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Understanding the consequences of changes in climatic and biological drivers on tree carbon and water fluxes is essential in forestry. Using a metamodeling approach, sensitivity and uncertainty analyses were carried out for a tree-scale model (MAESPA) to isolate the effects of climate, morphological and physiological traits, and intertree competition on the absorption of photosynthetically active radiation (APAR), gross primary production (GPP), transpiration (TR), light use efficiency (LUE), and water use efficiency (WUE) in clonal Eucalyptus plantations. The metamodel predicting daily TR was validated using one year of sap flow measurements and showed close agreement with the measurements (mean percentage error = 11%, n = 2155). Simulations showed that APAR, GPP, and TR were very sensitive to the tree morphology and to a competition index representing its local environment. LUE and WUE were, in addition, very sensitive to the natural variability of the physiological leaf and root parameters. A maximum percentage error of 10% in these parameters leads to 18%, 17%, 16%, 9%, and 18% uncertainty for APAR, GPP, TR, LUE, and WUE, respectively. The uncertainties in TR were highest for the smallest trees. This study highlighted the need to take account of the spatial and temporal variability of tree traits and environmental conditions for simulations at the tree scale.

Introduction

The variability of single-tree growth within a forest is the result of a complex interaction between many different factors, from genetics, through competition between trees, to climatic conditions. The local variability in tree functioning has implications at the stand scale, and "perhaps the most fundamental question in forestry is why one tree grows faster than another" [START_REF] Binkley | Why one tree grows faster than another: patterns of light use and light use efficiency at the scale of individual trees and stands[END_REF]. The resources (light, water, and nutrients) available to individual trees will differ from tree to tree and vary with time as a result of competition with other plants and specific local conditions.

Process-based models (PBMs) are likely to become important tools in forestry as they are able to predict the response of trees to a range of conditions where empirical data are not available [START_REF] Landsberg | Modelling tree growth: concepts and review[END_REF]. Nonetheless, PBMs are sometimes regarded as too complex to be used in forest management, requiring too many parameters [START_REF] Bartelink | Modelling at the interface between scientific knowledge and management issues[END_REF]. Natural and planted forest ecosystems present very variable local environmental conditions and tree characteristics: species, size, total leaf area, spatial distribution of leaves, and many other traits. Some models simplify this local variability by assuming that the parameters and (or) the functions within the stand canopy are uniform [START_REF] Fontes | Models for supporting forest management in a changing environment[END_REF][START_REF] Hanson | Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data[END_REF][START_REF] Burkhart | Modeling forest trees and stands[END_REF] to obtain simpler PBMs that can be used for forest management (e.g., 3-PG model, [START_REF] Landsberg | A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning[END_REF]CABALA, Battaglia et al. 2004;G'Day, Comins and McMurtrie 1993;[START_REF] Marsden | Modifying the G'DAY process-based model to simulate the spatial variability of Eucalyptus plantation growth on deep tropical soils[END_REF] and with complexity that depends on the purpose and scale of the study [START_REF] Battaglia | Process-based forest productivity models and their application in forest management[END_REF][START_REF] Pretzsch | Models for forest ecosystem management: a European perspective[END_REF]. These simplified models are commonly used and have been shown to succeed in simulating light interception, gross primary production (GPP), ecosystem respiration, and evapotranspiration in many different types of forests [START_REF] Hanson | Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data[END_REF]). However, they fail to simulate the local variability of tree functioning, which is a key issue for predicting the growth of individual trees in nonuniform forests or to study the impact of forest management practices such as thinning (but see [START_REF] Makela | Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation[END_REF] and [START_REF] Battaglia | Processbased size-class distribution model of trees within forest plantations: a hierarchical modeling approach[END_REF] for examples of modeling approaches where simple rules are used to disaggregate the stand-level outputs between individual trees). There are some very detailed three-dimensional (3D), structural-functional models that simulate the transpiration, carbon budget, and growth of each tree (and even each leaf) in a stand [START_REF] Dauzat | Simulation of leaf transpiration and sap flow in virtual plants: model description and application to a coffee plantation in Costa Rica[END_REF][START_REF] Fernández | A functional-structural model for radiata pine (Pinus radiata) focusing on tree architecture and wood quality[END_REF][START_REF] Griffon | AMAPstudio: an editing and simulation software suite for plants architecture modelling[END_REF], but they are computationally intensive, making long-term simulations difficult.

The computational efficiency of 3D PBMs can be improved by representing individual tree crowns as simple shapes such as ellipsoids or cones (e.g., MAESTRA model, Medlyn 2004; MAE-SPA model, [START_REF] Duursma | MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO 2 ] × drought interactions[END_REF]. Such models, however, require a larger set of parameters than stand-scale PBMs, thus limiting their use in forestry. When input parameters are unknown, assumptions are often made to estimate their values. One standard approach is setting some tree-scale parameters to values that are the same for all trees or values that do not vary with time. Such simplifications are likely to bias stand-scale simulations and lead to considerable uncertainties at the tree scale, thus representing a major issue for modeling forests at the tree scale. A necessary step in any modeling study is, therefore, to estimate that part of the uncertainty (i.e., the possible error) of the model simulations arising either from a lack of knowledge of parameter values or from deliberate simplifications [START_REF] Smith | Uncertainty quantification: theory, implementation, and applications[END_REF]. Sensitivity and uncertainty analyses are accurate methods for identifying critical parameters that must be well described through time and (or) space. Only those parameters that vary significantly in space and (or) time and to which the model outputs are sensitive need to be taken into account in the model when simulating spatial and (or) temporal variability [START_REF] Le Maire | Modeling annual production and carbon fluxes of a large managed temperate forest using forest inventories, satellite data and field measurements[END_REF].

