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Abstract

The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly under-

stood and essentially relies on observational studies subject to various sorts of biases. In con-

trast, experimental models of infection constitute a powerful model to perform controlled

comparisons of the viral dynamics observed with VoC and better quantify how VoC escape

from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus

macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a

mathematical model that recapitulate the observed dynamics, and we found that the best model

describing the data assumed a rapid antigen-dependent stimulation of the immune response

leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC

except beta were associated with an escape from this immune response, and this effect was

particularly sensitive for delta and omicron variant (p<10−6 for both). Interestingly, delta variant

was associated with a 1.8-fold increased viral production rate (p = 0.046), while conversely omi-

cron variant was associated with a 14-fold reduction in viral production rate (p<10−6). During a

natural infection, our models predict that delta variant is associated with a higher peak viral RNA

than omicron variant (7.6 log10 copies/mL 95% CI 6.8–8 for delta; 5.6 log10 copies/mL 95% CI

4.8–6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4–

4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9–3.8 for omicron). These results provide a detailed

picture of the effects of VoC on total and infectious viral load and may help understand some dif-

ferences observed in the patterns of viral transmission of these viruses.

Author summary

SARS-CoV-2 has been characterized by the successive emergence of Variants of Concern

(VoC) that have caused large epidemic rebounds. However, as VoC emerged in very
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different contexts of pre-existing immunity, the comparison of their intrinsic effect of

viral dynamics and infectiousness remains poorly understood. Here we analysed data

from 78 non-human primates infected by different VoC (Beta, Delta, Gamma and Omi-

cron BA.1) and we used a mathematical model to quantity the impact of VoCs on viral

load and infectivity. Compared with the historical variant, Omicron and Delta variants

were associated with a longer and larger excretion of infectious particles, which was attrib-

uted in the model to an enhanced capability to escape the immune response. While Delta

variant was associated with a larger peak viral load than the historical variant, no such

effect was observed for Omicron variant. This suggests that the increased transmissibility

of Omicron variant does not stem from higher viral load levels but rather from its ability

to maintain high levels of infectious particles over time. Altogether, these results illustrate

the importance of quantifying both viral load and infectiousness to better understand

some differences observed in the patterns of viral transmission of VoCs.

Introduction

The sever acute respiratory coronavirus 2 (SARS-CoV-2) is the causative agent of the Coronavi-

rus-induced disease 2019 (COVID-19) cumulating more than 500 million cases and over 18

million death as measured by excess mortality as the end of 2022 [1,2]. Repeatedly, several vari-

ants have emerged and although most of them vanished quickly, some of them, called Variants

of Concern (VoC), in particular alpha, beta, gamma, delta and omicron have caused dramatic

epidemic rebounds [3–5]. These variants have acquired specific mutations enhancing their

infectious capacities and escaping the immune response, leading to a dramatic loss of efficacy of

monoclonal antibodies [6]. They have also caused a large drop in vaccine efficacy against disease

acquisition even though until now vaccine remain largely effective against severe disease [7–9].

While several millions of individuals have been infected by these VoC, we still do not have a

precise understanding on the effects of VoC on viral load. Even though some effects on larger

levels of viral excretion have been reported [10–13], these studies often lack of robustness, and

may be biased by many confounding factors that complicate comparisons, in particular report-

ing biases, heterogeneity in the incubation period and vaccination coverage.

In that context where human clinical data are difficult to interpret, the non-human primate

(NHP) experimental model offers a unique opportunity to describe infection with SARS-CoV-

2 in detail in a fully controlled environment. Since 2020, our group has conducted many stud-

ies to evaluate the effects of antiviral drugs or vaccines in this model [14,15], and showed its

large predictive value [16]. Here, we analysed retrospectively viral load data obtained in 78 ani-

mals that were included as control arms of these studies and that were infected with different

strains of SARS-CoV-2 (historical, beta, gamma, delta and omicron (BA.1)). In addition, we

performed longitudinal measures of viral culture to evaluate a potential effect of VoC on viral

infectivity. Using the techniques of mathematical modelling, we characterize the viral kinetics

in these animals and we discuss their biological insights.

