
HAL Id: hal-04225130
https://hal.science/hal-04225130v1

Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Porting Coq Scripts to the Mathematical Components
Library Version 2

Reynald Affeldt, Yves Bertot, Cyril Cohen, Pierre Roux, Kazuhiko Sakaguchi,
Enrico Tassi

To cite this version:
Reynald Affeldt, Yves Bertot, Cyril Cohen, Pierre Roux, Kazuhiko Sakaguchi, et al.. Porting Coq
Scripts to the Mathematical Components Library Version 2. Inria Sophia Antipolis - Méditerranée,
Université Côte d’Azur; National Institute of Advanced Industrial Science and Technology (AIST),
Japan; ONERA / DTIS, Université de Toulouse, France. 2023, pp.1-12. �hal-04225130�

https://hal.science/hal-04225130v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Porting Coq Scripts to

the Mathematical Components Library Version 2

Reynald Affeldt2, Yves Bertot1,4, Cyril Cohen1,4, Pierre Roux3, Kazuhiko Sakaguchi1, and
Enrico Tassi1,4

1Inria, France
2National Institute of Advanced Industrial Science and Technology (AIST), Japan

3ONERA / DTIS, Université de Toulouse, France
4Université Côte d’Azur, France

Abstract

The Mathematical Components library (hereafter, MathComp) [8] provides, among others, a number
of mathematical structures organized as hierarchies. Hierarchy Builder (hereafter, HB) is an extension
of the Coq proof assistant to ease the development of hierarchies of structures [4]. MathComp 2 [9] is
the result of the port of MathComp to HB [1].

This document is a technical report whose goal is to explain how to port MathComp developments
to MathComp 2. It has been written by the participants of the MathComp Documentation Sprint that
happened from [2023-05-03] to [2023-05-10].

Contents

1 Target Audience of this Document 1

2 Quick Reminder about the HB Vocabulary 2

3 Tools to Port MathComp Applications 3
3.1 Documentation . 3
3.2 HB Commands Useful to Explore an Existing Hierarchy . 3

3.2.1 Information about Structures with HB.about . 4
3.2.2 Information about Constructors with HB.howto and HB.about 4
3.2.3 Information about Instances with HB.about . 5

4 Porting a MathComp Development to MathComp 2 5
4.1 Import the HB Library . 6
4.2 Instantiation of Structures with MathComp 2 . 6
4.3 Finitely Iterated Operators . 8
4.4 Other Compilation Errors . 10

5 Conclusion 11

1 Target Audience of this Document

Based on our experience porting several developments to MathComp 2, we can distinguish three categories
of users:

1

1. MathComp users who have not been using the Canonical command should not see much difference
compared to the past version upgrades of MathComp. Some identifiers that are now useless have been
removed but this is documented in the changelog. For example bool_eqType might need to be replaced
by bool : eqType or just bool. Also, the behavior of some rewritings might have changed, requiring
explicit patterns. Typically, it might happen that rewriting with associativity lemmas requires the
user to indicate whether it is supposed to happen on the left or the right-hand side of an equivalence
relation, so that rewrite addrA might need to be rewritten rewrite [in LHS]addrA for example. See
Sect. 4.4 for a concrete example. For such users, reading this tutorial through the end might not be
necessary.

2. The target readers are primarily MathComp users who have been instantiating structures using the
Canonical command.

3. As for the few users who have been developing their own hierarchies of structures, this tutorial might
be of little help and they rather need to refer to:

� the original paper for an extensive introduction to HB commands [4],

� the HB development for documentation and examples [7] (start with the README),

� various papers for more applications [1] [2, Sect. 3] [3, Sect. 4],

� already ported developments such as odd-order, multinomials, etc.

For the sake of concreteness, we illustrate the port of CompDecModal [5] in Sect. 4. Before that we
review the basics of HB in Sect. 2 and review the documentation tools available for porting in Sect. 3.

