
HAL Id: hal-04225001
https://hal.science/hal-04225001

Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized Code-Abiding Countermeasure
Pierre-Antoine Tissot, Lilian Bossuet, Vincent Grosso

To cite this version:
Pierre-Antoine Tissot, Lilian Bossuet, Vincent Grosso. Generalized Code-Abiding Countermeasure:
Applying Lightweight Fault Resistant Countermeasure to Word-Oriented Block Cipher. Electronics,
2023, 12 (4), pp.976. �10.3390/electronics12040976�. �hal-04225001�

https://hal.science/hal-04225001
https://hal.archives-ouvertes.fr

Generalized Code-Abiding Countermeasure
Applying Lightweight Fault Resistant Countermeasure to

Word-Oriented Block Cipher

Pierre-Antoine TISSOT, Lilian BOSSUET, Vincent GROSSO

No institute given.

Abstract. An adversary can inject errors during the encryption process performed by
a software or hardware implementation by using fault injection attacks. The widely
used countermeasures to these attacks are based on spatial, temporal or information
redundancy. This type of solution is very efficient regarding to the detection of the
fault, but can be very expensive in terms of implementation cost. Try to propose
a secure-efficient countermeasure for a lightweight cipher is a hard challenge. This
paper considers information redundancy based on parity bit code, with code-abiding
transformations of the cipher’s operations. This error detection code, with the
code-abiding notion added, is very efficient against single fault injection and has a
small overcost. The solution is tested on the LED lightweight cipher to measure its
overhead. A bitslice version of the cipher is used with the parity bit code applied to
be robust against all the single-word fault injections with 16 additional parity bits on
the original 64-bit state.
Keywords: Fault Attack, Error Detection, Code-Abiding, Overcost

1 Introduction
Cryptographic implementations are prone to physical attacks. Physical attacks take
advantage of physical properties of a device while running cryptographic algorithm to
break the security. Most popular physical attacks are fault attacks [BS97] (taking advantage
of the circuit’s tend to perturbations) and side-channel attacks [KJJ99] (taking advantage
of the circuit’s leakage). This work focuses on fault attacks. The principle of fault attacks
is to use means such as laser injection or clock glitching in order to inject faults during an
encryption and extract information by analyzing the circuit’s behavior after the injection.

To counter fault attacks, various countermeasures have been developed, using mainly
redundancy [BBB+21, BHL21, KMD+20, LJK21, PYGS16]. Redundancy allows to create
multiple information sources. These multiple sources are compared at the end of the
computation to detect fault injection. Redundancy can be applied at three different
levels: temporal, spacial and informational. Temporal redundancy is based on the multiple
encryptions of a plaintext by the same physical cipher (same circuit) and the comparison
between the resulting ciphertexts. Spacial redundancy is based on the multiple encryptions
of a plaintext by different physical ciphers (different circuits). Moreover, an additional
information can be added to the plaintext to create an information redundancy. In all the
cases, the potential leakages of the cipher are more numerous and the side-channel attacks
(SCA) are thus more efficient [REB+08]. Therefore, when designing a countermeasure
against fault attacks, the designer should then take into account vulnerabilities that his
countermeasure can bring for side channel adversary. One rule of the thumb in that case
is to make the overcost of the countermeasure as small as possible, especially when the
countermeasure is implemented on a lightweight cipher.

2 Generalized Code-Abiding Countermeasure

1.1 Related Work
Simon et al. [SBD+20] presented a solution of error detection that hardly increase the
SCA vulnerability. However, this solution is restrictive for any designer that would like
to apply code-abiding to an existing cipher, and more particularly work-oriented block
ciphers. Our goal is then to generalize the code abiding method to any existing or new
word-oriented block cipher.

Bertoni et al. [BBK+02] used the parity bit code to detect fault injected on AES.
Bertoni et al. describe a modification of the algorithm with the addition of the parity bit
matrix, when our objective is to use a bitslice version of an algorithm to add a bitwise
countermeasure to a word-oriented cipher. Then, the S-Box used in [BBK+02] with half of
its entries set to 00..001 is efficient in a software way, but in a hardware implementation,
a big number of logical gates would be used. Moreover, the protected cipher would be
robust against 1-bit fault injection, when our solution prevent any 1-word fault injection.

Lac et al. [LCFS17] used an Internal Redundancy Countermeasure: every data block is
duplicated k times and surrounded by n reference blocks. The k copies allow to detect
up to k fault injections by comparing the results. Moreover, the reference blocks would
detect a fault even if it affects all the copies of the data block. Indeed, reference blocks are
known pairs of plaintext/ciphertext, and a check is done of the cipher reference blocks to
detect an injected fault. The blocks are randomly distributed in the register. Thus, for
each data block, we have k + n blocks of overhead. In our paper, the solution adds 1 bit
for each data block. The overhead is then much lighter in our solution.

1.2 Our contributions
Our first contribution is an exhibition of a fault injection realized in precise conditions
during a computation of a Friet operation [SBD+20] that results into an undetected error.
The conditions are presented, with two countermeasures that can be applied to allow the
detection of the error.

The second contribution is the application of the code-abiding method to an existing
cipher with an example on the lightweight LED cipher [GPPR11]. The countermeasure
is designed to get the smallest overcost possible. The secured solution presented in our
work should be 25% more expensive than the original LED implementation, as only one
parity bit is added for each nibble. Our work thus focuses on the cost optimization
of the countermeasure, in terms of number of gates, memory space needed and power
consumption.

This work should allow implementations to be robust against single injection fault with
an optimization of the overcost brought by the countermeasure.