Previous sensitivity analyses of the tree-scale MAESTRA model generally investigated local sensitivity and did not take the natural variability of the parameters into account [START_REF] Bowden | Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods[END_REF] or were limited to a small number of physiological parameters (e.g., [START_REF] Bauerle | Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models[END_REF]. Some recent studies have shown the limitations of such local approaches in which the sensitivities of carbon and water fluxes to physiological parameters were strongly influenced by atmospheric CO 2 concentration or meteorological conditions such as light or temperature [START_REF] Bauerle | Carbon and water flux responses to physiology by environment interactions: a sensitivity analysis of variation in climate on photosynthetic and stomatal parameters[END_REF]. The soil water balance was introduced in the new version of the model (MAESPA), which affected many of the processes modeled, and the previous sensitivity analysis for MAESTRA must, therefore, be confirmed and extended by taking into account the variability of both tree traits and meteorological conditions. Furthermore, as far as we are aware, no uncertainty analysis of the tree-scale MAESPA model has yet been carried out. Such a study is, by definition, limited to the ecosystem in which the model is applied. This study focused on tropical Eucalyptus plantations because the MAESTRA and MAESPA models have been used extensively in these planted forests (see the bibliography at http://maespa.github.io/bibliography.html), probably owing to the economic importance of eucalypts in tropical regions. Eucalyptus plantations cover more than 20 million hectares around the world and are expanding rapidly in tropical areas [START_REF] Booth | Eucalypt plantations and climate change[END_REF].

The computational cost of complex PBMs is a serious constraint when carrying out global sensitivity analyses. A recent alternative approach is to build a metamodel (or surrogate model), which is a new computationally efficient model that gives almost the same results as the PBM but makes it easier to carry out sensitivity and uncertainty analyses [START_REF] Faivre | Exploration par construction de métamodèles[END_REF]. The metamodel approach has recently started to be used in forest modeling to develop faster modules for light interception [START_REF] Marie | Extending the use of ecological models without sacrificing details: a generic and parsimonious meta-modelling approach[END_REF], biomass prediction [START_REF] De-Miguel | Developing generalized, calibratable, mixed-effects meta-models for large-scale biomass prediction[END_REF], or land use changes [START_REF] Gilliams | AFFOREST sDSS: a metamodel based spatial decision support system for afforestation of agricultural land[END_REF][START_REF] Sieber | Sustainability impact assessment using integrated meta-modelling: simulating the reduction of direct support under the EU common agricultural policy (CAP)[END_REF]. In addition to facilitating sensitivity analysis, a metamodel of a tree-scale PBM could give simple modules of carbon and water fluxes that are easier to couple with a tree-scale allocation scheme for simulating individual-tree growth.

Wood production is highly dependent on GPP, which is the amount of carbon assimilated by the trees. The dependence of GPP on incident radiation is usually represented by two factors: the amount of PAR absorbed by the tree (APAR) and the light use efficiency (LUE), which indicates how much absorbed light energy is required to produce carbohydrates and, consequently, GPP. GPP also depends on the amount of water used (transpired) by the trees (TR) through water use efficiency (WUE), defined here as the slope of the GPP-TR relationship. This study set out (i) to explore the potential of simple metamodels as an easy means of predicting daily values for APAR, GPP, TR, LUE, and WUE at the tree scale, (ii) to use a metamodel approach to evaluate the sensitivity of the tree-scale MAESPA model outputs to the variability of intertree competition within a stand and to meteorological, physiological, and morphological drivers, and (iii) to estimate the uncertainty of the simulations of GPP, TR, LUE, and WUE at the tree scale resulting from the uncertainty in the input parameters.

Materials and methods

Study site and measurements

The site was a 90 ha Eucalyptus plantation located in southeastern Brazil (São Paulo State) at 22°58=04==S and 48°43=40==W, 750 m above sea level, and managed as part of the Eucflux project (http:// www.ipef.br/eucflux/en/). A highly productive E. grandis clone was planted in November 2009 at an average spacing of 3 m between rows and 2 m within each row (1666 trees•ha -1 ) using standard forestry practices for Brazilian commercial Eucalyptus plantations [START_REF] Gonçalves | Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations[END_REF]. Eucalyptus plantations in Brazil, and particularly in this region, are among the most productive forests in the world [START_REF] Nouvellon | Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil[END_REF]) and are generally harvested at 6 years of age. Four permanent plots of 84 trees were inventoried at ages 5, 6, 9, 12, 15, 18, 21, 25, 31, and 37 months to measure tree height (H) and diameter at breast height (DBH). Destructive sampling of 10 trees (taken from outside the permanent plots) at each date were carried out to determine the allometric relationship for tree leaf area (LA), crown diameter (D C ), and crown height (H C ), following the methodology described in detail in le Maire et al. (2013). Leaf inclination angles (LIA) were measured at 1, 2, and 3 years after planting using a clinometer. At each age, LIA was measured on 10 trees of different sizes (72 leaves per tree). Vertical leaf area density distribution was calculated using the leaf area in the bottom, medium, and upper third of the crown using destructive sampling. The horizontal leaf area distribution was measured as part of another experiment with the same Eucalyptus species [START_REF] Christina | Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations[END_REF]. Photosynthesis parameters used in the MAESPA model were measured for six trees (photosynthesis -internal leaf CO 2 concentra-tion (A-C i ) curves for estimating J MAX , V CMAX , R d , as defined in Table 1) or three trees (photosynthesis-irradiance (A-PAR) curves for estimating ␣ and , as defined in Table 1) of different heights, using a portable gas exchange system (LI-COR 6400, LI-COR Inc., Lincoln, Nebraska, USA). For each tree, these photosynthesis parameters were measured at different heights within the crown (bottom, middle, and upper parts of the crown) and for two horizontal positions within the crown (inner and outer parts of the crown). Water content reflectometers (CS616, Campbell Scientific, Shepshed, UK) were used to measure the soil water content every metre down to 10 m depth over the first 5 years after planting. Half-hourly meteorological data (Table 1) were collected at the top of an eddy-flux tower in the same stand as the four permanent plots, from January 2010 to December 2014.