2 Quick Reminder about the HB Vocabulary

The goal of this section is to briefly explain the three main commands introduced by HB: HB.mixin,
HB.structure, and HB.instance. The knowledgeable reader can safely skip this section.

Let us consider the most basic scenario in generic terms. Here is the pattern to declare a structure Struct

that sits at the bottom of a hierarchy. The interface of the structure goes into a mixin:

HB.mixin Record isStruct params carrier := {

... properties about the carrier ...

}

The structure itself is declared like a sigma-type:

#[short(type=structType)]

HB.structure Definition Struct := {carrier of isStruct carrier}

Note that HB is using Coq attributes to declare the type corresponding to a structure.
Here is the pattern to declare a new structure NewStruct that extends the existing structure Struct; note

the of syntax.

HB.mixin Record NewStruct_from_Struct params carrier

of Struct params carrier := {

... more properties about the carrier ...

}

In the case of the extended structure, the sigma-type makes appear the dependency to the parent struc-
ture; note the & syntax.

#[short(type=newStructType)]

HB.structure NewStruct params :=

{carrier of NewStruct_from_Struct parames carrier

& Struct params carrier}.

2

https://github.com/math-comp/hierarchy-builder#readme
https://github.com/math-comp/odd-order
https://github.com/math-comp/multinomials

This process results in the creation of the types structType and newStructType such that elements of the
latter are also understood to be elements of the former.

Finally, the declaration of a mixin Struct is accompanied by the creation of a constructor Struct.Build

which is used to instantiate a structure using the command:

HB.instance Definition _ := Struct.Build params.

The command HB.instance should trigger the printing of several lines of information output such as

module_type__canonical__struct_Struct is defined

The absence of this output often indicates failure of the HB.instance command.

3 Tools to Port MathComp Applications

3.1 Documentation

The following pieces of documentation are useful during the process of porting a MathComp application to
MathComp 2:

� The changelog is the primary source of information. See CHANGELOG.md [9].

� Additionally, structures are documented in the headers of Coq scripts according to the following
format:

(***)

(* Centered Title *)

(* *)

(* Some introductory text: what is this file about, instructions to use this *)

(* file, etc. *)

(* *)

(* Reference: bib entry if any *)

(* *)

(* * Section Name *)

(* definition == prose explanation of the definition and its parameters *)

(* notation == prose explanation, scope information should appear nearby *)

(* structType == name of structures should make clear the corresponding *)

(* HB structure with the following sentence: *)

(* "The HB class is Xyz." *)

(* shortcut := a shortcut can be explained with (pseudo-)code instead of *)

(* prose *)

(* *)

(* Acknowledgments: people *)

(***)

See for example the eqType structure defined in the file ssreflect/eqtype.v. See this wiki entry for
more information about the documentation of scripts.

� Optionally, the user can double-check the naming of identifiers and lemmas with the naming conventions
explained in CONTRIBUTING.md [9].

3.2 HB Commands Useful to Explore an Existing Hierarchy

Besides the changelog and the headers of Coq scripts, the user can use HB commands to explore a hierarchy
of mathematical structures.

3

https://github.com/math-comp/math-comp/wiki/How-to-document

3.2.1 Information about Structures with HB.about

Basic information about structures can be obtained via the command HB.about as in:

> HB.about eqType.

HB: eqType is a structure (from "./ssreflect/eqtype.v", line 137)

HB: eqType characterizing operations and axioms are:

- eqP

- eq_op

HB: eqtype.Equality is a factory for the following mixins:

- hasDecEq (* new, not from inheritance *)

HB: eqtype.Equality inherits from:

HB: eqtype.Equality is inherited by:

- SubEquality

- choice.Choice

...

(The output message refers to a factory: this is a generalization of mixin.)

Graph of an HB Hierarchy It is also possible to explore a HB hierarchy using the command HB.graph.
Inside a Coq file:

HB.graph "hierarchy.dot".

From a terminal:

tred hierarchy.dot | dot -Tpng > hierarchy.png

For example, Fig. 1 displays the immediate vicinity of eqType.

