STRUCTURE OF HYPERBOLIC POLYNOMIAL AUTOMORPHISMS
OF C?> WITH DISCONNECTED JULIA SETS

ROMAIN DUJARDIN AND MIKHAIL LYUBICH

ABSTRACT. For a hyperbolic polynomial automorphism of C? with a disconnected
Julia set, and under a mild dissipativity condition, we give a topological description of
the components of the Julia set. Namely, there are finitely many “quasi-solenoids” that
govern the asymptotic behavior of the orbits of all non-trivial components. This can
be viewed as a refined Spectral Decomposition for a hyperbolic map, as well as a two-
dimensional version of the (generalized) Branner-Hubbard theory in one-dimensional
polynomial dynamics. An important geometric ingredient of the theory is a John-like
property of the Julia set in the unstable leaves.
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1. INTRODUCTION

1.1. Preamble on hyperbolic dynamics. The classical Spectral Decomposition of a
hyperbolic (Axiom A) real diffeomorphism f of a compact manifold (developed by Smale,
Anosov, Sinai, Bowen, and others) provides us with a rather complete topological picture
of its dynamics. Namely, the non-wandering set Q(f) is decomposed into finitely many
basic sets, each of which modeled on an irreducible Markov chain. Among these basic

sets there are several attractors that govern the asymptotic behavior of generic points of
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STRUCTURE OF HYPERBOLIC MAPS 2

the manifold. This picture has become a prototype for numerous other settings, includ-
ing one-dimensional, non-invertible, holomorphic, partially or non-uniformly hyperbolic
dynamical systems.

In the context of complex polynomial automorphisms of C2, hyperbolic maps arise
naturally as perturbations of one-dimensional hyperbolic polynomials. They were first
studied in the late 1980s by Hubbard and Oberste-Vorth [24], 25] who showed that their
topological structure can be fully described in terms of the original one-dimensional
maps, whose Julia set and attracting cycles get perturbed to the basic sets of f (see also
Fornaess-Sibony [19]).

Computer experiments indicate that, though hyperbolicity is not a prevalent phenom-
enon in dimension two, there should exist still plenty of non-perturbative examples. The
first such candidate (a quadratic Hénon map with two co-existing attracting cycles) was
proposed by Hubbard; it was further investigated by Oliva in his thesis [38]. However, it
is a challenging problem, which requires computer assistance, to prove the hyperbolicity
of a particular example, and this one still remains unconfirmed. Some time later, Ishii
justified the hyperbolicity of several other non-perturbative Hénon maps: see [26], 27, 28]
(of course, along with each such example comes an open set of hyperbolic parameters).

A systematic theory of hyperbolic polynomial automorphisms of C? was launched by
Bedford and Smillie in the early 1990’s , relying notably on methods from Pluripotential
Theory. In particular, they showed in [3] that any such a map only has one non-trivial
basic set, its Julia set J(f), while all others are just attracting cycles. Further combi-
natorial study of hyperbolic Hénon maps was carried out by Ishii and Smillie [29].

In this paper we will reveal a finer structure of the Julia set, related to its connected
components, that leads to a finer “spectral decomposition”. Namely, under mild dissipa-
tivity assumptions, we will show that there are finitely many quasi-solenoids that govern
the asymptotic behavior of all non-trivial components. Some of these quasi-solenoids
are tame (i.e. lie on the boundary of the basins of some attracting cycles), while others
might be queer (we do not know whether they actually exist).

Let us conclude this preamble by suggesting a potentially important role that hyper-
bolic maps may play in the Hénon story. They are not only interesting simple models for
the general non-uniformly hyperbolic situation, but they may also be seen as “germs” for
a Renormalization Theory which would lead to self-similarity features of the parameter
spaces. In this respect, renormalizing hyperbolic Hénon maps around quasi-solenoids
would be the beginning of this story.

1.2. One-dimensional prototype. Understanding the topological structure of the Ju-
lia set is one of the most basic problems in holomorphic dynamics. For polynomials in
one variable, Fatou and Julia proved that the connectivity properties of the Julia set
are dictated by the dynamical behavior of critical points. When the critical points do
not escape, the Julia set J is connected; on the contrary, if all critical points do escape,
J is a Cantor set. If J is connected and locally connected, the theory of external rays
of Douady and Hubbard [13] and the theory of geodesic laminations of Thurston [44]
give a topological model for the Julia set as the quotient of the circle by an equivalence
relation which records the landing pattern of external rays. When the Julia set of a
polynomial is disconnected, it admits uncountably many components, and one challenge
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is to characterize when a component is non-trivial (i.e. not a point) in terms of the
induced dynamics on the set of components. It turns out that this happens when and
only when this component is preperiodic to a component containing a critical point:
this is due to Branner and Hubbard [9] for cubic polynomials, and Qiu and Yin [41]
in the general case (based upon the Kahn-Lyubich machinery [30} [31]). Then one may
describe non-trivial periodic components by realizing them as Julia sets of connected
polynomial-like maps and using the Douady and Hubbard Straightening Theorem [14].

In the hyperbolic case, the above theory is much easier and had belonged to folklore
of the field:

Theorem 1.1. Let p be a hyperbolic polynomial in C, with a disconnected Julia set.
Then the filled Julia set K has uncountably many components, and only countably of
them are non-trivial. Any non-trivial component is preperiodic, and there are finitely
many periodic components, each of which containing an attracting periodic point.

Note that this is really a statement about polynomials: there are examples of hyper-
bolic rational maps on P! whose Julia sets are Cantor sets of circles [37].

1.3. Main result. In this article we address similar issues in the setting of polynomial
automorphisms of C2. Let f be a polynomial automorphism of C? with non-trivial
dynamics: by this we mean for instance that the algebraic degree of the iterates f” tend
to infinity (see below for more details on this). Its Julia set J = J; is the set of
points at which both (f™),=0 and (f~"),>0 are not locally normal. We also classically
denote by K™ (resp. K7), the set of points with bounded forward (resp. backward)
orbits, K = K* n K~ and J* = 0K*, so that J = J* n J~. The complex Jacobian
Jac f is a non-zero constant. Thus, replacing f by f~! if necessary, without loss of
generality we assume from now on that |Jac f| < 1.

In this context, the connected vs. disconnected dichotomy for the Julia set was studied
by Bedford and Smillie [6], who proved that the connectedness of J, or equivalently of
K, is equivalent to the non-existence of “unstable critical points”, which are defined
as tangencies between certain dynamically defined foliations. (Recall that f has no
critical point in the usual sense, but these unstable critical points play the same role as
escaping critical points in dimension one.) Bedford and Smillie also showed that when
J is connected, there is a well-defined family of external rays along unstable manifolds,
parameterized by a “solenoid at infinity”, which is the inverse limit of the dynamical
system defined by z — 2% on the unit circle.