Results

Variant of concern viral kinetics

Several biomarkers were measured, both genomic RNA and subgenomic RNA were quantified

at regular interval over all the study period and infectious titers at 2 times points. All macaques

developed a rapid infection with genomic viral load peaking between 2- and 3-day post-infec-

tion (dpi) for the historical and beta variant, 3.5 dpi for variant delta and 4 dpi for variants
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gamma and omicron (BA.1). Genomic viral load was cleared at 8 dpi for the historical variant,

10 dpi for the beta variant, at 12 dpi for variants delta and omicron (BA.1) and at 14 dpi for

variant gamma (Fig 1 and S1 Table). In addition to viral RNA, infectious titers were measured

for 41 animals. Infectious titers were measured by Tissue Culture Infectious Dose (TCID50)

from nasopharyngeal swab sampled at 2 time points per animal (day 2, 3 or 4 plus at day 5 or 7

post-infection). As we included several control animals from different studies, infected with

either TCID50 or Plaque Forming Units (PFU), all TCID50 were converted to PFU assuming 1

PFU = 0.7 TCID50 [17]. All infectious titers quickly dropped to undetectable levels for the his-

torical variant at 5 dpi, where for the other variants the infectious titers remained consistent

over the course of the infection (Fig 1).

Viral dynamic model

To account for the quick drop in infectious titers observed in the historical variant, (Figs 1 and

S1) several models incorporating an action of an antigen-mediated immune response were

tested (Fig 2). All models, except a model targeting the viral production parameter, provided

an improvement of BIC compared to a target cell limited model (Table 1). We found that a

model targeting the infectious ratio best described our data (Model 1 in Table 1). In the follow-

ing, we discuss the parameter values of the final constructed model accounting for both an

effect of the immune effector and variant specific effect on the parameters (see below). For the

historical variant, we estimated the infectivity rate parameter β at 1.86×10−5 copies-1.d-1 (95%

confidence interval (CI) 1×10−5–3.39×10−5) and the loss rate of infected cells δ at 1.38 d-1 (95%

CI 1.22–1.55), corresponding to a half-life of 12 hours. We estimated the viral load production

parameter p at 9.44×105 copies.cells-1.day-1 (95% CI 2.1×105–1.68×106). This corresponds to a

within-host basic reproductive number R0 (i.e., the number of newly infected cells by one

infected cell at the beginning of the infection) of 3.1 (95% CI 2–4.3) and a burst size (i.e the

Fig 1. Longitudinal measurements of genomic RNA, subgenomic RNA and infectious titers in 78 infected cynomolgus macaques. Both limit of

quantification and detection are depicted as empty dots, the latter being lower. Upper limit of detection is depicted as filled squares.

https://doi.org/10.1371/journal.pcbi.1010721.g001
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total number of infectious virus produced by one cell over its lifespan at the beginning of the

infection) of 136 (95% CI 121−153).

VoC specific effect on viral dynamic parameters

Once an effect of the immune response was selected, a covariate search algorithm was used to

find the most likely VoC associated effects (see methods) and considered the historical variant

as the reference. Several variant-specific covariates were found on viral kinetics parameters

that we detail below (Fig 3 and S2 Table). First, beta variant was characterized with a reduced

infected cells death rate (δ) by a factor of 0.7 (95% CI 0.6−0.9) compared with the historical

variant (p-value < 0.01). This led to an infected cell half-life of 17 hours and resulted in a lon-

ger period of viral load shedding as infected cells produced viruses for longer period of time.