Figure 1: The vicinity of the structure eqType in MathComp

3.2.2 Information about Constructors with HB.howto and HB.about

To discover constructors that build a structure, one can use the command HB.howto. For instance

> HB.howto eqType.

HB: solutions (use 'HB.about F.Build' to see the arguments of each factory F):

- hasDecEq

tells us that eqType instances can be built with hasDecEq.Build. (Note that by default HB.howto may not
return all the available factories; it might be necessary to increase the depth search using a natural number
as in HB.howto xyzType 5.)

To learn which parameters a xyz.Build constructor is expecting, one can use the HB.about command:

4

> HB.about hasDecEq.Build.

HB: hasDecEq.Build is a factory constructor

(from "./ssreflect/eqtype.v", line 135)

HB: hasDecEq.Build requires its subject to be already equipped with:

HB: hasDecEq.Build provides the following mixins:

- hasDecEq

HB: arguments: hasDecEq.Build T [eq_op] eqP

- T : Type

- eq_op : rel T

- eqP : Equality.axiom eq_op

The message indicates that hasDecEq.Build is expecting a type T, a predicate eq_op : rel T (implicit argu-
ment, as indicated by the square brackets) and a proof of Equality.axiom eq_op. One can thus instantiate
an eqType on some type T with]

HB.instance Definition _ := hasDecEq.Build T proof_of_Equality_axiom.

or

HB.instance Definition _ := @hasDecEq.Build T eq_op proof_of_Equality_axiom.

which should output a few lines among which (recall that the absence of this output often indicate an
instantiation problem)1:

module_T__canonical__eqtype_Equality is defined

Discover Aliases and Feather Factories In addition to the structures and constructors listed by
HB.about, the library defines some aliases (a.k.a. feather factories). These aliases are documented in the
header comments. For instance, an eqType instance on some type T can be derived from some T' already
equipped with an eqType structure, given a function f : T -> T' and a proof injf : injective f:

HB.instance Definition _ := Equality.copy T (inj_type injf).

See eqType.v for inj_type.

3.2.3 Information about Instances with HB.about

Instances a type is already equipped with can be listed with HB.about, for instance:

> HB.about bool.

HB: bool is canonically equipped with structures:

- Order.BDistrLattice

Order.BLattice

Order.BPOrder

(from "./ssreflect/order.v", line 6064)

...

lists all the structures bool is already equipped with.

4 Porting a MathComp Development to MathComp 2

The basic strategy to port an existing MathComp development to MathComp 2 is to (1) install Math-
Comp 2, (2) compile the existing Coq scripts, and (3) fix the errors one after the other. For the sake of
concreteness, we explain the port of CompDecModal [5]. This is a development with a moderate use of

1We have also observed at the time of this writing that the output of the HB.instance command may not be visible by
default with VSCoq.

5

MathComp whose port involves fixing the instantiation of basic structures that most developments using
MathComp are likely to use.

In the following, the offending commands appear in a gray areas

command incompatible with MathComp 2

and their fixes are singly famed:

MathComp 2 fix for the command above

4.1 Import the HB Library

First thing first, any Coq file using HB must start with:

From HB Require Import structures.

4.2 Instantiation of Structures with MathComp 2

From the viewpoint of the MathComp user, the main change is the way mathematical structures are now
instantiated. Most Canonical (or Canonical Structure) commands are replaced by HB.instance (see Sect. 2)
and there are small changes to MathComp notations such [subType ...], etc.

Regarding CompDecModal, the first offending set of commands is the following (file fset.v):

Section FinSets.

Variable T : choiceType.

...

Canonical Structure fset_subType := [subType for elements by fset_type_rect].

Canonical Structure fset_eqType := EqType _ [eqMixin of fset_type by <:].

Canonical Structure fset_predType := PredType (fun (X : fset_type) x => nosimpl x \in elements X).

Canonical Structure fset_choiceType := Eval hnf in ChoiceType _ [choiceMixin of fset_type by <:].

