
HAL Id: hal-04225251
https://hal.science/hal-04225251

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ILLIMANI Memory Profiler -A Technical Report
Sebastian Jordan Montaño, Guillermo Polito, Stéphane Ducasse, Pablo Tesone

To cite this version:
Sebastian Jordan Montaño, Guillermo Polito, Stéphane Ducasse, Pablo Tesone. ILLIMANI Memory
Profiler -A Technical Report. INRIA Lille - Nord Europe. 2023. �hal-04225251�

https://hal.science/hal-04225251
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ILLIMANI Memory Profiler - A Technical Report
Sebastian Jordan Montaño

Univ. Lille, Inria, CNRS, Centrale Lille,
UMR 9189 CRIStAL

Lille, France
sebastian.jordan@inria.fr

Guillermo Polito
Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189 CRIStAL
Lille, France

guillermo.polito@inria.fr

Stéphane Ducasse
Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189 CRIStAL
Lille, France

stephane.ducasse@inria.fr

Pablo Tesone
Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189 CRIStAL
Lille, France

pablo.tesone@inria.fr

Abstract—Modern programming languages provide automatic
memory management with an efficient garbage collector making
the memory management of an application transparent to the
developer. There is a need for practical tools to support develop-
ers in their understanding of the memory consumption of their
applications. In this paper, we present a prototype version of
ILLIMANI: a precise object allocation profiler. It has a rich object
model that provides information about the objects’ allocation
context, the evolution of memory usage, and garbage collector
stress.

We were able to find an object allocation site in the class
UITHEME that was making 99,9% redundant allocations. We
developed a Color Palette cache at the domain level that
removed all the redundant allocations. We were also able to
identify 2 other object allocation sites in the methods MAR-
GIN»#INSETRECTANGLE and NUMBER»#ASMARGIN.

Index Terms—Memory allocation, profiling, Pharo, allocation
site

I. INTRODUCTION

Modern programming languages, such as Java, Python, or
Pharo, provide automatic memory management with an effi-
cient garbage collector. This makes the memory management
of an application transparent to the developer. Debugging
memory issues is known for being a tedious activity [1].
There is a need for practical tools to support developers
in their understanding of the memory consumption of their
applications.

In this paper we present prototype version ILLIMANI1 2

: a precise object allocation profiler for the Pharo Smalltalk
programming language [2]. It profiles the object allocations
that are produced during the execution of an application. It pro-
vides information about the allocation context for each of the
allocated objects, the evolution of memory usage, and garbage
collector stress. It instruments the code to control the execution
of the methods that are responsible for allocating objects using
method wrappers. It also calculates the application’s memory
consumption.

1The version of the tool and the technical report are dated March 2023
2This work © 2023 is licensed under CC BY 4.0

We used ILLIMANI to profile the object allocations in the
Morphic UI, a Pharo framework that is used to draw the
Pharo IDE. We were able to detect object allocation sites. We
found a color object allocation site in the class UITHEME.
We analyzed the allocated objects and we discover that 99,9%
of the allocated colors were redundant. We developed a Color
Palette at the domain level introducing an important missing
architectural element that serves as a natural cache. With the
Color Palette, we reduced the memory stress of the application
by removing all the redundant allocations. We were also able
to identify 2 other object allocation sites in the methods
MARGIN»#INSETRECTANGLE and NUMBER»#ASMARGIN.

Outline. Section II gives an insight of ILLIMANI and its
features; Section III explains the functioning mechanisms of
the profiler; Section IV presents a use case example where
we profiled the object allocation during the execution of
opening 30 Pharo tools and rendering each of them for 100
rendering cycles; Section V talks about the related work; and
Section VI and Section VII finalize explaining the limitations,
the conclusion, and the future work.

