
HAL Id: hal-04225201
https://hal.science/hal-04225201v2

Preprint submitted on 19 Oct 2023 (v2), last revised 13 Mar 2024 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A path-norm toolkit for modern networks:
consequences, promises and challenges

Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti, Rémi Gribonval

To cite this version:
Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti, Rémi Gribonval. A path-norm toolkit for modern
networks: consequences, promises and challenges. 2023. �hal-04225201v2�

https://hal.science/hal-04225201v2
https://hal.archives-ouvertes.fr


Under review as a conference paper at ICLR 2024

A PATH-NORM TOOLKIT FOR MODERN NETWORKS:
CONSEQUENCES, PROMISES AND CHALLENGES

Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti & Rémi Gribonval
Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France

ABSTRACT

This work introduces the first toolkit around path-norms that is fully able to en-
compass general DAG ReLU networks with biases, skip connections and any op-
eration based on the extraction of order statistics: max pooling, GroupSort etc.
This toolkit notably allows us to establish generalization bounds for modern neu-
ral networks that are not only the most widely applicable path-norm based ones,
but also recover or beat the sharpest known bounds of this type. These extended
path-norms further enjoy the usual benefits of path-norms: ease of computation,
invariance under the symmetries of the network, and improved sharpness on feed-
forward networks compared to the product of operators’ norms, another complex-
ity measure most commonly used.
The versatility of the toolkit and its ease of implementation allow us to challenge
the concrete promises of path-norm-based generalization bounds, by numerically
evaluating the sharpest known bounds for ResNets on ImageNet.

1 INTRODUCTION

Developing a thorough understanding of theoretical properties of neural networks is key to achieve
central objectives such as efficient and trustworthy training, robustness to adversarial attacks (e.g.
via Lipschitz bounds), or statistical soundness guarantees (via so-called generalization bounds).

The so-called path-norm and path-embedding are promising concepts to theoretically analyze neural
networks: the path-norm has been used to derive generalization guarantees (Neyshabur et al., 2015;
Barron & Klusowski, 2019), and the path-embedding has led for example to identifiability guar-
antees (Stock & Gribonval, 2022) and characterizations of properties of the dynamics of training
algorithms (Marcotte et al., 2023).

However, the current definitions of the path-norm and of the path-embedding are currently severely
limited: they only cover simple models unable to combine in a single framework pooling layers,
skip connections, biases, or even multi-dimensional output (Neyshabur et al., 2015; Kawaguchi
et al., 2017; Stock & Gribonval, 2022). Thus, the promises of existing theoretical guarantees based
on these tools are currently out of reach as they cannot even be tested on standard modern networks.

Because of the current lack of versatility of these tools, known results have only been tested on toy
examples. This prevents us from both understanding the reach of these tools and from diagnosing
their strengths and weaknesses, which is necessary to either improve them in order to make them ac-
tually operational, if possible, or to identify without concession the gap between theory and practice,
in particular for generalization bounds.

This work adresses the challenge of making these tools fully compatible with modern networks,
and to concretely assess them on standard real-world examples. First, it formalizes a defini-
tion of path-embedding (and path-norms) that is adapted to very generic ReLU networks,
covering any DAG architecture (in particular with skip connections), including in the presence of
max/average-pooling (and even more generally k-max-pooling, which extracts the k-th largest co-
ordinate, recovering max-pooling for k = 1) and/or biases. This covers a wide variety of modern
networks (notably ResNets, VGGs, U-nets, ReLU MobileNets, Inception nets, Alexnet)1, and recov-

1The conclusion discusses networks not covered by the framework and adaptations needed to cover them.
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ers previously known definitions of these tools in simpler settings such as multilayer feedforward
networks.

The immediate interests of these tools are: 1) path-norms are easy to compute on modern networks
via a single forward-pass; 2) path-norms are invariant under neuron permutations and parameter
rescalings that leave the network invariant; and 3) the L1 path-norm yields a Lipschitz bound of
the network. These properties were known (but scattered in the literature) in the restricted case of
feedforward ReLU networks primarily without biases (and without average/k-max-pooling nor skip
connections) (Neyshabur et al., 2015; Neyshabur, 2017; Furusho, 2020; Jiang et al., 2020; Dziugaite
et al., 2020; Stock & Gribonval, 2022). They are generalized here for generic DAG ReLU networks
with all the standard ingredients of modern networks.

Moreover, path-norms tightly lower bound products of operator norms, another complexity measure
that does not enjoy the same invariances as path-norms, despite being widely used for Lipschitz
bounds (e.g., to control adversarial robusteness) (Neyshabur et al., 2018; Gonon et al., 2023) or
generalization bounds (Neyshabur et al., 2015; Bartlett et al., 2017; Golowich et al., 2018). This
bound, which was only known for feedforward ReLU networks without biases (Neyshabur et al.,
2015), is again generalized here to generic DAG ReLU networks. This requires a proper adaptation
for such networks that are not necessarily organized into layers with associated weight matrices.

Second, this work also establishes a new generalization bound for modern ReLU networks
based on their corresponding path-norm. This bound covers arbitrary output dimension (while
previous work focused on scalar dimension, see Table 1), generic DAG ReLU network architec-
tures with average/k-max-pooling, skip connections and biases. The achieved generalization bound
recovers or beats the sharpest known ones of this type, that were so far only available in simpler
restricted settings, see Table 1 for an overview. Among the technical ingredients used in the proof
of this generalization bound, the new contraction lemmas and the new peeling argument are among
the main theoretical contributions of this work. The first new contraction lemma extends the clas-
sical ones with scalar ti ∈ R, and contractions fi of the form EεG

(
supt∈T

∑
i∈I εifi(ti)

)
⩽

EεG
(
supt∈T

∑
i∈I εiti

)
(Ledoux & Talagrand, 1991, Theorem 4.12), with convex non-decreasing

G, to situations where there are multiples independent copies indexed by z ∈ Z of the latter:
Eε maxz∈Z G

(
supt∈T z

∑
i∈I εi,zfi,z(ti)

)
⩽ Eε maxz∈Z G

(
supt∈T z

∑
i∈I εi,zti

)
. The second

new contraction lemma deals with vector-valued ti ∈ RW , and functions fi that compute the k-th
largest input’s coordinate, to cope with k-max-pooling neurons, and it also handles multiple inde-
pendent copies indexed by z ∈ Z. The most closely related lemma we could find is the vector-valued
one in (Maurer, 2016) established with a different technique, and that holds only for G = id with
a single copy (|Z| = 1). The peeling argument reduces the Rademacher complexity of the entire
model to the one of the inputs by getting rid (peeling), one by one, of the neurons of the model. This
is inspired by the peeling argument of (Golowich et al., 2018), which is however specific to feedfor-
ward ReLU networks with layer-wise constraints on the weights. Substantial additional ingredients
are developed to handle arbitrary DAG ReLU networks (as there is no longer such a thing as a layer
to peel), with not only ReLU but also k-max-pooling and identity neurons (where (Golowich et al.,
2018) has only ReLU neurons), and leveraging only a global constraint through the path-norm (in-
stead of layerwise constraints on operator norms). The analysis notably makes use of the rescaling
invariance of the proposed generalized path-embedding.

The versatility of the proposed tools enables us to compute for the first time generalization
bounds based on path-norm on networks really used in practice. This is the opportunity to
assess the current state of the gap between theory and practice, and to diagnose possible room for
improvements. As a concrete example, we demonstrate that on ResNet18 trained on ImageNet: 1)
the proposed generalization bound can be numerically computed; 2) for a (dense) ResNet18 trained
with standard tools, roughly 30 orders of magnitude would need to be gained for this path-norm
based bound to match practically observed generalization error; 3) the same bound evaluated on a
sparse ResNet18 (trained with standard sparsification techniques) is decreased by up to 13 orders of
magnitude. We conclude the paper by discussing promising leads to reduce this gap.

Paper structure. Section 2 introduces the ReLU networks being considered, and generalizes to this
model the central definitions and results related to the path-embedding, the path-activations and the
path-norm. Section 3 state a versatile generalization bound for such networks based on path-norm,
and sketches its proof. Section 4 reports numerical experiments on ImageNet and ResNets. Related
works are discussed along the way, and we refer to Appendix J for more details.

2



Under review as a conference paper at ICLR 2024

Table 1: Generalization bounds (up to universal multiplicative constants) for a ReLU network esti-
mator in Θ learned from n iid training points when 1) the loss ŷ ∈ (Rdout , ∥ · ∥2) → ℓ(ŷ, y) ∈ R
is L-Lipschitz for every y, and 2) inputs are bounded in L∞-norm by B ⩾ 1. Here, din/dout = in-
put/output dimension, K = the maximum kernel size of the ∗-max-pooling neurons, Md = matrix
of layer d for a feedforward network (FFN), D = depth. Note that r is more desirable than R since
r ⩽ R (Theorem B.1 in appendix) and R can be arbitrarly large when r = 0 (Figure 2 in appendix).
This is because R decouples the layers without taking into account rescaling invariances.

Architecture Parameter set Θ Generalization bound
(Kakade et al., 2008, Eq.

(5))(Bach, Sec. 4.5.3)
linear regression (FFN, 0 hidden layer,

dout = 1)
∥θ∥1 =

∥Φ(θ)∥1 ⩽ r

LB√
n
× r
√

log(din)

(E et al., 2022, Thm. 6)
(Bach, 2017, Proposition 7)

one hidden layer, no biases, dout = 1 ∥Φ(θ)∥1 ⩽ r LB√
n
× r
√

log(din)

(Neyshabur et al., 2015,
Corollary 7)

DAG, no biases, dout = 1 ∥Φ(θ)∥1 ⩽ r LB√
n
× 2Dr

√
log(din)

(Golowich et al., 2018,
Theorem 3.2)

FFN, no biases, dout = 1
D∏

d=1

∥Md∥1,∞ ⩽ R LB√
n
×R

√
D + log(din)

(Barron & Klusowski,
2019, Corollary 2)

FFN, no biases, dout = 1 ∥Φ(θ)∥1 ⩽ r LB√
n
× r
√

D + log(din)

Here, Theorem 3.1 DAG, with biases, arbitrary dout, with
ReLU, identity and k-max-pooling

neurons for k ∈ {k1, . . . , kP } ⊂ N>0

∥Φ(θ)∥1 ⩽ r
LB√
n
× r
√

D log(PK) + log(dindout)

2 RELU MODEL AND PATH-EMBEDDING

Section 2.1 defines a general DAG ReLU model that covers modern architectures. Section 2.2 then
introduces the so-called path-norm and extends related known results to this general model.

2.1 RELU MODEL THAT COVERS MODERN NETWORKS

The next definition introduces the model of ReLU neural networks being considered here.
Definition 2.1 (ReLU neural network). A ReLU neural network architecture is a DAG G =
(N,E, (ρv)v∈N ) with edges E, and vertices N (called neurons) such that each neuron v has an
attribute ρv ∈ {id,ReLU} ∪ {k-pool, k ∈ N>0} that corresponds to the activation function of
v (identity, ReLU, or k-max-pooling where k-pool(x) = x(k) is the k-th largest coordinate of x),
with ρv = id enforced whenever v has no successor. For a neuron v, the sets ant(v), suc(v) of an-
tecedents and successors of v are ant(v) = {u ∈ N, u→ v ∈ E}, suc(v) = {u ∈ N, v → u ∈ E}.
Neurons with no antecedents (resp. no successors) are called input (resp. output) neurons, and
their set is denoted Nin (resp. Nout). Input and output dimensions are respectively din = |Nin|
and dout = |Nout|. Denote Nρ = {v ∈ V, ρv = ρ} for an activation ρ, and denote also
N∗-pool = ∪k∈N>0Nk-pool. A neuron in N∗-pool is called a ∗-max-pooling neuron. For v ∈ N∗-pool,
its kernel size is defined as being | ant(v)|.

Parameters associated with this architecture are vectors2 θ ∈ RE∪N\(Nin∪N∗-pool) (no biases on input
neurons and ∗-max-pooling neurons). We call bias and denote bv = θv the coordinate associated
with a neuron v, and denote θu→v the weight associated with an edge u→ v ∈ E. We often denote
θ→v = (θu→v)u∈ant(v) and θv→ = (θu→v)u∈suc(v).

In what follows, the symbol v can either denote a neuron v ∈ N or the function associated to this
neuron. The function RG

θ : RNin → RNout (simply denoted Rθ when G is clear from the context)
realized by parameters θ is defined for every input x ∈ RNin as

Rθ(x) := (v(θ, x))v∈Nout ,

where v(θ, x) is defined as v(θ, x) := xv for an input neuron v, and defined by induction otherwise

v(θ, x) :=

{
ρv(bv +

∑
u∈ant(v) θ

u→vu(θ, x)) if ρv = ReLU or ρv = id,

k-pool
(
(θu→vu(θ, x))u∈ant(v)

)
otherwise when ρv = k-pool.

2For an index set I , denote RI = {(θi)i∈I ,θi ∈ R}.
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Such a model indeed encompasses modern networks via the following implementations:
• Max-pooling: set ρv = k-pool for k = 1 and θu→v = 1 for every u ∈ ant(v).

• Average-pooling: set ρv = id, bv = 0 and θu→v = 1/| ant(v)| for every u ∈ ant(v).

• GroupSort: use identity neurons to compute the pre-activations, group neurons using the DAG
structure and sort them using ∗-max-pooling neurons, as prescribed in Anil et al. (2019).

• Batch normalization: set ρv = id and weights accordingly. Batch normalization layers only differ
from standard affine layers by the way their parameters are updated during training.

• Skip connections: via the DAG structure, the outputs of any past layers can be added to the pre-
activation of any neuron by adding connections from these layers to the given neuron.

• Convolutional layers: consider them as (doubly) circulant/Toeplitz fully connected layers.

2.2 PATH-EMBEDDING, PATH-ACTIVATIONS AND PATH-NORM

Given a general DAG ReLU network G as in Definition 2.1, it is possible to define a set of paths
PG, a path-embedding ΦG and path-activations AG, see Definition A.1 in the supplementary. The
Lq path-norm is then ∥ΦG(θ)∥q . Superscript G is omitted when obvious from context. The interest
is that path-norm, which is easy to compute, can be interpreted as a Lipschitz bound of the network
which is tighter than products of operator norms. We give here a high-level overview of the defi-
nitions and properties, and refer to Appendix A for formal definitions, proofs and technical details.
We highlight that the definitions and properties coincide with previously known ones in classical
simpler settings.

Path-embedding and path-activations: fundamental properties. The path-embedding Φ and the
path-activations A are defined to ensure the next fundamental properties: 1) for each parameter θ,
the path-embedding Φ(θ) ∈ RP is independent of the inputs x, and polynomial in the parameters θ
in a way that it is invariant under all neuron-wise rescaling symmetries3; 2) A(θ, x) ∈ RP×(din+1)

takes a finite number of values and is piece-wise constant as a function of (θ, x); and 3) denoting
Φ→v and A→v to be the same objects but associated with the graph deduced from G by keeping
only the largest subgraph of G with the same inputs as G and with single output v, then the output
of every neuron v can be written as

v(θ, x) =

〈
Φ→v(θ),A→v(θ, x)

(
x
1

)〉
. (1)

Compared to previous definitions given in simpler models (no k-max-pooling even for a single given
k, no skip connections, no biases, one-dimensional output and/or layered network) (Kawaguchi
et al., 2017; Stock & Gribonval, 2022), the main novelty is essentially to properly define the path-
activations A(θ, x) in the presence of ∗-max-pooling neurons: when going through a k-max-pooling
neuron, a path stays active only if the previous neuron of the path is the first in lexicographic order
to be the k-th largest input of this pooling neuron.