2 Background
In this section we briefly introduce notions on coding theory that are useful for the
countermeasure presented. We also recall the operation of LED block cipher [GPPR11] on
which we apply our countermeasure as a proof of efficiency of our method.

2.1 Error Detection
The solutions presented in this paper use code abiding concept introduced in [SBD+20].
This solution is based on computation over data encoded with error detection. In the
following, we give the goal and the principle of error detection, which is a set of techniques
that makes possible to detect errors during the transmission of information.

Pierre-Antoine TISSOT, Lilian BOSSUET, Vincent GROSSO 3

Definition 1 (Error detection code). Let E a set and C ⊂ E. We denote C̄ = E\{C}. C
is an error detection code if and only if:

• ∀x ∈ C,∀y ∈ C̄, x+ y ∈ C̄

• ∀x ∈ C,∀z ∈ S (C, x+ z ∈ C

In this case, + is the addition operator, according to the set E.

An error detection code allows to divide a set into two different subsets with a minimal
Hamming distance between a word of a subset and a word from the other.

Definition 2 (Parity bit). Let x a n-bit word. We denote xi the i-th bit of x, then we
have x = xn−1||xn−2||...||x1||x0 where || is the concatenation operator. The parity bit xp

is the sum of all the xi (using XOR operator): xp = xn−1 ⊕ xn−2 ⊕ ...⊕ x1 ⊕ x0. We use
the even parity in our case, so the XOR of all the bits (including the parity bit) is 0. Its
purpose is to detect an odd number of fault in the output.

Example 1 (Parity bit). Let x = 011010. The parity bit xp = 0⊕ 1⊕ 1⊕ 0⊕ 1⊕ 0 = 1.

The parity bit method is the error detection scheme that is used during this work. The
two subsets are composed by the words with an even parity for the first one and the words
with an odd parity for the second one.

Definition 3 (Check function). The CheckFunction applied to a word verifies its parity
characteristic. The function returns a Boolean with TRUE when an even parity is verified
and FALSE when odd parity.

Example 2. Check function

• CheckFunction(011011) = TRUE

• CheckFunction(110010) = FALSE

2.2 Code abiding

We now want to implement the error detection scheme into an encryption algorithm.
Then, we need to use functions that keep the parity characteristic of the words. With this
intention, we use the code abiding notion. Code abiding was introduce in [SBD+20], in
this work the idea was to build permutation over the space E. In order to detect fault, the
permutation built must respect separation of the space. In other words, the permutation
over E can be seen as two permutations, one over C, the other over C̄. The separation
between the two spaces should allows detection of every single fault injection.

Definition 4 (Code abiding function). f is a C code abiding function if and only if:

• ∀x ∈ C, f(x) ∈ C

• ∀x /∈ C, f(x) /∈ C

The algorithm has to be composed by code abiding functions to keep the parity property
of the words and propagate the error injected until the detection of the fault.

4 Generalized Code-Abiding Countermeasure

2.3 LED Cipher
The LED Cipher, presented in [GPPR11], is a lightweight block cipher. Its purpose is to
offer a very small silicon footprint in comparison with other block ciphers, and to be secure
against related-key attacks, by using AES-like security proofs.

This cipher is a 64-bit block cipher using mostly 64-bit keys and 128-bit keys. But
any length between 64 bits and 128 bits can be used, if the length is divisible by 4. In
this sense, 80-bit keys are also often used. In our work, we focus on the 64-bit key length.
However, the results presented are valid for any key length and are not limited to the LED
cipher.

A 64-bit state St is conceptually divided into sixteen 4-bit nibbles (St = st0||st1||...||st15)
and arranged in a square array as described in Matrix state.

state =

st0 st1 st2 st3
st4 st5 st6 st7
st8 st9 st10 st11
st12 st13 st14 st15

Using the same process, the key K is divided into subkeys ki (Matrix K).

K =

k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

The cipher process is the combination of two operations: AddRoundKey and step (see
Figure 1). The step operation is computed s times while the AddRoundKey s+ 1 times.
This value depends on the key length: s = 8 for a 64-bit key and s = 12 for a 128-bit key.

Figure 1: Representation of the LED encryption.

The step operation is composed by four rounds themselves composed by four opera-
tions, AddConstants, SubCells, ShiftRows and MixColumnsSerial (See Figure 2), while
theAddRoundKey operation is the combination of the state and the subkeys using XOR.

Figure 2: A round of LED composed by the functions AddConstants, SubCells,
ShiftRows and MixColumnsSerial.

After the s step and s+ 1 AddRoundKey, the state becomes the ciphertext.

Pierre-Antoine TISSOT, Lilian BOSSUET, Vincent GROSSO 5

Another approach of the cipher is its bitslice version [BLL15] and this approach brings
some important properties for this work. Let suppose that the machine used has 64-
bit length registers. Then the 64-bit state is stored in a single register. The bitslice
transformation of the cipher stores the state in 64 registers containing each 1 bit of data.
This approach allows to have a bit-oriented cipher rather than a word-oriented. This is
very important for the implementation of the parity scheme.

Another advantage of the bitslice version is the parallel encryptions. In the same
conditions than the previous point, instead of using 64 registers containing only 1 bit of
useful data, we can encrypt n plaintexts in parallel and then store 64 n-bit useful data. As
the bitslice version is bitwise, the cipher cannot interfere between the different states. It is
this method that induces detection of any 1-word fault injection. Indeed, as every machine
word is seen as the concatenation of a single bit of n states and as any 1-bit injection in a
state would be detected, then up to 1-word fault injection could be detected here.