Gamma variant had an effect on the parameter θ (p-value < 0.001), the amount of immune

effector F20 required to reduce by half the infectious ratio, increasing it by a factor of 9508

(95% CI 387−50 041) resulting in higher peak viral load and a longer duration of infectious

virus shedding (Fig 4). Variant delta is characterized by an effect on both θ (p-value < 0.001)

and the viral production parameter p (p-value < 0.05), increasing those parameters by factors

Fig 2. Schematic model of SARS-CoV-2 infection and action of the immune system. The basic model is a target cell limited model without any immune

response. The parameters are: β the infectivity rate, k the transfer rate between non-productive and productive infected cells, δ the loss rate of productive

infected cells, p the viral production rate, μ the ratio of infectious virus, g the transfer rate between the compartments of the immune response and c the loss

rate of both infectious and non-infectious virus.

https://doi.org/10.1371/journal.pcbi.1010721.g002

Table 1. Alternative immune response models.

Models Description ΔBIC

Reference model Absence of immune response −
Model 1 Reduction of the infectious ratio −43

Model 2 Increase in infected cell clearance −15

Model 3 Reduction of viral infection rate −36

Model 4 Reduction of the viral production +9

Model 5 Cells become refractory to infection -15

https://doi.org/10.1371/journal.pcbi.1010721.t001
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336 (95% CI 49−1191) and 1.78 (95% CI 1−3) respectively. Finally, omicron variant (BA.1)

affected the parameters of the immune system θ (p-value< 0.001), the viral production rate

parameter p (p-value < 0.001) and the infectious ratio μ (p-value < 0.001) modifying them by

factors 229 (95% CI 27−884), 0.07 (95% CI 0.02−0.2) and 18 (95% CI 4−51) respectively

(Fig 4). The model well reproduced the viral load of all animals in the individuals fits (S2 Fig).

To challenge our model assumption on the immune response compartment, we performed a

sensitivity analysis on the number of transitioning compartments (j) and the mean time spent

in those compartments (τ). We also performed the covariate selection on all models. We

found that largely similar VoC-specific covariates were selected regardless of the delay in the

immune response (S3 and S4 Figs). In addition, we found that the model assuming a time

spent of 3 days in the transitioning compartment yielded the best results (S3 Table).

Fig 3. Estimated population parameters for each variant. We represent the mean value and 95% confidence interval of populations parameters for each

variant. We represent only parameters having at least one variant-specific effect. Full table for population parameters is in S2 Table. The dashed black line

represents the historical value.

https://doi.org/10.1371/journal.pcbi.1010721.g003

Fig 4. Simulation of variant of concern impact on viral load. Using simulations, we sampled parameters considering both the uncertainty in the estimation

and the inter-individual variability (see methods). We represent the mean viral load of all variants and its 95% confidence interval. Dotted lines are the limits of

detections.

https://doi.org/10.1371/journal.pcbi.1010721.g004
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Predicted impact of variants in a natural infection setting

The main limitation of translating these results to humans is the fact that infection in animals

is done with a large inoculum dose (105−106 PFU), while human infections are presumably ini-

tiated with much lower virus dose [18]. Human experimental infections were performed with

10 TCID50 [19] in the nose, i.e., 10,000–100,000 times less virus than in the animal model.

Using simulations with a lower inoculum of 1, 10 and 100 PFU (see methods), we are able to

derive metrics of interest for each variant. The results obtained between 1 PFU are identical to

those observed with 10 PFU, while 100 PFU predicts a more rapid kinetics (S5 Fig). We pres-

ent the results with 10 PFU in the following.

The historical variant is characterized by a mean time to peak of 4.3 dpi (95% CI 3.7−4.8)

and of 3.5 dpi (95% CI 3−3.9) for genomic RNA and infectious titers respectively. We found a

mean peak viral load of 6.3 log10 copies/mL (95% CI 5.5−7) and of 2.1 PFU/mL (95% CI 1.2

−2.9) for genomic RNA and infectious titers, respectively.

The reduced infected cell clearance rate of the beta variant resulted in a longer period of

viral load shedding. The duration of the acute infection stage was consequently increased from

10.9 days (95% CI 9.5–13.1) for the historical variant to 13.4 days (95% CI 11.1–15.7) for the

beta variant.