End FinSets.

Canonical Structure fset_countType (T : countType) :=

Eval hnf in CountType _ [countMixin of fset_type T by <:].

Canonical Structure fset_subCountType (T : countType) :=

Eval hnf in [subCountType of fset_type T].

Let us consider compilation errors in order:

> Canonical Structure fset_subType := [subType for elements by fset_type_rect].

Error: Syntax error: [reduce] expected after ':=' (in [def_body]).

This error is due to a change of notation that is documented in the changelog. Search for the string, say,
“[subType” in CHANGELOG.md:

- in `eqtype.v`

...

+ notation `[subType for v by rec]`, use `[isSub for v by rec]`

...

The fix is therefore the following:

> HB.instance Definition _ := [isSub for elements by fset_type_rect].

HB_unnamed_factory_3 is defined

fset_fset_type__canonical__eqtype_SubType is defined

6

Note that the instance need not be named and better not be since it is the job of HB to figure out instances
automatically. It is important to check that HB displays more than one message as a response to HB.instance,
otherwise this might indicate a failed instantiation.

Next compilation error:

> Canonical Structure fset_eqType := EqType _ [eqMixin of fset_type by <:].

Error: The reference EqType was not found in the current environment.

This error is primarily due to the remove of the EqType constructor [6, Sect. 2.1]. In fact, most xyzType

constructors from MathComp should not be necessary anymore. See the changelog. Similarly to the
[subType for _ by _] notation above, the [eqMixin of _ by <:] has changed:

- in `eqtype.v`

...

+ notation `[eqMixin of T by <:]`, use `[Equality of T by <:]`

...

The fix is therefore:

> HB.instance Definition _ := [Equality of fset_type by <:].

HB_unnamed_factory_8 is defined

eqtype_Equality__to__eqtype_hasDecEq is defined

HB_unnamed_mixin_10 is defined

fset_fset_type__canonical__eqtype_Equality is defined

fset_fset_type__canonical__eqtype_SubEquality is defined

The next two compilation errors are similarly due to the removal of choiceType and CountType, and to
the change of the notations [choiceMixin of _ by <:] and [countMixin of _ by <:]:

> Canonical Structure fset_choiceType := Eval hnf in ChoiceType _ [choiceMixin of fset_type by <:].

Error: The reference ChoiceType was not found in the current environment.

> Canonical Structure fset_countType (T : countType) :=

> Eval hnf in CountType _ [countMixin of fset_type T by <:].

Error: The reference CountType was not found in the current environment.

The fix can again be inferred from the changelog:

> HB.instance Definition _ := [Choice of fset_type by <:].

HB_unnamed_factory_11 is defined

choice_Choice__to__choice_hasChoice is defined

HB_unnamed_mixin_14 is defined

fset_fset_type__canonical__choice_Choice is defined

fset_fset_type__canonical__choice_SubChoice is defined

> HB.instance Definition _ (T : countType) := [Countable of fset_type T by <:].

T is declared

HB_unnamed_factory_30 is defined

choice_Countable__to__choice_hasChoice is defined

choice_Countable__to__eqtype_hasDecEq is defined

choice_Countable__to__choice_Choice_isCountable is defined

HB_unnamed_mixin_34 is defined

fset_fset_type__canonical__choice_Countable is defined

fset_fset_type__canonical__choice_SubCountable is defined

Note that, although HB does provide an #[hnf] attribute, it should not be necessary in general.
Finally, the last Canonical command causes a deprecation warning that needs to be addressed:

7

> Canonical Structure fset_subCountType (T : countType) :=

> Eval hnf in [subCountType of fset_type T].

Warning: Notation "[subCountType of _]" is deprecated since mathcomp 2.0.0.

Use SubCountable.clone instead.

[deprecated-notation,deprecated]

fset_subCountType is defined

In fact, going back one step, it can be observed by the output the HB.instance commands that the instanti-
ation of the Countable structure already triggered the instantiation of the SubCountable structure, rendering
the last Canonical command harmful. It therefore needs to be deleted.