3 Error Compensation Issue
In this section we exhibit a potential fault attack against Friet [SBD+20]. Indeed, in
particular scenarios, we show that a fault injected can create an several errors that can
be compensated during the parity check so the error is not detected. The scenario has
small probability of success depending on the attack model ans some requirements about
implementation characteristics. We then present a countermeasure to prevent this kind
of attack in a strong model where the adversary can inject the fault of his choice at the
position and time he chooses.

3.1 Issue example
We bring out the vulnerabilities with an example, we next generalize it. We assume that
the attacker can add a fault to one value during the computation.

Let ε = 2128 − 1 as Friet manipulates 128-bit data. For the sake of simplicity, we call
a, b, c and d the inputs of the µ2 operation. For the same reason, a′, b′, c′ and d′ are
the outputs of the operation. During these operations, the parity equation followed is
d = a⊕ b⊕ c. This parity equation is checked to ensure that no fault is injected. We inject
the additive fault ε to the word c during the µ2 operation, after that the rotate word c is
added to a and to b before the addition. The fault injection is illustrated in Figure 3, with
the red line showing the modification.

When such a fault is injected, the output of two branches are modified: the second
b and the third c. We denote b′ and c′ the second and third words of the output of the
faulty µ2 operation. Then we have two equations:

b′ = b⊕((c⊕0xFF..FF) ≪ 80) = b⊕(c≪ 80)⊕(0xFF..FF ≪ 80) = b⊕(c≪ 80)⊕0xFF..FF
c′ = c⊕ 0xFF..FF.

At the output of the faulty µ2, we have (a′, b′, c′, d′) = (a, b⊕ (c≪ 80)⊕ 0xFF..FF, c⊕
0xFF..FF, d). Then the check subroutine does not detect the injected fault since the fault
on the two branches cancel out when applying a XOR operation on the values.

In the previous example, we saw that the fault 0xFF..FF is not detected, because it
remains unchanged with the shift by 80 bits (that is the shift of µ2). However, this is
not the only fault that is not detected with this shift. Indeed, all the fault that remain
unchanged with the 80-bit shift have this property. With the Algorithm 1 we can identify
all the valid fault that are undetected. Indeed, we begin with the word i = 1, we shift this
word by 80 bits and we test when the word come back to the initial value 1. The cycle
length found is 8 and the number of cycle is then word_length

cycle_length = 128
8 = 16. That means

6 Generalized Code-Abiding Countermeasure

Figure 3: Round of FRIET-P

that every fault composed by 8 same 16-bit concatenated words is not detected. Thus we
have 216 − 1 undetected faults (the value 0x00..00 is not a fault) over 2128 different faults.
In terms of probability, we have a probability around 2−112 to have an undetected fault.
As this probability is very tiny then with some random faults it difficult to identify such a
weakness. Moreover, the undetected fault is a 128-bit injection and when the registers are
strictly smaller than 128-bit long, then the necessary fault would affect two registers so
two faults would be needed. This constraint places the error outside of the study.

Algorithm 1 Find the length of a cycle
Require: Size of the shift (here 80)
Ensure: Length of a cycle (how many shifts to recover the former value)
i← 1
tcycle ← 1
while (i≪ 80)%128 6= 1 do

tcycle ← tcycle + 1
i← (i≪ 80)%128

return tcycle

The same analysis can be done for µ1, it is easy to see that the only undetected
fault, is the all 1 fault. For the χ the bitwise and between two branches make the fault
non-detection probabilistic in function of the data in the second branch.

Pierre-Antoine TISSOT, Lilian BOSSUET, Vincent GROSSO 7

3.2 Countermeasures
We assume that the registers are wide enough to ensure that the undetected faults are
still in the limits of the study. An obvious solution to this issue is to increase the cycle
length to limit the number of undetected faults. With a shift of 1 bit, the cycle length is
maximum with a value of 128. Indeed, only the words composed by 128 same 1-bit words
are undetected. However, the fault 0xFF..FF remains undetected (0x00..00 is still not a
fault) and we have to modify the former operation to implement our solution.

Another solution must be found to detect all the faults without changing the crypto-
graphic primitives of the cipher. We copy every variable used more than once and check if
the copies are equal. A Boolean flag is used to express the error detection (flag gets
the value 0 when an error is detected). With this principle, any fault injected during an
operation only affects one copy and is detected before using the copies. The following
Algorithm 3 presents the copies and the checks on the operation µ2 of the FRIET-P round
and shows the overcost of this solution in comparison with the classical FRIET-P presented
in Algorithm 2.

Algorithm 2 Classical µ2 operation of the FRIET-P round
Require: Four 128-bit words a, b, c and d
Ensure: Four 128-bit words a′, b′, c′ and d′ computed by the original µ2 operation
a′ ← a⊕ (c≪ 80)
b′ ← b⊕ (c≪ 80)
c′ ← c
d′ ← d
return(a′, b′, c′, d′)

Algorithm 3 Protected µ2 operation of the FRIET-P round
Require: Four 128-bit words a, b, c and d
Ensure: Four 128-bit words a′, b′, c′ and d′ computed by the protected µ2 operation
c0 ← c
c1 ← c
c2 ← c
flag← flag & (c0 == c1) & (c0 == c2)
a′ ← a⊕ (c0 ≪ 80)
b′ ← b⊕ (c1 ≪ 80)
c′ ← c2
d′ ← d
return(a′, b′, c′, d′)

The overcost of the countermeasure lies on the three copies of the value c and the
comparison of these three copies. This solution is used in the rest of the paper to avoid
undetected fault injection.