All variants except beta have shown an effect on the antigen-mediated response, greatly

reducing its impact on viral kinetics. As the effect of the antigen-mediated response was

reduced, the infectious ratio was increased leading to more infectious particles produced over

longer periods of time. This led to the increase of the infectious titers clearance stage duration

from 1.5 days for the historical variant (95% CI 0.6–1.9) to 6 days (95% CI 4.4–7.5), 3.8 days

(95% CI 3.1–4.6) and 3.7 days (95% CI 2.8–4.5) for the gamma, delta and omicron variants

respectively (Fig 5). This is in line with numbers of studies showing the immune escape capa-

bilities of those variants [20–22].

Fig 5. Impact of VoC on viral load metrics in the context of an infection with a low inoculum. We represent the mean and 95% confidence interval for each

variant. The dashed black line represents the historical mean value.

https://doi.org/10.1371/journal.pcbi.1010721.g005
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An effect increasing the viral production parameter (p), as observed for the delta variant,

results in largely higher peak viral load of 7.6 log10 copies/mL (95% CI 6.8–8.2) and peak infec-

tious titers of 3.7 PFU/mL (95% CI 2.4–4.6). Conversely, an effect reducing the viral produc-

tion parameter, as observed for the omicron variant, results in lower peak viral load compared

to the historical variant of 5.6 log10 copies/mL (4.8–6.3) but very similar peak infectious titers

at 2.8 PFU/mL (95% CI 1.9–3.8). This is due to an effect of omicron on the infectious ratio,

increasing the proportion of infectious virus produced.

Discussion

Here, we used mathematical models to characterize in detail the SARS-CoV-2 viral dynamics

with the main variants of concern, using data obtained in an experimental model of non-

human primates. We evaluated the impact of an antigen-mediated immune response on the

viral dynamics and found that an effect reducing the infectious ratio best described our data.

Gamma, delta and omicron (BA.1) variants showed a significant ability to escape this response,

leading to a higher ratio of infectious virus than the historical variant, especially at later time-

points. Interestingly, delta variant was associated with an increased viral production rate and

therefore higher viral loads, whereas omicron variant was associated with a lower viral produc-

tion rate. Altogether, our model predicts that omicron infections are associated with lower

peak viral RNA and reduced duration of viral RNA clearance compared to delta variant, while

their kinetics of infectious titers are similar. Accordingly, it suggests that the increased trans-

missibility of omicron variant is not caused by increased viral load, but rather to its ability to

maintain high levels of infectious particles, and may suggest longer duration of infectiousness

for both delta and omicron variants. They illustrate that the quantification of infectious titers

over time is crucial to inform further public health policies and adjust the isolation period

accordingly [23].

Our study has important limitations that need to be acknowledged. First, in this experimen-

tal model the inoculated dose is extremely high compared to a natural infection, which is typi-

cally initiated with 1–10 infectious particles (19). This is inherent limitation of NHP studies

leads to a rapid saturation of target cells making it difficult to accurately estimate the early

phase of infection. Here, however, our prediction obtained assuming a lower inoculum is in

line with what was observed in humans, with a peak viral load around 5 days post infection

[24,25]. In the future, studies evaluating viral dynamics with lower inoculum could be helpful

to tease out a potential impact of the inoculum size on viral dynamics. Second, as our model

selection process was performed using all data available, it assumes that the same model applies

to all variants, which may not be true. Nonetheless, data limitation did not allow to perform

model selection on each variant separately. Third, we developed an extension of the target cell

limited model considering the effect of an antigen-mediated immune response targeting the

infectious ratio parameter μ. This effect on the infectious ratio could be attributable to an effect

of the innate response, in particular the interferon (IFN) response, that can confer antiviral,

antiproliferative and immunomodulatory functions [26]. Our model also identified that the

effects of the immune response was variant-dependent (captured by the covariates on the

parameter θ in the model) consistent with the observations that SARS-CoV-2 variants exhibits

mutations in nucleocapsid, membrane and non-structural proteins that antagonize IFN signal-

ling in cells [27,28]. Unfortunately, this hypothesis remains speculative as IFN was not mea-

sured in this study, and the cytokines that were measured (e.g. MCP1, IL15 and IL1RA) did

not correlate with the viral kinetics (S7 Fig). Of note, these cytokines peaked at day 2, i.e., ear-

lier than predicted by our model which assumes a peak of the immune response by day 6