To proceed further and try to extend the Douady-Hubbard description of the Julia
set in terms of the combinatorics of external rays, given our current state of knowledge,
we need to assume that f is uniformly hyperbolic. Recall from [3] that f is said to be
hyperbolic if J is a hyperbolic set, which must then be of saddle type. In this case, f
satisfies Smale’s Axiom A in C2, and the Fatou set is the union of finitely many basins
of attraction. (See [27] for an introductory account to this topic, which also discusses
some combinatorial/topological models for Julia sets.)

By using the convergence of unstable external rays, it was shown in [7] that if f
is hyperbolic and J is connected, then J can be described as a finite quotient of the
solenoid at infinity. A non-trivial consequence of the results of [5],[6] and [7] is that in
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this case f cannot be conservative, that is, |Jac f| < 1 (see [, Cor. A.3]; recall that
we assume |Jac f| < 1 here). An alternate argument for this fact was given by the
first-named author in [I5], where it is shown that a hyperbolic automorphism f with
connected Julia set must possess an attracting periodic point, so in particular |Jac f| < 1.
Surprisingly enough, the existence of an attracting point does not seem to follow easily
from the description of J as a quotient of the solenoid.

In this article we focus on the disconnected case. A motivating question is the following
conjecture from [15].

Conjecture 1.2. Let f be a dissipative and hyperbolic automorphism of C2, without
attracting points. Then J is a Cantor set.

Our main result is an essentially complete generalization of Theorem in two di-
mensions, under a mild dissipativity assumption.

Main Theorem. Let f be a hyperbolic polynomial automorphism of C?, with a discon-
nected Julia set, and such that |Jac f| < 1/deg f. Then there are uncountably many
components of J, which can be of three (mutually exclusive) types:

(1) point;
(2) leafwise bounded;
(3) or quasi-solenoid.

Quasi-solenoidal components are periodic and there are only finitely many of them. Any
component of type (2) is wandering and converges to a quasi-solenoidal one under for-
ward iteration. The components of K are classified accordingly.

Under an additional assumption (NDH) on the behavior of stable holonomy between
components, any quasi-solenoidal component of K contains an attracting periodic point.

Here deg f refers to the dynamical degree of f, which is the growth rate of algebraic
degree under iteration (see . By definition, a component of J is leafwise bounded if
it is a relatively bounded subset of some unstable manifold; this implies that its topol-
ogy is that of a full plane continuum, properly embedded in C2. A quasi-solenoid is a
connected component with local product structure, which is totally disconnected in the
stable direction and locally connected and leafwise unbounded in the unstable direction
(see Definition . Components of type (2) are analogous to strictly preperiodic com-
ponents in dimension 1; note however that by the local product structure of J there are
uncountably many of them. Countability is restored by saturating with semi-local stable
manifolds (see Theorem [5.20). The meaning of the (NDH) assumption will be explained
below.

1.4. Outline. Let us discuss some of the main ideas of the proof, which occupies the
most part of the paper. First, the assumption on the Jacobian is used to guarantee that
the slices of J (resp. K ) by stable manifolds are totally disconnected. It is reminiscent of
the stronger substantial dissipativity assumption |Jac f| < 1/(deg f)? used in [17, 34} 35].
We could indeed use substantial dissipativity and Wiman’s Theorem in the style of
these papers to achieve stable total disconnectivity. However, hyperbolicity allows for
a Hausdorff dimension calculation which gives a better bound on the Jacobian (see

Section .
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The key step of the finiteness property in the main theorem is an analysis of geometry
of the unstable slices of J and K. Using external rays, we first show in Section [3] that the
complement of K along unstable manifolds satisfies a weak version of the John property.
This property implies that the components of K n W" are locally connected, and that
locally there are only finitely many components of diameter bounded from below.

This finiteness is used to get a classification of semi-local components of J* and K.
By this we mean that we fix a large bidisk B (in adapted coordinates) in which J* and
K™ are vertical-like objects, and we look at components of J* N B (resp. Kt n B).
We prove that these semi-local components behave like components of J (resp. K) for
one-dimensional polynomials: only countably many of them are non-trivial, that is, not
reduced to vertical submanifolds, and any non-trivial such component is preperiodic.
Besides the finiteness induced by the John-like property, this relies on a key homogeneity
property of such a semi-local component: either all its unstable slices are “thin”, or all
of them are “thick”. To prove this thin-thick dichotomy we show that if a semi-local
component admits a thin unstable slice, then by a careful choice of B we can arrange
that the stable foliation of this semi-local component is transverse to dB. It follows that
this component has a global product structure in B (see Section [5| for details).

If C'is a non-trivial component of .J, it is easy to see that the w-limit set of C must be
contained in one of the finitely many thick semi-local components of J*. We show that
it must have local product structure, hence be a quasi-solenoidal component of J. The
main step is the following: for large m # n, by the expansion in the unstable direction,
the unstable slices of f(C) and f™(C') have a diameter bounded from below, so if z,, €
f™(C) is close to x,, € f™(C), by the finiteness given by the John-like property, f"(C)
and f™(C') must correspond one to the other under local stable holonomy. Furthermore,
such a quasi-solenoidal component must coincide with the limit set of its semi-local
component in JT, and the finiteness of the number of attractors follows (see Section @

To get a complete generalization of the one-dimensional situation, it remains to show
that such a quasi-solenoidal component must “enclose” some attracting periodic point.
Unfortunately, all our attempts towards this result stumbled over the following issue: if
x,y € J are such that y € W#(x), the stable holonomy induces a local homeomorphism
JaWp (x) = JnW (y). The point is that it might not be the case in general that this
local homeomorphism can be continued along paths in J nW*(x), even when J nW*(x)
is a relatively bounded subset of W*(x). (Compare with the Reeb phenomenon for
foliations, illustrated in Figure) This is a well-known difficulty in hyperbolic dynamics,
which was encountered for instance in the classification of Anosov diffeomorphisms (see
§8.1] for a short discussion). If this continuation property holds — this is the Non-
Divergence of Holonomy (NDH) property referred to in the main theorem— then we
can indeed conclude that non-trivial periodic components of K contain attracting orbits
(see Section |8} in particular Theorem . This yields in particular a conditional proof
of Conjecture Let us also note that a simple instance where the NDH property
holds is when the stable lamination of J* is transverse to 0B (for some choice of B), a
property which can be checked in practice on specific examples.

In the course of the paper, we also establish a number of complementary facts, which
do not enter into the proof of the main theorem: the existence of an external ray landing
at every point of J (see Theorem [3.4)); the structure of attracting basins (see § ; a
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simple topological model for the dynamics on Julia components (see § ; the topo-
logical transitivity of quasi-solenoids (see Theorem . In Appendix [A| we sketch the
construction of the core of a quasi-solenoidal component, which aims at describing its
topological structure.

Notes and acknowledgments. Some of these results were already announced at the
conference “Analytic Low-Dimensional Dynamics” in Toronto in June 2019. We are
grateful to Pierre Berger for pointing out Proposition to us. The second-named
author was partially supported by an NSF grant, Hagler and Clay Fellowships. Part of
this work was carried out during his visits of the Hagler Institute for Advanced Study at
Texas A&M, the Center of Theoretical Studies at ETH Ziirich, and MSRI at Berkeley.
We thank these institutions for their generous support.