II. ILLIMANI MEMORY PROFILER

ILLIMANI3 is a memory profiler developed for the Pharo
Smalltalk [2] programming language that is available under an
open-source MIT license. Pharo is a dynamically typed, purely
object-oriented, and reflective modern programming language.
ILLIMANI profiles and extracts relevant information of the
profiled application, such as the objects’ allocation context,
memory usage, and garbage collector stress. It presents this
information with memory usage tables, accumulative alloca-
tion evolution charts, and a heat map visualization. It is also
possible to query the profiler to make a custom analysis.
ILLIMANI is capable of filtering the profiling for a given
specific domain. In this paper, we present a prototype version
of ILLIMANI. The user can specify which types of objects she
wants to capture or to capture the allocations that a given set

3https://github.com/jordanmontt/illimani-memory-profiler

https://creativecommons.org/licenses/by/4.0/

Fig. 1: Overview of ILLIMANI user interface

of classes produce. Figure 1 shows an overview of the user
interface of ILLIMANI.

ILLIMANI offers the following features:
• Summary and statistics report
• Memory usage tables
• Navigation of query results
• Heat map visualization with the relationship: allocator -

allocated
• Accumulative allocation evolution

A. Summary and Statistics

ILLIMANI provides a summary of the studied execution.
It provides information on the total allocated objects, the
allocator classes and methods, the memory usage, and the
garbage collector stress.

ILLIMANI shows information on how many garbage col-
lections were made, both incremental and full, and the time
spent doing garbage collections. Pharo has a two-generation
garbage collector [3]. It has a young and an old space. The
newly allocated objects are allocated in the young space and
after they survive a threshold of garbage collections they are
moved to the old space. The garbage collections done in the
old space are orders of magnitude slower than the ones done
in the young space [4], [5].

The profiler groups the allocations by allocator classes or
methods. It shows this information in memory tables that can
be sorted by the number of allocations or by the total memory
size in bytes.

Different executions have different allocation paths. ILLI-
MANI provides a chart with the allocation paths for the top
allocators. The number of top allocators is a customizable
parameter that can be changed by the user. On the one
hand, Figure 2 shows that the class GRAFPORT, the second
most allocator, allocates all of its objects in the first moment

0.0 10.0 20.0 30.0 40.0 50.0
0

4,000

8,000

12,000

16,000

Seconds

Al
lo
ca
tio
ns

PharoDarkTheme
GrafPort
RubScrollBar
GeneralScrollBarMorph
TabLabelMorph

Fig. 2: The 5 top most allocator classes

and then stops allocating. On the other hand, the other four
classes allocate the objects continuously during the execution.
These different execution paths are identifiable thanks to the
allocation path chart.

B. Allocation queries

ILLIMANI gives access to the raw information of the al-
located objects such as the allocator class and method, the
object’s total size in memory, the object’s allocation time,
and its allocation context stack. Pharo supports full-stack

Margin>>#insetRectangle:
Number>>#asMargin

Point>>#corner:
SpClassStyle>>#fullName

Morph>>#invalidRect:from:

Rectangle

Margin

ByteString

Al
lo
ca
to
rs

Allocated

0

77387

154775

232162

309550

Fig. 3: Allocator methods heat map

reification thanks to its reflective properties. ILLIMANI uses
this language property to copy the full execution stack of
each one of the allocations. The user can query ILLIMANI
to extract this information and to make a custom analysis. We
developed custom data structures with constant time insertion
and accessing to support the queries.

"Allocations bigger than 4 KB"
profiler objectAllocations select: [:e |

e totalSizeInBytes > 4096].
"Most allocator methods grouped allocations"
profiler allocationsByMethod

first groupedAllocations.

Listing 1: Querying ILLIMANI

C. Heat map

ILLIMANI presents the information with a heat map. It
shows the relationship between the most allocator classes,
or methods, and the most allocated objects. Key questions
developers ask about memory are related to who is responsible
for most creating instances and of each class, or method [6].
Heat map visualizations are particularly adapted to display
such relationships. Their matrix architecture supports the iden-
tification of key players: most created vs. most creating classes
per entity [7]–[9].