MAESPA presentation

The MAESPA model [START_REF] Duursma | MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO 2 ] × drought interactions[END_REF]) coupled the soil water balance components of the SPA model [START_REF] Williams | Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties[END_REF] to the MAESTRA model [START_REF] Medlyn | A maestro retrospective[END_REF], with some major changes and additions. MAESTRA was a 3D single-tree and stand process-based model that calculated light interception and distribution within crowns and used a leaf physiology submodel to estimate photosynthesis and transpiration. The 3D model for calculating APAR was based on [START_REF] Norman | Radiative transfer in an array of canopies[END_REF] and is described in other studies [START_REF] Medlyn | Physiological basis of the light use efficiency model[END_REF]. The spatial position, crown dimension, and total leaf area of each tree of the stand were fixed as inputs in the model. APAR was calculated for specified "target" trees in the stand, taking into account the neighboring trees competing for light. The crown was discretized in a 3D grid with a given number of horizontal layers and a given number of points per layer. For each point in the grid, the leaf area was defined using normalized beta distributions. A single leaf inclination distribution was specified for all trees within the stand. At each grid point, after calculating the PAR absorption, photosynthesis and transpiration were calculated using a combined stomatal conductance -photosynthesis -transpiration model based on [START_REF] Farquhar | A biochemical model of photosynthetic CO 2 assimilation in leaves of C3 species[END_REF] for CO 2 assimilation and [START_REF] Tuzet | A coupled model of stomatal conductance, photosynthesis and transpiration[END_REF] for stomatal conductance. The APAR, GPP, and TR were calculated for each target tree at a half-hourly time step. The water balance submodel was derived largely from the SPA model [START_REF] Williams | Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties[END_REF]. The soil profile comprised various horizontally uniform soil layers with specific characteristics and root densities (no competition between trees). The water balance submodel was based on the water potential of the soil, roots, leaves, and air and on the hydraulic conductivities between these different compartments. Transpiration was calculated by combining two methods, the first based on the Penman-Monteith equation applied to small volumes of leaves and the second based on the equations computing the water flow from the soil to the leaves. The leaf water potential was estimated iteratively by matching these two calculations of the transpiration rate and was used to compute the stomatal conductance [START_REF] Tuzet | A coupled model of stomatal conductance, photosynthesis and transpiration[END_REF]. The water content in each soil layer was calculated from infiltration, drainage, root water uptake, and soil evaporation at the same time step as the aboveground processes (half-hourly). Except for the soil water content, there are no memory effects in the model.

Building first-level metamodels of MAESPA for treescale APAR, GPP, TR, LUE, and WUE

For the global sensitivity and uncertainty analyses, metamodels for APAR, GPP, TR, LUE, and WUE were set up as a first simplification of the computationally intensive MAESPA model. These metamodels were based on empirical formulae and simplified parameter sets. A flowchart of the method used to build these first-level metamodels is given in Fig. 1A.

Setting up 1500 virtual random stands

A large number of realistic virtual stands are required for calibrating the MAESPA metamodels. These must cover the widest possible range of virtual stands with trees of different morphologies and physiologies. Different meteorological conditions representative of the climate also need to be selected. Fifteen-hundred Eucalyptus stands of 576 trees (24 rows × 24 trees per row) were generated pseudo-randomly. It has been shown that a purely random sampling is not the most computationally cost-efficient method for calibrating metamodels or for uncertainty and sensitivity analyses [START_REF] Marino | A methodology for performing global uncertainty and sensitivity analysis in systems biology[END_REF]. Using stratified sampling is likely to provide more efficient coverage of the parameter space. Consequently, Latin hypercube sampling (LHS, [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] was used to provide an efficient distribution of parameter values with only 1500 scenarios. For each scenario, the average DBH within the stands and the morphological and physiological parameters at the stand scale were estimated. The ranges used in the LHS for the values of these parameters are shown in Table 1. Once the average DBH had been estimated, a realistic virtual stand was built with the DBH of each tree in the virtual stand being determined using a random normal distribution and a competition index (CI; [START_REF] Hegyi | A simulation model for managing jack-pine stands[END_REF][START_REF] Mailly | Predicting basal area increment in a spatially explicit, individual tree model: a test of competition measures with black spruce[END_REF]). The method is described in the section "Tree positions and DBH" of the Supplementary material. 2 The tree morphology (height, leaf area, etc.) was then calculated from the DBH using allometric relationships. Each virtual plantation was associated with half-hourly meteorological parameters for a given day, randomly selected from 5 years of data, to use the real variability of the meteorological parameters and the correlation that often occurs between them within a day.

MAESPA simulations

MAESPA simulations were performed in each virtual stand for one day. Simulations were performed on one target tree chosen at random from the central part of the stand (16 rows × 16 trees per row), discarding the external four rows of trees in each stand to avoid border effects. APAR, GPP, TR, LUE, and WUE for that tree were calculated at half-hourly time steps and cumulated over the day to give the daily total APAR, GPP, TR, LUE, and WUE for 1500 different trees in 1500 different virtual stands.

Polynomial first-level metamodels

The 1500 simulations performed with the MAESPA metamodel were used to build metamodels for APAR, GPP, TR, LUE, and WUE at a daily time step based on second-order polynomial regressions [START_REF] Barton | Metamodel-based simulation optimization[END_REF][START_REF] Faivre | Exploration par construction de métamodèles[END_REF]. Two types of pararmeter were used to calibrate the metamodels: (i) MAESPA input parameters such as the leaf area or photosynthetic capacity of the tree and (ii) simplified or aggregated MAESPA input parameters such as the half-hourly meteorological input parameters, which were aggregated into average daily conditions. The parameters describing all the neighboring trees were reduced to Hegyi's CI [START_REF] Hegyi | A simulation model for managing jack-pine stands[END_REF][START_REF] Mailly | Predicting basal area increment in a spatially explicit, individual tree model: a test of competition measures with black spruce[END_REF]; see Supplementary material 2 ). In total, there were 37 parameters (Table 1). For example, for GPP the polynomial equation was ( 1)

GPP(X) ϭ ␣ 0 ϩ ͚ jϭ1 K ͑␣ j X j ϩ ␤ j X j 2 ͒ ϩ ͚ jϭ1 K ͚ kϭjϩ1 K ␥ jk X j X k ϩ , ϳ N(0, 2 )
where X j (or X k ) are one of the 37 parameters and ␣ 0 , ␣ j , ␤ j , and ␥ jk are the regression coefficients. To limit the large number of possible two-way interactions between the 37 parameters, stepwise regression based on the Akaike information criterion (AIC) was used to remove nonsignificant interactions. Interactions were omitted if this did not significantly increase the AIC. For the particular case of APAR, the metamodel was built with only the parameter that had an influence on APAR in the model (competition index, morphological and meteorological parameters, as well as leaf transmittance and reflectance). The accuracy of the different first-level metamodels was evaluated through R-squared (R 2 ) and root mean square error (RMSE).