To sum up, here follows the complete fix:

1 Section FinSets.

2 Variable T : choiceType.

3 ...

4 HB.instance Definition _ := [isSub for elements by fset_type_rect].

5 HB.instance Definition _ := [Equality of fset_type by <:].

6 Canonical Structure fset_predType := PredType (fun (X : fset_type) x => nosimpl x \in elements X).

7 HB.instance Definition _ := [Choice of fset_type by <:].

8 End FinSets.

9

10 HB.instance Definition _ (T : countType) := [Countable of fset_type T by <:].

In fact, we can go one step further. Instead of instantiating the Equality structure at line 5 and then the
Choice structure at line 7, one can start by instantiating the Choice structure and get the Equality structure
automatically, so that a shorter fix would be:

Section FinSets.

Variable T : choiceType.

...

HB.instance Definition _ := [isSub for elements by fset_type_rect].

HB.instance Definition _ := [Choice of fset_type by <:].

Canonical Structure fset_predType := PredType (fun (X : fset_type) x => nosimpl x \in elements X).

End FinSets.

HB.instance Definition _ (T : countType) := [Countable of fset_type T by <:].

This small example already illustrates the advantage of porting to MathComp 2.

4.3 Finitely Iterated Operators

The next series of compilation errors that occur when porting CompDecModal is about finitely iterated
operators, which are likely to be used by most MathComp developments:

Canonical Structure fsetU_law (T : choiceType) :=

Monoid.Law (@fsetUA T) (@fset0U T) (@fsetU0 T).

Canonical Structure fsetU_comlaw (T : choiceType) :=

Monoid.ComLaw (@fsetUC T).

The first compilation error indicates a change in the signature of a constructor:

> Canonical Structure fsetU_law (T : choiceType) :=

> Monoid.Law (@fsetUA T) (@fset0U T) (@fsetU0 T).

Error:

8

In environment

T : choiceType

The term "fsetUA (T:=T)" has type "forall X Y Z : {fset T}, X `|` (Y `|` Z) = X `|` Y `|` Z"

while it is expected to have type "Type".

We can use HB.about to discover the relevant structure (see Sect. 3.2.1):

> HB.about Monoid.Law.

HB: Monoid.Law.type is a structure (from "./ssreflect/bigop.v", line 415)

...

We can now use HB.howto to discover how to build this structure (see Sect. 3.2.2):

> HB.howto Monoid.Law.type

HB: solutions (use 'HB.about F.Build' to see the arguments of each factory F):

- Monoid.isLaw

- SemiGroup.isLaw; Monoid.isMonoidLaw

Finally, we can use HB.about to learn about the parameters of a constructot (see Sect. 3.2.2):

> HB.about Monoid.isLaw.Build

...

HB: arguments: Monoid.isLaw.Build T idm op opA op1m opm1

- T : Type

- idm : T

- op : T -> T -> T

- opA : associative op

- op1m : left_id idm op

- opm1 : right_id idm op

We have now enough information to fix the compilation error:

HB.instance Definition _ (T : choiceType) :=

Monoid.isLaw.Build {fset T} fset0 fsetU (@fsetUA T) (@fset0U T) (@fsetU0 T).

Note that we have made explicit the key (the operator fsetU) in the instantiation. Though not strictly
necessary, this is good practice to document it on this occasion.

Next compilation error:

> Canonical Structure fsetU_comlaw (T : choiceType) :=

> Monoid.ComLaw (@fsetUC T).

Error:

In environment

T : choiceType

The term "fsetUC (T:=T)" has type "forall X Y : {fset T}, X `|` Y = Y `|` X"

while it is expected to have type "Type".

This is similar to above: use HB.about to learn about Monoid.ComLaw and use HB.howto to inquire about its
construction.

> HB.howto Monoid.ComLaw.type.