2. PRELIMINARIES AND NOTATION

2.1. Vocabulary of complex Hénon maps. If B = D x D is a bidisk, we denote
by 0VB = 0D x D (resp. 0"B = D x dD) the vertical (resp. horizontal) boundary.
An object in B is horizontal if it intersects dB only in "B, and likewise for vertical
objects. A closed horizontal submanifold is a branched cover of finite degree over the
first projection.

Let us collect some standard facts and notation (see [21] 3, 2, [19]). If f is a polynomial
diffeomorphism of C? with non-trivial dynamics, then by making a polynomial change
of coordinates we may assume that f is a composition of complex Hénon mappings
(z,w) — (pi(z) + a;w, a;z). In particular deg(f™) = (deg f)" for every n = 0. We fix
such coordinates from now on. As it is customary in this area of research, we will often
abuse terminology and simply refer to f as a complex Hénon map. The degree of f is
d = []deg(p;) = 2 and the relation deg(f™) = d™ holds so that d coincides with the
so-called dynamical degree of f.

In these adapted coordinates, there exists R > 0 such that for the bidisk B :=
D(0, R)?, we have that f(B) "B (resp. f~(B) nB) is horizontally (resp. vertically) con-
tained in B and the points of 0”(B) (resp. ¢"(B) escape under forward (resp. backward)
iteration.

» K% is the set of points with bounded forward orbits under ff! and K = K+ n
K~. Note that KT is vertical in B and f(B n KT) < K*. Similarly, K~ is
horizontal and f'(Bn K~) c K.

» Jt = OK? are the forward and backward Julia sets. If f is dissipative then
K- =J".

» J=J" nJ is the Julia set.

Following [6], we say that f is unstably disconnected if for some (and hence any) saddle
periodic point p, W*(p) n K™ admits a compact component (relative to the topology
induced by the biholomorphism W"(p) ~ C), and unstably connected otherwise. If f
is unstably disconnected, then it admits an unstable transversal A", that is a relatively
compact domain in W*(p) which is a horizontal submanifold in B: indeed pick a bounded

Jordan domain U < W*¥(p) containing a compact component of W*(p) n K+ such that
oU n K™ = ¢ and iterate it forward.
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2.2. Hyperbolicity and local product structure. Throughout the paper we assume
that f is hyperbolic on J (hence Axiom A on C? by [3]), with hyperbolic splitting
TC?|; = E*@® E°. Then there exists a continuous Riemannian metric |-| on J and
constants s < 1 < u such that for any = € J, and any v € E*(z)\ {0}, |Df; - v| = u|v|
(resp. for any v € E*(x), |Df, -v| < s|v|). By [16], it is enough to assume that f is
hyperbolic on J*, where J* is the closure of saddle periodic points (and a posteriori one
deduces that J = J*).

In this situation the local stable and unstable manifolds of points of J have local
uniform geometry: there exists a uniform r > 0 such that for every xz € J, W*(x) (resp.
W#(x) is of size r at x, in the sense that it contains a graph of slope at most 1 over a
disk of radius r in E%(z) (resp. E®(x)). The reader is referred to [§, [I] for a detailed

study of this notion. We denote by W / “(x) the local stable/unstable manifold of radius
§ at x, which is by definition the component of W*/%(z) in B(z,5). When the precise

size does not matter, we simply denote them by I/Vlf)/cu Slightly reducing the expansion
constant u if necessary, given two points z,z’ in some local unstable manifold Wg(x),
there is a uniform constant C' such that d(f~"(z), f"(z")) < Cu™", for all n > 0.

There exists 6 > 0 and a neighborhood N of J such that the restriction to A of the
family local stable/unstable manifolds of radius 0 is a lamination, denoted by Wu/s The
Julia set has local product structure so there is a covering by topological bidisks @ (flow
boxes) such that the laminations W** are trivial in @Q and

J Q= (Wh(x) nJ) x (WH(x) nJ) = (Wi(z) nJ7) x (Wi(z) nJT).

It is shown in [3] that the family of global stable and unstable manifolds of points of
J also has a lamination structure, which will be denoted by W%/*. More precisely, in
the dissipative case, W* is a lamination of J* is laminated by stable manifolds and the
other hand, W" is a lamination of J~\ {ai,...,an}, where {ay,...,an} is the finite set
of attracting periodic points of f. No unstable leaf extends across an attracting point,
even as a singular analytic set: indeed an unstable leaf is biholomorphic to C, therefore
such an extension would yield a submanifold of C? biholomorphic to a (possibly singular)
copy of P!, which is impossible.

Under additional dissipativity assumptions, it was shown in [35] that the stable lam-
ination W?* in B can be extended to a C! foliation in some neighborhood of J*: see
Lemma [5.7] below.

Let us conclude this paragraph with a useful elementary result.

Lemma 2.1. If f is hyperbolic, every holomorphic disk contained in K™ is either con-
tained in the Fatou set or in the stable manifold of a point of J.

Proof. Indeed, if A is a disk contained in K+ then A is a Fatou disk, i.e. (f™|a)n>01s a
normal family. Now there are two possibilities: either A is contained in Int(K ™) hence in
the Fatou set, or it intersects J*. In the latter case, either A is contained in a stable leaf
or by [2, Lem. 6.4], A must have a transversal intersection with some unstable manifold,
so by the Inclination Lemma it is not a Fatou disk, which is a contradiction. O
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2.3. Affine structure. Global stable and unstable manifolds are uniformized by C, so
they admit a natural affine structure. Since any automorphism of C is affine, f acts
affinely on leaves. In particular there is a well defined notion of a round disk, which
is f-invariant. Likewise, the Euclidean distance is well-defined in the leaves, up to a
multiplicative constant.

For any = € J we choose a uniformization 1% : C — W"(x) such that ¢%(0) = z and
() (0)] =1

Lemma 2.2. The family of uniformizations (y¥)zes is continuous up to rotations, that
is, if xn, — x then (V3 ) is a normal family and its cluster values are of the form 1y (e').

Proof. The result follows from the continuity of the affine structure on the unstable
leaves (see Theorem [B.1)). O

It is unclear whether the assignment J 3 x — ¥ can be chosen to be continuous, that
is, if a consistent choice of rotation factor e can be made. This can be done locally
but there might be topological obstructions to extend the continuity to J. Notice that
the (¢%) provide a normalization for the leafwise Euclidean distance. The normalized
Euclidean distance on W*(z) will be denoted by d¥.. If C < W"(x), its diameter with
respect to d¥ will be denoted by Diam,. By Lemma dY varies continuously with x.
For R > 0 we let D¥(z, R) := ¢¥%(D(0, R)).