Global sensitivity analysis

The first-level metamodels were accurate (see Results) and could be used as substitutes for the MAESPA model for sensitivity analyses, considerably increasing the calculation speed. A global sensitivity analysis of the APAR, GPP, TR, LUE, and WUE metamodels was performed using the Sobol approach [START_REF] Sobol | Sensitivity analysis for nonlinear mathematical models[END_REF], which gives an estimate of the sensitivity based on the variance of the output. This time, 10 000 trees were randomly sampled from 10 000 different virtual stands built using the method described above (see section 1.3.1 and Supplementary material 2 ). Taking the example of GPP, the main sensitivity index (S i ) of the ith parameter (X i ) for GPP was calculated as follows:

(2)

S i ϭ Var(E(GPP|X i )) Var(GPP)
where the numerator is the variance of the expected GPP knowing the value of the parameter (X i ) and the denominator is the variance of GPP. This is the contribution of X i to the GPP variance and represents the effect of varying X i alone. A total sensitivity index (ST i ) for each parameter was also calculated. ST i was the sum of the main sensitivity index for parameter i and the sensitivity of the parameter i in interaction with all the other parameters, expressed as

(3) ST i ϭ 1 Ϫ Var(E(GPP|X Ϫi )) Var(GPP)
where the numerator is the effect of varying all parameters except X i . Consequently, the sensitivity of the interaction of parameter i with all the other parameters (Int i ) was calculated as the difference between ST i and S i . Sobol sensitivity indices for individual parameters were calculated with R.4.0 (package "sensitivity", function sobol2007 or sobol; R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org).

Local uncertainty analysis

Local uncertainty analysis for one particular tree

A local uncertainty analysis of the first-level metamodels for APAR, GPP, TR, LUE, and WUE was performed, for illustrative purposes, on one tree chosen from the tree database used in the global sensitivity analysis. The aim of the local uncertainty analysis was an estimation of the output error due to measurements uncertainty and was therefore performed on little variations. It was possible that the values of the morphological, physiological, and root parameters of this particular tree might be over-or under-estimated, leading to uncertainties on the model outputs. Note that the CI parameter of the model could also be over-or under-estimated as a result of errors in the neighboring tree sizes and positions. Account was not taken of possible errors in meteorological variables in this analysis because they are difficult to quantify and probably much smaller than the uncertainties on other parameters.

The uncertainty was expressed as the mean absolute percentage error for maximum error values from 0% to 10%, with a 0.5 percentage point step to test the linearity of the relationship between model uncertainty and error in parameter values. For example, for a maximum error in the parameters of ±5%, the value of each parameter varied in a uniform probability distribution from -5% Fig. 1. Flowchart of (A) the method used to build the MAESPA metamodels and (B) their use in the global sensitivity and uncertainty analysis. Separate first-level metamodels were built for tree-absorbed photosynthetically active radiation (APAR), gross primary production (GPP), transpiration (TR), light use efficiency (LUE), and water use efficiency (WUE). Some of the parameters used by the metamodels were simplified. For example, the daily average temperature was used in the metamodels, whereas the hourly temperature was required in the MAESPA model. The second-level metamodel was obtained by removing the least sensitive parameters.

to +5% around its initial value (the error could be zero). Fivethousand simulations of the models were run with 5000 scenarios using LHS of the parameters between these 5% limits. The APAR, GPP, TR, LUE, or WUE outputs were then compared with the simulations of the tree with all parameters set to their initial values (zero error). For a single tree i and a 5% maximum error, the mean absolute percentage error (MAPE treei,5% ) was calculated as follows (example for GPP):

(4) MAPE GPP,treei,5% ϭ 1 5000 ͚ jϭ1 5000 |GPP error5%,j Ϫ GPP ini | GPP ini
where GPP ini is the GPP simulation with the original set of parameter (no error) and GPP error5%,j is the GPP for the jth scenario with maximum variations from -5% to +5%.

Generalization of the uncertainty analysis to trees of all ages

Because the uncertainty in APAR, GPP, TR, LUE, and WUE may depend on the set of initial values of parameters selected, the uncertainty analysis for a single tree was repeated for eight trees with different DBHs and then for all 10 000 trees in the global sensitivity dataset, which covers trees from 6 months old to 3 years old. The median, 10th, and 90th percentiles of the uncertainty are shown as a function of the maximum error in the parameters and as a function of DBH in Fig. 4.

Second-level metamodel for TR and comparison with measurements

After the global sensitivity analysis, a second-level metamodel for TR was built (Fig. 1B) by pruning the same parameter set as used in the first-level metamodel. The aim was to include the least possible number of parameters to facilitate the presentation and the use of the metamodel without adversely affecting the general performance. This metamodel was obtained by removing parameters that had a Sobol index less than 0.02 in the first-level metamodel. Predictions from the second-level metamodel for TR were compared with daily-averaged sap flow measured for individual trees over one year in another E. grandis plantation. This second site was located 15 km from the Eucflux study site. The structure of this second plantation was comparable with the Eucflux site in terms of tree density and tree age [START_REF] Christina | Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations[END_REF]. Sap flow was measured for 10 trees representing the whole range of DBH from January to December 2012. Every tree was equipped with a sensor protected from external temperature variations and water intrusion by a reflective foil. The sensor output voltage was recorded every 30 s, and the average was stored every 30 min (CR1000 dataloggers and AM16/32 multiplexers, Campbell Scientific Inc., Logan, Utah, USA). The sap flow density was calculated using a calibration equation taking into account the thermal dissipation of the sensors for E. grandis trees (Delgado-Rojas et al. 2010). The mean percentage errors between the model predictions and the measurements were calculated for daily, weekly, monthly, and annual time scales. For example, the daily mean percentage error for tree transpiration (MPE TR,Day ) was calculated as (5) MPE TR,Day ϭ 1

N ͚ iϭ1 N TR DaySim,i Ϫ TR DayMeas,i TR DayMeas,i
where N is the number of trees, TR DaySim,i is the daily simulated transpiration of tree i and TR DayMeas,i is the daily measured transpiration of tree i.

