	165	3.59	-	4.84 (3.6, 6.13)	0.78 (-0.89, 1.66)	1.15
	CNRM-CM6-1	150	4.90	-	5.36 (3.97, 6.54)	0.83 (-1.05, 1.69)	0.78
	CNRM-CM6-1-HR	150	4.38	-	6.25 (4.56, 7.21)	-0.07 (-1.5, 1.34)	0.88
	CNRM-ESM2-1	150	4.72	-	3.5 (3.24, 4.49)	0.35 (-1.07, 1.46)	0.79
	CanESM5	151	5.59	-	6.49 (4.77, 7.96)	0.1 (-1.47, 1.01)	0.11
	EC-Earth3	160	4.29	-	4.42 (3.74, 5.75)	0.27 (-0.82, 0.62)	0.09
	FGOALS-f3-L	160	3.02	-	4.35 (3.06, 5.68)	-0.31 (-1.96, 0.67)	0.20
	FGOALS-g3	152	2.87	-	3.35 (2.54, 4.56)	0.97 (-0.44, 1.63)	0.99
	FIO-ESM-2-0	150	4.24	-	6.69 (5.1, 7.33)	-0.61 (-2.02, 1.27)	1.13
	GFDL-ESM4	150	2.66	-	3.04 (2.32, 3.81)	0.06 (-1.26, 0.76)	0.12
	GISS-E2-1-G	151	2.72	-	4.02 (3.17, 4.53)	-0.26 (-1.45, 0.74)	0.09
	HadGEM3-GC31-LL	150	5.56	-	6.76 (5.14, 7.96)	0.11 (-1.4, 1.02)	0.15
	HadGEM3-GC31-MM	150	5.47	-	7.24 (6.01, 7.75)	-0.48 (-2.11, 0.88)	0.20
	IITM-ESM	165	2.38	-	2.89 (2.22, 3.36)	0.5 (-0.86, 1.16)	0.44
	INM-CM4-8	150	1.83	-	3.27 (2.29, 3.99)	0.95 (-0.01, 2.02)	2.17
	INM-CM5-0	150	1.91	-	3.13 (2.08, 3.67)	0.27 (-0.74, 1.04)	0.88
	KACE-1-0-G	151	4.97	-	6.37 (5.01, 7.17)	0.99 (-0.51, 1.61)	0.56
	MIROC-ES2L	150	2.66	-	2.54 (2.15, 3.02)	0.69 (-0.61, 1.34)	0.48
	MIROC6	250	2.62	-	2.97 (2.4, 3.36)	0.8 (0.07, 1.29)	0.60
	MPI-ESM1-2-HR	165	2.97	-	3.62 (2.8, 4.6)	-0.49 (-1.53, 0.65)	0.16
	MPI-ESM1-2-LR	165	3.04	-	4.44 (3.25, 5.19)	-0.5 (-1.64, 0.72)	0.26
	NESM3	150	4.69	-	5.24 (4.16, 6.06)	0.21 (-0.96, 0.82)	-0.06
	NorESM2-MM	150	2.43	-	3.43 (2.46, 4.32)	0.03 (-1.51, 0.75)	0.05
	TaiESM1	150	4.36	-	6.93 (5.48, 7.45)	-0.85 (-2.09, 0.53)	0.08
	UKESM1-0-LL	150	5.37	-	6.13 (4.62, 7.55)	0.33 (-1.31, 0.9)	0.05
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Table A4 .

 A4 Fitted parameters and uncertainties for the CMIP5 experiments.

	Model
	S 1
	S 2
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