HB: solutions (use 'HB.about F.Build' to see the arguments of each factory F):

- Monoid.isComLaw

- SemiGroup.isComLaw; Monoid.isMonoidLaw

- SemiGroup.isCommutativeLaw; Monoid.isLaw

- SemiGroup.isLaw; SemiGroup.isCommutativeLaw; Monoid.isMonoidLaw

9

Note that since the key fsetU has already been equipped with a Monoid.Law structure, we can add this key
as an additional parameter to HB.howto to restrict the search:

> HB.howto fsetU Monoid.ComLaw.type.

HB: solutions (use 'HB.about F.Build' to see the arguments of each factory F):

- SemiGroup.isCommutativeLaw

We can then check the parameters of SemiGroup.isCommutativeLaw.Build to come up with the following fix:

HB.instance Definition _ (T : choiceType) :=

SemiGroup.isCommutativeLaw.Build _ fsetU (@fsetUC T).

To sum up, we fix the compilation errors about finitely iterated operators using:

HB.instance Definition _ (T : choiceType) :=

SemiGroup.isCommutativeLaw.Build _ fsetU (@fsetUC T).

HB.instance Definition _ (T : choiceType) :=

Monoid.isLaw.Build {fset T} fset0 fsetU (@fsetUA T) (@fset0U T) (@fsetU0 T).

In fact, we could have proceeded with only one instantiation since we can get the Monoid.Law structure from
the instantiation of the Monoid.ComLaw structure, so that a better fix would be:

HB.instance Definition _ (T : choiceType) :=

Monoid.isComLaw.Build _ _ fsetU (@fsetUA T) (@fsetUC T) (@fset0U T).

4.4 Other Compilation Errors

Since other compilation errors are similar to the one already explained above, we go faster about them.

Instantiation of an Equality Structure Next failure in the file K/K_def.v:

Definition form_eqMixin := EqMixin (compareP eq_form_dec).

Canonical Structure form_eqType := Eval hnf in @EqType form form_eqMixin.

The failure is primarily caused by the removal of EqMixin. The changelog suggests to use the constructor
hasDecEq.Build whose parameters can be double-checked with HB.howto leading to the following fix:

HB.instance Definition _ := hasDecEq.Build form (compareP eq_form_dec).

Instantiation of a Countable Structure Next failure in the file K/K_def.v:

Definition form_countMixin := PcanCountMixin formChoice.pickleP.

Definition form_choiceMixin := CountChoiceMixin form_countMixin.

Canonical Structure form_ChoiceType := Eval hnf in ChoiceType form form_choiceMixin.

Canonical Structure form_CountType := Eval hnf in CountType form form_countMixin.

We learn that PcanCountMixin is deprecated and that CountChoiceMixin is no more. The changelog suggests
to use PCanIsCountable instead of PcanCountMixin. According to Locate, PCanIsCountable is located in the
file ssreflect/choice.v and it has the following type:

PCanIsCountable :

forall [T : countType] [sT : Type] [f : sT -> T] [f' : T -> option sT], pcancel f f' ->

isCountable.axioms_ sT

The fix in this case is therefore:

10

HB.instance Definition _ : isCountable form := PCanIsCountable formChoice.pickleP.

Note that we have added a type information to make the key (here, form) explicit as recommended when
performing instantiations. This fix is sufficient because it generates the Choice instance along with the
Countable instance.

More Instantiations of Equality Structures The next compilation errors in the files Kstar_def.v,
gen_def.v, and CTL_def.v are handled as already explained above.

Failing Rewriting The next compilation “error” is in the file CTL/demo.v. It is actually a tactic whose
execution has been substantially slowed down by the upgrade to MathComp 2:

move => [p' y]. rewrite /MRel /Mstate (negbTE (root_internal _)) [_ && _]/= orbF.

The offending rewrite is the one with orbF. It used to apply by default to the left-hand side of an <->

equivalence but now the user is required to indicate the rewrite location with a pattern to recover a reasonable
execution time:

move => [p' y]. rewrite /MRel /Mstate (negbTE (root_internal _)) [_ && _]/=.

rewrite [in X in X <-> _]orbF.