The most allocators are ordered from top to bottom, the top
is the one that allocates the most and the bottom one is the
one that allocates the less. The allocated classes are ordered
from right, the most allocated, to the left, the less allocated.
ILLIMANI groups the allocations by classes and by methods.
This heat map supports a drill-down version where methods
creating most objects are displayed instead of the classes:
Figure 3 shows that method MARGIN»#INSETRECTANGLE is
the one creating all rectangle objects.

III. PRECISE MEMORY PROFILING

In Pharo, almost all computations are done by send-
ing messages (invoking methods) [10]. Allocating an ob-
ject is done also by sending a message. The methods
BEHAVIOR»#BASICNEW, BEHAVIOR»#BASICNEW:, ARRAY
CLASS»NEW:, and NUMBER»@ are the four methods that
allocate objects in Pharo.

ILLIMANI automatically instruments the execution of the
profiled application to capture its object allocations. It instru-
ments the four allocator methods to control their execution
before and after being invoked. We use the library Method-
Proxies4 for instrumenting the methods. MethodProxies add
defined actions to be executed and or after the method that is
being instrumented.

Each time that one of those methods is invoked, ILLIMANI
intercepts the call and registers important information about
the allocation context, the object’s type, and its size in memory.
Right after the allocation is made, we store the allocated
object’s type, its allocator class and method, and different
information about the allocation’s context. The MethodProxies
architecture ensures that the code will be de-instrumented after
the profiling is finished. None of the allocations that are made
in the process of extracting the information are intercepted.

IV. USE CASE: IDENTIFYING ALLOCATION SITES

A Pharo expert had a hint about a memory leak of objects
of the type COLOR. ILLIMANI provides the possibility of
filtering the profiling for a given specific domain. We configure
the profiler to capture all the COLOR allocations that an
application creates. We run the profiler on Pharo 11, commit
1a5afe1.

Our target application was MorphicUI, a graphics frame-
work for Pharo. It has 669 classes with 11236 methods in
Pharo 11.

We opened 30 Pharo core tools and we let each of the
instances of the tools render for 100 Morphic rendering cycles.
Through this we are able to control how many times each of
the tools is rendered, making the profiling reproducible. The
tools are: Iceberg, Playground, and the Pharo Inspector. We
opened 10 of each making 30 in total. The code to reproduce
the experiment is available as a script5.

Figure 2 presents an allocation paths plot for the top 5
allocator classes. One can observe that the class PHARO-
DARKTHEME is the allocation site with the most allocations.
PHARODARKTHEME is a subclass of UITHEME. UITHEME is
a central class in Pharo that is responsible for setting drawing
configurations and also to provide the theme colors that are
used in the Pharo IDE.

During the application’s execution, we observed 23,686 total
COLOR object allocations. Table I shows that the PHARO-
DARKTHEME class is responsible for 66% of all the COLOR
allocations. Using the customizable queries of ILLIMANI we
analyzed the allocated objects by the UI Theme and we
detected that only 15 out of 23,686 colors were different,
meaning that 99,9% of the allocations were redundant.

Summary: Using ILLIMANI we identified an alloca-
tion site in the class PHARODARKTHEME that was
allocating 66% of all the colors with 99,9% redundant
allocations.

4https://github.com/pharo-contributions/MethodProxies
5https://gist.github.com/jordanmontt/05c51c5527bf1c8e375117a3b9020c1e

TABLE I: Top 5 color allocations when opening 30 Pharo
tools

Allocator class Allocated colors %
PharoDarkTheme 15,629 66%

GrafPort 4,096 17%
RubScrollBar 1,842 8%

GeneralScrollBarMorph 480 2%
TabLabelMorph 346 1%

Rest of the classes 1293 2%

A. Color Palette

Looking at the implementation of UITHEME we identified
the cause of the redundant allocations: each time that a user
asks for a color, the UITHEME class creates a new instance
of it. We developed a Color Palette as a solution. The Color
Palette lazily allocates the colors when they are requested by
a user and caches them once created. When the UITHEME
changes, for example changing from a dark theme to a light
theme, the caches are invalidated and they are recalculated on
demand. The Color Palette was integrated into Pharo 11 in the
commit d540bcf.