(S6 Fig). This could be due to the fact that these cytokines were measured in plasma, and not
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in the site of infection, but we nevertheless tested the sensitivity of this prediction to our

hypotheses. For that purpose, we conducted a sensitivity analysis on the kinetics of the

immune response by assuming different number of compartments (j) and mean time spent in

those compartments (τ), allowing to modulate the mean delay of immune response and its dis-

tribution. Interestingly, in all simulations, the model predicted a peak of the immune response

later than day 4. Using the final model, we nevertheless show that the impact of the immune

response in reducing the infectious ratio is already significant at day 3 post infection (S6B Fig).

Regarding virus infectivity, several aspects need to be discussed regarding both their mea-

surements and their interpretation. First, infectious titers are only a measure of in vitro infec-

tivity, and to what extent they translate into infectiousness is unknown. Second, recent results

obtained with other experimental cell line suggest that Vero E6 cells may underestimate viral

production of Omicron-variants as represented by the parameter θ [29]. Related to that ques-

tion, one should acknowledge that the amount of infectious virus remains limited, both in

terms of number of points and in the capability to measure it precisely. Although the data

available here allowed us to estimate all parameters with good precision, including the changes

in infectivity over time, some aspects of the model (such as the effect of the immune system on

infectivity, noted θ) remain phenomenological. Finally, in a context where more than half of

the world population has received at least one dose of COVID-19 vaccine [30], and probably

even more have been infected by one or different variants, our results will need to be comple-

mented by studies to evaluate the impact of vaccination, previous infection or both on viral

dynamics.

Materials and methods

Experimental procedure

Data comes from studies performed on cynomolgus macaques to evaluate the viral dynamics

of SARS-CoV-2 variants. Our study includes 78 cynomolgus macaques (Macaca fascicularis)
coming from control arms of several studies and have received no pharmacological interven-

tions besides placebo. All animals were infected with doses ranging from 7×104 to 106 PFU of

different SARS-CoV-2 strains. Animals are infected via both nasopharyngeal and intratracheal

route with 10% of the initial volume administered in the nose and 90% in the trachea. The

study is composed of 5 groups, each infected with a different SARS-CoV-2 strains: 44 Histori-

cal (hCoV-19/France/lDF0372/2020 strain; GISAID EpiCoV platform under accession num-

ber EPI_ISL_406596), 9 Bêta (B.1.351—hCoV-19/USA/MD-HP01542/2021, BEI NR-55283), 5

Gamma (P.1 - hCoV-19/Japan/TY7-503/2021, BEI NR-54984), 11 Delta (B.1.617.2—hCoV-

19/USA/MD-HP05647/2021, BEI NR-55674) and 9 Omicron (B.1.1.529 –hCoV-19/USA/

MD-HP20874/2021, BEI NR-56462). For each group both genomic RNA and subgenomic

RNA swab samples were quantified using real time PCR in both the nasopharynx and in the

trachea. For 41 animals (13 Historical, 3 Beta, 5 Gamma, 11 Delta and 7 Omicron (BA.1))

infectious titers were measured at 2 time points, early (2, 3 or 4 days post infection) and late (5

or 7 days post infection) using Tissue Culture Infectious Dose (TCID50) from nasopharyngeal

swab samples [16]. As we included animals from different studies that were inoculated with

different methods (PFU or TCID50), we normalized all measures of infectious titers by con-

verting all TCID50 measurements to Plaque Forming Units (PFU) using the Formula 1

PFU = 0.7 TCID50 [17]. As no infectious titers were measured in the trachea samples, we

focused the main analysis on the nasopharyngeal compartment. The results mainly focus on

the genomic viral load as the subgenomic is a directly proportional to the latter.
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Basic viral dynamic model