Path-norm is easy to compute. It is mentioned in (Dziugaite et al., 2020, Appendix C.6.5) and
(Jiang et al., 2020, Equation (44)) (without proof) that for ReLU feedforward networks without
biases, the L2 path-norm can be computed in a single forward pass with the formula: ∥ΦG(θ)∥2 =
∥RG

|θ|2(1)∥1, where |θ|2 is the vector θ with x → x2 applied coordinate-wise (bias included) and
where 1 is the constant input equal to one. This can be proved in a straightforward way, using
Equation (1), and even extended to an arbitrary exponent q ∈ [1,∞]: ∥ΦG(θ)∥qq = ∥RG

|θ|q (1)∥1.
However, Appendix A shows that this formula is false as soon as there is at least one ∗-max-pooling
neuron, and that easy computation remains possible by first replacing the activation function of ∗-
max-pooling neurons with the identity before doing the forward pass. Average-pooling neurons also
need to be explicitly modeled as described after Definition 2.1, to apply x→ xq to their weights.

L1 path-norm yields a Lipschitz bound. Equation (1) is fundamental to understand the role of
the path-norm. It shows that Φ contains information about the slopes of the function realized by

3Because of positive-homogeneity of the considered activations functions, the realized function is preserved
(Stock & Gribonval, 2022) when the incoming weights and the bias of a neuron are multiplied by λ > 0, while
its outgoing weights are divided by λ. Path-norms inherit such symmetries and are further invariant to certain
neuron permutations, typically within each layer in the case of feedforward networks.
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the network on each of the regions where A is constant. A formal result that goes in this direction
is the Lipschitz bound ∥Rθ(x) − Rθ(x

′)∥1 ⩽ ∥Φ(θ)∥1∥x − x′∥∞, already known in the case of
ReLU feedforward networks (Neyshabur, 2017, before Section 3.4) (Furusho, 2020, Theorem 5),
and generalized to the more general case of Definition 2.1 in Appendix A. This allows to leverage
generic generalization bounds that apply to the set of all r-Lipschitz functions f : [0, 1]din → [0, 1],
however these bounds suffer from the curse of dimensionality (von Luxburg & Bousquet, 2004),
unlike the bounds established in Section 3.

Path-norms tightly lower bound products of operators’ norms. For models of the form
Rθ(x) = MD ReLU(MD−1 . . .ReLU(M1x)), i.e. ReLU feedforward neural networks with matri-
ces M1, . . . ,MD and no biases, products such as

∏D
d=1 ∥Md∥q,∞, where ∥M∥q,∞ is the maximum

Lq norm of a row of matrix M , can be used for q = 1, to bound the Lipschitz constant of the net-
work (Neyshabur et al., 2018; Gonon et al., 2023) and to establish generalization bounds (Neyshabur
et al., 2015; Bartlett et al., 2017; Golowich et al., 2018). So which one of path-norm and products
of operator norms should be used? There are at least three reasons to consider the path-norm. First,
it holds ∥Φ(θ)∥q ⩽

∏D
d=1 ∥Md∥q,∞, with equality if the parameters are properly rescaled. This is

known for simple feedforward networks without biases (Neyshabur et al., 2015, Theorem 5). Ap-
pendix A generalizes it to DAGs as in Definition 2.1. The difficulty is to define the equivalent of
the product of operators’ norms with an arbitrary DAG and in the presence of biases. Apart from
that, the proof is essentially the same as in (Neyshabur et al., 2015), with a similar rescaling that
leads to equality of both measures, see Algorithm 1. Second, there are cases where the product of
operators’ norms is arbitrarily large while the path-norm is zero (see Figure 2 in Appendix B). Thus,
it is not desirable to have a generalization bound that depends on this product of operators’ norms
since, compared to the path-norm, it fails to capture the complexity of the network end-to-end by
decoupling the layers of neurons one from each other. Third, it has been empirically observed that
products of operators’ norms negatively correlate with the empirical generalization error while the
path-norm positively correlates (Jiang et al., 2020, Table 2)(Dziugaite et al., 2020, Figure 1).

3 GENERALIZATION BOUND

The generalization bound of this section is based on path-norm for general DAG ReLU network.
It encompasses modern networks, recovers or beats the sharpest known bounds of this type, and
applies to the cross-entropy loss. The top-one accuracy loss is not directly covered, but can be
controlled via a bound on the margin-loss, as detailed at the end of this section.

3.1 MAIN RESULT

To state the main result let us recall the definition of the generalization error.
Definition 3.1. Consider din, dout ∈ N>0, n ∈ N>0 iid random variables Zi = (Xi,Yi) ∈ Rdin ×
Rdout and an iid copy Z̃1 of Z1. Consider a function ℓ : Rdout × Rdout → R. The ℓ-generalization
error of any estimator θ̂(Z) ∈ Θ is defined as:

ℓ-generalization error of θ̂(Z) :=EZ̃1

(
ℓ
(
Rθ̂(Z)(X̃1), Ỹ1

)
|Z1, . . . ,Zn

)
︸ ︷︷ ︸

test error when trained on Z

− 1

n

n∑
i=1

ℓ
(
Rθ̂(Z)(Xi),Yi

)
︸ ︷︷ ︸

training error when trained on Z

.

Theorem 3.1. Consider din, dout ∈ N>0 and n ∈ N>0 iid random variables Zi = (Xi,Yi) ∈
Rdin × Rdout . Define σ :=

(
EX max

(
n,maxu=1,...,din

∑n
i=1(Xi)

2
u

))1/2
. Consider a general DAG

ReLU network as in Definition 2.1, with input dimension din and output dimension dout. Denote by D
its depth (the maximal length of a path from an input to an output) and by K its maximal kernel size
(i.e. the maximum of | ant(u)| over all neurons u ∈ N∗-pool), with K = 1 by convention when there
is no ∗-max-pooling neuron. Define P := |{k ∈ N>0,∃u ∈ Nk-pool}| as the number of different
types of ∗-max-pooling neurons in G. Consider any loss function ℓ : Rdout × Rdout → R such that

ℓ(ŷ1, y)− ℓ(ŷ2, y) ⩽ L∥ŷ1 − ŷ2∥2, ∀y, ŷ1, ŷ2 ∈ support(Y1). (2)

5
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for some L > 0. Consider a set of parameters Θ. Then4 for any estimator θ̂ : Z 7→ θ̂(Z) ∈ Θ:

EZ ℓ-generalization error of θ̂(Z) ⩽
4σ

n
LC sup

θ∈Θ
∥Φ(θ)∥1

with (log being the natural logarithm)

C :=

(
D log((3 + 2P )K) + log(

3 + 2P

1 + P
(din + 1)dout)

)1/2

.

Theorem 3.1 applies to the cross-entropy loss with L =
√
2 (see Appendix F) if the labels y are

one-hot encodings5. A final softmax layer can be incorporated for free to the model by putting it in
the loss. This does not change the bound since it is 1-Lipschitz with respect to the L2-norm (this is
a simple consequence of the computations made in Appendix F).

On ImageNet, it holds 1/
√
n ⩽ σ/n ⩽ 2.6/

√
n (Section 4). This yields a bounds that decays in

O(n−1/2) which is better than the generic O(n−1/din) generalization bound for Lipschitz functions
(von Luxburg & Bousquet, 2004, Thm. 18) that suffer from the curse of dimensionality. Besides its
wider range of applicability, this bounds also recovers or beats the sharpest known ones based on
path-norm, see Table 1.

Sketch of proof for Theorem 3.1. The proof idea is explained below. Details are in Appendix E.

Already known ingredients. Classical arguments (Shalev-Shwartz & Ben-David, 2014, Theorem
26.3)(Maurer, 2016), that are valid for any model, bound the expected generalization error by the
Rademacher complexity of the model. It then remains to bound the latter, and this gets specific to
neural networks. In the case of a feedforward ReLU neural network with no biases and scalar output
(and no skip connections nor k-max-pooling even for a single given k), (Golowich et al., 2018)
proved that it is possible to bound this Rademacher complexity with no exponential factor in the
depth, by peeling, one by one, each layer off the Rademacher complexity. To get more specific, for a
class of functions F and a function Ψ : R→ R, denote Rad ◦Ψ(F ) = EεΨ(supf∈F

∑n
i=1 εif(xi))

the Rademacher complexity of F associated with n inputs xi and Ψ. The goal for a generalization
bound is to bound this in the case Ψ(x) = id(x) = x. In the specific case where FD is the class
of functions that correspond to ReLU feedforward networks with depth D, assuming that some
operator norm of each layer d is bounded by rd, then (Golowich et al., 2018) basically guarantees
Rad ◦Ψλ(FD) ⩽ 2Rad ◦ΨλrD (FD−1) for every λ > 0, where Ψλ(x) = exp(λx). Compared to
previous works of (Golowich et al., 2018) that were directly working with Ψ = id instead of Ψλ,
the important point is that working with Ψλ gets the 2 outside of the exponential. Iterating over
the depth D, optimizing over λ, and taking a logarithm at the end yields (by Jensen’s inequality) a
bound on Rad ◦ id(FD) with a dependence on D that grows as

√
D log(2) instead of 2D for previous

approaches.

Novelties for general DAG ReLU networks. Compared to the setup of (Golowich et al., 2018),
there are at least three difficulties to do something similar here. First, the neurons are not organized
in layers as the model can be an arbitrary DAG. So what should be peeled off one by one? Second,
the neurons are not necessarily ReLU neurons as their activation function might be the identity
(average-pooling) or ∗-max-pooling. Finally, (Golowich et al., 2018) has a constraint on the weights
of each layer, which makes it possible to pop out the constant rd when layer d is peeled off. Here,
the only constraint is global, since it constrains the paths of the network through ∥Φ(θ)∥1 ⩽ r. In
particular, due to rescalings, the weights of a given neuron could be arbitrarily large or small under
this constraint.

The first difficulty is primarily addressed using a new peeling lemma (Appendix D) that exploits a
new contraction lemma (Appendix C).

The second difficulty is resolved by splitting the ReLU, k-max-pooling and identity neurons in
different groups before each peeling step. It changes in the final bound a log(2) in (Golowich et al.,

4Classical concentration results (Boucheron et al., 2013) can be used to deduce a bound that holds with high
probability under additional mild assumptions on the loss.

5A vector y is a one-hot encoding of a class c if y = (1c′=c)c′∈{1,...,dout}.
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2018) into a log(3+2P ) here (P being the number of different k’s for which k-max-pooling neurons
are considered).

Finally, the third obstacle is overcome by rescaling the parameter to normalize the vector of incom-
ing weights of each neuron. This type of rescaling has also been used in (Neyshabur et al., 2015;
Barron & Klusowski, 2019).

Remark 3.1 (Improved bound with assumptions on ∗-max-pooling neurons). In the specific
case where there is a single type of k-max-pooling neurons (P = 1), assuming that these
k-max-pooling neurons are grouped in layers, and that there are no skip connections go-
ing over these k-max-pooling layers (satisfied by ResNets, not satisfied by U-nets), then a
sharpened peeling argument can yield the same bound but with C replaced by Csharpened =

(D log(3) +M log(K) + log((din + 1)dout))
1/2 with M being the number of k-max-pooling lay-

ers (cf. Appendix D). The details are tedious so we only mention this result without proof. This
basically improves

√
D log(5K) into

√
D log(3) +M log(K). For Resnet152, K = 9, D = 152

and M = 1,
√
D log(5K) ≃ 24 while

√
D log(3) +M log(K) ≃ 13.

3.2 HOW TO DEAL WITH THE TOP-1 ACCURACY LOSS?

Theorem 3.1 does not apply to the top-1 accuracy loss as Equation (2) cannot be satisfied for any
finite L > 0 in general (see Appendix G). It is still possible to bound the expected (test) top-1
accuracy by the so-called margin loss achieved at training (Bartlett et al., 2017, Lemma A.4). The
margin-loss is a relaxed definition of the top-1 accuracy loss. A corollary of Theorem 3.1 is the next
result proved in Appendix H.

Theorem 3.2 (Bound on the probability of misclassification). Consider the setting of Theorem 3.1.
Assume that the labels are indices y ∈ {1, . . . , dout}. For any γ > 0, it holds

P
(
argmax

c
Rθ(X1)c ̸= Y1

)
⩽

1

n

n∑
i=1

1(Rθ̂(Z)(Xi))Yi
⩽γ+maxc ̸=Yi

(Rθ̂(Z)(Xi))c

+
8σ

n
C
supθ ∥Φ(θ)∥1

γ
.

(3)

Note that the result is homogeneous: scaling both the outputs of the model and γ by the same scalar
leaves the classifier and the corresponding bound unchanged.

4 EXPERIMENTS

Theorem 3.1 gives the first path-norm generalization bound that can be applied to modern networks
(with average/∗-max-pooling, skip connections etc.). This bound is also the sharpest known bound
of this type (Table 1). Since this bound is also easy to compute, the goal of this section is to numer-
ically challenge for the first time the sharpest generalization bounds based on path-norm on modern
networks. Note also that path-norms tightly lower bound products of operator norms (Appendix B)
so that this also challenges the latter.

When would be the bound informative? For ResNets trained on ImageNet, the training error
associated with cross-entropy is typically between 1 and 2, and the top-1 training error is typically
less than 0.30. The same orders of magnitude apply to the empirical generalization error. To ensure
that the test error (either for cross-entropy or top-1 accuracy) is of the same order as the training
error, the bound should basically be of order 1.

For parameters θ learned from training data, Theorem 3.1 and Theorem 3.2 allow to bound the
expected loss in terms of a performance measure (that depends on a free choice of γ > 0 for the
top-1 accuracy) on training data plus a term bounded by 4σ

n C×L×∥Φ(θ)∥1. The Lipschitz constant
L is
√
2 for cross-entropy, and 2/γ for the top-1 accuracy.

Evaluation of 4σ
n C for ResNets on ImageNet. We further bound σ/n by B/

√
n, where B ≃

2.6 is the maximum L∞-norm of the images of ImageNet normalized for inference. We at most
lose a factor B compared to the bound directly involving σ since it also holds σ/n ⩾ 1/

√
n by
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definition of σ. We train on 99% of ImageNet so that n = 1268355. Moreover, recall that C =(
D log((3 + 2P )K) + log( 3+2P

1+P (din + 1)dout)
)1/2

. For ResNets, there is a single type of ∗-max-
pooling neurons (classical max-pooling neurons corresponding to k-max-pooling with k = 1) so
that P = 1, the kernel size is K = 9, din = 224× 224× 3 and dout = 1000. The depth is D = 3 +
# basic blocks×# conv per basic block, with the different values available in Appendix I. The values
for 4BC/

√
n are reported in Table 2. Given these results and the values of the Lipschitz constant L

then, on ResNet18, the bound would be informative only when ∥Φ(θ)∥1 ≲ 10 or ∥Φ(θ)∥1/γ ≲ 10
respectively for the cross-entropy and the top-1 accuracy.

Table 2: Numerical evaluations on ResNets and ImageNet1k with 2 significant digits. Multiplying
by the Lipschitz constant L of the loss and the path-norm gives the bound in Theorem 3.1. The sec-
ond line reports the values when the analysis is sharpened for max-pooling neurons, see Remark 3.1.

ResNet 18 34 50 101 152
4√
n
CB = 0.090 0.12 0.14 0.19 0.23

4√
n
CsharpenedB = 0.061 0.072 0.082 0.11 0.13

We now compute the path-norms of trained ResNets, both dense and sparse, using the simple for-
mula proved in Theorem A.1 in appendix.

L1-path-norm of pretrained ResNets are 30 orders of magnitude too large. Table 3 shows that
the L1 path-norm is 30 orders of magnitude too large to make the bound informative for the cross-
entropy loss. The choice of γ is discussed in Appendix I, where we observe that there is no possible
choice that leads to an informative bound for top-1 accuracy in this situation.

Table 3: Path-norms of pretrained ResNets available on PyTorch, computed in float32.