With the Color Palette fix, we profiled again the same
execution to compare the baseline implementation against the
Color Palette. In Table II and in Figure 4 we see that with the
Color Palette implementation, the PHARODARKTHEME does
no longer allocate COLOR objects.

TABLE II: Object Allocations in Baseline vs Color Palette
implementation

Allocator class Baseline Color Palette Diff
PharoDarkTheme 15,629 0 ∞

RubScrollBar 4,096 4,096 1×
Total Allocations 23,686 7,974 3×

Summary: With the Color Palette implementation the
PHARODARKTHEME class does not longer allocates
redundant colors.

B. Other allocation sites

We profiled the same execution setup, opening 30 Pharo
tools, this time not filtering the allocated objects but cap-
turing all of the allocations. We observe in Table III that
the classes RECTANGLE and MARGIN are the ones that
are allocated the most, summing 64% of all the allocations
between them. The methods MARGIN»#INSETRECTANGLE
and NUMBER»#ASMARGIN are the two methods producing
all of those allocations. We did not investigate further the
causes of these object allocation sites. The heat map presented
in Figure 3 shows the relationship between the most allocators
and the most allocated for this profile. One observes that
the method MARGIN»#INSETRECTANGLE allocates mostly
RECTANGLE objects while NUMBER»#ASMARGIN allocates
MARGIN objects.

0.0 10.0 20.0 30.0 40.0 50.0
0

1,000

2,000

3,000

4,000

5,000

Seconds

Al
lo
ca
tio
ns

GrafPort
RubScrollBar
GeneralScrollBarMorph
TabLabelMorph
AlignmentMorph

Fig. 4: The 5 topmost color allocator classes with the Color
Palette implementation

TABLE III: Allocated Objects

Allocated object class Allocations %
Rectangle 699,625 45%

Margin 300,663 19%
ByteString 111,662 7%

OrderedCollection 78,474 5%
WriteStream 60,448 4%

Rest of the classes 314,480 20%

Summary: ILLIMANI reports other two object alloca-
tion sites that allocate objects of type RECTANGLE and
MARGIN that represent 64% of the allocations.

V. RELATED WORK

Visualizing object allocation sites. Infante et al. [12] have
developed a Pharo memory profiler that reports object pro-
duction sites and memory usage called Memory Blueprint.
Memory Blueprint shows a call graph with the methods that
produce objects and a visualization of the memory usage
of the allocated objects. Their work focuses on identifying
object production sites while ILLIMANI also has a rich model
for representing the object allocations that allows the user to
query them to calculate other statistics. It can be also queried
without the user interface as it is independent of it and it
allows inspecting the reified stacks of the allocation contexts.
Fernandez et al. [13] made a visualization related to Memory
Blueprint, but that keeps the context of the method and the
source code of it. ILLIMANI also provides for each of the
allocated objects the allocator method and class as well as
the allocation context. Fernandez et al. [14] have developed

a call graph visualization, similar to their previous work but
analyzing the memory consumption of Python applications.

Allocation matrix. De Pauw et al. [9] developed an Alloca-
tion matrix, which is a visualization that shows the relationship
between the most allocators and the most allocated for the C++
programming language. We used this idea to implement our
heat map visualization.

Resources consumption reduction. Bergel et al. [15] have
worked on analyzing the memory footprint of the expandable
collections of Pharo. They analyzed the allocation of internal
arrays and their use to propose an optimized version of the
expandable collections. Our work is different but complemen-
tary in the sense that we profiled the memory allocation of
Pharo tools to identify allocation sites to reduce its memory
footprint.

Domain specific profilers. Ressia et al. [16] developed a
domain-specific profiler framework in Pharo that the user can
specify the profiled domain to allow the profiler to give more
precise information about the specific domain. They developed
this technique to profile a know performance issue that they
had and the profiling tools that were available at that moment
were not sufficient to localize the problem. The profiler that
we developed allowed us to identify a problem that we were
not aware of. Thanks to its architecture, ILLIMANI also allows
filtering the profiling for a given specific domain. The user can
specify which set of classes wants to profile and which type
of object allocations she wants to capture.