In addition, the measurements were compared with the MAE-SPA model predictions, which had been precisely parameterized for this study site in a previous study [START_REF] Christina | Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations[END_REF].

Results

Global sensitivity analysis of APAR, GPP, TR, LUE, and WUE

The first-level metamodels for APAR, GPP, TR, LUE, and WUE reproduced MAESPA predictions accurately (Fig. 2). The best fits for metamodels were found for APAR (R 2 = 0.92, RMSE = 12.6 MJ•day -1 •tree -1 ) and GPP (R 2 = 0.91, RMSE = 18.1 gC•day -1 •tree -1 ), while the fit accuracy was lower for TR (R 2 = 0.84, RMSE = 9.4 L H 2 O•day -1 •tree -1 ), LUE (R 2 = 0.87, RMSE = 0.20 gC•MJ -1 ), and WUE (R 2 = 0.77, RMSE = 1.13 gC•L H 2 O -1 ).

APAR, GPP, and TR were very sensitive to meteorological parameters (Fig. 3). In particular, APAR and GPP were sensitive to global radiation (RAD) and the beam fraction of radiation (F BEAM ). TR was also sensitive to soil water content at the beginning of the day (SWC), air temperature (T AIR ), and relative humidity (RH). Moreover, tree APAR, GPP, and TR were sensitive to morphological parameters such as tree leaf area (LA) and height (H), as well as the close environment of the tree (competition index, CI). GPP was also sensitive to the parameters controlling the photosynthetic capacity of the leaves (J MAX , V CMAX , and quantum yield ␣). TR was highly sensitive to physiological parameters controlling the tree (K P ) and leaf (g 0 , g 1 , and ⌿ W ) conductivities and, to a lesser extent, by root mass density (RMD).

Tree light use efficiency (LUE) was highly sensitive to meteorological parameters, with a much higher sensitivity to F BEAM and SWC than GPP. LUE was also highly sensitive to physiological parameters, in particular, the minimum stomatal conductance (g 0 ), J MAX , V CMAX , ␣, and . LUE was less sensitive to morphological (LA, LIA, LAD V , and LAD H ) and root (RMD and R ) parameters. LUE was not strongly affected by CI, indicating that GPP was sensitive to CI through light absorption only.

Tree water use efficiency (WUE) was highly sensitive to many meteorological and physiological parameters. Some meteorological parameters also affected TR (SWC, RAD, TAIR, F BEAM ), but unlike TR, WUE was also highly sensitive to relative air humidity (RH) and wind speed (Wind). WUE was highly sensitive to g 0 and K P , as well as to interactions with J MAX , V CMAX , R d , and Refl. WUE was also sensitive to root parameters such as RMD and R but insensitive to CI and morphological parameters.

Local uncertainty analysis of GPP, TR, LUE, and WUE

The local uncertainty of the MAESPA metamodel predictions resulting from errors in the input parameters varied between trees.

A few examples of uncertainties for a few trees are given in Table 2. The uncertainty, expressed in mean absolute percentage error (MAPE tree ), depended on the initial values of the tree parameters. These examples show that the output uncertainty was strongly dependent on the tree being simulated. The variability in the uncertainties in the predicted values of GPP, TR, LUE, and WUE for 10 000 different trees depended on the output and the error in the parameters (Fig. 4A). With a maximum error in the parameters of 10%, the median MAPE tree was 18%, 17%, 16%, 8%, and 18% for APAR, GPP, TR, LUE, and WUE, respectively, with uncertainty values up to 40% for APAR, GPP, TR, and WUE for certain trees (Fig. 4A). The uncertainty was linearly dependent on the error up to 10% maximum error.

The median uncertainty increased slightly with tree DBH for APAR, GPP, and LUE simulations. It was independent of tree size for WUE (Fig. 4B). For TR, the median uncertainty slightly decreased with tree DBH, and the variability of the uncertainty was much higher for trees with a DBH less than 8 cm.

Validation of the second-level metamodel for TR

After removing parameters with low sensitivity indices, the second-level metamodel used only 11 parameters. The sensitivity indices for these parameters are shown in Fig. 5A. Annual simulations of TR using this daily metamodel at the tree scale over one year showed good agreement with the measured sap flow (Fig. 5B). The tree transpiration time series was well represented, with a slight decrease during the dry season in the middle of the year. The accuracy of transpiration simulations depended on the simulation time scale (Fig. 5C). At the daily time scale, the average mean percentage error at tree scale (MPE) was 11%, with a strong variability depending on the tree simulated and the day. The MPE decreased as the time scale increased. The MPE for tree-scale TR simulations fell to 9% for weekly and monthly simulations and 4% for annual simulations. The MAESPA model showed the same accuracy at the daily time scale (MPE 11%) but was slightly better for weekly and monthly simulations (MPE 6%) and annual simulations (MPE 2%).

Discussion

Dealing with temporal and spatial parameter variability for tree-scale modeling

Tree-scale parameter variability

Unlike the traditional view of uniform Eucalyptus planted forests, this study highlights the need to take the local variability of the trees into account to give an accurate prediction of carbon and 3. Global sensitivity analysis of the first-level MAESPA metamodels for daily absorbed photosynthetically active radiation (APAR), gross primary production (GPP), transpiration (TR), light use efficiency (LUE), and water use efficiency (WUE). The sensitivity to the individual parameters was estimated using the Sobol index. The sensitivity to the interaction with all other parameters was calculated as the difference between the total sensitivity index (ST) and the main sensitivity index (S) (eqs. 2 and 3). Individual parameters are grouped into meteorological (Meteo.), morphological (Morpho.), physiological (Physio.), and root (Roots) parameters. R 2 for each metamodel is shown in the column heading; "+" and "-" indicate whether the relationship between the input parameter and the output value is positive or negative; 10 000 daily simulations were performed in the sensitivity analysis. (This figure is available in colour online.) Table 2. Uncertainty in daily tree absorbed photosynthetically active radiation (APAR, MJ•day -1 •tree -1 ), gross photosynthesis (GPP, g C•day -1 •tree -1 ), transpiration (TR, L H 2 O•day -1 •tree -1 ), light use efficiency (LUE, g C•MJ -1 ), and water use efficiency (WUE, g C•L H 2 O -1 ) for eight trees sampled with different diameters at breast height (DBH, as a proxy of tree age), for a ±5% or a ±10% maximum error on morphological, physiological, and root parameters. The single-tree output value is given for zero error and the uncertainty is expressed as mean absolute percentage error (MAPE tree,x% ).