4 Code Abiding on Existing Cipher
In this section, we present a generic method to apply code-abiding countermeasure to
word oriented block ciphers and illustrate this technique on LED cipher [GPPR11]. Word-
oriented ciphers are often implemented with tables (S-boxes for the substitution layer and
multiplicative tables for the diffusion layer) and with XOR operation on words in the same
column. We then need to consider error detection code at word, column and state level.

8 Generalized Code-Abiding Countermeasure

The basic code is defined at word level and is simply extended to the column and state
level. Indeed, the columns and the state are only a concatenation of the words. Thus if we
have a code C of parameters [n, k, d] at word level, the concatenation of l word is a code
C′ of parameters [ln, lk, d] at column level.

The principle of code abiding protection is to apply permutation on different codes.
Thus we have two cases if we apply always permutation on full state then either we are
in the code and stay in the code or we are not in the code and stay outside the code.
Since we target only 1 fault injection we can at most change once of set and due to our
construction, any single fault injection forces to change from a word of the code to a word
outside the code. The last property is obtain thanks to bitslice representation and check
of non-modification when we use the same variable in different place. (Note that we can
hope for security, and fault detection, for multiple random fault with high probability,
thanks to parallelism we use). We next present in more details the adaptation made for
each operation.

4.1 State modification
Let S be the 64-bit state of the unprotected LED cipher. In order to detect fault, we need
to add a redundant part. In our case we select the 5-bit parity check code. Thus we need
to add a parity bit for each 4-bit nibble of the state. Indeed, if we denote Si the ith bit of
S, we have: S64+i = S4×i⊕S4×i+1⊕S4×i+2⊕S4×i+3, where S4×i, S4×i+1, S4×i+2, S4×i+3
are the bits of the nibble i. Eventually, we have a 80-bit state composed of 64 data bits
and 16 parity bits.

In the Section 2, we presented the bitslice version of LED. This is the version that is
used in this work, and we thus have to add the parity property by adding 16 registers.
The Figure 4 illustrates this step with in blue a register of the machine, in red the data
bits of a state and in pink the parity bits of the red state. The code abiding notion is
more bit-oriented than word-oriented and then the bitslice approach allows to use the code
abiding notion on a classical word-oriented cipher.

Figure 4: State after Bitslice and Parity transformations.

These transformation functions are summarized in the following Algorithms 4 and 5.

4.2 Key and Constant
We assume that the key and the constant are stored in an encoded manner.

We copy the key and the constant at the beginning of the computation and use the
copy for the all computation at the end we check that the copy used stayed unchanged.
Thus any charge of the key during the encryption is detected. Since the attacker can only

Pierre-Antoine TISSOT, Lilian BOSSUET, Vincent GROSSO 9

Algorithm 4 State S transformed into its bitslice version.
Require: State S
Ensure: State S in its bitslice version
for j in range(64) do

Sji ← Sij

return S

Algorithm 5 Parity bits added to the bitslice state S.
Require: Bitslice state S
Ensure: State S with parity bits
for i in range(16) do

S64+i ← S4×i ⊕ S4×i+1 ⊕ S4×i+2 ⊕ S4×i+3

return S

inject one fault, modification of the key is detected. An adversary that modifies the key
may inject fault at each key addition. However by using copy and checking at the end and
thanks to the absence of key schedule in LED-64, the attacker cannot use this method for
multiple fault injection.

The only method should be to modify the stored key. However, LED is known for
resistance against related key attacks and thus no exploitable information can be obtained
by the attacker.

If a fault is injected on the key, the XOR operation with the state propagates the error
on the state until the parity check of the state.

4.3 AddConstant
We calculate the constant presented in Section 2. This constant is a 64-bit value that we
transform into 80 n-bits values (bitslice + parity transformations) that are computed to
the state using XOR operation. If n encryptions are performed in parallel, the constant
must fit the n-bit length of the registers, then the 80 bits have to be duplicated n times.
This is illustrated in Algorithm 6 (0xFF..FF is composed by n

4 F).

Algorithm 6 Constant c bitsliced and duplicated.
Require: 64-bit constant c
Ensure: 80 n-bit (with duplication of the bit) constants ci with parity and bitslice

transformations.
for i in range(64) do

ci ← ((c≫ (63− i)) & 1)× 0xFF..FF
return ci

If a fault is injected on the constant, the error is propagated on the state until the
check parity function.

4.4 ShiftRows
This function is the same operation as the former ShiftRows operation. The parity bits
are shifted among the nibble from which they have been computed. The bit S64+i is
shifted i

4 bits to the left. This is illustrated in Figure 5. During this operation, a fault
can be injected on the state and stays on it until its detection. Moreover, as the state
is only shifted, its value remains the same, then a fault injected before the operation is
propagated on the output.

10 Generalized Code-Abiding Countermeasure

Figure 5: ShiftRows on the bitslice parity state

4.5 SubCells
The substitute operation brings confusion and non linearity to encryption. It is then a
critical function of the block cipher construction. The extension from the code C to the
code C′ requires to represent the 4-bit S-box by a 5-bit S-box, and this projection brings a
choice of the 5-bit S-box.