ResNet 18 34 50 101 152
∥Φ(θ)∥1 1.3× 1030 overflow overflow overflow overflow
∥Φ(θ)∥2 2.5× 102 1.1× 102 2.0× 108 2.9× 109 8.9× 1010

∥Φ(θ)∥4 7.2×10−6 4.9×10−6 6.7×10−4 3.0×10−4 1.5×10−4

Sparse ResNets can decrease the bounds by 13 orders of magnitude. We have just seen that pre-
trained ResNets have very large L1 path-norm. Does every network with a good test top-1 accuracy
have a path-norm as large as this? Since any zero in the parameters θ leads to many coordinates
of Φ(θ) to be zero, we now investigate whether sparse versions of ResNet18 on ImageNet have a
smaller path-norm. Sparse networks are obtained with iterative magnitude pruning plus rewinding,
with hyperparameters similar to the one in (Frankle et al., 2021, Appendix A.3). Results show that
the L1 path-norm decreases from ≃ 1030 for the dense network to ≃ 1017 after 19 pruning itera-
tions, basically losing between a half and one order of magnitude per pruning iteration. Moreover,
the test top-1 accuracy is better than with the dense network for the first 11 pruning iterations, and
after 19 iterations, the test top-1 accuracy is still way better than what would be obtained by guessing
at random, so this is still a non-trivial matter to bound the generalization error for the last iteration.
Details are in Appendix I. This shows that there are indeed practically trainable networks with much
smaller L1 path-norm that perform well. It remains open whether alternative training techniques,
possibly with path-norm regularization, could lead to networks combining good performance and
informative generalization bounds.

Additional observations: increasing the depth and the train size. In practice, increasing the
size of the network (i.e. the number of parameters) or the number of training samples can improve
generalization. We can, again, assess for the first time whether the bounds based on path-norms
follows the same trend for standard modern networks. Table 3 shows that path-norms of pretrained
ResNets available on PyTorch roughly increase with depth. This is complementary to (Dziugaite
et al., 2020, Figure 1) where it is empirically observed on simple feedforward models that path-
norm has difficulty to correlate positively with the generalization error when the depth evolves. For
increasing training sizes, we did not observe a clear trend for the L1 path-norm, which seems to
mildly evolve with the number of epochs rather than with the train size, see Appendix I for details.
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5 CONCLUSION

Contribution. To the best of our knowledge, this work is the first to introduce path-norm related
tools for general DAG ReLU networks (with average/∗-max-pooling, skip connections), and Theo-
rem 3.1 is the first generalization bound valid for such networks based on path-norm. This bound
recovers or beats the sharpest known ones of the same type. Its ease of computation leads to the
first experiments on modern networks that assess the promises of such approaches. A gap between
theory and practice is observed for a dense version of ResNet18 trained with standard tools: the
bound is 30 orders of magnitude too large on ImageNet.

Possible leads to close the gap between theory and practice. 1) Without changing the bound
of Theorem 3.1, sparsity seems promising to reduce the path-norm by several orders of magnitude
without changing the performance of the network. 2) Theorem 3.1 results from the worst situation
(that can be met) where all the inputs activate all the paths of the network simultaneously. Bounds
involving the expected path-activations could be tighter. The coordinates of Φ(θ) are elementary
bricks that can be summed to get the slopes of Rθ on the different region where Rθ is affine (Arora
et al., 2017), ∥Φ(θ)∥1 is the sum of all the bricks in absolue value, resulting in a worst-case uniform
bound for all the slopes. Ideally, the bound should rather depend on the expected slopes over the
different regions, weighted by the probability of falling into these regions. 3) Weight sharing may
leave room for sharpened analysis (Pitas et al., 2019; Galanti et al., 2023). 4) A k-max-pooling
neuron with kernel size K only activates 1/K of the paths, but the bound sums the coordinates of
Φ related to these K paths. This may lead to a bound K times too large in general (or even more
in the presence of multiple maxpooling layers). 5) Possible bounds involving the Lq path-norm for
q > 1 deserve a particular attention, since numerical evaluations show that they are several orders
of magnitude below the L1 norm.

Extensions to other architectures. Despite its applicability to a wide range of standard modern
networks, the generalization bound in Theorem 3.1 does not cover networks with other activations
than ReLU, identity, and ∗-max-pooling. The same proof technique could be extended to new ac-
tivations 1) that are positively homogeneous so that the weights can be rescaled without changing
the associated function, and 2) that satisfy a contraction lemma similar to the one established here
for ReLU and max neurons (typically requiring the activation to be Lipschitz). A plausible can-
didate is Leaky ReLU. For smooth approximations of the ReLU such as the SiLU (for Efficient
Nets) and the Hardswish (for MobileNet-V3), parts of the technical lemmas related to contraction
may extend since they are Lipschitz, but rescalings would not as these activations are not positively
homogeneous.
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Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities. Oxford Uni-
versity Press, Oxford, 2013. ISBN 978-0-19-953525-5. doi: 10.1093/acprof:oso/9780199535255.
001.0001. URL https://doi-org.acces.bibliotheque-diderot.fr/10.
1093/acprof:oso/9780199535255.001.0001. A nonasymptotic theory of indepen-
dence, With a foreword by Michel Ledoux.

Gintare Karolina Dziugaite. Revisiting Generalization for Deep Learning: PAC-Bayes, Flat Minima,
and Generative Models. PhD thesis, Department of Engineering University of Cambridge, 2018.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. In Gal Elidan,
Kristian Kersting, and Alexander Ihler (eds.), Proceedings of the Thirty-Third Conference on
Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI
Press, 2017. URL http://auai.org/uai2017/proceedings/papers/173.pdf.

Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan Caballero,
Linbo Wang, Ioannis Mitliagkas, and Daniel M. Roy. In search of robust measures of gen-
eralization. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html.

Weinan E, Chao Ma, and Lei Wu. The Barron space and the flow-induced function spaces for neu-
ral network models. Constr. Approx., 55(1):369–406, 2022. ISSN 0176-4276. doi: 10.1007/
s00365-021-09549-y. URL https://doi-org.acces.bibliotheque-diderot.
fr/10.1007/s00365-021-09549-y.

Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural network training.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
Hkl1iRNFwS.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark? In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=Ig-VyQc-MLK.

Yasutaka Furusho. Analysis of Regularization and Optimization for Deep Learning. PhD thesis,
Nara Institute of Science and Technology, 2020.

10

https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://www.di.ens.fr/~fbach/ltfp_book.pdf
http://jmlr.org/papers/v18/14-546.html
http://arxiv.org/abs/1902.00800
http://arxiv.org/abs/1902.00800
http://jmlr.org/papers/v3/bartlett02a.html
http://jmlr.org/papers/v3/bartlett02a.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://doi-org.acces.bibliotheque-diderot.fr/10.1093/acprof:oso/9780199535255.001.0001
https://doi-org.acces.bibliotheque-diderot.fr/10.1093/acprof:oso/9780199535255.001.0001
http://auai.org/uai2017/proceedings/papers/173.pdf
https://proceedings.neurips.cc/paper/2020/hash/86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html
https://doi-org.acces.bibliotheque-diderot.fr/10.1007/s00365-021-09549-y
https://doi-org.acces.bibliotheque-diderot.fr/10.1007/s00365-021-09549-y
https://openreview.net/forum?id=Hkl1iRNFwS
https://openreview.net/forum?id=Hkl1iRNFwS
https://openreview.net/forum?id=Ig-VyQc-MLK


Under review as a conference paper at ICLR 2024

Tomer Galanti, Mengjia Xu, Liane Galanti, and Tomaso A. Poggio. Norm-based generalization
bounds for compositionally sparse neural networks. CoRR, abs/2301.12033, 2023. doi: 10.
48550/arXiv.2301.12033. URL https://doi.org/10.48550/arXiv.2301.12033.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet (eds.), Conference
On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings
of Machine Learning Research, pp. 297–299. PMLR, 2018. URL http://proceedings.
mlr.press/v75/golowich18a.html.
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Supplementary material

A MODEL’S BASICS

The next definition introduces the path-embedding and the path-activations associated with the gen-
eral model described in Definition 2.1.

Definition A.1 (Path-embedding and path-activations). Consider a DAG ReLU neural network ar-
chitecture G as in Definition 2.1 and parameters θ associated with G. Call a path of G any sequence
of neurons v1, . . . , vd such that vi → vi+1 is an edge. This includes paths p reduced to a single
v ∈ Nout. Denote PG the set of paths ending at an output neuron of G. For p ∈ PG,

Φp(θ) = bv1

d−1∏
i=1

θvi→vi+1 ,

where, for practical purposes, we extended θ to input neurons v by setting bv = 1, and to ∗-max-
pooling neurons v by setting bv = 0. The path-embedding ΦG(θ) of θ is

ΦG(θ) = (Φp(θ))p∈PG .

This is often denoted Φ when the graph G is clear from the context. Morever, given a neuron v of G,
we often denote Φ→v to be the path-embedding associated with the graph deduce from G by keeping
only the largest subgraph with the same inputs as G and with v as a single output: every neuron that
cannot reach v through the edges of G is removed as well as all its incoming and outcoming edges.

Consider an input x of G. Say that a path p = v1 → · · · → vd is active on input x and parameters
θ, and denote ap(θ, x) = 1, if for every ReLU neuron v along p, it holds v(θ, x) ⩾ 0, and if
for every k ∈ N>0 and every k-max-pooling neuron vi along p, the neuron vi−1 is the first in
ant(vi) in lexicographic order to satisfy vi−1(θ, x) = k-pool

(
(v(θ, x))v∈ant(vi)

)
. Otherwise,

denote ap(θ, x) = 0. Consider a new symbol b (for bias) that is not used for denoting neurons. The
path-activations matrix A(θ, x) is defined as the matrix in RP×Nin such that for any path p ∈ P
and neuron u ∈ Nin

(A(θ, x))p,u =

{
ap(θ, x)1p starts at u if u ∈ Nin,

ap(θ, x) otherwise when u = b.

The next lemma shows how the path-embedding and the path-activations are an equivalent way to
define the model. The proof is at the end of the section.

Lemma A.1. Consider a model as in Definition 2.1. Then for every neuron v, every input x and
every parameters θ:

v(θ, x) =

〈
Φ→v(θ),A→v(θ, x)

(
x
1

)〉
.

Proof of Lemma A.1. For any neuron v, denote P→v the set of paths ending at neuron v. We want
to prove that for any neuron v:

v(θ, x) =

〈
Φ→v(θ),A→v(θ, x)

(
x
1

)〉
=

∑
p∈P→v

Φp(θ)ap(θ, x)xp0 .

where we denote in the proof xu = 1 for any u which is not an input neuron, and where p0 denotes
the first neuron of a path p. This is true by convention for input neurons v. Indeed, considering the
path p = v, it holds Φp(θ) = bv = 1, ap(θ, x) = 1 and v(θ, x) = xv = x.
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Consider now v which is not an input neuron and assume that this is true for every neuron u ∈
ant(v). If v is an identity neuron or a ReLU neuron, then

v(θ, x) = ρv

bv +
∑

u∈ant(v)

θu→vu(θ, x)


= ρv

bv +
∑

u∈ant(v)

θu→v
∑

p∈P→u

Φp(θ)ap(θ, x)xp0

 .

using the assumption on the antecedents of v. For a path p̃ = p → v with p ∈ P→u, it holds
xp0

= xp̃0
, Φp̃(θ) = θu→vΦp(θ) and bv = Φp(θ)xp0

for the path p = v. The latter is indeed true
because Φp(θ) = bv and xp0

= 1 by convention since v is not an input neuron.

If v is an identity neuron, then ap̃(θ, x) = ap(θ, x) and av(θ, x) = 1. Since

P→v = {v} ∪

 ⋃
u∈ant(v)

{p→ v, p ∈ P→u}

 ,

this yields the result in the case of an identity neuron v. If v is a ReLU neuron, then

ap̃(θ, x) = ap(θ, x)1v(θ,x)⩾0

and for the path p = v, it holds ap(θ, x) = 1v(θ,x)⩾0 so that once again the result holds true:

v(θ, x) = ρv

bv +
∑

u∈ant(v)

θu→v
∑

p∈P→u

Φp(θ)ap(θ, x)xp0


= 1v(θ,x)⩾0

bv +
∑

u∈ant(v)

∑
p∈P→u

θu→vΦp(θ)ap(θ, x)xp0


=

∑
p∈P→v

Φp(θ)ap(θ, x)xp0
.

If v is a k-max-pooling neuron for some k ∈ N>0, then

v(θ, x) = k-pool
(
(θu→vu(θ, x))u∈ant(v)

)
= k-pool


θu→v

∑
p∈P→u

Φp(θ)ap(θ, x)xp0


u∈ant(v)


with ties decided by lexicographic order. Since for any p̃ = p→ v with p̃ ∈ P→u, it holds

ap̃(θ, x) = ap(θ, x)1u realizes k-pool in lexicographic order for (θ,x)

thus once again the claim holds for v. This proves the result.

A straightforward consequence of Lemma A.1 is the Lipschitz bound ∥Rθ(x) − Rθ(x
′)∥1 ⩽

∥Φ(θ)∥1∥x − x′∥∞. This fact is already mentioned in the case of feedforward neural networks
without biases in (Neyshabur, 2017, before Section 3.4), and proven in (Furusho, 2020, Theorem 5).
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Figure 1: Example of a network where one must replace the max-pooling neuron to compute the
path-norm with a single forward pass as in Equation (4).

Proof of the Lipschitz property. Consider parameters θ. Consider inputs x, x′ with the same path-
activations with respect to θ: A(θ, x) = A(θ, x′). Then:

∥Rθ(x)−Rθ(x
′)∥1 =

Lemma A.1

∑
v∈Nout

∣∣∣∣〈Φ→v(θ),A→v(θ, x)

(
x
1

)
−A→v(θ, x′)

(
x′

1

)〉∣∣∣∣
⩽

Hölder

∑
v∈Nout

∥Φ→v(θ)∥1
∥∥∥∥A→v(θ, x)

(
x
1

)
−A→v(θ, x′)

(
x′

1

)∥∥∥∥
∞

⩽
A(θ,x)=A(θ,x′)

∑
v∈Nout

∥Φ→v(θ)∥1
∥∥∥∥A→v(θ, x)

((
x
1

)
−
(

x′

1

))∥∥∥∥
∞

⩽
∥A→v(θ,x)y∥∞⩽∥y∥∞

∑
v∈Nout

∥Φ→v(θ)∥1∥x− x′∥∞

= ∥Φ(θ)∥1∥x− x′∥∞.

We just proved the claim locally on each region where the path-activations A(θ, ·) are constant.
Since Lipschitzness is a local property, this yields the result.

Another straightforward but important consequence of Lemma A.1 is that the path-norm (the norm
of the path-embedding) can be computed in a single forward pass, up to replacing ∗-max-pooling
neurons with linear ones.
Theorem A.1. Consider an architecture G as in Definition 2.1. Define G̃ to be the same as G except
for ∗-max-pooling neurons for which their activation function is replaced by the identity. Consider
an exponent q ∈ [1,∞) and arbitrary parameters θ associated with G. Denote θ̃ the parameters
associated with G̃, obtained from θ by setting to zero the new coordinates in θ̃ associated with the
biases of the new identity neurons that come from ∗-max-pooling neurons of G. Denote |θ̃|q the
vector deduced from θ by applying x 7→ |x|q coordinate-wise, and by 1 the input full of ones. Then

∥Φ(θ)∥qq = ∥RG̃
|θ̃|q (1)∥1. (4)

Moreover, the formula is false in general if the ∗-max-pooling neurons have not been replaced with
identity ones (i.e. if the forward pass is done on G rather than G̃).

Proof of Theorem A.1. Figure 1 shows that Equation (4) is false if the ∗-max-pooling neurons have
not been replaced with identity ones as the forward pass yields 1 while the path-norm is 2.