Single-tree output value (±MAPE tree,x% , %) water fluxes at the tree scale in monoclonal plantations. This local variability results from both intertree competition for resources (light, water, and nutrients) and morphological tree traits.

Tree DBH (cm) APAR (MJ•day -1 •tree -1 ) GPP (g C•day -1 •tree -1 ) TR (L H 2 O•day -1 •tree -1 ) LUE (g C•MJ -1 ) WUE (g C•L H 2 O -1 ) x =
Competition between trees has commonly been used as an empirical indicator (e.g., for the effect of thinning, Forrester et al. 2013a) or as a predictor (e.g., Vanclay 2006) of tree growth in Eucalyptus planted forests. This study showed that a competition index can be used in metamodels to replace and (or) describe some processes of competition for light commonly used in PBMs. Carbon and water fluxes in this study were highly sensitive to Hegyi's CI [START_REF] Hegyi | A simulation model for managing jack-pine stands[END_REF]. This competition index reflects the effect of the size of the surrounding trees (based on their DBH) relative to the size of the target tree, as well as the effect of the distance from the target tree. Smaller trees of a stand are generally associated with a high competition index, as observed in our Eucalyptus plantations (described in eq. S3 in the Supplementary material 2 ). Many competition indices have been used in the literature. While distance-dependent indices are not always the best indicators of growth (e.g., [START_REF] Biging | Evaluation of competition indices in individual tree growth models[END_REF], they are generally useful proxies [START_REF] Contreras | Evaluating tree competition indices as predictors of basal area increment in western Montana forests[END_REF]. This dependence on the competition index emphasizes the importance of taking surrounding trees into account to predict carbon and water fluxes at the tree scale, even in relatively uniform clonal Eucalyptus plantations.

Another component of the local variability that appeared important for predicting carbon and water fluxes was the variability of the crown architecture. For example, leaf inclination angles (LIA) and leaf area density had a significant effect on light use efficiency. Plants adapted to low light environments tend to have more horizontal leaves than those adapted to sunlight (McMillen and McClendon 1979;[START_REF] King | The functional significance of leaf angle in Eucalyptus[END_REF]. This behavior has also been observed in Eucalyptus plantations at the experimental site, where suppressed trees had more horizontal leaves than dominant trees (data not shown). Similar behavior was observed within the tree crown, where leaves at the bottom of the crown were more horizontal than upper leaves (le [START_REF] Le Maire | Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations[END_REF]. The same attention should be paid to parameters describing leaf distribution within the crown, which might vary between clones or sites [START_REF] Alcorn | Crown structure and vertical foliage distribution in 4-year-old plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana[END_REF].

While a simple indicator such as the competition index may be sufficient for predicting tree growth in empirical models or metamodels, it is important that certain morphological tree traits (in particular tree height and leaf area) and the distance between trees are accurately parameterized when simulating the carbon and water fluxes in complex tree-scale PBMs such as MAESPA. Other morphological tree traits do not require as much accuracy (e.g., crown height for predicting GPP in this study). Dimensions of trees within planted forests are generally estimated through allometric relationships [START_REF] O'brien | Diameter, height, crown, and age relationship in eight neotropical tree species[END_REF], which are often associated with high uncertainties [START_REF] Chave | Improved allometric models to estimate the aboveground biomass of tropical trees[END_REF]. Multiple allometric relationships calibrated for different ages and for different plots are needed for tree-scale PBMs. Some previous studies of light use with the MAESTRA or MAESPA model assumed a nominal position for trees within the stands [START_REF] Christina | Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations[END_REF][START_REF] Le Maire | Tree and stand light use efficiencies over a full rotation of single-and mixed-species Eucalyptus grandis and Acacia mangium plantations[END_REF], while others estimated the tree position using in situ measurements, aerial photography, or very high resolution satellite images [START_REF] Charbonnier | Competition for light in heterogeneous canopies: application of MAESTRA to a coffee (Coffea arabica L.) agroforestry system[END_REF]Forrester et al. 2013b;[START_REF] Gspaltl | Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes[END_REF]. The assumption of a regular spacing could bias Fig. 4. Uncertainty analysis of the MAESPA metamodels for daily tree absorbed radiation (APAR), gross photosynthesis (GPP), transpiration (TR), light use efficiency (LUE), and water use efficiency (WUE). Uncertainty is expressed in mean absolute percentage error of the output for a single tree (MAPE tree ) as a function of the maximum error applied to model parameters (A) or as a function of the tree DBH (B). The black lines indicate the medians of MAPE tree calculated for 10 000 trees, and the 10th and 90th percentiles enclose the shaded area; 5000 daily simulations were performed for each of the 5000 trees in the uncertainty analysis.

the competition environment of the trees and, in consequence, the prediction of carbon and water fluxes at the tree scale.

Parameters set constant across the stand

This study highlights the importance of some parameters that are commonly held constant between trees in PBMs for accurate predictions of carbon and water fluxes at the tree scale.