We present in section 5 a way to construct the protected S-box. Here we present the
results on the PRESENT S-box represented by the Table 2. But we use an alternative form
of the S-box composed only by logical gates, the Algebraic Normal Form. This form gives
5 equations where xi is the ith bit of the input and yi the ith bit of the output (x0..x3 are
the data bits and x4 is the parity bit).
y0 = x3x2x1 ⊕ x3x2x0 ⊕ x3x1x0 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x0 ⊕ 1
y1 = x3x2x0 ⊕ x3x2 ⊕ x3x1x0 ⊕ x3x0 ⊕ x2x0 ⊕ x1 ⊕ x0 ⊕ 1
y2 = x3x2x1 ⊕ x3x2x0 ⊕ x3x1x0 ⊕ x2x0 ⊕ x2 ⊕ x1x0 ⊕ x0
y3 = x4x3x2x1x0 ⊕ x4x3x1x0 ⊕ x3x2x1x0 ⊕ x3x1x0 ⊕ x3 ⊕ x2x1 ⊕ x1 ⊕ x0
y4 = x4x3x2x1x0⊕x4x3x1x0⊕x4⊕x3x2x1x0⊕x3x2x0⊕x3x2⊕x3x0⊕x3⊕x2⊕x1x0⊕x1⊕x0

This function is presented in Algorithm 7. We can denote the copies of the values used
more than once to avoid error compensation presented in Section 3, and as the bit x4
is used only in the last two equations, this bit is copied only twice. Indeed, the output
S4×i+m only lies on the values xm.. then a fault injected on a copy only affect one output,
and the parity characteristic allows the error detection.

Algorithm 7 SubCells function.
Require: State S, i, flag
Ensure: State S after the SubCells operation and the flag detection flag
for j in range(5) do

xj0 ← S4×i+0
xj1 ← S4×i+1
xj2 ← S4×i+2
xj3 ← S4×i+3
if j > 2 then

xj4 ← S4+i

for j in range(5) do
flag← flag & (x0j == x1j) & (x0j == x2j) & (x0j == x3j) & (x0j == x4j)

S4×i+0 ← x03x02x01 ⊕ x03x02x00 ⊕ x03x01x00 ⊕ x03 ⊕ x02x01 ⊕ x02 ⊕ x00 ⊕ 1
S4×i+1 ← x13x12x10 ⊕ x13x12 ⊕ x13x11x10 ⊕ x13x10 ⊕ x12x10 ⊕ x11 ⊕ x10 ⊕ 1
S4×i+2 ← x23x22x21 ⊕ x23x22x20 ⊕ x23x21x20 ⊕ x22x20 ⊕ x22 ⊕ x21x20 ⊕ x20
S×i+3 ← x34x33x32x31x30 ⊕ x34x33x31x30 ⊕ x33x32x31x30 ⊕ x33x31x30 ⊕ x33 ⊕ x32x31 ⊕
x31 ⊕ x30
S64+i ← x44x43x42x41x40 ⊕ x44x43x41x40 ⊕ x44 ⊕ x43x42x41x40 ⊕ x43x42x40 ⊕ x43x42 ⊕
x43x40 ⊕ x43 ⊕ x42 ⊕ x41x40 ⊕ x41 ⊕ x40

If a fault is injected before or during the function, the separation of the codes in the

Pierre-Antoine TISSOT, Lilian BOSSUET, Vincent GROSSO 11

S-box representation keeps the word out of the code C and the fault is propagated into the
space.

4.6 MixColumnsSerial
This operation is composed by the four post-multiplications with the matrix A (see
Section 2). The state is decomposed into 4 columns of 4 5-bit nibbles each. These nibbles
are the 4-bit data and the parity bit associated. In our operation, only a multiplication by
2 is used (a multiplication by 4 is just two multiplications by 2). The Algorithm 8 show
the multiplication by 2 operation. This operation is a shift of the bits and a XOR with
the LSB of the data word on the second bit of the nibble. The computation on the parity
bit is thus only a XOR with this LSB.

The Algorithm 9 presents the state divided into columns and the multiplication with
the matrix A. Same as in the SubCells function, we create a copy of each element used
more than once to avoid a future error compensation.

Algorithm 8 Multiplication by 2.
Require: Nibble nibble
Ensure: Nibble nibble × 2
function mc2(nibble)

nib30 ← nibble[3]
nib31 ← nibble[3]
nib32 ← nibble[3]

flag← flag & (nib30 == nib31) & (nib30 == nib32)

nibble[0], nibble[1], nibble[2], nibble[3], nibble[4]← nib30, nibble[0]⊕ nib31, nibble[1],
nibble[2], nibble[4]⊕ nib32

With the same observations than the previous operations, if a fault is injected before or
during the MixColumnsSerial operation, this error is propagated through the operation
on the state.

5 5-bit Representation
In the protected version of LED, the SubCells function uses a 5-bit representation of the
PRESENT S-box. This section presents how to create a 5-bit representation from a 4-bit
permutation and which representation is the best in terms of cost optimization.

5.1 Score function
In the last section, the SubCells function requires a representation on 5 bits of the 4-bit
PRESENT. The former 4-bit S-box must remain the same with the parity bit added at the
end of the words. Indeed, the 5-bit representation is already half filled with the words with
an even parity (see Table 1). Then we have 1616 candidates to represent a 4-bit S-box.
We must find a way to compare one candidate from another.

First, we only consider the S-boxes that correspond to permutations (each output has
one and only one related input). Indeed, the parity code used is the 5-bit parity code
C = [5, 4, 2] but as we want to consider this code at the state level, the resulting code
C′ = [80, 64, 2] is selected. C′ is only a concatenation of 16 codes C. This concatenation
brings the constrains of the permutations on the S-boxes.