Tracking of Allocation Sites. Odaira et al. [17] have
working on tracking object allocation sites in Java. They
developed two new approaches to trace the object allocation
sites with a minimum slowdown of the execution. They store
the allocation information on the object hash code field or
in the object header. They use the allocation information to
optimize the garbage collector copying directly into a tenured
space certain objects. Our work does not focus on the tracing
technique, we use method wrappers. Our solution does not
require running the profiler on a modified virtual machine and
it has a rich model that offers the possibility of extracting
information from the allocation context.

VI. LIMITATIONS

In Pharo, there are special methods, called primitives that
are executed natively. At the moment of writing this paper, we
were not able to wrap these special methods. In Pharo 11 we
identified in total 3 primitive methods that allocate objects of
classes ARRAY, POINT and INTERVAL.

Our profiler has an overhead of around 10×. However,
this not affects the precession of the measurements as the
application will make the same number of allocations.

ILLIMANI does 3 object allocations that are registered
during the profile. The number does not vary no matter the
code that is being profiled. This is not a significant perturbation
for our profiles.

VII. CONCLUSION AND FUTURE WORK

ILLIMANI is a memory profiler that can precisely capture
object allocations. It provides a rich object model that allows

a user to query and group the object allocations. ILLIMANI
also shows the information with tables and visualizations. We
profiled the execution of opening 30 Pharo tools: Iceberg,
Playground, and the Inspector. We opened 10 times each mak-
ing 30 in total and we let render each of the applications for
100 Morphic cycles. We were able to detect object allocation
sites. ILLIMANI reported that the class UITHEME was making
99,9% redundant object allocations. We were able to fix the
excessive allocations by introducing the architectural concept
of a Color Palette removing all the redundant allocations that
the UITHEME was making.

We were able to identify other two allocation sites related
to the MorphicUI framework. For the same execution of
opening the 30 Pharo tools, 1,565,352 objects were allocated
in total and the classes RECTANGLE and MARGIN are the
ones that are allocated the most, summing 64% of all the
allocations. The methods MARGIN»#INSETRECTANGLE and
NUMBER»#ASMARGIN are the two methods producing all of
those allocations.

There is previous work done on energy profiling in Pharo
[18]. We want to continue this work to include energy mea-
surements along with the object allocations. We will also
develop a solution at the bytecode level to be able to wrap
the primitive methods too.

REFERENCES

[1] A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky, P. O’Sullivan,
T. Parsons, and J. Murphy, “Patterns of memory inefficiency,” in ECOOP
2011–Object-Oriented Programming: 25th European Conference, Lan-
caster, Uk, July 25-29, 2011 Proceedings 25. Springer, 2011, pp. 383–
407.

[2] S. Ducasse, G. Rakic, S. Kaplar, Q. D. O. written by A. Black,
S. Ducasse, O. Nierstrasz, D. P. with D. Cassou, and M. Denker, Pharo
9 by Example. Book on Demand – Keepers of the lighthouse, 2022.
[Online]. Available: http://books.pharo.org

[3] D. Ungar, “Generation Scavenging: A Non-Disruptive High Performance
Storage Reclamation Algorithm,” ACM SIGPLAN Notices, vol. 19, no. 5,
pp. 157–167, 1984.

[4] G. Polito, P. Tesone, J. Privat, N. Palumbo, and S. Ducasse, “Heap
fuzzing: Automatic garbage collection testing with expert-guided ran-
dom events,” in International Conference on Software Testing, 2023.

[5] E. Miranda, C. Béra, E. G. Boix, and D. Ingalls, “Two decades of
Smalltalk VM development: live VM development through simulation
tools,” in Proceedings of International Workshop on Virtual Machines
and Intermediate Languages (VMIL’18). ACM, 2018, pp. 57–66.