Parameters controlling stomatal conductance and plant conductance had, as expected, a significant effect on TR, WUE, and LUE. While high sensitivity to g 1 (the slope between the GPP and TR), as shown by [START_REF] Bauerle | Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models[END_REF], was expected, the minimum stomatal conductance (g 0 ) had a greater effect on TR, LUE, and WUE. While g 0 has commonly been assumed to be close to zero with little effect on water fluxes [START_REF] Caird | Nighttime stomatal conductance and transpiration in C3 and C4 plants[END_REF][START_REF] Zeppel | Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies[END_REF], recent studies have shown that g 0 could be higher than previously expected in many ecosystems [START_REF] Ogle | Differential daytime and night-time stomatal behavior in plants from North American deserts[END_REF]) and that its value could change seasonally [START_REF] Barnard | The implications of minimum stomatal conductance on modeling water flux in forest canopies[END_REF]. In a recent study using MAESTRA, it was shown that g 0 had a large effect on TR [START_REF] Bowden | Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods[END_REF]. Stomatal conductance is driven by g 0 or g 1 depending on the assimilation (A) conditions in the Ball-Berry type model of [START_REF] Tuzet | A coupled model of stomatal conductance, photosynthesis and transpiration[END_REF] 

(g s = g 0 + g 1 • A/C s • f(⌿ leaf )
, where C s is the CO 2 Fig. 5. Validation of the MAESPA second-level metamodel of tree transpiration (TR). (A) Sensitivity of the metamodel to parameters using the Sobol index, (B) time series of daily simulated tree transpiration and sap flow measurements from 1.5 to 2.5 years after planting, and (C) mean percentage error, with standard deviation, between simulated and measured tree TR depending on the time scale. The lines in B show the average of 10 trees, and the grey areas are the standard deviations. The TR simulations of the original MAESPA models [START_REF] Christina | Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations[END_REF] were also compared with measurements (C). (This figure is available in colour online.) concentration at the stomata surface and f(⌿ leaf ) is a function of the leaf water potential). [START_REF] Bauerle | Carbon and water flux responses to physiology by environment interactions: a sensitivity analysis of variation in climate on photosynthetic and stomatal parameters[END_REF] showed that the importance of g 0 depended on the meteorological conditions. For instance, TR was more sensitive to g 0 in low light (e.g., in canopies with a high LAI) than in high light conditions. A lower sensitivity to g 1 and a higher sensitivity to g 0 have also been observed for red maple, which has a higher LAI [START_REF] Bauerle | Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models[END_REF]. In these low photosynthesis situations, g s is mostly driven by g 0. The high sensitivity to g 0 in the Eucalyptus plantation in this study supports the conclusions of [START_REF] Barnard | The implications of minimum stomatal conductance on modeling water flux in forest canopies[END_REF], who stressed the necessity of measuring g 0 accurately. An estimate of g 0 using linear extrapolation from stomatal conductance model regression underestimated the minimum stomatal conductance by more than 50% compared with direct measurements.

This study showed that the photosynthetic parameters (within the range of values measured at the site) had little effect on TR. Photosynthetic parameters may affect g s , as assimilation is one of the parameters used to calculate g s in the Ball-Berry model of stomatal conductance. Nevertheless, for conditions of low assimilation (A) (e.g., when the irradiance is low) or low f(⌿ leaf ) (when leaf water potential is low), g 0 dominates the g s calculation. GPP, LUE, and, to a lesser extent, WUE were, however, highly sensitive to J MAX , V CMAX , and quantum yield (␣). [START_REF] Bauerle | Carbon and water flux responses to physiology by environment interactions: a sensitivity analysis of variation in climate on photosynthetic and stomatal parameters[END_REF] underlined that, in the Farquhar model, the sensitivity to photosynthetic parameters was dynamic in response to light and temperature changes owing to the transitory nature of light versus CO 2 limitations. In low light conditions, photochemical reactions (influenced by J MAX and ␣) will limit photosynthesis. For strong light conditions or under water stress (which decreases substomatal CO 2 concentrations as the stomata close), it is more likely that photosynthesis will be limited by the carboxylation capacity. The influence of ␣ seems rather more complex, but evidence suggests that ␣ could have a higher influence on photosynthesis than J MAX or V CMAX under low light conditions and high temperatures [START_REF] Bauerle | Carbon and water flux responses to physiology by environment interactions: a sensitivity analysis of variation in climate on photosynthetic and stomatal parameters[END_REF] .

The fine root parameters also affected the predictions at the tree scale even though they were constant across the stand. In the model, fine root biomass affects the water status of trees, affecting the leaf water potential and, consequently, f(⌿ leaf ), stomatal conductance, and WUE. Root parameters are very difficult to measure, and the use of typical values constant in time and space is generally assumed a priori. However, this study showed that fine roots have to be accurately measured to give reliable predictions of WUE. Moreover, although not having a great effect in the short term, long-term variations (as a result of tree growth) of root traits such as root distribution could result in large changes in carbon and water fluxes in Eucalyptus plantations.

Variability of meteorological parameters with time

The variability of meteorological parameters with time was a major factor driving APAR, GPP, TR, LUE, and WUE predictions at the tree scale. Meteorological parameters showed a high variability over the year owing to seasonal changes, as well as day-to-day variability.

Some of these parameters had the effects that were expected on carbon and water fluxes. This was the case, for example, for the effect of global radiation (RAD) on GPP and the effect of soil water content (SWC) on TR. The relative humidity (RH) had little effect on GPP and TR but a major effect on WUE. This is explained by the stomatal conductance, which scales linearly with photosynthesis (depending on the atmospheric CO 2 concentration at the leaf surface), and the slope between them is strongly dependent on the relative humidity.

The beam fraction (F BEAM ) strongly affected carbon and water fluxes by decreasing LUE and WUE. This is recognized behavior in natural and planted forests. In boreal, temperate, and tropical forests, [START_REF] Alton | The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes[END_REF] showed that LUE increased from 6% to 33% when incoming global radiation was dominated by diffuse light, and a similar trend was reported by [START_REF] Zhou | Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China[END_REF] for temperate, subtropical, and tropical forests in China. This is partly explained by the fact that the diffuse light tends to cause less saturation of photosynthesis in individual leaves in the canopy [START_REF] Gu | Advantages of diffuse radiation for terrestrial ecosystem productivity[END_REF][START_REF] Charbonnier | Competition for light in heterogeneous canopies: application of MAESTRA to a coffee (Coffea arabica L.) agroforestry system[END_REF]. F BEAM affected GPP in this study, but this effect was limited as, even though a lower F BEAM tend to increase LUE, it is generally associated with a decrease in global radiation (RAD). The beam fraction of incoming light is often estimated using the approximation of [START_REF] Spitters | Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation[END_REF] based on total incident global radiation (Forrester et al. 2013b;[START_REF] Le Maire | Tree and stand light use efficiencies over a full rotation of single-and mixed-species Eucalyptus grandis and Acacia mangium plantations[END_REF][START_REF] Forrester | Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient[END_REF][START_REF] Christina | Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations[END_REF]. The high sensitivity of the model to this parameter alone suggests that studies dealing with LUE should measure F BEAM to high precision (e.g., [START_REF] Charbonnier | Competition for light in heterogeneous canopies: application of MAESTRA to a coffee (Coffea arabica L.) agroforestry system[END_REF]) rather than approximate it.