We now establish Equation (4). Denote P→v the set of paths of G̃ ending at a given neuron v.
Denote by ΦG̃ and aG̃ the path-embedding and the path-activations associated with G̃. According
to Lemma A.1, it holds for every output neuron of G̃

(RG̃
|θ̃|q (x))v =

∑
p∈P→v

ΦG̃
p (|θ̃|q)aG̃p (|θ̃|q, x)xp0

.

Since G̃ has only identity or ReLU neurons, and since the parameters |θ̃|q are non-negative, then for
every input x with non-negative coordinates, a simple induction on the neurons shows that for every
neuron u, it holds

u(|θ̃|q, x) ⩾ 0.
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Thus, every path p ∈ PG̃ is active (recall that PG̃ is by definition the set of paths of G̃), meaning
that aG̃p (|θ̃|q, x) = 1 for every path p ∈ PG̃ and every non-negative input x. Moreover, ΦG̃

p (|θ̃|q) =∣∣∣b̃p0

∏
u→v∈p θ̃

u→v
∣∣∣q = |ΦG̃

p (θ̃)|q . Note that for every p ∈ PG ⊂ PG̃, it holds ΦG̃
p (θ̃) = ΦG

p (θ).

For p ∈ PG̃ \PG, it holds ΦG̃
p (θ̃) = 0 since such a path must start at a linear neuron that come from

a ∗-max-pooling neuron of G, for which b̃p0
has been set to zero. At the end, we get:

∥RG̃
|θ̃|q (1)∥1 =

∑
p∈PG̃

|ΦG̃
p (θ̃)|q =

∑
p∈PG

|ΦG
p (θ)|q = ∥Φ(θ̃)∥qq.

B RELATION BETWEEN PATH-NORMS AND PRODUCTS OF OPERATORS’
NORMS

Feedforward ReLU networks. For simple models of the form Rθ(x) =

MD ReLU(MD−1 . . .ReLU(M1x)), it is known that ∥Φ(θ)∥q ⩽
∏D

d=1 ∥Md∥q,∞ (where
∥M∥q,∞ is the maximum Lq norm of a row of matrix M ) (Neyshabur et al., 2015, Theorem
5). Theorem B.1 below generalizes this result to the case of an arbitrary DAG (that may include
max pooling, average-pooling, skip connections) with biases. The rescaling of θ that makes it an
equality without changing Rθ is given by Algorithm 1.

Algorithm 1. Algorithm 1 rescales θ while preserving Rθ because for any neuron u /∈ Nin ∪Nout,
the activation function ρu is positively homogeneous: ρu(λx) = λρu(x) for every λ > 0. Thus,
λρu(

1
λx) = ρu(x). Let us also give some more remarks about this algorithm, which is used here

for the case of equality, and in the proof of the generalization bound. The first line of the algorithm
considers a topological sorting of the neurons, i.e. an order on the neurons such that if u → v is an
edge then u comes before v in this ordering. Such an order always exists (and it can be computed
in linear time). Moreover, note that a classical max-pooling neuron v (corresponding to a k-max-
pooling neurone with k = 1 and constant incoming weights all equal to one) has not anymore its
incoming weights equal to one after rescaling, in general. This has no incidence on the validity of
the generalization bound on classical max-pooling neurons: rescaling is only used in the proof to
reduce to another representation of the parameters that realize the same function and that is more
handy to work with.

Algorithm 1 Normalization of parameters for norm q ∈ [1,∞)

1: Consider a topological sorting v1, . . . , vk of the neurons
2: for v = v1, . . . , vk do
3: if v /∈ Nin ∪Nout then
4: λv =

(
∥θ→v∥qq + |bv|q

)1/q
5: if λv = 0 then
6: θv→ = 0
7: else
8: θ→v ← 1

λv
× θ→v ▷ normalize incoming weights

9: bv ← 1
λv
× bv ▷ normalize bias

10: θv→ ← λv × θv→ ▷ rescale outgoing weights to preserve the function Rθ

Coming back to the comparison between the path-norm and the product of operators’ norms, first,
we introduce an equivalent of the product of operators’ norms when neurons are not regrouped
in layers. Note that for the simple feedforward model as above, it holds

∏D
d=1 ∥Md∥q,∞ =

maxu0→···→uD,
u0∈Nin

∏D
d=1 ∥θ→ud∥q . Indeed, all the neurons of two consecutive layers are connected,

so the product of the maximum of Lq-norms over layers is also the maximum over all paths of the
product of Lq-norms.

General DAG ReLU network. Consider now the case of a general DAG ReLU network. For
practical purposes, we extend the parameters θ to input neurons v by setting bv = 1 and to ∗-max-
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pooling neurons by setting bv = 0. Consider for every path u0 → · · · → uD the quantity

Πq(u0 → · · · → uD) :=

(
D∑

d=0

|bud
|q

D∏
k=d+1

∥θ→uk∥qq

)1/q

,

with the convention that an empty product is equal to one. Note that when there are no biases, it
holds Πq(u0 → · · · → uD) =

∏D
d=1 ∥θ→ud∥q , and taking the maximum of this product over all

paths u0 → · · · → uD recovers
∏D

d=1 ∥Md∥q,∞. The next theorem shows that the Lq path-norm is
the minimum of this complexity measure over all possible rescalings of the parameters θ that leave
invariant the associated function Rθ.

Theorem B.1. For every parameters θ,

∥Φ(θ)∥q ⩽


∑

v∈Nout

|bv|q + ∥θ→v∥qq max
D⩾0,
v∈Nout,
u0∈Nin,

u0→···→uD→v

Πq(u0 → · · · → uD)q


1/q

.

If θ has been normalized by Algorithm 1, then this is an equality with the maximum being equal to
one so that it simply holds ∥Φ(θ)∥q =

(∑
v∈Nout

|bv|q + ∥θ→v∥qq
)1/q

.

Figure 2: A network for which the path-norm is zero while the product of operators’ norms scales
as M2.

Proof of Theorem B.1. Since Φ(θ) = (Φ→v(θ))v∈Nout
, it holds

∥Φ(θ)∥qq =
∑

v∈Nout

∥Φ→v(θ)∥qq.

For any neuron v ∈ Nout, Φ→v(θ) =

(
(θu→vΦ→u(θ))u∈ant(v)

bv

)
so that

∥Φ→v(θ)∥qq = |bv|q +
∑

u∈ant(v)

|θu→v|q∥Φ→u(θ)∥qq ⩽ |bv|q + ∥θ→v∥qq max
u∈ant(v)

∥Φ→u(θ)∥qq.

For every u ∈ ant(v), u cannot be an output neuron since it has at least v as a successor. Thus
Lemma B.2 gives:

∥Φ→u(θ)∥q ⩽ max
D⩾0,

u0∈Nin,
u0→···→uD→u

Πq(u0 → · · · → uD → u).

Putting everything together shows the upper-bound:

∥Φ(θ)∥qq ⩽

( ∑
v∈Nout

|bv|q
)

+

( ∑
v∈Nout

∥θ→v∥qq

)
max
D⩾0,
v∈Nout,
u0∈Nin,

u0→···→uD→v

(Πq(u0 → · · · → uD))q.

17



Under review as a conference paper at ICLR 2024

We now prove the case of equality. Recall that

∥Φ(θ)∥qq =
∑

v∈Nout

∥Φ→v(θ)∥qq

=
∑

v∈Nout

|bv|q +
∑

u∈ant(v)

|θu→v|q∥Φ→u(θ)∥qq

It would then be sufficient to prove that, as soon as the parameters θ have been rescaled with Algo-
rithm 1, then |θu→v|∥Φ→u(θ)∥q = |θu→v| for every v ∈ Nout and u ∈ ant(v). Indeed, we would
then deduce the claim by writing:

∥Φ(θ)∥qq =
∑

v∈Nout

|bv|q +
∑

u∈ant(v)

|θu→v|q

=
∑

v∈Nout

|bv|q + ∥θ→v∥qq.

It now remains to see that |θu→v|∥Φ→u(θ)∥q = |θu→v| is a direct consequence of the next lemma.

Lemma B.1. Consider u ∈ N and parameters θ rescaled by Algorithm 1. If ∥Φ→u(θ)∥q = 0 then
θu→ = 0. Otherwise, ∥Φ→u(θ)∥q = 1.

Proof of Lemma B.1. The proof is by induction on the neurons. Consider u ∈ Nin. Then by con-
vention Φ→u(θ) = 1 so the claim holds true.

Consider now u /∈ Nin and assume the claim to be true for every antecedent of u. It holds:

∥Φ→u(θ)∥qq = |bu|q +
∑

w∈ant(u)

|θw→u|q∥Φ→w(θ)∥qq.

A consequence of the induction hypothesis is that |θw→u|q∥Φ→w(θ)∥qq = |θw→u|q for every w ∈
ant(u). Thus

∥Φ→u(θ)∥qq = |bu|q +
∑

w∈ant(u)

|θw→u|q

= |bu|q + ∥θ→u∥qq.
The latter is either equal to 0 or 1 by Lemma B.3. Moreover, when it is equal to 0, this means that in
Algorithm 1, λu = 0 and θu→ = 0 after rescaling since it is set to zero line 6 of Algorithm 1 when
u is encountered, and the coordinates of θu→ can only be multiplied by scalars in the remaining of
the algorithms so that this property stays true for the remaining of the algorithm. This proves the
claim for u, and thus the induction.

Lemma B.2. Consider an exponent q ∈ [1,∞). For every neuron v, it holds

min
D⩾0,

u0∈Nin,
u0→···→uD→v

Πq(u0 → · · · → uD → v) ⩽ ∥Φ→v(θ)∥q ⩽ max
D⩾0,

u0∈Nin,
u0→···→uD→v

Πq(u0 → · · · → uD → v),

where by convention, an empty minimum (resp. maximum) is −∞ (resp. ∞) and where we define
by convention Φ→u(θ) = θ→v = 1 for an input neuron u ∈ Nin.

Proof of Lemma B.2. The proof goes by induction on a topological sorting of the graph. The first
neurons of the sorting are the neurons without antecedents, i.e. the input neurons by definition.
The inequality is true for such neurons since it writes −∞ ⩽ 1 ⩽ ∞ by convention. Indeed
∥Φ→v(θ)∥q = 1, and the minimum and maximum are empty.

Consider a neuron v /∈ Nin and assume that this is true for every neuron before v in a topological
sorting of the graph. By definition,

Φ→v(θ) =

(
(θu→vΦ→u(θ))u∈ant(v)

bv

)
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so that
∥Φ→v(θ)∥qq = |bv|q +

∑
u∈ant(v)

|θu→v|q∥Φ→u(θ)∥qq.

Thus

|bv|q + ∥θ→v∥qq min
u∈ant(v)

∥Φ→u(θ)∥qq ⩽ ∥Φ→v(θ)∥qq ⩽ |bv|q + ∥θ→v∥qq max
u∈ant(v)

∥Φ→u(θ)∥qq.

Every u ∈ ant(v) must arrive before v in the topological sorting so the induction hypothesis applies
to them. Thus:

∥Φ→v(θ)∥qq ⩽ |bv|q + ∥θ→v∥qq max
u∈ant(v)

max
D⩾0,

u0∈Nin,
u0→···→uD→u

(Πq(u0 → · · · → uD → u))
q

= |bv|q + ∥θ→v∥qq max
D⩾1,

u0∈Nin,
u0→···→uD→v

(Πq(u0 → · · · → uD))
q

Now, note that for any path u0 → · · · → uD → v, it holds

|bv|q + ∥θ→v∥qq (Πq(u0 → · · · → uD))
q
= (Πq(u0 → · · · → uD → v))

q
.

Indeed, denoting uD+1 = v, it holds by definition

|bv|q + ∥θ→v∥qq (Πq(u0 → · · · → uD))
q
= |bv|q

(
D+1∏

k=D+2

∥θ→uk∥qq

)
︸ ︷︷ ︸

=1 (empty product)

+∥θ→v∥qq
D∑

d=0

|bud
|q

L∏
k=d+1

∥θ→uk∥qq

= |buD+1
|q
(

D+1∏
k=D+2

∥θ→uk∥qq

)
+

D∑
d=0

|bud
|q

D+1∏
k=d+1

∥θ→uk∥qq

=

D+1∑
d=0

|bud
|q

D+1∏
k=d+1

∥θ→uk∥qq

= (Πq(u0 → · · · → uD → v))
q
.

Thus
∥Φ→v(θ)∥qq ⩽ max

D⩾1,
u0∈Nin,

u0→···→uD→v

(Πq(u0 → · · · → uD → v))
q

and the maximum does not change if we consider D ⩾ 0 since any path going from an input neuron
to v must be of length at least equal to one because v is not an input neuron itself. This proves that
the upper bound by induction, and a similar argument applies for the lower bound.

Lemma B.3. Consider an exponent q ∈ [1,∞). Any output parameters θ of Algorithm 1 are
normalized, in the sense that for every neuron v which is not an output neuron, it holds:

∥θ→v∥qq + |bv|q =

{
0 if ∥θ→v∥q = bv = 0,
1 otherwise.

Proof of Lemma B.3. It is clear that the claim holds true right after iteration of line 2 of Algorithm 1
corresponding to v. And since the last time the incoming weights and the bias of a neuron v are
modified is when this is the turn of v in line 2, then the claim holds true. Indeed, the neurons are
seen in an order given by a topological sorting, and given the lines 8, 9 and 10, the incoming weights
of v can only be modified when this is the turn of v or one of its antecedents. But the antecedents of
v come before v in any topological order, so they are seen before v line 2. Moreover, from line 9, it
is clear that the bias of v can only be modified when this is the turn of v line 2.
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C RELEVANT (AND APPARENTLY NEW) CONTRACTION LEMMAS

The main result is Lemma C.1.
Lemma C.1. Consider finite sets I,W,Z, and for each z ∈ Z, consider a set T z ⊂ (RW )I . We
denote t = (ti)i∈I ∈ T z with ti = (ti,w)w∈W ∈ RW . Consider functions fi,z : RW → R
and a finite family ε = (εj)j∈J of independent identically distributed Rademacher variables, with
the index set J that will be clear from the context. Finally, consider a convex and non-decreasing
function G : R→ R. Assume that at least one of the following setting holds.

Setting 1: scalar input case. |W | = 1 and for every i ∈ I and z ∈ Z, fi,z is 1-Lipschitz with
fi,z(0) = 0.

Setting 2: ∗-max-pooling case. For every i ∈ I and z ∈ Z, there is ki,z ∈ N>0 such that for every
t ∈ T z , fi,z(t) = t(ki,z) is the ki,z-th largest coordinate of t.

Then:

Emax
z∈Z

sup
t∈T z

G

(∑
i∈I

εi,zfi,z(ti)

)
⩽ Emax

z∈Z
sup
t∈T z

G

 ∑
i∈I,w∈W

εi,w,zti,w

 . (5)

The scalar input case generalizes a well-known scalar contraction inequality (Ledoux & Talagrand,
1991, Equation (4.20)) to the case where there is a maximum over |Z| > 1 independent copies.
Note that we could not find this result in the literature. The ∗-max-pooling case proves something
similar to a vector-valued contraction inequality (Maurer, 2016) that is known in the specific case
where |Z| = 1, G is the identity, and for arbitrary 1-Lipschitz functions fi,z such that fi,z(0) = 0

(with a different proof, and with a factor
√
2 on the right-hand side). Here, the vector-valued case

we are interested in is fi,z = ki,z-pool and G = exp, which is covered by Lemma C.1. We could
not find it stated elsewhere.

In the proof of Lemma C.1, we reduce to the more simpler case where |V | = 1 and |I| = 1 that
corresponds to the next lemma.
Lemma C.2. Consider a finite set W , a set T of elements t = (t1, t2) ∈ RW × R and a function
f : RW → R. Consider also a convex non-decreasing function F : R → R and a family of iid
Rademacher variables (εj)j∈J where J will be clear from the context. Assume that we are in one of
the two following situations.