We used a previously described model of SARS-COV-2 viral dynamics to reconstruct the

nasopharyngeal viral load of infected animals. In this model, target cells (T) become infected

cells (I1) at a rate β. Infected cells transition into productive infected cells (I2) at a rate k and

produce infectious virus (VI) at a rate pμ and non-infectious virus (VNI) at a rate p(1−μ). Pro-

ductive infected cells are cleared at a rate δ and both infectious and non-infectious virus are

cleared at a rate c. The basic within-host reproductive number, representing the number of

newly infected cells by one infected cell, is R0 ¼
bpT0m

cd and the burst-size, representing the num-

ber of infectious virus produced by one infected cell over its lifespan, is N ¼ pm
d

. The model is

described with the following set of ordinary differential equations:

dT
dt
¼ � bVIT ð1Þ

dI1
dt
¼ bVIT � kI1 ð2Þ

dI2
dt
¼ kI1 � dI2 ð3Þ

dVI
dt
¼ pmI2 � cVI ð4Þ

dVNI
dt
¼ p 1 � mð ÞI2 � cVNI ð5Þ

Assumption on parameter values

Some parameters of the model were fixed to ensure identifiability. The transfer rate parameter

between infected cells and productive infected cells was fixed to k = 4 day-1 (corresponding to

a mean duration of the eclipse phase, i.e. the time for infected cells to start producing viruses,

of 1

k ¼ 6 hours) [31]. The viral clearance c was set to 10 day-1 based on previous work

[14,16,24]. As only the product pT0 is identifiable, we choose to fix the initial number of target

cell to T0 = 12 500 cells following the same assumptions as in [16]. Animals are infected using

both an intranasal and intratracheal route using 90% of the initial inoculum in the trachea and

10% in the nose [13]. We take this into account by adding a 0.1 factor in our initial conditions.

We introduced a parameter h representing the proportion of the inoculum that arrive on the

site of infection. Because this parameter cannot be reliably estimated or experimentally mea-

sured, a profile likelihood approach was used, testing values ranging from 10% to 90%. There-

fore, our initial conditions were set to:

T0ðt ¼ 0Þ ¼ 1:25� 104 ð6Þ

I1ðt ¼ 0Þ ¼ 0 ð7Þ

I2ðt ¼ 0Þ ¼ 0 ð8Þ

VIðt ¼ 0Þ ¼ VIð0Þi � hi � 0:1 ð9Þ
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VNIðt ¼ 0Þ ¼ VNIð0Þi � hi � 0:1 ð10Þ

Where VI(0)i is the number of infectious virus of subject i (obtained assuming that 1 PFU = 1

infectious particle), VNI(0)i is the number of non-infectious virus (obtained by the difference

between the total number of RNA copies and the number of infectious titers in the inoculum)

and hi the proportion of the inoculum actively initiating the infection.

Models incorporating antigen-mediated immune response

To account for the quick drop in infectious titers observed for the historical variant (Figs 1 and

S1), we introduced a model incorporating an action of an antigen-mediated immune response.

To allow some variability in this response we assumed a certain production phase before the

immune response takes effect. We introduced this delayed effector compartment using the

Linear Chain Trick (LCT) [32] by modelling a successive number of transitioning compart-

ments. This assumes an Erlang distribution with parameters j and τ representing the number

of transitioning compartments and the mean time spent in those compartments respectively.

We fixed those parameters to j = 20 compartments and τ =3 days to account for the setup of

the immune response. We then performed a sensitivity analysis on those parameters varying

both the number of compartments (from 5 to 30) and the mean time spent in those compart-

ments (from 1 day to 6).

The equations for the transfer compartments are written as follows:

dF1

dt
¼ I2 � gF1 ð11Þ

dF2

dt
¼ gF1 � gF2 ð12Þ

dF20

dt
¼ gF19 � dFF20 ð13Þ

In the following only the compartment F20 will serve as the effector for the action of the

immune system. The transfer rate parameter g is then written as
j
t

and fixed to 6.67 d-1 and the

loss rate of the final effector dF is fixed to 0.4 d-1 [24]. All immune response compartments

were set to 0 at t = 0. Several modes of action of the response system were tested:

Model 1: Immune effector decreases the infectious ratio μ
In this model, the immune effector directly decreases the infectious ratio parameter μ using

an Emax function type expression:

dVI
dt
¼ pm 1 �

F20

F20 þ y

� �

I2 � cVI ð14Þ

dVNI
dt
¼ p 1 � m 1 �

F20

F20 þ y

� �� �

I2 � cVNI ð15Þ

With θ being the amount of immune effector F20 needed to reduce by half the infectious

ratio.