[6] J. Sillito, K. D. Volder, B. Fisher, and G. Murphy, “Managing software
change tasks: An exploratory study,” in Proceedings of the International
Symposium on Empirical Software Engineering. IEEE Computer
Society, 2005, pp. 23–32.

[7] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlissides,
and J. Yang, “Visualizing the execution of java programs,” in Revised
Lectures on Software Visualization, International Seminar. London,
UK: Springer-Verlag, 2002, pp. 151–162.

[8] W. De Pauw and G. Sevitsky, “Visualizing reference patterns for solving
memory leaks in Java,” Concurrency: Practice and Experience, vol. 12,
no. 14, pp. 1431–1454, 2000.

[9] W. De Pauw, D. Kimelman, and J. Vlissides, “Modeling object-oriented
program execution,” in Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’94), ser. LNCS, M. Tokoro and
R. Pareschi, Eds., vol. 821. Bologna, Italy: Springer-Verlag, Jul. 1994,
pp. 163–182.

[10] A. Bergel, “Counting messages as a proxy for average execution time
in pharo,” in Proceedings of the 25th European Conference on Object-
Oriented Programming (ECOOP’11), ser. LNCS. Springer-Verlag,
Jul. 2011, pp. 533–557. [Online]. Available: http://bergel.eu/download/
papers/Berg11c-compteur.pdf

http://books.pharo.org
http://bergel.eu/download/papers/Berg11c-compteur.pdf
http://bergel.eu/download/papers/Berg11c-compteur.pdf

[11] J. Brant, B. Foote, R. Johnson, and D. Roberts, “Wrappers to the rescue,”
in Proceedings European Conference on Object Oriented Programming
(ECOOP’98), ser. LNCS, vol. 1445. Springer-Verlag, 1998, pp. 396–
417.

[12] A. Infante and A. Bergel, “Efficiently identifying object
production sites,” in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 575–579. [Online]. Available:
https://bergel.eu/MyPapers/Infa15a-MemoryProfiling.pdf

[13] A. Fernandez Blanco, J. P. Sandoval Alcocer, and A. Bergel, “Effective
visualization of object allocation sites,” in 2018 IEEE Working Confer-
ence on Software Visualization (VISSOFT), 2018, pp. 43–53.

[14] A. Fernandez Blanco, A. Bergel, J. P. Sandoval Alcocer, and
A. Queirolo Córdova, “Visualizing memory consumption with vismep,”
in 2022 Working Conference on Software Visualization (VISSOFT).
IEEE, 2022, pp. 108–118.

[15] A. Bergel, A. Infante, S. Maass, and J. P. S. Alcocer, “Reducing
resource consumption of expandable collections: The pharo case,”
Science of Computer Programming, vol. 161, pp. 34–56, 2018, advances
in Dynamic Languages. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167642317302940

[16] J. Ressia, A. Bergel, O. Nierstrasz, and L. Renggli, “Modeling domain-
specific profilers,” Journal of Object Technology, vol. 11, no. 1, pp.
1–21, Apr. 2012.

[17] R. Odaira, K. Ogata, K. Kawachiya, T. Onodera, and T. Nakatani,
“Efficient runtime tracking of allocation sites in java,” ACM Sigplan
Notices, vol. 45, no. 7, pp. 109–120, 2010.

[18] A. Bergel, “Power and energy code profiling in pharo,” in Proceedings of
the International Workshop on Smalltalk Technologies (IWST’16), 2016.

https://bergel.eu/MyPapers/Infa15a-MemoryProfiling.pdf
http://www.sciencedirect.com/science/article/pii/S0167642317302940
http://www.sciencedirect.com/science/article/pii/S0167642317302940

	Introduction
	Illimani Memory Profiler
	Summary and Statistics
	Allocation queries
	Heat map

	Precise memory profiling
	Use Case: Identifying Allocation Sites
	Color Palette
	Other allocation sites

	Related work
	Limitations
	Conclusion and Future Work
	References