By construction, f is a uniformly expanding linear map in these affine coordinates,
that is f o ¥ = w;ﬁ(m)(/\g-), with [A%| = |df|gx|. By hyperbolicity there is a positive
constant C' such that for every x € J,

n—1
q Afi)| = Cu”

(1)

where u > 1 was defined in

By the Koebe Distortion Theorem there exists a uniform r > 0 such that the D*(z, )
are contained in the flow boxes (see e.g. [8, Lemma 3.7]). By the local bounded geometry
of the leaves, the distance induced by the affine structure on the D%(x,r) is equivalent
to that induced by the ambient Hermitian structure. Then, iterating finitely many times
we can promote this result on the D"(z, R) for every given R > 0.

All the above discussion holds for stable manifolds, with superscripts u replaced by s.

2.4. Connected and semi-local components. For every x € J (or more generally
z € KT nB) we denote by Kz () the connected component of z in K™ n B, which is a
vertical subset of B. It follows from the Hénon-like property that f(Kg (z)) < Kg (f(z)),
thus f induces a (non-invertible) dynamical system on the set of connected components
of K™ n B. The same discussion applies to components of J* nB. More generally, for
any closed connected subset C' < J (resp. C < K), we define Jg (C) (resp. Kz (C))
to be the connected component of C in J© n B (resp. K nB). Of course for z € C,
Jg (z) = J§(C) holds. A related concept is Wj(x), the component of B n W*(x)
containing z. If we set Wi(C) = U Wi (z) then W (C) is contained in K4 (C) but this
zeC
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inclusion may be strict. This phenomenon may happen when for some z € C, Wi (z) is
tangent to JB (see Figure []).

FIGURE 1.  Discontinued holonomy. The green components belong to Kz (C')
but not to W3 (C) (in blue). The red part of C' cannot be followed under stable
holonomy to C’ due to a Reeb-like phenomenon.

For x € K, we denote by K*®(x) (resp. K"(x)) the connected component of K n
Wse(x) = K~ nW3(z) (resp. K n WY (x) =K nW"(x)) containing x, and also K ()
its connected component in K. For x € J, we define J*(x), J*(z) and J(x) similarly.
More generally, if needed, we use the notation Compy(x) for the connected component
of x in a set E.

We use the subscript ‘i’ to denote topological operations (interior, closure, etc.) rela-
tive to the intrinsic topology in stable/unstable manifolds.

Lemma 2.3. Assume that f is hyperbolic. Then every connected component of K™ n B
has a connected boundary, which is a component of J* N B.

Proof. Observe that if p is an interior point of K n L, where L is a horizontal line, then
it belongs to a Fatou disk. Since L is not contained in J*, by Lemma we get that
p € Int(K*). This implies that for every z € K™ nB, 0Ky () < ;ep 01, (K3 (z) N L),
where L; = D x {t} and Jr, refers to the boundary in L;. The converse inclusion is
obvious, so 0Kz (z) N B = ,ep 01, (Kg (z) n Ly). Since Kg (z) n L; is compact and
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polynomially convex, and obviously Ky () = |J,cp K5 (%) N L, this means that Ky ()
is obtained from 0K3 (z) n B by filling the holes of all components of 01 (Kg (z) n L)
in every horizontal line. Now assume 0K7 (z) n B is disconnected, so we can write it as
B1 u By, where each B; is relatively open and By n By = (J. In every horizontal slice L,
B; n L must be a union of components of dr,(Kg (z) N L). For i = 1,2, let B; be the set
obtained by filling the holes of B; in each horizontal line in B. The previous discussion
shows that Ky (z) = By U By, where the B; are relatively open in K (x) and disjoint.
This is a contradiction, therefore 0Kg (z) N B is connected.

For the second statement, simply observe that if D < J* n B is a connected set such
that 0Ky () "B < D, then D is contained in K (z) and also in 0K+ so D < 0Kg (z)nB
and we are done. O

2.5. Basic properties of leafwise components. Here we assume that f is a hyper-
bolic and dissipative complex Hénon map. The following result is well-known.

Lemma 2.4. For every x € K we have Int;(K"(x)) < Int(K*) and ¢;(K“(z)) < J.
In particular if Int;(K*(x)) is non-empty, each of its components is contained in an
attracting basin. Likewise Int; K*(z) = & and J*(x) = K*(x).

Proof. Indeed, since stable and unstable manifolds cannot coincide along some open set,
if A is a disk contained in K¥(z), it follows from Lemmal[2.1]that A < Int(K "), and the

remaining conclusions follow. (]

For z in J, K*(x) may be bounded or unbounded for the intrinsic (leafwise) topology.
By the maximum principle, K*(x) is polynomially convex, so if K*%(x) (or equivalently
J%(x)) is leafwise bounded, then K*(x) is simply the polynomially convex hull of J*(z)
(i.e. is obtained by filling in the leafwise bounded components of the complement).

Lemma 2.5. Given z € K, in the following properties we have (iv) < (iii) = (ii) < (i):

(i) K“(x) is leafwise bounded;
(ii) J"(x) is leafwise bounded;
(1it) Wi (x) is leafwise bounded;
() Wg(z) is a closed horizontal submanifold of B.

Furthermore if (ii) holds, then (iii) holds for f™(z) for sufficiently large n.

Proof. The implication (i) = (ii) follows directly from the fact that J*(x) = ¢;K%(x).
Now assume that J"(z) is leafwise bounded. Working in W"(z) ~ C, we have that
K*"(x) is a closed connected polynomially convex set and J*(z) is a bounded connected
component of ¢;K"(x). Since every point of J“(z) lies on the boundary of W"(z)\K*
(for the intrinsic topology), the compact set obtained by filling the holes of J“(x) must
be K"(z), so the converse implication holds.

Since K"(x) < Wg(x), obviously (iii) implies (7). Conversely, K"(x) is the decreasing
intersection of the sequence of components of x in W¥(x) n f~"(B). Hence, if K*%(x)
is leafwise bounded it follows that Compyyu(y)~f-—n(m) () is leafwise bounded for large
enough n, and so does W*(f"(x)) n B.
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Recall that for every x, W"(z) is an injectively immersed copy of C, whose image is
a leaf of the lamination of J~\{a1,...,an}. Here the a; are the attracting points, and
a leaf never extends to a submanifold in the neighborhood of a; (]II) In particular, J~ is
laminated near dB. If Wy (x) is leafwise bounded, then it is of the form 1} (€2), where €2
is some bounded open set in C. Since ¥* extends to a neighborhood of Q, Wi (z) it is
a properly embedded submanifold of B, which extends to a neighborhood of B. So (i)
implies (iv). Finally, if (iv) holds, since J~ is a lamination near 0B, we see that Wy (z)
extends to a submanifold S in a neighborhood of B. Then W#(x) is relatively compact
in S ¢ W*(x) so if Q2 is such that ¥ (Q) = Wg(z) then Q is relatively compact in C,
and (74i) follows. O

3. EXTERNAL RAYS

In this section we study external rays along the unstable lamination (i.e. along J™) for
a hyperbolic complex Hénon map. The existence and convergence properties of external
rays were studied in the unstably connected case in [0, [7]. Recall that when |Jac(f)| < 1,
unstable connectedness is equivalent to the connectedness of J. The results that we prove
here do not rely on any unstable connectivity or dissipativity assumption, nevertheless
what we have in mind is the case of a dissipative unstably disconnected map.