Model 2: Immune effector increases infected productive cells death rate δ
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The death rate of infected cells is increased in proportion to the amount of immune effector

F20.

dI2
dt
¼ kI1 � dð1þ φF20ÞI2 ð16Þ

Where φ is the strength of the immune system.

Model 3: Immune effector reduces the infectivity rate β
In this model, the immune effector blocks virus entry in the cells by reducing the infectivity

parameter β.

dT
dt
¼ � b 1 �

F20

F20 þ y

� �

VIT ð17Þ

dI1
dt
¼ b 1 �

F20

F20 þ y

� �

VIT � kI1 ð18Þ

Model 4: Immune effector reduces the production rate p
In the same way as model 1, the viral load production parameter is reduced by the immune

effector with an Emax type function:

dVI
dt
¼ p 1 �

F20

F20 þ y

� �

mI2 � cVI ð19Þ

dVNI
dt
¼ p 1 �

F20

F20 þ y

� �

1 � mð ÞI2 � cVNI ð20Þ

All models were compared based on the Bayesian Information Criterion (BIC). We selected

the model that yielded the lowest BIC and the best individual fits.

Model 5: Immune effector induce refraction to infection.

The immune response renders target cells refractory to infection [24] as follows:

dT
dt
¼ � bTVI � φ

F20

F20 þ y
T ð21Þ

Models were estimated using all data (historical and variants) and compared based on BIC,

precision of the estimation and goodness of fit. A covariate search algorithm was then used on

the selected model (see below) to identify VoC-specific effects.

Statistical model

Parameter estimation was performed using non-linear mixed effect modelling. The statistical

models describing the genomic RNA, subgenomic RNA and the infectious titers are:

y1

ij ¼ log
10
Vðtij;CiÞ þ �

1

ij ð22Þ

y2

ij ¼ log
10
f � I2ðtij;CiÞ þ �

2

ij ð23Þ

y3

ij ¼ log
10
VIðtij;CiÞ þ �

3

ij ð24Þ

Where the superscript 1, 2 and 3 refers to the genomic RNA, subgenomic RNA and infec-

tious titers, respectively. We denote yij is the jth observation of subject i at time tij, with i 2 1,

. . ., N and j 2 1, . . ., ni with N the number of subject and ni the number of observations for
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subject i. The function describing the total viral load kinetics V(tij,Ci) predicted by the model

at time tij defined as: VI(tij,Ci)+VNI(tij,Ci) predicted by the model at time tij. The vector of

individual parameters of subject i is noted Ci and �ij is the additive residual Gaussian error of

constant standard deviation σ. The vector of individual parameters depends on a fixed effects

vector and on an individual random effects vector, which follows a normal centered distribu-

tion with diagonal variance-covariance matrix Ω. All parameters follow a log-normal distribu-

tion to ensure positivity except both parameters μ and h which follows logit-normal

distribution and are bounded between 0 and 1. We assumed random effect on all parameters

and removed them using backward procedure, if they were< 0.1 or their RSE > 50%. All bio-

markers (i.e. genomic RNA, subgenomic RNA and infectious titers) were fitted

simultaneously.

Selection of variant-specific effect on the viral dynamic parameters

Using the best model selected at the previous step, we sought to identify VoC-specific effect on

the parameters of the model (β, δ, p, μ and θ). We first performed a backward selection of the

random effects removing non-significant ones (i.e. relative standard error> 50%) if the BIC

wasn’t degraded by more than 2 points. We then used the Conditional Sampling use for Step-

wise Approach on Correlation tests (COSSAC) to identify variant specific effect [33]. Then a

backward procedure was used to remove any non-significant covariate effect with a Wald test

(i.e. the covariate was removed if its coefficient effect relative standard error was > 50%). This

procedure was repeated until all nonsignificant covariate effects had been eliminated. Addi-

tionally, we performed a sensitivity analysis on our best structural model. We tested for several

delays in the establishment of the antigen-mediated effector (from 1 to 6 days) and on the

number of transitions compartments (from 5 to 30) and then performed the covariate search

on all model combinations.