12 Generalized Code-Abiding Countermeasure

Algorithm 9 MixColumnsSerial function.
Require: Column col composed by five 4-bit nibbles
Ensure: Column col composed by five 4-bit nibbles after post-multiply with the matrix
M
function MixSingleColumn(col)

nibble[0]← [col[0], col[1], col[2], col[3], col[16]]
nibble[1]← [col[4], col[5], col[6], col[7], col[17]]
nibble[2]← [col[8], col[9], col[10], col[11], col[18]]
nibble[3]← [col[12], col[13], col[14], col[15], col[19]]
for i in range(4) do

nibble[0], nibble[1], nibble[2], nibble[3] ← nibble[1], nibble[2], nibble[3],
mc2(mc2(nibble[0]))⊕ nibble[1]⊕ mc2(nibble[2])⊕ mc2(nibble[3])

Require: State RS
Ensure: State RS after the MixColumnsSerial operation
function MixColumnsSerial(RS)

col0 = [RS[0], RS[1], RS[2], RS[3], RS[16], RS[17], RS[18], RS[19], RS[32], RS[33],
RS[34], RS[35], RS[48], RS[49], RS[50], RS[51], RS[64], RS[68], RS[72], RS[76]]
col1 = [RS[4], RS[5], RS[6], RS[7], RS[20], RS[21], RS[22], RS[23], RS[36], RS[37],
RS[38], RS[39], RS[52], RS[53], RS[54], RS[55], RS[65], RS[69], RS[73], RS[77]]
col2 = [RS[8], RS[9], RS[10], RS[11], RS[24], RS[25], RS[26], RS[27], RS[40], RS[41],
RS[42], RS[43], RS[56], RS[57], RS[58], RS[59], RS[66], RS[70], RS[74], RS[78]]
col3 = [RS[12], RS[13], RS[14], RS[15], RS[28], RS[29], RS[30], RS[31], RS[44], RS[45],
RS[46], RS[47], RS[60], RS[61], RS[62], RS[63], RS[67], RS[71], RS[75], RS[79]]

MixSingleColumn(col0)
MixSingleColumn(col1)
MixSingleColumn(col2)
MixSingleColumn(col3)

Pierre-Antoine TISSOT, Lilian BOSSUET, Vincent GROSSO 13

To compare the candidates, we must give a score to the S-boxes and select the best
score among the candidates. In this work, a focus on the implementation cost is realized.
Then, the score of a candidate is the number of logic gates needed to construct the S-box.
The Algebraic Normal From (ANF) of the S-box is used to count the number of AND and
XOR gates. With the score function presented in Algorithm 10, the best representation on
5 bits is the S-box with the lowest number of logical gates. The next subsection is the
application of the score function to every representation on 5 bits of a 4-bit S-box.

Table 1: 5-bit S-box derived from PRESENT to fill.

x 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
S′[x] 18 0A . . . 0C 17 12 00 . . . 14 1B
x 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

S′[x] . . . 06 1D . . . 1E 11 09 0F . . . 03 05 . . .

Algorithm 10 Score of a S-box S
Require: S-box S
Ensure: Score of S (number of logical gates in the ANF)
function score(S)

anf ← ANF(S)
return count(&) + count(∧)

5.2 Exhaustive list
To fill the 5-bit S-box, a candidate must be selected among all the 16! permutations. The
obvious way to choose the best S-box is to score every candidate and to keep the one with
the lowest score. This process is summarized in Algorithm 11 and is the most precise
way to find the lowest score. Indeed, we would have the score of each function and then
select the best one according to the criteria of implementation cost. However, it requires
to browse all of the 16! permutations, and this can be a very long task. A new solution
based on the construction of the 5-bit representation can be as efficient and very easier to
achieve.

Algorithm 11 Selection of the S-box with the lowest number of gates
Require: List of all the 5-bit permutations derived from a 4-bit S-box PermutationLIST
Ensure: Permutation with the lowest score and its score
function score_selection(PermutationLIST)

low_score← 1000
for S ∈ PermutationLIST do

s← score(S)
if s < low_score then

low_score← s
selected← S

return low_score, selected

5.3 Construction
A new selection method is introduced with a construction approach instead of an exhaustive
approach. In this paragraph, an even word denotes a word that verifies the parity
characteristic and an odd word a word which does not. Every even word is only 1 bit away

14 Generalized Code-Abiding Countermeasure

from an odd word. The LSB is used to separate an even from an odd word (0x18 and
0x19 are only 1 bit away from each other, and this bit is the LSB). Each even input is
substituted by an even output and each odd input is substituted by an odd output. The
5-bit S-box is constructed with the following rule: an odd input is substituted by the odd
word 1-bit away from the even output linked to the even input 1-bit away from the odd
input. Indeed, each even pair of input/output have a 1-bit away odd pair of input/output.
This construction is explained in the Algorithm 12. With this method, the representation
of PRESENT is shown in Table 2 and consists of 62 logical gates. Several S-Boxes with
good cryptographic properties were tested and none has an ANF constructed with less
than 94 logical gates (the biggest one was created with 124 logical gates). We now have to
test the robustness of the cipher.

Algorithm 12 Construction of a code abiding 5-bit representation from a 4-bit S-box.
Require: S-box S half-filled
Ensure: S-box S full-filled
for i in range(32) do

if i is odd then
S[i]← S[i⊕ 1]⊕ 1

Table 2: 5-bit code abiding representation constructed from PRESENT

x 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
S′[x] 18 19 0B 0A 0D 0C 17 16 13 12 00 01 14 15 1A 1B
x 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

S′[x] 07 06 1D 1C 1E 1F 10 11 09 08 0E 0F 02 03 05 04

6 Experimental results
This section presents the various tests done on the protected LED to determine its
robustness against 1-bit fault injection.