Scalar input case. f is 1-Lipschitz, satisfies f(0) = 0 and has a scalar input (|W | = 1).

∗-max-pooling case. There is k ∈ N>0 such that f computes the k-th largest coordinate of its input.

Denoting t1 = (t1,w)w∈W , then it holds:

E sup
t∈T

F (ε1f(t1) + t2) ⩽ E sup
t∈T

F

(∑
w

ε1,wt1,w + t2

)
.

The proof of Lemma C.2 is postponed. We now prove Lemma C.1.

Proof of Lemma C.1. First, because of the Lipschitz assumptions on the fi’s and the convexity of
G, everything is measurable and the expectations are well defined.

We prove the result by reducing to the simpler case of Lemma C.2.

Reduce to the case |V | = 1 by conditioning and iteration.

For z ∈ Z, define

Az := sup
t∈T z

G

(∑
i∈I

εi,zfi,z(ti)

)
,

Bz := sup
t∈T z

G

 ∑
i∈I,w∈W

εi,w,zti,w

 .
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Lemma C.3 applies since these random variables are independent. Thus, it is enough to prove that
for every c ∈ [−∞,∞):

Emax(Az, c) ⩽ Emax(Bz, c).

Define F (x) = max(G(x), c). This can be rewritten as (inverting the supremum and the maximum)

E sup
t∈T z

F

(∑
i∈I

εi,zfi,z(ti)

)
⩽ E sup

t∈T z

F

 ∑
i∈I,w∈W

εi,w,zti,w

 . (6)

We just reduced to the case where there is a single z to consider, up to the price of replacing G by
F . Since G and x → max(x, c) are non-decreasing and convex, then so is F by composition. In
order to apply Lemma C.2, it remains to reduce to the case |I| = 1.

Reduce to the case |I| = 1 by conditioning and iteration. Lemma C.4 shows that in order to prove
Equation (6), it is enough to prove that for every i ∈ I and every subset R ⊂ RW × R, denoting
r = (r1, r2) ∈ RW × R, it holds

E sup
r∈R

F (εi,zfi,z(r1) + r2) ⩽ E sup
r∈R

F

(∑
w∈W

εi,w,zr1,w + r2

)
.

We just reduced to the case |I| = 1 since one can now consider the indices i one by one. The latter
inequality is now a direct consequence of Lemma C.2. This proves the result.

Lemma C.3. Consider a finite set Z and independent families of independent real random vari-
ables (Az)z∈Z and (Bz)z∈Z . If for every z ∈ Z and every constant c ∈ [−∞,∞), it holds
Emax(Az, c) ⩽ Emax(Bz, c) then

Emax
z∈Z

Az ⩽ Emax
z∈Z

Bz.

Proof of Lemma C.3. The proof is by conditioning and iteration. To prove the result, it is enough to
prove that if

Emax
z∈Z

Az ⩽ Emax

(
max
z∈Z1

Az,max
z∈Z2

Bz

)
for some partition Z1, Z2 of Z, with Z2 possibly empty for the initialization of the induction, then
for every z0 ∈ Z1:

Emax
z∈Z

Az ⩽ Emax

(
max

z∈Z1\{z0}
Az, max

z∈Z2∪{z0}
Bz

)
,

with the convention that the maximum over an empty set is−∞. Indeed, the claim would then come
directly by induction on the size of Z2.

Now, consider an arbitrary partition Z1, Z2 of Z, with Z2 possibly empty, and consider z0 ∈ Z1. It
is then enough to prove that

Emax

(
max
z∈Z1

Az,max
z∈Z2

Bz

)
⩽ Emax

(
max

z∈Z1\{z0}
Az, max

z∈Z2∪{z0}
Bz

)
. (7)

Define the random variable C = max
(
maxz∈Z1\{z0} Az,maxz∈Z2 Bz

)
which may be equal to

−∞ when the maximum is over empty sets, and which is independent of Az0 and Bz0 . Then:

max

(
max
z∈Z1

Az,max
z∈Z2

Bz

)
= max (Az0 , C)

and

max

(
max

z∈Z1\{z0}
Az, max

z∈Z2∪{z0}
Bz

)
= max (Bz0 , C) .

Equation (7) is then equivalent to

Emax(Az0 , C) ⩽ Emax(Bz0 , C)
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with C independent of Az0 and Bz0 . For a constant c ∈ [−∞,∞), denote A(c) = Emax(Az0 , c)
and B(c) = Emax(Bz0 , c). Then:

Emax(Az0 , C) = E (E (max (Az0 , C) |Az0)) law of total expectation
= EA(C) independence of C and Az0 .

and similarly Emax(Bz0 , C) = EB(C). It is then enough to prove that A(C) ⩽ B(C) almost
surely. Since C ∈ [−∞,∞), this is true by assumption. This proves the claims.

Lemma C.4. Consider finite sets I,W and independent families of independent real random vari-
ables (εi)i∈I and (εi,w)i∈I,w∈W . Consider functions fi : RW → R and F : R → R that are
continuous. Assume that for every i ∈ I and every subset R ⊂ RW ×R, denoting r = (r1, r2) ∈ R
with r1 = (r1,w)w ∈ RW and r2 ∈ R the components of r, it holds

E sup
r∈R

F (εifi(r1) + r2) ⩽ E sup
r∈R

F (
∑
w∈W

εi,wr1,w + r2).

Consider an arbitrary T ⊂ (RW )I and for t = (ti)i∈I ∈ T , denote ti,w the w-th coordinate of
ti ∈ RW . Then

E sup
t∈T

F (
∑
i∈I

εifi(ti)) ⩽ E sup
t∈T

F (
∑

i∈I,w∈W

εi,wti,w).

Proof of Lemma C.4. The continuity assumption on F and the fi’s is only used to make all the
considered suprema measurable. The proof goes by conditioning and iteration. For any J ⊂ I ,
denote εJ the family that contains both (εj)j∈J and (εj,w)j∈J,w∈W . Define

hJ(t, εJ) :=
∑
j∈J

εjfj(tj),

HJ(t, εJ) :=
∑

j∈J,w∈W

εj,wtj,w,

with the convention that an empty sum is zero. To make notations lighter, if J = {j} then we may
write hj and Hj instead of hJ and HJ . We also omit to write the dependence on εJ as soon as
possible. What we want to prove is thus equivalent to

E sup
t∈T

F (hI(t)) ⩽ E sup
t∈T

F (HI(t)).

It is enough to prove that for every partition I1, I2 of I , with I2 possibly empty, if

E sup
t∈T

F (hI(t)) ⩽ E sup
t∈T

F (hI1(t) +HI2(t)),

then for every j ∈ I1,

E sup
t∈T

F (hI(t)) ⩽ E sup
t∈T

F (hI1\{j}(t) +HI2∪{j}(t)).

Indeed, the result would then come by induction on the size of I2. Fix an arbitrary partition I1, I2 of
I with I2 possibly empty, and j ∈ I1. It is then enough to prove that

E sup
t∈T

F (hI1(t) +HI2(t)) ⩽ E sup
t∈T

F (hI1\{j}(t) +HI2∪{j}(t)). (8)

Denote ε−j := εI\{j} and φ(t, ε−j) := hI1\{j}(t, εI1\{j}) +HI2(t, εI2)). It holds:

hI1(t) +HI2(t) = hj(t, εj) + φ(t, ε−j)

and, writing εj,· = (εj,w)w∈W :

hI1\{j}(t) +HI2∪{j}(t) = Hj(t, εj,·) + φ(t, ε−j).

Consider the measurable functions

g(εj , ε−j) := sup
t∈T

F (hj(t, εj) + φ(t, ε−j))
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and
G(εj,·, ε−j) := sup

t∈T
F (Hj(t, εj,·) + φ(t, ε−j)).

Denote ∆ the ambiant space of ε−j and consider a constant δ ∈ ∆. Define ĝ(δ) = Eg(εj , δ) and
Ĝ(δ) = EG(εj,·, δ). Then

E sup
t∈T

F (hI1(t) +HI2(t)) = Eg(εj , ε−j) by definition of g

= E (E (g(εj , ε−j)|ε−j)) law of total expectation
= Eĝ(ε−j) independence of εj and ε−j

and similarly E supt∈T F (hI1\{j}(t) +HI2∪{j}(t)) = EĜ(ε−j). Thus, Equation (8) is equivalent
to Eĝ(ε−j) ⩽ EĜ(ε−j). For every δ ∈ ∆, we can define R(δ) = {(tj , φ(t, δ)) ∈ RW × R, t ∈ T}
and it holds

ĝ(δ) = E sup
r∈R

F (εjfj(r1) + r2)

and
Ĝ(δ) = E sup

r∈R
F (
∑
w∈

εj,wr1,w + r2).

Thus, ĝ(δ) ⩽ Ĝ(δ) for every δ ∈ ∆ by assumption. This shows the claim.

Proof of Lemma C.2. Recall that we want to prove

E sup
t∈T

F (ε1f(t1) + t2) ⩽ E sup
t∈T

F

(∑
w∈W

ε1,wt1,w + t2

)
. (9)

Scalar input case. In this case, |W | = 1 i.e. the inputs t1 are scalar and the result is well-known,
see (Ledoux & Talagrand, 1991, Equation (4.20)).

k-max-pooling case. In this case, f computes the k-th largest coordinate of its input. Comput-
ing explicitly the expectation where the only random thing is ε1 ∈ {−1, 1}, the left-hand side of
Equation (9) is equal to

1

2
sup
t∈T

F (f(t1) + t2) +
1

2
sup
s∈T

F (−f(s1) + s2) .

Consider s, t ∈ T . Recall that s1, t1 ∈ RW . Denote s1,(k) the k-th largest component of vector s1.
The set {w ∈ W : s1,w ⩽ s1,(k)} has at least |W | − k + 1 elements, and {w ∈ W : t1,(k) ⩽ t1,w}
has at least k elements, so their intersection is not empty. Consider any6 w(s, t) in this intersection.
We are now going to use that both f(t1) = t1,(k) ⩽ t1,w(s,t) and −f(s1) = −s1,(k) ⩽ −s1,w(s,t).
Even if we are not going to use it, note that this implies f(t)− f(s) ⩽ t1,w(s,t) − s1,w(s,t): we are
exactly using an argument that establishes that f is 1-Lipschitz. Since f(t1) = t1,(k) ⩽ t1,w(s,t) and
F is non-decreasing, it holds:

F (f(t1) + t2) ⩽F
(
t1,w(s,t) + t2

)
=

ε centered
F

t1,w(s,t) + E

 ∑
w ̸=w(s,t)

ε1,wt1,w

+ t2


⩽

Jensen
EF

t1,w(s,t) +
∑

w ̸=w(s,t)

ε1,wt1,w + t2

 .

6The choice of a specific w has no importance, unlike when defining the activations of k-max-pooling
neurons.
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Moreover, −f(s1) = −s1,(k) ⩽ −s1,w(s,t) so that in a similar way:

F (−f(s1) + s2) ⩽F
(
−s1,w(s,t) + s2

)
⩽F

−s1,w(s,t) + E

 ∑
w ̸=w(s,t)

ε1,ws1,w

+ s2


⩽EF

−s1,w(s,t) +
∑

w ̸=w(s,t)

ε1,ws1,w + s2

 .

At the end, we get
1

2
F (f(t1) + t2) +

1

2
F (−f(s1) + s2)

⩽
1

2
EF

t1,w(s,t) +
∑

w ̸=w(s,t)

ε1,wt1,w + t2


+

1

2
EF

−s1,w(s,t) +
∑

w ̸=w(s,t)

ε1,ws1,w + s2


⩽

1

2
E sup

r∈T
F

r1,w(s,t) +
∑

w ̸=w(s,t)

ε1,wr1,w + r2


+

1

2
E sup

r∈T
F

−r1,w(s,t) +
∑

w ̸=w(s,t)

ε1,wr1,w + r2


= E sup

r∈T
F

ε1,w(s,t)r1,w(s,t) +
∑

w ̸=w(s,t)

ε1,wr1,w + r2


= E sup

r∈T
F

(∑
w

ε1,wr1,w + r2

)
.

The latter is independent of s, t. Taking the supremum over all s, t ∈ T yields Equation (9) and thus
the claim.

D PEELING ARGUMENT

First, we state a simple lemma that will be used several times.
Lemma D.1. Consider a vector ε ∈ Rn with iid Rademacher coordinates, meaning that P(εi =
1) = P(εi = −1) = 1/2. Consider a measurable function G : R→ R⩾0. Consider a set X ⊂ Rn.
Then

Eε sup
x∈X

G

(∣∣∣∣∣
n∑

i=1

εixi

∣∣∣∣∣
)

⩽ 2Eε sup
x∈X

G

(
n∑

i=1

εixi

)
.

Proof of Lemma D.1. Since G ⩾ 0, it holds G(|x|) ⩽ G(x) +G(−x). Thus

Eε sup
x∈X

G

(∣∣∣∣∣
n∑

i=1

εixi

∣∣∣∣∣
)

⩽ Eε sup
x∈X

G

(
n∑

i=1

εixi

)
+ Eε sup

x∈X
G

(
n∑

i=1

(−εi)xi

)
.

Since ε is symmetric, that is −ε has the same distribution as ε, then the latter is just
2Eε supx∈X G (

∑n
i=1 εixi). This proves the claim.

Notations We now fix for all the next results of this section n vectors x1, . . . , xn ∈ Rdin , for some
din ∈ N>0. We denote xi,u the coordinate u of xi.
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For any neural network architecture, recall that v(θ, x) is the output of neuron v for parameters θ
and input x, and antd(v) is the set of neurons u for which there exists a path from u to v of distance
d. For a set of neurons V , denote RV (θ, x) = (v(θ, x))v∈V .

Introduction to peeling This section shows that some expected sum over output neurons v can
be reduced to an expected maximum over ant(v), and iteratively over an expected maximum over
antd(v) for increasing d’s. Eventually, the maximum is only over input neurons as soon as d is large
enough. We start with the next lemma which is the initialization of the induction over d: it peels off
the output neurons v to reduce to their antecedents ant(v).
Lemma D.2. Consider a neural network architecture as in Definition 2.1 with an associated set
Θ of parameters θ, rescaled with Algorithm 1, and such that ∥Φ(θ)∥1 ⩽ r. Consider a family of
independent Rademacher variables (εj)j∈J with J that will be clear from the context. Consider a
non-decreasing function G : R → R⩾0. Consider a new neuron b (for bias) and set by convention
xb = 1 for every input x. Then

EεG

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)


⩽ EεG

(
r max
v∈Nout

max
u∈(ant(v)∩Nin)∪{b}

∣∣∣∣∣
n∑

i=1

εi,vxi,u

∣∣∣∣∣
)

+ EεG

(
r max
v∈Nout

max
u∈ant(v)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1

εi,vu(θ, xi)

∣∣∣∣∣
)

Proof of Lemma D.2. Recall that for a set of neurons V , we denote RV (θ, x) = (v(θ, x))v∈V .
Recall that by Definition 2.1, output neurons are identity neurons so that for every v ∈ Nout, θ ∈ Θ
and every input x:

v(θ, x) =

〈(
θ→v

bv

)
,

(
Rant(v)(θ, x)

1

)〉
.

Overloading the symbol b to make it represent a new neuron that computes the constant function
equal to one (b(θ, x) = 1), we get:

EεG

sup
θ

∑
i=1,...,n
v∈Nout

εi,vv(θ, xi)


= EεG

(
sup
θ

∑
v∈Nout

〈(
θ→v

bv

)
,

n∑
i=1

εi,v

(
Rant(v)(θ, xi)

1

)〉)

⩽
Hölder

EεG

sup
θ

( ∑
v∈Nout

∥θ→v∥1 + |bv|

)
︸ ︷︷ ︸

=∥Φ(θ)∥1⩽r (rescaled, Theorem B.1)

max
v∈Nout

(∣∣∣∣∣
n∑

i=1

εi,v

∣∣∣∣∣ , max
u∈ant(v)

∣∣∣∣∣
n∑

i=1

εi,vu(θ, xi)

∣∣∣∣∣
)

⩽ EεG

(
r max
v∈Nout

max
u∈ant(v)∪{b}

sup
θ

∣∣∣∣∣
n∑

i=1

εi,vu(θ, xi)

∣∣∣∣∣
)
.