3.1. Escaping from K* along an external ray. By definition, an unstable external
ray (simply called “external rays” in the following) is a piecewise smooth continuous
path contained in a leaf W*(x) of the unstable lamination, which is a union of gradient
lines of G |yyu(y) outside the (leafwise locally finite) set of critical points of G |yu(y).
As usual we assume that G is strictly monotone along external rays (which will be
considered as ascending or descending depending on the context). We do not prescribe
rules for the behavior of rays hitting critical points, so in particular there is no attempt
at defining a notion of “external map”.

In the next proposition the length of curves is relative to the ambient metric in C2.
We show that external rays ascend fairly quickly.

Proposition 3.1. Let f be a hyperbolic polynomial automorphism of C? of dynamical
degree d > 1. For every r1 < ro there exists £(ry,r9) such that for every v € J\K*
such that if Gt (x) = 71, any external ray through = reaches {G* = ro} along a path
whose length is bounded by £(r1,72). In addition £(r1,72) is bounded by a function €(rs)
depending only on ro. Furthermore £(r1,m2) — 0 when r1 — 2 and £(r2) = O(r§) when
ro — 0, for some a > 0.

Remark 3.2. Notice that no dissipativity is assumed here so the result holds along stable
leaves as well.

Proof. Start with r; = 1 and ro = d. In J~ n {1 < GT < d} the leaves of W" have
uniform geometry and no leaf of W" is contained in an equipotential hypersurface of the
form {GT = C}, in particular unstable critical points have uniform order. Thus by com-
pactness and continuity of G, we infer the existence of uniform &y and £y such that for

Hndeed otherwise this would induce a compactification of unstable manifolds, yielding an embedding
of P! into C2.
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every x € J~ n {1 < GT < d}, any external ray through z of length ¢y reaches {G™ = r}
with r > G (z) + dp. By concatenating such pieces of rays, we deduce the conclusion of
the proposition for r; = 1 and ro = d (and ¢(1,d) < (d — 1)¢y/dp). Pulling back finitely
many times and concatenating again, we get a similar conclusion for {ro < G* < d} for
any fixed rq.

Let us now fix ry such that {0 < G < dro} n J~ is contained in W}’ (J). Any piece
of external ray between the levels {G* = ro/d"} and {G" = ro/d" "'} is the pull-back
of a piece of external ray in {ro < G* < dro}. Thus by concatenation it follows that
any external ray starting from {G' = ry/d"} reaches {G* = r¢} along a path of length

n

bounded by < C¥(rg,drg) 2 u %, where u is the expansion constant introduced in i
k=1
This proves the existence of the functions ¢(r1,72) and £(rs)
The same ideas imply immediately that ¢(r1,72) — 0 when 1 — r9. For the last
statement simply note that for every r1 < ro9 < ro,

0
lri<mr) <C Z u k= O(u)
k=ko

where kg is the greatest integer such that rod=* > ry, therefore £(r; < ro) = o(rg),

. _ logu
with a = Togd" O

It is easy to deduce from these ideas that all (descending) external rays land. However,
since there is no well defined external map, the characterization of the set of landing
points does not seem to follow directly from this landing property.

Corollary 3.3 (John-Hoélder property). There exists a constant o > 0 such that for any
sufficiently small n > 0, for any x € J-\K ™ sufficiently close to K+, there exists a path
of length at most O(n®) in W*(x)\K™ joining x to a point n-far from K7 .

Proof. By the previous proposition, there exists a path of length O(r*!) joining x to a
point y such that G*(y) = r. Now the Green function is Holder continuous (see [19])
and that KT = {G™ = 0}, so d(z, K™) = Cr®2. The result follows. O

This John-Holder property has deep consequences for the topology of KT n W¥(z),
which will play an important role in the paper. Intuitively it means that there canno

hich will pl i tant role in th Intuitively it that th t
exist long “channels” between local components of K.

This property is strongly reminiscent of the so-called John condition for plane domains,
which have been much studied in one-dimensional dynamics, in relation with non-uniform
hyperbolicity (see e.g. [12, 23]). In the Hénon context, it was shown in [7] that for
unstably connected hyperbolic maps, the components of W*(x)\K ™ satisfy the John
property. It is very likely that using the continuity of affine structure along unstable
leaves, their arguments can be adapted to the disconnected case as well: this would
upgrade Corollary to the actual John condition. One advantage of this weaker
property is that it makes no reference to the affine structure of the leaves, so it is more
flexible and may be adapted to semi-local situations (e.g. Hénon-like maps).
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3.2. Accesses and landing.

Theorem 3.4. Let f be a hyperbolic polynomial automorphism of C* with dynamical
degree d > 1.

(1) For every x € J, D"(z,1)\K™ admits finitely many connected components, and
at least one of these components contains x in its closure.

(2) For any component 0 of D*(x,1)\K ™' such that Q 3 x there is an external ray
landing at x through €.

For the proof, it is convenient to work in the affine coordinates given by the unstable
parameterizations. We work in the disks D%(z,1) and measure path length relative to
the normalized affine metric, which is equivalent to the ambient one.

Proof. The first observation is that D%(xz,1)\K " contains z in its closure: otherwise x
would lie in the leafwise interior of K, thus contradicting Lemma Furthermore,
by the maximum principle, if y € D%(xz,1)\K ™" is arbitrary, the component of y in
D%(x,1)\K* reaches the boundary of D%(x,1).

We claim that there exists 71 > 0 such that for any x € J and any component €2 of
D¥(x,1)\K* such that Q n D" (z,1/4) # &, then:

sup G| puz,1/2)~0 = -

This follows directly from Proposition [3.1} indeed there exists 71 > 0 such that any
point of J7\K™* reaches {GT = 1} along a path of length 1/4. By the Holder continuity
of G, we infer that any such component  contains a disk of radius C'nf, so there are
finitely many of them.

In particular if (z,) is a sequence in D"(z,1)\K* converging to x, infinitely many
of them must belong to the same component Q of D%(z,1)\K*, which shows that Q
contains x. This proves assertion (1) of the theorem.

Fix now a component  of D%(x, 1)\K T such that 0 3 x. Let n; be as above and fix
e such that ¢ < 7;/d and ¢(e,de) < min (1/2, (u — 1)/2) where £(-) is as in Proposition
and the constant u was defined in We do the following construction: for every
point y € {G* =&} n D" (x,1/2), we consider all ascending external rays emanating
from y until they reach {G* = de}. The lengths of the corresponding rays is not larger
than £(e, de). These are the rays of 0™ generation and we denote by Eq the set of their
endpoints (]%}, which by the assumption on ¢(g, de) is contained in {G* = de} n D¥(z, 1).
We note that Fy is a closed set because it is the ending point set of a compact family of
external rays. Since € < 11/d, Ey has non-empty intersection with €.

Performing the same construction in D*(f(z),1) we obtain a set of rays of Oth gen-
eration in that disk, which connect {G* =&} n D" (f(z),1/2) to {G* = de}, and their
endpoints lie in

{G* = de} nD" <f(x), % +€(5,d5)> .