Simulation of natural human infection

Finally, we used our final model to assess the impact of variants of concern on viral load and

viral infectivity in a natural infection setting. We used a starting inoculum of 10 infectious

virus, as described in an experimental challenge conducted in England [19] to simulate a

human infection. The initial conditions are then written as:

VIðt ¼ 0Þ ¼ 10

VNIðt ¼ 0Þ ¼ 0

We provided confidence interval on the mean predicted viral load, considering both the

uncertainty in the estimation and the inter-individual variability. We first sampled M = 100

population parameters in their estimation distribution and then, for each variant, sampled

N = 30 individual parameters from each sets of population parameters (leading to 3000 indi-

vidual parameters per variant). We calculated the predicted viral load of all individuals and

derived the mean viral load over the simulated individuals at all times with its 95% inter quan-

tile range. Additionally, we provided the distribution of several viral dynamic metrics, namely:

• the area under viral load curve,

• the peak and time to peak viral load

• the duration of the clearance stage, calculated as the time interval between the peak viral load

and the time to undetectable viral load

PLOS COMPUTATIONAL BIOLOGY Impact of variants on SARS-CoV-2 viral dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010721 August 9, 2023 12 / 16

https://doi.org/10.1371/journal.pcbi.1010721


• the duration of the acute phase, calculated as the time between the first and the last detect-

able viral load [34].

Additional simulations were done with different inoculum (1 and 100) to assess sensibility

to initial conditions.

Parameter estimation

All parameters were estimated by computing the maximum-likelihood estimator using the sto-

chastic approximation expectation-maximization (SAEM) algorithm implemented in Monolix

Software 2020R1 [35,36]. Standard errors and the likelihood were computed by importance

sampling.

Supporting information

S1 Fig. Relationship between genomic RNA and infectious titers. We represent the longitu-

dinal values of genomic RNA for each individual and if the associated PFU sampe is detectable

or not.

(PDF)

S2 Fig. Individual fit of genomic RNA, subgenomic RNA and infectious titers in all ani-

mals. Undetectable values are represented as empty dots. Values above the upper limit of

quantification are represented as squares.

(PDF)

S3 Fig. Sensitivity analysis on the covariate selection algorithm. We performed a sensitivity

analysis on our best model. The model IDs are represented on top, as described in S3 Table.

The scale represents the magnitude of the covariate effect rescaled for each row with 0 being

the minimum value and 1 the maximum. Empty tiles indicate that no covariates were selected

for this variant-parameter relationship.

(PDF)

S4 Fig. Consistency of the covariate selection algorithm. We represent the number of times

a covariate was found on a variant-parameter relationship across all 24 models. Empty tiles

indicate that no covariates were found for this variant-parameter relationship.

(PDF)

S5 Fig. Impact of different inoculum on viral dynamic simulations. Using simulations, we

sampled parameters considering both the uncertainty in the estimation and the inter-individ-

ual variability (see methods). Only the mean viral load was shown for clarity.

(PDF)

S6 Fig. Dynamics of the immune response and its effect. A) Median trajectory of the last

compartment of our immune response B) Median trajectory of the infectious ratio parameter

μ over time. We used the population parameters of our best model to simulate the median tra-

jectory of each variant.

(PDF)

S7 Fig. Dynamics of cytokines and correlation with viral load metrics. A) Median concen-

tration of measured cytokines. B) Correlation between AUC of viral load predicted by our

model and the cytokine AUC. C) Correlation between peak viral load predicted by our model

and peak cytokine concentration.

(PDF)
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**The standard error for the R0 parameters were calculated using the delta method.
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