Everything is non-negative so the maximum over u ∈ ant(v) ∪ {b} is smaller than the sum of the
maxima over u ∈ (ant(v) ∩Nin) ∪ {b} and u ∈ ant(v) \Nin. Note that when u is an input neuron,
it simply holds u(θ, xi) = xi,u. This proves the result.

We now show how to peel neurons to reduce the maximum over antd(v) to antd+1(v). Later, we
will repeat that until the maximum is only on input neurons. Compared to the previous lemma, note
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the presence of an index m = 1, . . . ,M in the maxima. This is because after d steps of peeling
(when the maximum over u has been reduced to u ∈ antd(v)), we will have M = Kd−1 where
K is the kernel size. Indeed, the number of copies indexed by m gets multiplied by K after each
peeling step.

Lemma D.3. Consider a neural network architecture with an associated set Θ of parameters θ
rescaled by Algorithm 1. Consider a family of independent Rademacher variables (εj)j∈J with J
that will be clear from the context. Consider arbitrary M,d ∈ N and a convex non-decreasing
function G : R→ R⩾0. Take a symbol b (for bias) which does not correspond to a neuron (b /∈ N )
and set by convention xb = 1 for every input x. Denote K the maximal kernel size of the network (i.e.
the maximum of | ant(u)| over every neuron u ∈ N∗-pool). Define P := |{k ∈ N>0,∃u ∈ Nk-pool}|
as the number of different types of ∗-max-pooling neurons in G. Then:

EεG

 max
v∈Nout,

m=1,...,M

max
u∈antd(v)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1

εi,v,mu(θ, xi)

∣∣∣∣∣


⩽ (3 + 2P )EεG

 max
v∈Nout,

m=1,...,KM

max
u∈(antd+1(v)∩Nin)∪{b}

∣∣∣∣∣
n∑

i=1

εi,v,mxi,u

∣∣∣∣∣


+ (3 + 2P )EεG

 max
v∈Nout,

m=1,...,KM

max
u∈antd+1(v)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1

εi,v,mu(θ, xi)

∣∣∣∣∣


Proof. Step 1: split the neurons depending on their activation function. In the term that we
want to bound from above, the neurons u compute something of the form ρu(. . . ) where ρu is the
activation associated with u which is 1-Lipschitz and satisfy ρu(0) = 0. The first step of the proof
is to get rid of ρu using a contraction lemma of the type (Ledoux & Talagrand, 1991, Theorem
4.12). However, here, the function ρu depends on the neuron u, what we are taking a maximum over
so that classical contraction lemmas do not apply directly. To resolve this first obstacle, we split
the neurons according to their activation function. Below, we highlight in blue what is important
and/or the changes from one line to another. Denote Nρ the neurons that have ρ as their associated
activation function, and the term with a maximum over all u ∈ Nρ is denoted:

e(ρ) := EεG

 max
v∈Nout,

m=1,...,M

max
u∈(antd(v)∩Nρ)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1

εi,v,mu(θ, xi)

∣∣∣∣∣
 ,

with the convention e(ρ) = 0 if Nρ is empty. This yields a first bound

EεG

 max
v∈Nout,

m=1,...,M

max
u∈antd(v)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1

εi,v,mu(θ, xi)

∣∣∣∣∣
 ⩽ e(ReLU) + e(id) +

∑
k

e(k-pool)

where the sum of the right-hand side is on all the k ∈ N>0 such that there is at least one neuron in
Nk-pool. Define E(ρ) to be the same thing as e(ρ) but without the absolute values:

E(ρ) := EεG

 max
v∈Nout,

m=1,...,M

max
u∈(antd(v)∩Nρ)\Nin

sup
θ

n∑
i=1

εi,v,mu(θ, xi)

 .

Then Lemma D.1 gets rid of the absolute values by paying a factor 2:

e(ρ) ⩽ 2E(ρ).

We now want to bound each E(ρ).

Step 2: get rid of the ∗-max-pooling and ReLU activation functions. Since the maximal kernel
size is K, any ∗-max-pooling neuron u must have at most K antecedents. When a ∗-max-pooling
neuron u has less than K antecedents, we artificially add neurons w to ant(u) to make it of cardinal
K, and we set by convention θw→u = 0. We also fix an arbitrary order on the antecedents of u and
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write ant(u)w for the antecedent number w, with Rant(u)w the function associated with this neuron.
For a ReLU or ∗-max-pooling neuron u, define the pre-activation of u to be

preu(θ, x) :=


〈(

θ→u

bu

)
,

(
Rant(u)(θ, x)

1

)〉
if u ∈ NReLU,(

θant(u)w→uRant(u)w(θ, x)
)
w=1,...,k

otherwise when u ∈ N∗-pool.

Note that the pre-activation has been defined to satisfy u(θ, x) = ρu(preu(θ, x)). When ρ is the
ReLU or k-pool, we can thus rewrite E(ρ) in terms of the pre-activations:

E(ρ) = EεG

 max
v∈Nout,

m=1,...,M

max
u∈(antd(v)∩Nρ)\Nin

sup
θ

n∑
i=1

εi,v,mρ(preu(θ, xi))

 .

Consider the finite set Z = {(v,m), v ∈ Nout,m = 1, . . . ,M} and for every z = (v,m) ∈ Z,
define T z = {(preu(θ, xi))i=1,...,n ∈ Rn, u ∈ (antd(v)∩Nρ) \Nin,θ ∈ Θ}. We can again rewrite
E(ρ) as

E(ρ) = EεG

(
max
z∈Z

sup
t∈T z

n∑
i=1

εi,zρ(ti)

)
.

We now want to get rid of the activation function ρ with a contraction lemma. There is a second
difficulty that prevents us from directly applying classical contraction lemmas such as (Ledoux &
Talagrand, 1991, Theorem 4.12). It is the presence of a maximum over multiple copies indexed by
z ∈ Z of a supremum that depends on iid families (εi,z)i=1...n. Indeed, (Ledoux & Talagrand,
1991, Theorem 4.12) only deals with a single copy (|Z| = 1). This motivates the (apparently
new) contraction lemma established for the occasion in Lemma C.1. Once the activation functions
removed, we can conclude separately for ρ = ReLU, id and ρ = k-pool.

Step 3a: deal with ρ = k-pool via rescaling. In the case ρ = k-pool, Lemma C.1 shows that

EεG

(
max
z∈Z

sup
t∈T z

n∑
i=1

εi,zk-pool(ti)

)

⩽ EεG

max
z∈Z

sup
t∈T z

∑
i=1,...,n,
w=1,...,K

εi,z,wti,w

 .

The right-hand side is equal to

EεG

 max
v∈Nout,

m=1,...,M

sup
u∈(antd(v)∩Nmax)\Nin,θ∈Θ

∑
i=1,...,n,
w=1,...,K

εi,v,m,wθ
ant(u)w→uRant(u)w(θ, xi)

 . (10)

We now deal with this using the fact that the parameters are rescaled. It holds:∑
i=1,...,n,
w=1,...,K

εi,v,m,wθ
ant(u)w→uRant(u)w(θ, xi)

=
∑

w=1,...,K

θant(u)w→u

 ∑
i=1,...,n

εi,v,m,wRant(u)w(θ, xi)


⩽

Hölder
∥θ→u∥1︸ ︷︷ ︸

=0 or 1 (no bias, rescaled Lemma B.3)

max
w=1,...,K

∣∣∣∣∣∣
∑

i=1,...,n

εi,v,m,wRant(u)w(θ, xi)

∣∣∣∣∣∣
⩽

decoupling w and ant(u)w

max
w∈ant(u)

max
w′=1,...,K

∣∣∣∣∣
n∑

i=1

εi,v,m,w′w(θ, xi)

∣∣∣∣∣ .
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Thus, Equation (10) is bounded from above by

EεG

 max
v∈Nout,

m=1,...,M

sup
u∈(antd(v)∩Nmax)\Nin,θ∈Θ

max
w∈ant(u)

max
w′=1,...,K

∣∣∣∣∣
n∑

i=1

εi,v,m,w′w(θ, xi)

∣∣∣∣∣
 .

We can re-index the variables ε by making the third coordinate equal to the cartesian product of the
current third and fourth coordinates. This absorbs the fourth coordinate in the third one, with m
going from 1 to KM instead of M . Note also that for u ∈ (antd(v)∩Nmax) \Nin and w ∈ ant(u),
then w ∈ antd+1(v) so considering a maximum over w ∈ antd+1(v) can only increase the latter
expectation. Moreover, we can add a new neuron b (for bias) that computes the constant function
equal to one (b(θ, x) = 1) and add b to the maximum over w. At the end, Equation (10) is bounded
by

H := EεG

 max
v∈Nout,

m=1,...,KM

sup
w∈antd+1(v)∪{b}

sup
θ∈Θ

∣∣∣∣∣
n∑

i=1

εi,v,mw(θ, xi)

∣∣∣∣∣
 .

We now derive similar inequalities when ρ = id and ρ = ReLU.

Step 3b: deal with ρ = id,ReLU via rescaling. In the case ρ = ReLU, Lemma C.1 shows that

EεG

(
max
z∈Z

sup
t∈T z

n∑
i=1

εi,zReLU(ti)

)

⩽ EεG

max
z∈Z

sup
t∈T z

∑
i=1,...,n

εi,zti

 .

The difference with the ∗-max-pooling case is that each ti is scalar so this does not introduce an
additional index w to the Rademacher variables. The right-hand side can be rewritten as

EεG

 max
v∈Nout,

m=1,...,M

sup
u∈(antd(v)∩NReLU)\Nin,θ∈Θ

∑
i=1,...,n

εi,v,m

〈(
θ→u

bu

)
,

(
Rant(u)(θ, xi)

1

)〉
We can only increase the latter by considering a maximum over all u ∈ antd(v), not only the ones
in NReLU. We also add absolutes values. This is then bounded by

F := EεG

 max
v∈Nout,

m=1,...,M

sup
u∈antd(v)\Nin,θ∈Θ

∣∣∣∣ ∑
i=1,...,n

εi,v,m

〈(
θ→u

bu

)
,

(
Rant(u)(θ, xi)

1

)〉 ∣∣∣∣
 .

(11)
This means that E(ReLU) ⩽ F . Let us also observe that e(id) ⩽ F . Indeed, recall that by definition

e(id) = EεG

 max
v∈Nout,

m=1,...,M

max
u∈(antd(v)∩Nid)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1

εi,v,mu(θ, xi)

∣∣∣∣∣
 .

We can only increase the latter expectation by considering a maximum over all u ∈ antd(v). More-

over, for an identity neuron u, it holds u(θ, x) =
〈(

θ→u

bu

)
,

(
Rant(u)(θ, x)

1

)〉
. This shows

that e(id) ⩽ F . It then remains to bound F using that the parameters are rescaled. Introduce a new
neuron b (for bias) that computes the constant function equal to one: b(θ, x) = 1. Note that∑

i=1,...,n

εi,v,m

〈(
θ→u

bu

)
,

(
Rant(u)(θ, xi)

1

)〉

=

〈(
θ→u

bu

)
,
∑

i=1,...,n

εi,v,m

(
Rant(u)(θ, xi)

1

)〉

⩽
Hölder

(∥θ→u∥1 + |bu|)︸ ︷︷ ︸
=0 or 1(rescaled, Lemma B.3)

max
w∈ant(u)∪{b}

∣∣∣∣∣
n∑

i=1

εi,v,mw(θ, xi)

∣∣∣∣∣ .
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This shows that

F ⩽ EεG

 max
v∈Nout,

m=1,...,M

sup
u∈antd(v)\Nin,θ∈Θ

max
w∈ant(u)∪{b}

∣∣∣∣∣
n∑

i=1

εi,v,mw(θ, xi)

∣∣∣∣∣
 .

Obviously, one can introduce additional copies of ε to make the third index going from m = 1
to KM , and this can only increase the latter. Moreover, if u ∈ antd(v) \ Nin and w ∈ ant(u)
then w ∈ antd+1(u) so that we can consider a maximum over w ∈ antd+1(v) and this could only
increase the latter. This gives the final bound

F ⩽ EεG

 max
v∈Nout,

m=1,...,KM

max
w∈antd+1(v)∪{b}

sup
θ∈Θ

∣∣∣∣∣
n∑

i=1

εi,v,mw(θ, xi)

∣∣∣∣∣


= H.

Step 4: putting everything together. At the end, recalling that there are at most P different k ∈
N>0 associated with an existing k-max-pooling neuron, we get the final bound

EεG

 max
v∈Nout,

m=1,...,M

max
u∈antd(v)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1

εi,v,mu(θ, xi)

∣∣∣∣∣


⩽ e(id) + e(ReLU) +
∑
k

e(k-pool)

⩽ e(id) + 2E(ReLU) + 2
∑
k

E(k-pool)

⩽ F + 2F + 2
∑
k

E(k-pool)

⩽ H + 2H + 2
∑
k

H

⩽ H + 2H + 2PH = (3 + 2P )H.

The term (3 + 2P )H can again be bounded by splitting the maximum over w ∈ antd+1(v) ∪ {b}
between the w’s that are input neurons, and those that are not, since everything is non-negative. This
yields the claim.

Remark D.1 (Improved dependencies on the kernel size). Note that in the proof of Lemma D.3,
the multiplication of M by K can be avoided if there are no ∗-max-pooling neurons in antd(v).
Because of skip connections, even if there is a single ∗-max-pooling neuron in the architecture, it
can be in antd(v) for many d’s. A more advanced version of the argument is to peel only the ReLU
and identity neurons, by leaving the ∗-max-pooling neurons as they are, until we reach a set of ∗-
max-pooling neurons large enough that we decide to peel simultaneously. This would prevent the
multiplication by K every time d is increased.

We can now state the main peeling theorem, which directly result from Lemma D.2 and Lemma D.3
by induction on d.

Theorem D.1. Consider a neural network architecture as in Definition 2.1. Denote K its maximal
kernel size (i.e. the maximum of | ant(u)| over all neurons u ∈ N∗-pool), with K = 1 by convention
if there is no ∗-max-pooling neuron, and denote D the depth (the length of the longest path from an
input to an output). Define P := |{k ∈ N>0,∃u ∈ Nk-pool}| as the number of different types of
∗-max-pooling neurons in G. Add an artificial neuron b in the input neurons Nin and define xb = 1
for any input x. For any set of parameters Θ associated with the network, such that ∥Φ(θ)∥1 ⩽ r
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for every θ ∈ Θ, it holds for every convex non-decreasing function G : R→ R⩾0

EεG

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)


⩽

(3 + 2P )D

2 + 2P
EεG

r max
v∈Nout,

m=1,...,KD−1

max
u∈Nin∪{b}

∣∣∣∣∣
n∑

i=1

εi,v,mxi,u

∣∣∣∣∣
 .

Proof of Theorem D.1. Without loss of generality, we assume that the parameters in Θ are rescaled
with Algorithm 1, as the rescaling of parameters θ performed by Algorithm 1 does not change the
associated function Rθ nor the path-norm ∥Φ(θ)∥1 so that we still have ∥Φ(θ)∥1 ⩽ r and the
supremum over θ ∈ Θ on the left-hand side can be taken over rescaled parameters.