2Recall that since we do not prescribe the behavior of external rays at critical points of G* there is no
reason that external rays fill up the whole unstable lamination, so Ey could be smaller than {GJr = da}



STRUCTURE OF HYPERBOLIC MAPS 14

The pull-backs of these rays by f have their endpoints in
1

{Gt =¢} n D" <z - (; —|—£(5,d5)>> < {G" =¢} n D" (az ;) ,

by the assumption on ¢(g,de). These are the rays of 1st generation in D%(x,1). We
define F1 < Ey to be the closed set of points for which we can concatenate a ray of Oth
generation with a ray of 1st generation to descend all the way to {G* = ¢/d}. Notice
that f(Q) n D*(f(z),1) is not necessarily connected, so it is a union of components
of D¥(f(z),1)\K™, and since f(2) > f(z), at least one of these components reaches
D"(f(x),1/2), so it contains rays of Oth generation. This shows that E; has non-empty
intersection with €2.

Continuing inductively this construction, we obtain a decreasing sequence (E,) of
closed subsets in {G* = de} n D¥(x,1), each of which intersecting Q. If e € (), En, N §,
then there is a ray through e (hence in ©2) converging to K, whose part in {ed "' < G* <ed™"}
is the pull-back under f™ of a piece of external ray in D"(f"(x),1). Therefore this ray
lands at z, and the proof of assertion (2) is complete. U

Remark 3.5. The existence of a convergent external ray along any access to a saddle
periodic point can be obtained exactly as in the 1-dimensional case (see [18]), without
assuming uniform hyperbolicity. In that case the Denjoy-Carleman-Ahlfors Theorem is
used instead of the John-Holder property to guarantee the finiteness of the number of
local components.

3.3. Topology of Kt n W%, In this section we review the consequences of Corollary
for the topology of unstable components of K.

Theorem 3.6. Let f be a hyperbolic Hénon map. Then for every x € J:

(i) every component of K™ n W¥(x) (resp. J© n W¥(x)) is locally connected;
(i1) for any smoothly bounded domain Q < W"(z), for every § > 0, KT n Q (resp.
JT N Q) admits at most finitely many components of diameter larger than .

As before this follows from [7] when f is unstably connected (see Theorems 3.5 and
5.6 there), so we focus on the unstably disconnected case. In this case it is known that
K* nW*"(z) has uncountably many point components (see [7, Thm 3.1]). Using (i) we
can be more precise:

Corollary 3.7. Let f be hyperbolic and unstably disconnected. Then for every x € J,
all but at most countably many components of K+ n W¥(z) are points.

Let us stress that the conclusions of the theorem follow solely from Corollary
together with some elementary topological considerations. Remark also that the as-
sumption that € has smooth boundary in (i) is necessary: indeed otherwise it could cut
a component of KT in infinitely many parts of large diameter (think e.g. of the closed
unit square cut out by some comb-like domain).

Part or all of Theorem is presumably known to specialists, however for complete-
ness we provide some details. Let us first define a notion of “fast escaping from a compact
set”.
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Definition 3.8. Let €2 be a smoothly bounded domain in C and K be a closed subset
in Q ¢ C. We say that K satisfies the fast escaping property in Q if there exists an
increasing continuous function ¢ with ¢(0) = 0 such that for any sufficiently small n > 0
and any = ¢ K, there exists a path v : [0,1] — Q\K of length at most ¢(n) such that
v(0) = z and d(y(1), K) = 7.

Corollary asserts that if f is hyperbolic, then for every x € J, and any leafwise
bounded domain Q ¢ W¥(z), KT n W"(z) satisfies the fast escaping property in Q with
¢(n) = en®. Note that both properties (i) and (i) in Theorem [3.6|are local in W*(x) so
the choice of ambient or leafwise topology or metric is harmless.

The following lemma takes care of item (7i) of the theorem.

Lemma 3.9. Let K be a closed subset of a smoothly bounded domain Q) < C, satisfy-
ing the fast escaping property. Then for every § > 0, there are at most finitely many
components of K (resp. of Int(K), of 0K ) of diameter greater than 6.

Proof. We first prove the result for K and Int(K) and then explain how to modify the
proof to deal with 0K . Let us first assume that €2 is the unit square @, and denote by m
and 7o the coordinate projections of Q. Assume by contradiction that there are infinitely
many components (C;);>o of K with diameter > 0. Then there exists 7 € {m1, w2} such
that infinitely many C; satisfy Diam(w(C;)) = /2. Therefore there is an interval I
of length §/4 such that for infinitely many i, C; disconnects the strip 7=!(I), and we
conclude that 7=1(I)\ | JC; has infinitely many connected components U, going all the
way across the strip. (Notice that the U; may contain other points of K.) Let ¢ be the
center point of /. Since the C; are distinct components of K, for each j there exists a
point x; in U; n 7~ 1(¢) which does not belong to K. If ) is chosen such that £(n) = §/20
we infer from the fast escaping property that for every j, U; contains a disk of radius 7,
which is the desired contradiction.

For Int(K) the argument is identical except that instead of ¢ we take a small open
interval I’ about ¢ and argue that if the C; are distinct components of Int(K), there
exists x; € U; n 7 (I") which does not belong to K.

In the general case, take a square ) such that Q € @ and replace K by K’ = K n .
Let us check that K’ satisfies the fast escaping property in Q. Indeed, if z € Q\K' we
have either z € Q, x € 0Q or x € Q\Q. In the first case we take the path 7 given by the
fast escaping property of K in §2. In the second case, any small ball B about x intersects
O\K, and we simply take a path starting from some 2’ € B n (Q\K). Finally in the last
case we use the fact that ) has the fast escaping property in Q.

By the first part of the proof we conclude that K’ has finitely many components of
diameter > §. Since any component of K (resp. Int(K)) is contained in a component of
K’ (resp. Int(K")), we are done.

The proof that 0 K admits only finitely many components of diameter greater than §
goes exactly along the same lines. We assume that there are infinitely many components
C; of 0K disconnecting the strip 771(I), so that 7=1(I)\|J C; also has infinitely many
components U;. The difference with the previous case is that some of these components
may be completely included in K. We modify the argument as follows. Denote by U ]’
the components completely included in K and by U the remaining ones. We claim
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that there are infinitely many U J’»’ ’s. Indeed since the C; are components of 0K, two
components of the form U] must be separated by a component of the form U}. So
there are infinitely many such components. Then we take a small open interval I’ c I
containing ¢ and we repeat this argument, to obtain that there are infinitely many j’s
such that U} n 7~ 1(I') contains a point z; that does not belong to K. Then we proceed
with the proof as in the previous case, by constructing infinitely many disjoint disks of
radius 7 in @ to get a contradiction. O