6.1 Scenarios
To test the robustness of the protected LED cipher, four scenarios are tested. The detection
of a fault injected simply sets a variable flag to 0, but other actions can be done when
an error is detected. During the tests, the fault injection is simulated, so there is no case
where a fault does not create an error.

Scenario 1 A bit of the state is toggled at a random place of the state and at a random
moment of the encryption. This bit-flip induces a change on the parity characteristic of the
nibble where it belongs. With the code abiding properties of the functions used during the
encryption, the error persists until the parity check function and thus is always detected.

Scenario 2 A bit of the key or the constant of the AddConstant function is toggled at a
random place and a random round of the encryption. As the XOR operation is a code
abiding operation, the fault is transmitted from the constant to the state and persists until
the parity check. The error is thus always detected.

Pierre-Antoine TISSOT, Lilian BOSSUET, Vincent GROSSO 15

Scenario 3 A fault is injected on a data used more than once during a function at a
random place and a random round of the encryption. The copies done before the use of the
data are then not equal and the test sets the flag to 0. The fault is thus always detected.

In all the scenarios, the fault is always detected, then the code abiding solution is
robust against 1-bit fault attack.

In these tests, 100 000 faults have been injected for each scenarios and all the fault
have been detected. The results are presented in Table 3.

Table 3: Robustness results of the secured implementation.

Fault injections Scenario 1 Scenario 2 Scenario 3
100 000 100% detected 100% detected 100% detected

In our work, we just decide to raise a flag to show that the fault is detected. It is
the simplest action that can be done when a fault is detected but this solution has some
drawbacks: it shows that an error is detected and if a fault is injected on this precise flag
bit, then no matter if an other error is injected into the state, it is not detected. However,
several other decisions can be taken according to the error detection:

• No cipher output. If an error is detected, the algorithm does not display the
faulty ciphertext

• Zero value output. If an error is detected, the ciphertext displayed is 0.

• Random cipher output. If an error is detected, the ciphertext displayed is totally
randomized.

All of these solutions remove the link between the ciphertext and the key, as the ciphertext,
if it is displayed, is created without using the key. However, the two first schemes allow
the adversary to use a statistical analysis. Indeed, a method to statistically analyze the
effectiveness of the fault attack can be applied to recover the key [DEK+18].

6.2 Overcost of the countermeasure
Adding the parity scheme to the LED cipher has a cost. Indeed, we convert an encryption
algorithm working on 4-bit words to an encryption algorithm working on 5-bit words.
Thus, the new round functions have a bigger price than the former ones. Moreover, our n
states are 80-bit long instead of 64-bit long (we encrypt n plaintexts in parallel, and in
the tests, we fix n = 64). Thus, our implementation takes a bigger place in the memory
and one secure encryption takes longer than an unprotected encryption. We differentiate
several implementations: the classical implementation refers to the soft implementation
using lookup tables; the bitslice is the bitslice version of LED without any protection;
the code abiding implementation is the addition of the parity bit during the encryption;
and the code abiding + copies implementation combines the code abiding properties with
copies of values used more than once. The cost can be summarized in the Table 4. The
compiler used was the GNU GCC Compiler without any optimization to be closer to
a physical implementation. The CPU used is the Intel Core i5 CPU. The results are
presented as a ratio to have a better understanding of the overcost of countermeasures
from one implementation to another. The results a must be put into perspective as the
classical implementation only one plaintext at the time when the other implementations
can encrypt up to 64 plaintexts at the same time (on a 64-bit length machine). The
overcost of the code abiding countermeasure is then better than expected. Indeed, in terms
of time overcost, a 25% rise was expected (25% more bits are computed) when an only
12% is measured. However, with the copies countermeasure, an overcost of 79% is reached.

16 Generalized Code-Abiding Countermeasure

Table 4: Implementation results and cost comparison of the encryptions.

Ratio classical Ratio bitslice Ratio code abiding
classical 1 - -
bitslice 1,83 1 -

code abiding 2,04 1,12 1,00
CA + copies 3,28 1,79 1,6

Moreover, another comparison on each round function allows to precisely understand where
the countermeasure has the biggest impact (see Table 5). The heaviest functions from the
classical implementation to the other ones are clearly the subCells as the function does
not use any lookup table and the addConstant as the constant used must be transofmred
into a bitslice and parity constant. However, as mentioned before, it is more interesting to
compare the bitslice versions as they encrypt the same number of plaintexts and are based
on the same principles. With these comparisons, the biggest overcost is the mixColumns
function.

Table 5: Implementation results and cost comparison of the round functions.

Ratio classical bitslice CA CA + copies
addConstant 6,6 8,6 8,6

subCells 6,0 7,2 9,6
shiftRows 0,8 0,9 0,9

mixColumns 1,9 2,1 3,6

Ratio bitslice CA CA + copies
addConstant 1,3 1,3

subCells 1,2 1,6
shiftRows 1,2 1,2

mixColumns 1,1 1,9

Ratio CA CA + copies
addConstant 1,0

subCells 1,3
shiftRows 1,0

mixColumns 1,7

7 Conclusion
The principle used in this work to prevent fault injections is to detect them using an error
detecting code, the parity bit code. This code relies on a redundancy of the information
contained in a word. The parity bit code used is the 5-bit parity code, with 4 data bits
and 1 parity bit. This method allows to detect a 1-bit fault injection on a value during an
operation.