By induction on d ⩾ 1, we prove that (highlighting in blue what is important)

EεG

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)


⩽

d∑
ℓ=1

(3 + 2P )ℓ−1EεG

r max
v∈Nout,

m=1,...,Kℓ−1

max
u∈(antℓ(v)∩Nin)∪{b}

∣∣∣∣∣
n∑

i=1

εi,v,mxi,u

∣∣∣∣∣


+ (3 + 2P )d−1EεG

r max
v∈Nout,

m=1,...,Kd−1

max
u∈antd(v)\Nin

sup
θ∈Θ

∣∣∣∣∣
n∑

i=1

εi,v,mu(θ, xi)

∣∣∣∣∣
 ,

with the convention that a maximum over an empty set is zero. This is true for d = 1 by Lemma D.2.
The induction step is then verified using Lemma D.3. This concludes the induction. Applying the
result for d = D, and since antD(v) \Nin = ∅, we get:

EεG

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)


⩽

D∑
d=1

(3 + 2P )d−1EεG

r max
v∈Nout,

m=1,...,Kd−1

max
u∈(antd(v)∩Nin)∪{b}

∣∣∣∣∣
n∑

i=1

εi,v,mxi,u

∣∣∣∣∣
 .

We can only increase the right-hand side by considering maximum over all u ∈ Nin ∪ {b} and by
adding independent copies indexed from m = 1 to m = KD−1. Moreover,

∑D
d=1(3 + 2P )d−1 =

((3 + 2P )D − 1)/(2 + 2P ). This shows the final bound:

EεG

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)


⩽

(3 + 2P )D

2 + 2P
EεG

r max
v∈Nout,

m=1,...,KD−1

max
u∈Nin∪{b}

∣∣∣∣∣
n∑

i=1

εi,v,mxi,u

∣∣∣∣∣
 .
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E DETAILS TO DERIVE THE GENERALIZATION BOUND (THEOREM 3.1)

Proof of Theorem 3.1. Define the random matrices E = (εi,v)i,v ∈ Rn×dout and R(θ,X) =
(v(θ,Xi))i,v ∈ Rn×dout so that ⟨E,R(θ,X)⟩ =

∑
i,v εi,vRθ(Xi)v . It then holds:

EZ ℓ-generalization error of θ̂(Z) ⩽
2

n
EZ,ε

(
sup
θ

n∑
i=1

εiℓ (Rθ(Xi),Yi)

)

⩽
2
√
2L

n
EZ,ε

(
sup
θ
⟨E,R(θ,X)⟩

)
.

The first inequality is the symmetrization property given by (Shalev-Shwartz & Ben-David, 2014,
Theorem 26.3), and the second inequality is the vector-valued contraction property given by (Mau-
rer, 2016). These are the relevant versions of very classical arguments that are widely used to
reduce the problem to the Rademacher complexity of the model (Bach, Propositions 4.2 and
4.3)(Wainwright, 2019, Equations (4.17) and (4.18))(Bartlett & Mendelson, 2002, Proof of The-
orem 8)(Shalev-Shwartz & Ben-David, 2014, Theorem 26.3)(Ledoux & Talagrand, 1991, Equation
(4.20)). In particular, this step has nothing specific with neural networks. Note that the assumption
on the loss is used for the second inequality.

We now condition on Z = (X,Y) and denote Eε the conditional expectation. For any random
variable λ(Z) > 0 measurable in Z, it holds

Eε

(
sup
θ
⟨E,R(θ,X)⟩

)
=

1

λ(Z)
log exp

(
λ(Z)Eε

(
sup
θ
⟨E,R(θ,X)⟩

))
=

λ measurable in Z

1

λ(Z)
log exp

(
Eε

(
λ(Z) sup

θ
⟨E,R(θ,X)⟩

))
⩽

Jensen

1

λ(Z)
logEε exp

(
λ(Z) sup

θ
⟨E,R(θ,X)⟩

)
.

For z = ((xi, yi))
n
i=1 ∈ (Rdin × Rdout)n, denote

e(z) = Eε exp

(
λ(z) sup

θ
⟨E,R(θ, x)⟩

)
.

Since Z is independent of ε, it holds

Eε exp

(
λ(Z) sup

θ
⟨E,R(θ,X)⟩

)
= e(Z).

Denote r = supθ∈Θ ∥Φ(θ)∥1. For z as above, simply denote λ := λ(z). The peeling argument
given by Theorem D.1 for G : t ∈ R 7→ exp(λt) gives:

e(z) ⩽
(3 + 2P )D

2 + 2P
Eε exp

λr max
v∈Nout,

m=1,...,KD−1

max
u∈Nin∪{b}

∣∣∣∣∣
n∑

i=1

εi,v,mxi,u

∣∣∣∣∣
 ,

where xi,u is coordinate u of vector xi ∈ Rdin , and where b (for bias) is an added neuron for which
we set by convention xb = 1 for any input x. Denote

σ(x) := max
u∈Nin∪{b}

(
n∑

i=1

x2
i,u

)1/2

⩾
√
n.

Using Lemma E.1, it holds

Eε exp

λr max
v∈Nout,

u∈Nin∪{b},
m=1,...,KD−1

∣∣∣∣∣
n∑

i=1

εi,v,m(Xi)u

∣∣∣∣∣
 ⩽ 2KD−1(din + 1)dout exp

(
(rλ(z)σ(x))2

2

)
.
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Putting everything together, we get:

Eε

(
sup
θ
⟨E,R(θ,X)⟩

)
= e(Z) ⩽

(
1

λ
log(C1) + λ(Z)C2(X)

)
with

C1 = 2KD−1(din + 1)dout ×
(3 + 2P )D

2 + 2P
=

3 + 2P

1 + P
((3 + 2P )K)D−1(din + 1)dout

and
C2(X) =

1

2
(rσ(X))2.

Choosing λ(Z) =
√

log(C1)
C2(X) yields:

Eε

(
sup
θ
⟨E,R(θ,X)⟩

)
⩽ 2
√
log(C1)C2(X)

⩽
√
2σ(X)r︸ ︷︷ ︸

=2
√

C2(X)

(
log(

3 + 2P

1 + P
(din + 1)dout) +D log((3 + 2P )K)

)1/2

︸ ︷︷ ︸√
log(C1)⩽

.

Taking the expectation on both sides over Z, and multiplying this by 2
√
2L
n yields Theorem 3.1.

The next lemma is classical (Golowich et al., 2018, Section 7.1) and is here only for completeness.
Lemma E.1. For any d, k ∈ N>0 and λ > 0, it holds

Eε exp

λ max
m=1,...,k,
u=1,...,d

∣∣∣∣∣
n∑

i=1

εi,m(Xi)u

∣∣∣∣∣
 ⩽ 2kd max

u=1,...,d
exp

(
λ2

2

n∑
i=1

(Xi)
2
u

)
.

Proof. It holds

Eε exp

λ max
m=1,...,k,
u=1,...,d

∣∣∣∣∣
n∑

i=1

εi,m(Xi)u

∣∣∣∣∣
 ⩽

∑
m=1,...,k,
u=1,...,d

Eε exp

(
λ

∣∣∣∣∣
n∑

i=1

εi,m(Xi)u

∣∣∣∣∣
)
.

For given u and m:

Eε exp

(
λ

∣∣∣∣∣
n∑

i=1

εi,m(Xi)u

∣∣∣∣∣
)

⩽
Lemma D.1

2Eε exp

(
λ

n∑
i=1

εi,m(Xi)u

)

= 2

n∏
i=1

exp (λ(Xi)u) + exp (−λ(Xi)u)

2
⩽ 2 exp

(
λ2

2

n∑
i=1

(Xi)
2
u

)
using exp(x) + exp(−x) ⩽ 2 exp(x2/2) in the last inequality.

F THE CROSS-ENTROPY LOSS IS LIPSCHITZ

Theorem 3.1 applies to the cross-entropy loss with L =
√
2. To see this, first recall that with C

classes, the cross-entropy loss is defined as

ℓ : (x, y) ∈ RC × {0, 1}C → −
dout∑
c=1

yc log

(
exp(xc)∑
d exp(xd)

)
.

Consider y ∈ {0, 1}C with exactly one nonzero coordinate and an exponent p ∈ [1,∞] with conju-
gate exponent p′ (1/p+ 1/p′ = 1). Then for every x, x′ ∈ RC :

ℓ(x, y)− ℓ(x′, y) ⩽ 21/p
′
∥x− x′∥p.

32



Under review as a conference paper at ICLR 2024

Consider a class c ∈ {1, . . . , C} and take y ∈ {0, 1}C to be a one-hot encoding of c (meaning
that yc′ = 1c′=c). Consider an exponent p ∈ [1,∞] with conjugate exponent p′ (1/p + 1/p′ =

1). The function f : x 7→ ℓ(x, y) = −
∑

c yc log
(

exp(xc)∑C
c′=1

exp(xc′ )

)
= − log

(
exp(xc)∑C

c′=1
exp(xc′ )

)
is

continuously differentiable so that for every x, x′ ∈ RC :

f(x)− f(x′) =

∫ 1

0

⟨∇f(tx+ (1− t)x′), x− x′⟩ dt ⩽ sup
t∈[0,1]

∥∇f(tx+ (1− t)x′)∥p∥x− x′∥p′ .

In order to differentiate f , let’s start to differentiate g(x) = exp(xc)∑C
c′=1

exp(xc′ )
. Denote ∂i the partial

derivative with respect to coordinate i. Then for i ̸= c:

∂cg(x) =
exp(xc) (

∑
c′ exp(xc′))− exp(xc) (exp(xc))

(
∑

c′ exp(xc′))
2

= g(x)

∑
c′ ̸=c exp(xc′)∑
c′ exp(xc′)

.

∂ig(x) =
0 (
∑

c′ exp(xc′))− exp(xc) (exp(xi))

(
∑

c′ exp(xc′))
2

= g(x)
− exp(xi)∑
c′ exp(xc′)

.

Since f(x) = (− log ◦h)(x):

∂if(x) = −
∂ig(x)

g(x)

=
1∑C

c′=1 exp(xc′)
×
{
−
∑

c′ ̸=c e
xc′ if i = c,

exi otherwise.

Thus

∥∇f(x)∥pp =

C∑
i=1

|∂if(x)|p

=

(∑
c′ ̸=c exp(xc′)

)p
+
∑

c′ ̸=c exp(xc′)
p(∑C

c′=1 exp(xc′)
)p

⩽ 2

(∑
c′ ̸=c exp(xc′)

)p
(∑C

c′=1 exp(xc′)
)p

⩽ 2

(∑
c′ ̸=c exp(xc′)

)p
(∑

c′ ̸=c exp(xc′)
)p

= 2.

where we used in the first inequality that ∥v∥pp ⩽ ∥v∥p1 for any vector v. This shows that for every
x, x′ ∈ RC :

ℓ(x, y)− ℓ(x′, y) ⩽ 21/p∥x− x′∥p′ .

G THE TOP-1 ACCURACY LOSS IS NOT LIPSCHITZ

Theorem 3.1 does not apply to the top-1 accuracy loss ℓ(ŷ, y) = 1argmax ŷ=argmax y as Equation (2)
cannot be satisfied by ℓ. Indeed, it is easy to construct situations where ŷ1 = Rθ(x1) is arbitrarily
close to ŷ2 = Rθ(x2) with x2 correctly classified, while x1 is not (just take x2 on the boundary
decision of the network and x1 on the wrong side of the boundary), so that the left-hand side is
equal to 1 and the right-hand side is arbitrarily small. There could thus not exist a finite L > 0 that
satisfies Equation (2).
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H THE MARGIN-LOSS IS LIPSCHITZ

For ŷ ∈ Rdout and a one-hot encoding y ∈ Rdout of the class c of x (meaning that yc′ = 1c′=c for
every c′), the margin M(ŷ, y) is defined by

M(ŷ, y) := [ŷ]c −max
c′ ̸=c

[ŷ]c′ .

For γ > 0, recall that the γ-margin-loss is defined by

ℓ(ŷ, y) =


0 if γ < M(ŷ, y),

1− M(ŷ,y)
γ if 0 ⩽ M(ŷ, y) ⩽ γ,

1 if M(ŷ, y) < 0.

(12)

For any class c and one-hot encoding y of c, it is known that ŷ ∈ Rdout → M(ŷ, y) is 2-Lipschitz
with respect to the L2-norm on ŷ (Bartlett et al., 2017, Lemma A.3). Moreover, the function

r ∈ R 7→

 0 if r < −γ,
1 + r

γ if − γ ⩽ r ⩽ 0,

1 if r > 0.

is 1
γ -Lipschitz. By composition, this shows that ŷ ∈ Rdout → ℓγ(ŷ, y) is 2

γ -Lipschitz with respect to
the L2-norm.

Proof of Theorem 3.2. Since the labels Y are one-hot encodings, we equivalently consider Y either
in Rdout or in {1, . . . , dout}. It holds (Bartlett et al., 2017, Lemma A.4)

P
(
argmax

c
[Rθ(X)]c ̸= Y

)
⩽ E (ℓγ(Rθ(X),Y))

for any γ > 0 and associated γ-margin-loss ℓγ . Thus, considering the generalization error for ℓγ :

P
(
argmax

c
[Rθ(X)]c ̸= Y

)
⩽

1

n

n∑
i=1

ℓγ

(
Rθ̂(Z)(Xi),Yi

)
︸ ︷︷ ︸

= training error of θ̂(Z)

+EZ ℓγ-generalization error of θ̂(Z).

By definition of ℓγ , the training error of θ̂(Z) is at most
1
n

∑n
i=1 1[Rθ̂(Z)(Xi)]Yi

⩽γ+maxc ̸=Yi
[Rθ̂(Z)(Xi)]c . Moreover, Theorem 3.1 can be used to bound

the generalization error associated with ℓγ with L = 2/γ. This proves the claim.

I DETAILS ON THE EXPERIMENTS OF SECTION 4

Details for Table 2. All the experiments are done on ImageNet-1k using 99% of the 1,281,167
images of the training set for training, the other 1% is used for validation. Thus, n = 1268355 =
⌊0.99 × 1281167⌋ in our experiments, din = 224 × 224 × 3 = 150528, dout = 1000. We also
estimated B = 2.640000104904175 by taking the maximum of the L∞ norms of the training images
normalized for inference7. The PyTorch code for normalization at inference is standard:

1 inference_normalization = transforms.Compose([
2 transforms.Resize(256),
3 transforms.CenterCrop(224),
4 transforms.ToTensor(),
5 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,

0.224, 0.225]),
6 ])

7The constant σ in Theorem 3.1 corresponds to data Zi drawn from the distribution for which we want
to evaluate the test error. This is then the data normalized for inference. Thus, the training loss appearing
in Theorem 3.1 is also evaluated on the training data Zi normalized for inference. In the experiments, we
ignore this fact and still evaluate the training loss on the data augmented for training. Moreover, note that it is
not possible to recover the training images augmented for training from the images normalized for inference,
because cropping is done at random for training. Thus, the real life estimator is not a function of the images Zi

normalized for inference, and Theorem 3.1 does not apply stricto sensu. This fact is ignored here.
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We consider ResNets. They have a single max-pooling layer of kernel size 3×3 so that K = 9. The
depth is D = 3+ # basic blocks× # conv per basic block, where 3 accounts for the conv1 layer, the
average-pooling layer, the fc layer, and the rest accounts for all the convolutional layers in the basic
blocks. Table 4 details the relevant values related to basic blocks.

Table 4: Number of basic blocks, of convolutional layer per basic blocks and associated D2 for
ResNets (He et al., 2016, Table 1).

ResNet 18 34 50 101 152
# basic blocks 8 16 33 50

# conv per basic block 2 3
D2 18 34 50 101 152

Pretrained ResNets. The PyTorch pretrained weights that have been selected are the ones
with the best performance: ResNetX_Weights.IMAGENET1K_V1 for ResNets 18 and 34, and
ResNetX_Weights.IMAGENET1K_V2 otherwise.