Proof of (i) in Theorem[3.6 Since J© n W¥(z) = 0;(K* n W¥(z)), general topology
implies that local connectivity of J* n W¥(x) implies that of KT n W¥%(z) (see [33,
§49.111]) so it is enough to focus on J*. For convenience we plug in some dynamical
information. Since f is unstably disconnected, it admits an unstable transversal A",
that is a horizontal disk of finite degree in B contained in some unstable manifold (of
a periodic saddle point, say). For every z € J, W#(x) intersects A": this easily follows
from the density of W#(z) in J* and the local product structure. Fix y € W*(z) n A"
By using the local holonomy along the stable lamination W (x) — W _(y), we see that
JT nW¥(x) is locally connected at z if and only if J* n W"(y) is locally connected at
y. Therefore it is enough to show that J© n A" is locally connected. Since KT n A%
is polynomially convex and compactly contained in A" it follows that  := AY\K™ is
connected and JT n A% = 0. Likewise every component of 02 is of the form 0A, where
A is a component of A¥ n K*. For such a component, by Carathéodory’s Theorem
local connectivity of dA is equivalent to that of A, which is of course equivalent to local
connectivity of A at every point of its boundary. Let us fix zg € dA: to complete the
proof we have to show that A is locally connected at xg.

Assume by contradiction that A is not locally connected at zg. Then for small ¢ > 0
such that if C' denotes the component of Am?(:z:g, g), then xg = lim x,,, where x,, belongs
to A\C. Without loss of generality we can assume that z, € B(zg,¢/2). Let C,, =
Comp 4 ~B(x0.2) (z5,), which by definition is disjoint from C'. Passing to a subsequence if
necessary, we may assume that the C,, are disjoint (the construction here is similar to
that of convergence continua in [33, §49.VI]). Since C and the C,, intersect dB(zo,¢),
their diameter is bounded from below by some § > 0. From this point the proof is
similar to that of of Lemma |[3.9; we can find an orthogonal projection 7 such that C
and the C), cross the strip 7= (1) horizontally and 7=(1)\(C u | JC,,) admits infinitely
many connected components U; going all the way across the strip. If 771(c) denotes the
center line of the strip, for every j, 7=!(c) n U; has non-trivial intersection with €2, and
the fast escaping property of {2 gives a contradiction as before. O

3.4. Complement: John-Ho6lder property in basins. We illustrate the comments
from § on the versatility of the John-Hoélder property by sketching a proof of the
following result.

Theorem 3.10. Let f be a hyperbolic polynomial automorphism of C?, and B be an
attracting basin. Then the John-Hdélder property holds in B, i.e. for any component 2 of
B W*"(x) there exists ng depending only on Q such that for any y € Q sufficiently close
to J, there exists a path in of length O(n®) in W"(z) joining y to a point n-far from J.
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Remark 3.11. A difference between this result and Corollary is that in Corollary
the constant 79 is independent of the component of W*(z)\K*, because G* reaches
arbitrary large values in each component. Here the situation is different because B n
W (z) typically has (infinitely) many small components, so how far we can get from the
boundary really depends on the component.

Proof. For convenience we present a proof which is purposely close to that of Proposi-
tion and Corollary Replace f some iterate so that B is the basin of attraction
of a fixed point a with multipliers A1, Ao, with |[A2] < |Ai]. There exists a biholo-
morphism ¢ : B — C?, which conjugates the dynamics to that of the triangular map
(21,22) — (A121 + r(22), A2z2), where r is a polynomial which is non-zero only when
there is a resonance A2 # A} between the eigenvalues (see [43]). Introduce the function

log A1 =
log Ao

and put H = H o ¢. This is a smooth strictly psh function on B which satisfies H o f =
|)\1|2 H. To get a better analogy with the previous case we may consider H ! which
satisfies H= o f = |)\1|72 H~', and tends to zero when approaching J. The restriction
of this function to any local unstable disk in B\ {a} is non-constant and one easily checks
that its set of critical points is discrete.

H(z1,22) = |21 — 7(22/A2) |2 + |22|**, where @ =

Arguing in Proposition [3.1] we define a family of rays in B by considering gradi-
ent lines of H (or equivalently H~!) along W% | first in the fundamental domain

{\)\1|2 <H < 1} and then in {0 < H™' <1} by pulling back. It follows that for

every component  of B n W4(x), for every 0 < r; < rp < maxq ‘H‘l , and any y € Q
such that H~1(y) = r1, there exists a ray of length £(r1,72) = O(r$) joining y to a point
of {H™ = ry)}.

To conclude the argument we need to adapt the proof of Corollary [3.3] which relies
on the Holder continuity of the Green function. Instead we use an argument based on
uniform hyperbolicity. Indeed, let x € J and y € W} _(x) be such that d"(z,y) = . We
want to show that H~!(y) < e for some a. By the expansion along unstable manifolds
and the local uniform geometry it takes at most N < C'|loge| iterates to map y into a
given compact subset of B. Hence

H*l(y) _ ’)\1’2N Hfl(fN(y)) < C|A1|2N <C ’)\I‘QCHoga\ _ 0672Clog|)\1\

and we are done. O

4. STABLE TOTAL DISCONNECTEDNESS

We say that f (or J) is stably totally disconnected if for every x € J, W¥(z) n J~ is
totally disconnected. Note that since J has local product structure with respect to the
stable and unstable laminations, W#(z) n J = W¥(z) n J~.

Proposition 4.1. Let f be a hyperbolic Hénon map. The following assertions are equiv-
alent.

(i) Every leaf of the stable lamination in B is a vertical submanifold of finite degree.
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(ii) The leaves of the stable lamination in B are vertical submanifolds of uniformly
bounded degree.
(iii) For every x in J, J%(x) = K*(x) = {x}, that is, f is stably totally disconnected.

Note that dissipativity is not required here, so this result holds in the unstable direc-
tion as well.

Proof. The implication (i) = (i) is obvious and its converse (i) = (i) follows from the
semi-continuity properties of the degree and is identical to [35, Lemma 5.1]. To prove
that (i1i) = (i) we use Lemma for the stable lamination: indeed if J*(z) is a point
for every z, then all 4 conditions of Lemma [2.5| are equivalent, and the equivalence of
properties (i) and (iii) there yield the result. Finally, (i4) = (iii) does not require
hyperbolicity and was established in [I5, Prop. 2.14]. For convenience, let us recall
the argument: for every vertical disk D of degree < k, and every component D’ of
D n f(B), the modulus of the annulus D\D’ is bounded below by m = m(k) > 0, and
for every x € J there is an infinite nest of such annuli surrounding the component of z
in W#(z) nJ. So W*(z) n J is totally disconnected and we are done. O

A way to ensure the boundedness of the degrees of semi-local stable manifolds origi-
nates in [I7] and relies on Wiman’s theorem for entire functions. The following result is
contained in [35].

Proposition 4.2. Let f be a hyperbolic Hénon map such that |Jac f| < d~2. Then f is
stably totally disconnected.