The use of metamodels in forestry

This study developed a metamodeling approach for carrying out sensitivity analyses of complex, computationally intensive PBMs for trees. While such an approach has already been used with success in engineering disciplines and for energy analyses [START_REF] Marrel | Calculations of Sobol indices for the Gaussian process metamodel[END_REF][START_REF] Tian | A review of sensitivity analysis methods in building energy analysis[END_REF], it is not common in PBMs field of research, especially for sensitivity analysis purposes. In engineering studies, the commonly used metamodels for sensitivity analysis use regression splines, smoothing operators, or Gaussian processes [START_REF] Tian | A review of sensitivity analysis methods in building energy analysis[END_REF]. This study showed that polynomial metamodels could be used as surrogates for complex tree-scale PBMs for evaluating the sensitivity of carbon and water fluxes, as well as the uncertainties.

One major objective of metamodeling is to obtain simple and parsimonious modules compared with the original PBMs. The second-level metamodel presented in this study gave accurate predictions of carbon and water fluxes at the tree scale using far fewer parameters than the original MAESPA model, while keeping the interactions between them. For example, a complete parameterization of MAESPA would require ϳ200 parameters to fully parameterize 24 trees, but the simple second-level metamodel for TR required only 11 parameters because shading trees are summarized by the competition index. In the current study, second-level metamodels for APAR, GPP, LUE, and WUE were also created but were not presented in this article due to the unavailability of a proper validation dataset. Similarly to our second-level metamodel, simple metamodels are generally built after removing parameters with low sensitivity and by using aggregated parameters (e.g., [START_REF] Lafond | Reconciling biodiversity conservation and timber production in mixed uneven-aged mountain forests: identification of ecological intensification pathways[END_REF]. The difference between our approach and the one of [START_REF] Lafond | Reconciling biodiversity conservation and timber production in mixed uneven-aged mountain forests: identification of ecological intensification pathways[END_REF] is that they performed the sensitivity analysis on the original model and built a metamodel using the selected inputs, while we have built our first metamodel using almost all inputs of the original model and simplified it afterwards.

Metamodels are also often used as powerful tools to obtain surrogate models much faster than the original models. As an example, [START_REF] Marie | Extending the use of ecological models without sacrificing details: a generic and parsimonious meta-modelling approach[END_REF] built a metamodel of the light interception module of a forest PBM (no TG) 62 times faster than the original model. However, the use of metamodels is not limited to speeding up a model; it could also be used for model coupling. For example, a metamodel for tree light interception could be coupled with tree-scale PBMs, which simulate growth of individual, rather than computing light interception at the canopy scale (e.g., GOTILWA+ model, [START_REF] Keenan | Forest eco-physiological models and carbon sequestration[END_REF]. Similarly, simple metamodels for tree light use efficiency could be coupled with tree-scale PBMs of tree growth by using the light use efficiency as an input (e.g., PICUS model, [START_REF] Seidl | Evaluating the accuracy and generality of a hybrid patch model[END_REF]. This approach of combining models and metamodels has already been applied at the stand scale. For example, [START_REF] Härkönen | Estimating annual GPP, NPP and stem growth in Finland using summary models[END_REF] and [START_REF] Härkönen | Estimating forest carbon fluxes for large regions based on process-based modelling, NFI data and Landsat satellite images[END_REF] used a summary model of light use efficiency to estimate whole canopy GPP as a function of climatic conditions in various pine and spruce forests in Finland. Nevertheless, metamodels are usually only applicable to the species and parameter space for which they were calibrated. More general metamodels could be developed by increasing the parameter space, but their accuracy would be more difficult to assess as they must be tested in many different types of forests and under many different climatic conditions.

Conclusion

Using metamodels for sensitivity analyses showed that carbon and water fluxes at the tree scale in Eucalyptus plantations are controlled by key sets of parameters that were different for APAR, GPP, TR, LUE, and WUE. Uncertainty in the measurements of morphological, physiological, and fine root parameters could cause a significant uncertainty in APAR, GPP, TR, LUE, and WUE. This study showed that the natural variability of both tree traits and meteorological conditions must be taken into account in global sensitivity analyses. Moreover, metamodeling was shown to be a powerful method for future process-based modeling studies for forests, reducing the degree of complexity of the original model without significant loss of precision.

Fig. 2 .

 2 Fig. 2. Comparison of the MAESPA and the first-level metamodel simulations for (A) daily absorbed photosynthetically active radiation (APAR), (B) gross primary production (GPP), (C) transpiration (TR), (D) light use efficiency (LUE), and (E) water use efficiency (WUE). The kernel density estimations of simulations are shown by shading (blue in online version). The R 2 and RMSE are presented for each metamodel (n = 1500). (This figure is available in colour online.)

  

  

  

  

Table 1 .

 1 List of parameters used for constructing the MAESPA metamodels with their symbols and definitions, as well as the range of values and references.

	Parameter Description and units

Dis

Root distribution using the beta parameter of

[START_REF] Jackson | A global analysis of root distributions for terrestrial biomes[END_REF] 

0.94 to 0.99 This study;

Christina et al. 2011 R 

Average residual SWC (m 3 •m -3 ) 0.08 to 0.18

[START_REF] Marsden | Modifying the G'DAY process-based model to simulate the spatial variability of Eucalyptus plantation growth on deep tropical soils[END_REF][START_REF] Christina | Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations[END_REF] this study 
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