Choice of γ > 0 for Theorem 3.2. In Equation (3), note that there is a trade-off when choosing
γ > 0. Indeed, the first term of the right-hand side is non-decreasing with γ while the second
one is non-increasing. The first term is simply the proportion of datapoints that are not correctly
classified with a margin at least equal to γ. Defining the margin of input i on parameters θ to be
Rθ(Xi)Yi

− argmaxc̸=Yi
Rθ(Xi)c, this means that the first term is (approximately) equal to q if

γ = γ(q) is the q-quantile of the distribution of the margins over the training set.

Note that since the second term in Equation (3) is of order 1/
√
n, it would be desirable to choose

the 1/
√
n-quantile (up to a constant) for γ. However, this is not possible in practice as soon as the

training top 1 accuracy is too large compared to 1/
√
n (eg. on ImageNet). Indeed, if the training top

1 error is equal to e ∈ [0, 1], then at least a proportion e of the data margins should be negative8 so
that any q-quantile with q < e is negative and cannot be considered for Theorem 3.2

The distribution of the margins on the training set of ImageNet can be found in Figure 3. The
maximum training margin is roughly of size 30, which is insufficient to compensate the size of the
L1 path-norm of pretrained ResNets reported in Table 3. For γ > 30, the first term of the right
hand-side of Theorem 3.2 is greater than one, so that the bound is not informative. This shows that
there is no possible choice for γ > 0 that makes the bound informative on these pretrained ResNets.
Table 5 reports a quantile for these pretrained ResNets.

Table 5: The q-quantile γ(q) for q = 1
3e+

2
3 , with e being the top 1 error, on ImageNet, of pretrained

ResNets available on PyTorch.

ResNet 18 34 50 101 152
γ(q) 5.0 5.6 4.2 5.6 5.8

Details for sparse networks. ResNet18 is trained on 99% of ImageNet with a single GPU using
SGD for 90 epochs, learning rate 0.1, weight-decay 0.0001, batch size 1024, and a multi-step sched-
uler where the learning rate is divided by 10 at epochs 30, 60 and 80. The epoch out of the 90 ones
with maximum validation top 1 accuracy is considered as the final epoch. Pruning is done iteratively
accordingly to (Frankle et al., 2021). We prune 20% of the remaining weights of each convolutional
layer, and 10% of the final fully connected layer, at each pruning iteration, save the mask and rewind
the weights to their values after the first 5 epochs of the dense network, and train for 85 remaining
epochs, before pruning again etc. Results for a single run are shown in Figure 4.

Details for increasing the train size. Instead of training on 99% of ImageNet (n = 1268355), we
trained a ResNet18 on n/2k samples drawn at random, for 1 ⩽ k ⩽ 5. For each given k, the results
are averaged over 3 seeds. The hyperparameters are the same as for sparse networks (except that we
do not perform any pruning here): 90 epochs etc. Results are in Figure 5.

8A data margin is negative if and only if it is misclassified.
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Figure 3: Distribution of the margins on the training set of ImageNet, with the pretrained ResNets
available on PyTorch.

J MAIN RELATED WORKS

Given the extent of the literature on generalization bounds, we apologize in advance for papers the
reader may find missing below.

Previous definitions of the path-embedding and the path-activations In the work of (Kawaguchi
et al., 2017, Section 5.1) the path-embedding and the path-activations are evoked in the case of a
ReLU DAG with max-pooling neurons and no biases, but with no explicit definitions. Definition A.1
gives a formal definition for these objects, and extend it to the case where there are biases, which
requires extending the path-embedding to paths starting from neurons that are not input neurons.
Moreover, Definition A.1 extends it to arbitrary k-max-pooling neurons (classical max-pooling neu-
rons correspond to k = 1).

Note also that the formula Equation (1) is stated in the specific case of (Kawaguchi et al., 2017,
Section 5.1) (as an explicit sum rather than an inner product), without proof since the objects are not
explicitly defined in Kawaguchi et al. (2017).

A formal definition of the path-embedding is given in the specific case of ReLU feedforward neural
networks with biases in the work of (Stock & Gribonval, 2022, Definition 6). Moreover, it is proved
that Equation (1) holds in this specific case in (Stock & Gribonval, 2022, Corollary 3). Definition A.1
and Equation (1) generalize the latter to an arbitrary DAG with ∗-max-pooling or identity neurons
(allowing in particular for skip connections, max-pooling and average-pooling).

The rest of the works we are aware of only define and consider the norm of the path-embedding, but
not the embedding itself. The most general setting being the one of (Neyshabur et al., 2015) with
a general DAG, but without max or identity neurons, nor biases. Not defining the path-embedding
and the path-activations makes notations arguably heavier since Equation (1) is then always written
with an explicit sum over all paths, with explicit product of weights along each path, and so on.

Previous generalization bounds based on path-norm See Table 1 for a comparison. Appendix K
tackles some other bounds that do not appear in Table 1.

Empirical evaluation of path-norm The formula given in Theorem A.1 is the first one to fully
encompass modern networks with biases, average/∗-max-pooling, and skip connections, such as
ResNets. An equivalent formula is stated for ReLU feedforward networks without biases (and no
pooling/skip connections) in (Dziugaite et al., 2020, Appendix C.6.5) and (Jiang et al., 2020, Equa-
tions (43) and (44)) but without proof. Actually, this equivalent formula turns out to be false when
there are ∗-max-pooling neurons as one must replace ∗-max-pooling neurons with identity ones,
see Theorem A.1. Care must also be taken with average-pooling neurons that must be rescaled by
considering them as identity neurons.

We could not find reported numerical values of the path-norm except for toy examples (Dziugaite,
2018; Furusho, 2020; Zheng et al., 2019). Details are in Appendix K.
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Figure 4: Lq path-norm (q = 1, 2, 4), test top 1 accuracy, training top 1 accuracy, and the top 1 gen-
eralization error (difference between test top 1 and train top 1) during the training of a ResNet18 on
ImageNet. The pruning iteration is indicated in legend, with 0 corresponding to the dense network.
The color also indicates the degree of sparsity: from dense (black) to extremely sparse (yellow).
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Figure 5: L1 path-norm, and empirical generalization errors for both the top-1 accuracy and the
cross-entropy during the training of a ResNet18 on a subset of the training images of ImageNet.
The legend indicates the size of the subset considered, e.g. 1/m corresponds to 1/m of 99% of
ImageNet, leaving the other 1% out for validation. The color also indicates the size of the subset:
from small (black) to large (yellow).
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Appendix K also discusses 1) inherent limitations of Theorem 3.1 which are common to many
generalization bounds, and 2) the applicability of Theorem 3.1 compared to PAC-Bayes bounds.

K MORE RELATED WORKS

More generalization bounds using path-norm (E et al., 2022) establishes an additional bound to
the one appearing in Table 1, for a class of functions and a complexity measure that are related to the
infinite-depth limits of residual networks and the path-norm. However, it is unclear how this result
implies anything for actual neural networks with the actual path-norm 9.

The bound in (Zheng et al., 2019) holds only for ReLU feedforward neural networks (no max or
identity neurons) with no biases and it grows exponentially with the depth of the network. It is
not included in Table 1 because it requires an additional assumption: the coordinates of the path-
embedding must not only be bounded from above, but also from below. The reason for this assump-
tion is not discussed in (Zheng et al., 2019), and it is unclear whether this is at all desirable, since a
small path-norm can only be better for generalization in light of Theorem 3.1.

(Golowich et al., 2018, Theorem 4.3) is a bound that holds for ReLU feedforward neural networks
with no biases (no max and no identity neurons) and it depends on the product of operators’ norms
of the layers. It has the merit of having no dependence on the size of the architecture (depth, width,
number of neurons etc.). However, it requires an additional assumption: each layer must have an
operator norm bounded from below, so that it only applies to a restricted set of feedforward networks.
Moreover, it is unclear whether such an assumption is desirable: there are networks with arbitrary
small operators’ norms that realize the zero function, and the latter has a generalization error equal
to zero.

Theorem 8 in (Kawaguchi et al., 2017) gives a generalization bound for scalar-valued (dout = 1)
models with an output of the form ⟨Φ(θ),A(θ′, x)x⟩ for some specific parameters θ,θ′ that have
no reason to be equal. This is orthogonal to the case of neural networks where one must have
θ = θ′, and it is therefore not included in Table 1. Theorem 5 in (Kawaguchi et al., 2017) can
be seen as a possible first step to derive a bound based on path-norm in the specific case of the
mean squared error loss. However, as discussed in more details below, (Kawaguchi et al., 2017,
Theorem 5) is a rewriting of the generalization error with several terms that are as complex to bound
as the original generalization error, resulting in a bound being as hard as the generalization error to
evaluate/estimate.

More details about Theorem 5 in (Kawaguchi et al., 2017) We start by re-deriving Theorem 5 in
(Kawaguchi et al., 2017). In the specific case of mean squared error, using that

∥Rθ(x)− y∥22 = ∥Rθ(x)∥22 + ∥y∥22 − 2 ⟨Rθ(x), y⟩ ,

it is possible to rewrite the generalization error as follows:

generalization error of θ̂(Z) =E
(
∥Rθ̂(Z)(X̃)− Ỹ∥22|Z

)
− 1

n

n∑
i=1

∥Rθ̂(Z)(Xi)−Yi∥22

=E
(
∥Rθ̂(Z)(X̃)∥22|Z

)
− 1

n

n∑
i=1

∥Rθ̂(Z)(Xi)∥22

+ E
(
∥Ỹ∥22|Z

)
−

n∑
i=1

∥Yi∥22

− 2E
(〈

Rθ̂(Z)(X̃), Ỹ
〉
|Z
)
− 1

n

n∑
i=1

〈
Rθ̂(Z)(Xi),Yi

〉
.

9(E et al., 2022) starts from the fact that the infinite-depth limits of residual networks can be characterized
with partial differential equations. Then, (E et al., 2022) establishes a bound for functions characterized by
similar, but different, partial differential equations, using what seems to be an analogue of path-norm for these
new functions. However, even if the characterizations of these functions are closed, as it is said in (E et al.,
2022), ”it is unclear how the two spaces are related”.
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It is then possible to make the L2 path-norm appear. For instance, for one-dimensional output
networks, it can be proven (see Lemma A.1) that Rθ(x) = ⟨Φ(θ), z(x,θ)⟩ with Φ(θ) the path-
embedding of parameters θ, and z that typically depends on the path-activations and the input, so
that the first term above can be rewritten

Φ(θ̂(Z))T

(
E
(
z(X̃, θ̂(Z))z(X̃, θ̂(Z))T |Z

)
− 1

n

n∑
i=1

z(Xi, θ̂(Z))z(Xi, θ̂(Z))
T

)
Φ(θ̂(Z)).

Let us call a ”generalization error like quantity” any term of the form

E
(
fθ̂(Z)(Z̃)|Z

)
− 1

n

n∑
i=1

fθ̂(Z)(Zi),

that is, any term that can be represented as a difference between the estimator learned from training
data Z evaluated on test data Z̃, and the evaluation on the training data. We see that the derivation
above replaces the classical generalization error with two others quantities similar in definition to the
generalization error. This derivation, which is specific to mean squared error, leads to Theorem 5 in
(Kawaguchi et al., 2017). Very importantly, note that this derivation trades a single quantity similar
to generalization error for two new such quantities. (Kawaguchi et al., 2017) does not discuss how
to bound these two new terms, but without any further new idea, there is no other way than the ones
developed in the literature so far: reduce the problem to bounding a Rademacher complexity (as it
is done in Theorem 3.1), or use the PAC-Bayes framework, and so on.

More on numerical evaluation of path-norm (Dziugaite, 2018, Section 2.9.1) reports numerical
evaluations after 5 epochs of SGD on a one hidden layer network trained on a binary variant of
MNIST. (Furusho, 2020, Figure 9 and Section 3.3.1) deals with 1d regression with 5 layers and 100
width. (Zheng et al., 2019) experiments on MNIST. Note that it is not clear whether (Zheng et al.,
2019) reports the path-norm as defined in Definition A.1. Indeed, (Zheng et al., 2019) quotes both
(Neyshabur et al., 2015) and (Neyshabur et al., 2017) when refering to the path-norm, but these two
papers have two different definitions of the path-norm, as (Neyshabur et al., 2017) normalize it by
the margin while (Neyshabur et al., 2015) does not.

For completeness, let us also mention that (Dziugaite et al., 2020; Jiang et al., 2020) reports whether
the path-norm correlates with the empirical generalization error or not, but do not report the nu-
merical values. (Neyshabur et al., 2017) reports the path-norm normalized by the margins, but not
separately from each other.

Inherent limitations of uniform convergence bounds Theorem 3.1 has some inherent limitations
due to its nature. It is data-dependent as it depends on the input distribution. However, it does not
depend on the label distribution, making it uninformative as soon as Θ is so much expressive that
it can fit random labels. Networks that can fit random labels have already been found empirically
(Zhang et al., 2021), and it is open whether this stays true with a constraint on the path-norm.

Theorem 3.1 is based on a uniform convergence bound10 as any other bound also based on a control
of a Rademacher complexity. (Nagarajan & Kolter, 2019) empirically argue that even the tightest
uniform convergence bound holding with high probability must be loose on some synthetic datasets.
If this was confirmed theoretically, this would still allow uniform bounds to be tight when con-
sidering other datasets than the one in (Nagarajan & Kolter, 2019), such as real-world datasets, or
when the estimator considered in (Nagarajan & Kolter, 2019) is not in Θ (for instance because of
constraints on the slopes via the path-norm).

Finally, Theorem 3.1 can provide theoretical guarantees on the generalization error of the output of
a learning algorithm, but only a posteriori, after training. In order to have a priori guarantees, one
should have to derive a priori knowledge on the path-norm at the end of the learning algorithm.

Comparison to PAC-Bayes bounds Another interesting direction to understand generalization of
neural networks is the PAC-Bayes framework (Guedj, 2019; Alquier, 2021). Unfortunately, PAC-
Bayes bounds cannot be exactly computed on networks that are trained in a usual way. Indeed, these
bounds typically involve a KL-divergence, or something related, for which there is no closed form

10A uniform convergence bound on a model class F is a bound on EZ supf(Z)∈F generalization error f(Z).
This worst-case type of bound can lead to potential limitations when F is too expressive.
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except for very specific distributions (iid Gaussian/Cauchy weights...) that do not correspond to the
distributions of the weights after a usual training1112. We are aware of two research directions that
try to get over this issue. The first way is to change the learning algorithm by enforcing the weights
to be iid normally distributed, and then optimize the parameters of these normal distributions, see
for instance the pioneer work (Dziugaite & Roy, 2017). The merit of this new learning algorithm
is that it has explicitly been designed with the goal of having a small generalization error. Practical
performance are worse than with usual training, but this leads to networks with an associated non-
vacuous generalization bound. To the best of our knowledge, this is the only way to get a non-
vacuous bound13, and unfortunately, this does not apply to usual training. The second way to get
over the intractable evaluation of the KL-divergence is to 1) try to approximate the bound within
reasonable time, and 2) try to quantify the error made with the approximation (Pérez & Louis,
2020). Unfortunately, to the best of our knowledge, approximation is often based on a distribution
assumption of the weights that is not met in practice (e.g. iid Gaussian weights), approximation is
costly, and the error is unclear when applied to networks trained usually. For instance, the bound in
(Pérez & Louis, 2020, Section 5) 1) requires at least O(n2) operations to be evaluated, with n being
the number of training examples, thus being prohibitive for large n (Pérez & Louis, 2020, Section
7), and 2) it is unclear what error is being made when using a Gaussian process as an approximation
of the neural network learned by SGD.

11The randomness of the weights after training comes from the random initialization and the randomness in
the algorithm (e.g. random batch in SGD).

12For instance, independence is not empirically observed, see (Frankle et al., 2020, Section 5.2)
13Except, of course, for methods that are based on the evaluation of the performance on held-out data.
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