This work lightens an issue induced by an error compensation. Indeed, depending
on the operation performed, an error injected on a value can be propagated into several
computed outputs and with the parity bit code, this error may compensate with its
multiple occurrences. The first step is then to present the conditions on the fault and on
the operation to reach the compensation, and then to propose a countermeasure to this
error compensation that lies on copying the values used more than once and check for
equality of the copies.

Pierre-Antoine TISSOT, Lilian BOSSUET, Vincent GROSSO 17

In addition to this first measure, a method is presented to apply code-abiding notion
to word-oriented ciphers. An example on the LED cipher shows the transformations of
the state and the round functions to include the parity bit code to the operations. A
protected version of the existing LED cipher is then created. Its robustness against 1-bit
fault injection is tested and the results validate its security. Moreover with the bitslice
method, the robustness reaches 1-word fault injection detection.

The next step is to extend this method to a generic one to include code abiding to
new cryptographic primitives. A critical operation is the S-box used and the projection
of this S-box into a larger space to add the parity bit brings many candidates. A way to
differentiate them is to give them a score based on their implementation cost and select
the cheapest S-box.

Eventually, future works could focus on applying the code-abiding method to a larger
cipher such as AES rather than lightweight ciphers, and evaluate the overcost of the
countermeasure compared to other error detecting solutions. Moreover, 1-bit error detection
has its limitations and a work on multiple faults detection and correction would be
interesting.

References
[BBB+21] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Anupam Chattopadhyay, and

Vinay B. Y. Kumar. Feeding three birds with one scone: A generic duplication
based countermeasure to fault attacks. In Design, Automation & Test in
Europe Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5,
2021, pages 561–564. IEEE, 2021.

[BBK+02] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, and Vincenzo
Piuri. A parity code based fault detection for an implementation of the
advanced encryption standard. In 17th IEEE International Symposium on
Defect and Fault-Tolerance in VLSI Systems (DFT 2002), 6-8 November 2002,
Vancouver, BC, Canada, Proceedings, pages 51–59. IEEE Computer Society,
2002.

[BHL21] Jakub Breier, Xiaolu Hou, and Yang Liu. On evaluating fault resilient encoding
schemes in software. IEEE Trans. Dependable Secur. Comput., 18(3):1065–1079,
2021.

[BLL15] Zhenzhen Bao, Peng Luo, and Dongdai Lin. Bitsliced implementations of the
prince, LED and RECTANGLE block ciphers on AVR 8-bit microcontrollers.
In Sihan Qing, Eiji Okamoto, Kwangjo Kim, and Dongmei Liu, editors, Infor-
mation and Communications Security - 17th International Conference, ICICS
2015, Beijing, China, December 9-11, 2015, Revised Selected Papers, volume
9543 of Lecture Notes in Computer Science, pages 18–36. Springer, 2015.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer, 1997.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: exploiting ineffective fault inductions
on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):547–572, 2018.

18 Generalized Code-Abiding Countermeasure

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of
Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KMD+20] Pantea Kiaei, Darius Mercadier, Pierre-Évariste Dagand, Karine Heydemann,
and Patrick Schaumont. Custom instruction support for modular defense
against side-channel and fault attacks. In Guido Marco Bertoni and Francesco
Regazzoni, editors, Constructive Side-Channel Analysis and Secure Design -
11th International Workshop, COSADE 2020, Lugano, Switzerland, April 1-3,
2020, Revised Selected Papers, volume 12244 of Lecture Notes in Computer
Science, pages 221–253. Springer, 2020.

[LCFS17] Benjamin Lac, Anne Canteaut, Jacques J. A. Fournier, and Renaud Sirdey.
Thwarting fault attacks using the internal redundancy countermeasure (IRC).
IACR Cryptol. ePrint Arch., page 910, 2017.

[LJK21] Seungkwang Lee, Nam-Su Jho, and Myungchul Kim. Table redundancy method
for protecting against fault attacks. IEEE Access, 9:92214–92223, 2021.

[PYGS16] Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schau-
mont. Lightweight fault attack resistance in software using intra-instruction
redundancy. In Roberto Avanzi and Howard M. Heys, editors, Selected Areas
in Cryptography - SAC 2016 - 23rd International Conference, St. John’s, NL,
Canada, August 10-12, 2016, Revised Selected Papers, volume 10532 of Lecture
Notes in Computer Science, pages 231–244. Springer, 2016.

[REB+08] Francesco Regazzoni, Thomas Eisenbarth, Luca Breveglieri, Paolo Ienne, and
Israel Koren. Can knowledge regarding the presence of countermeasures against
fault attacks simplify power attacks on cryptographic devices? In Cristiana
Bolchini, Yong-Bin Kim, Dimitris Gizopoulos, and Mohammad Tehranipoor,
editors, 23rd IEEE International Symposium on Defect and Fault-Tolerance
in VLSI Systems (DFT 2008), 1-3 October 2008, Boston, MA, USA, pages
202–210. IEEE Computer Society, 2008.

[SBD+20] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro Maat Costa
Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and Niels Samwel.
Friet: An authenticated encryption scheme with built-in fault detection. In
Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part I, volume 12105 of Lecture Notes in Computer Science, pages
581–611. Springer, 2020.

	Introduction
	Related Work
	Our contributions

	Background
	Error Detection
	Code abiding
	LED Cipher

	Error Compensation Issue
	Issue example
	Countermeasures

	Code Abiding on Existing Cipher
	State modification
	Key and Constant
	AddConstant
	ShiftRows
	SubCells
	MixColumnsSerial

	5-bit Representation
	Score function
	Exhaustive list
	Construction

	Experimental results
	Scenarios
	Overcost of the countermeasure

	Conclusion