This kind of slow down is however rather exceptional.

There are a few more compilation errors but they are similar to the ones we explained so far.

5 Conclusion

This document illustrated the port of a typical MathComp development to MathComp 2. We reviewed
the available tools (documentation and HB tactics) and went through a number of concrete sample errors
and warnings that we explained and corrected.

The example of porting CompDecModal demonstrated that the use of HB improves the Coq scripts
in terms of readability and even allows for improvements. The complete fix can be found online: branch
(relevant commit), it required the edition of 10 files, 35 insertions, and 67 deletions, which arguably represents
a moderate amount of work.

The migration process to MathComp 2 will surely generate more questions that the community is ready
to answer via the math-comp streams on https://coq.zulipchat.com.

References

[1] R. Affeldt, X. Allamigeon, Y. Bertot, Q. Canu, C. Cohen, P. Roux, K. Sakaguchi, E. Tassi, L. Théry, and
A. Trunov. Porting the Mathematical Components library to Hierarchy Builder. In the Coq workshop
2021, Jul 2021.

[2] R. Affeldt and C. Cohen. Measure construction by extension in dependent type theory with application
to integration, 2022.

[3] R. Affeldt, C. Cohen, and A. Saito. Semantics of probabilistic programs using s-finite kernels in coq. In
12th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2023), January
16–17, 2023, Boston, Massachusetts, USA. ACM Press, Jan 2023.

11

https://github.com/affeldt-aist/comp-dec-modal/tree/tutorial_mathcomp2
https://github.com/affeldt-aist/comp-dec-modal/commit/39a892e93535800b8700b2db8e580b9d8694aab1
https://coq.zulipchat.com

[4] C. Cohen, K. Sakaguchi, and E. Tassi. Hierarchy Builder: Algebraic hierarchies made easy in Coq
with Elpi (system description). In 5th International Conference on Formal Structures for Computation
and Deduction (FSCD 2020), June 29–July 6, 2020, Paris, France (Virtual Conference), volume 167 of
LIPIcs, pages 34:1–34:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[5] C. Doczkal and J. Bard. Completeness and decidability of modal logic calculi. https://github.com/

coq-community/comp-dec-modal, 2023. Since 2017.

[6] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical structures. In 22nd In-
ternational Conference on Theorem Proving in Higher Order Logics (TPHOLs 2009), Munich, Germany,
August 17–20, 2009, volume 5674 of Lecture Notes in Computer Science, pages 327–342. Springer, 2009.

[7] Hierarchy-Builder. High level commands to declare a hierarchy based on packed classes. https://

github.com/math-comp/hierarchy-builder, 2023. Since 2020.

[8] A. Mahboubi and E. Tassi. Mathematical Components. Zenodo, Jan 2021.

[9] MathComp 2. Mathematical Components. https://github.com/math-comp/math-comp/tree/

hierarchy-builder, May 2023. Branch to prepare the forthcoming release of the Mathematical Com-
ponents library.

12

https://github.com/coq-community/comp-dec-modal
https://github.com/coq-community/comp-dec-modal
https://github.com/math-comp/hierarchy-builder
https://github.com/math-comp/hierarchy-builder
https://github.com/math-comp/math-comp/tree/hierarchy-builder
https://github.com/math-comp/math-comp/tree/hierarchy-builder

	Target Audience of this Document
	Quick Reminder about the HB Vocabulary
	Tools to Port MathComp Applications
	Documentation
	HB Commands Useful to Explore an Existing Hierarchy
	Information about Structures with ssrHB.about
	Information about Constructors with ssrHB.howto and ssrHB.about
	Information about Instances with ssrHB.about

	Porting a MathComp Development to MathComp 2
	Import the HB Library
	Instantiation of Structures with MathComp 2
	Finitely Iterated Operators
	Other Compilation Errors

	Conclusion