Proof (sketch). Fix x € J and v € E*(x). Uniform hyperbolicity together with the
assumption on the Jacobian imply that ||df?(v)|| < Cs™, where s < d~2. Denote as
before 13 the normalized stable parameterization. It follows that f"oy3(-) = w}in(m) (Ans),

where |\,| < Cs™. Then from the relation
G~ oi(A,10) = d"G™ 0 Yy (Q)

we deduce that G~ o)} is a subharmonic function of order smaller than 1/2 and Wiman’s
theorem implies that Compys)-1(m)(z) is a bounded domain in C, thus Wy(z) has

bounded vertical degree and we are done. O

Another idea, which was communicated to us by Pierre Berger, is to use a Hausdorff
dimension argument to prove directly that stable slices of J are totally disconnected.
Indeed the Hausdorff dimension of stable slices of J~ can be estimated using thermo-
dynamic formalism for hyperbolic maps. This turns out to give a better bound on the
Jacobian.

Proposition 4.3. Let f be a hyperbolic Hénon map such that |Jac f| < d='. Then f is
stably totally disconnected.

Proof. Since J is a locally maximal hyperbolic set and the dynamics along stable mani-

folds is conformal, there is an exact formula for the Hausdorff dimension of J n W} o)
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for any x € J—, given by:

_ hKS(f)
— §log|df | gs @) | dr* ()

(see Pesin’s book [39, Thm 22.1]; this goes back to the work of Manning and McCluskey
[36]), where x° is a certain invariant measure (the unique equilibrium state associated to
0% log |df | g<|) and hys(f) is its measure theoretic entropy. By the variational principle we
have that h,s(f) <logd. On the other hand the Lyapunov exponent in the denominator
in the right hand side of is bounded below by |log|Jac f|| > logd. Therefore we
conclude that dimpy (J n W (x)) < 1 from which it follows that J n W} (z) is totally
disconnected. (]

(2) 6% := dimp (J n Wyg())

Question 4.4. Is a dissipative hyperbolic Hénon map always stably totally disconnected?

5. CLASSIFICATION OF SEMI-LOCAL COMPONENTS OF KT AND JTt

Throughout this section, f is a dissipative and hyperbolic complex Hénon map of degree
d with a disconnected Julia set (or equivalently, f is unstably disconnected). We assume
moreover that f is stably totally disconnected. The results of §4] imply that this holds
whenever |Jac f| < 1/d. We fix a large bidisk B as before, and our purpose is to classify
the connected components of J© n B and study the induced dynamics on this set of
components.

5.1. Geometric preparations. We start with some general lemmas about vertical
submanifolds in a bidisk. We define the angle Z (v, w) between two complex directions
v and w at € C? to be their distance in P(T,C?) ~ P! relative to the Fubini-Study
metric induced by the standard Hermitian structure of T,,C? ~ C2.

Lemma 5.1. Let M be a vertical submanifold in D x D, and let a € D and r > 0
such that M has no horizontal tangency in D x D(a,2r). Then there exists a universal
constant Cy such that for any x € D x D(a,r), the angle between T, M and the horizontal
direction is bounded from below by Cor.

Proof. If M has no horizontal tangency in D x D(a, 2r), then M n (D x D(a,2r)) is the
union of deg(M) vertical graphs. Let I' be one of these graphs. Then ¢ := 7 o (ma|p) ™!
maps D(a,2r) into 2D and T’ = {(¢(w),w), w € D(a,2r)}. By the Cauchy estimate, we
get that |¢| < 2/r on D(a,r) and the result follows. O

A typical use of this result is by taking the contraposite: if a vertical submanifold M
in D x D has a near horizontal tangency in D x D(a,r), then it has an actual horizontal
tangency in D x D(a,2r). Let us denote by [e1] € P(T'C?) the horizontal direction.

Corollary 5.2. Let M be a vertical submanifold in D x D which extends as a vertical
submanifold to D x (3/2)D. There exists a universal constant C1 such that if for some
a € D, there exists x € M n (D x {a}) such that Z(T,M,[e1]) < 0, then there exists
a' € (3/2)D such that |a — a'| < C10 and M is tangent to D x {a’}.

For the sake of completeness let us also state a slightly stronger result:
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Corollary 5.3. Let M be a vertical submanifold in D x D of degree at most k which
extends as a vertical submanifold to D x roD for some rg > 1 (sayro = 3/2). There exists
a function h = hy such that h(0) — 0 as 6 — 0 with the following property: if x € M is
such that the angle between T, M and the horizontal direction is bounded by 0 < 1 then
there exists ' € M with d(x,z") < h(0) such that M has a horizontal tangency at x’.

Proof. Indeed, letting a = m2(x), and applying Corollary we see that the connected
component of M containing x in D(a,C16) x D cannot be a vertical graph, so it admits
a horizontal tangency. Furthermore, an easy compactness argument shows that the
diameter of a connected component of M n D(a,r) xD is bounded by hg(r) with hg(r) —
0 as r — 0. The result follows. O

Remark 5.4. 1t is likely that hi(r) = O (7"1/ ’“) but the precise argument needs to be
found.

The following result is a precise version of the Reeb stability theorem (see [11]) which
is specialized to our setting.

Lemma 5.5. Let xg € J be such that W§(xg) is transverse to dB. Then there exists
0 depending only on minyewﬁ(xo)mmé (TyVVﬁ(a:O), [61]) such that if T < J"(xg) is a
connected compact set containing xg, of diameter less than &, then for every x € T,
W#(x) is transverse to 0B, deg W (x) = deg W (xo) and |, Wi () is homeomorphic
to T x Wg(zo).

Note that it is slightly abusing to say that Wp(x) is transverse to d(B) since Wy (x)
precisely stops at dB. Of course Wj(x) extends to a neighborhood of B and what we
mean is transversality for this extension.

Remark 5.6. Later on we will use this lemma with rB instead of B for 1 < r < 2
(see Proposition [5.12). It will be important there that the constant ¢ is uniform with
r € [1,2], which easily follows from the proof.

Proof. Set 6 = minyewﬁf(m)mm Z (TyWﬁf(xg), [61]>. The stable lamination in a neigh-

borhood of B is covered by finitely many flow boxes. So there exists 7 > 1 depending
only on 6 such that Wi (o) is transverse to d(rB). Since the stable leaves in B are
simply connected, we can apply a local version of the Reeb stability theorem (see [11J,
Prop. 11.4.8]) which asserts that when 7 < J n W*(x¢) is sufficiently small, for x € 7, by
local triviality of the stable lamination, the domain W% (xo) < W¥*(xg) can be lifted to
a domain D, c W*#(z), and the collection {D,, x € 7} is topologically a product. Since
Wi (o) is transverse to 0B, Wi(xg) < W (xo) is a smoothly bounded domain and,
reducing 7 if necessary, the transversality persists, Compp_.g(z) varies continuously
and (J,., Wi (z) is a product. Finally, if we fix any horizontal line, say close to B by
transversality and continuity, its number of intersection points with Wp(x) is constant,
hence the statement on the degree.

What remains to be seen is why the size of the allowed transversal 7 depends only on

the minimal angle . This follows from the mechanism of Reeb stability. What we need
to know is how far we can push z in 7 so as to keep the transversality between Wi (z)
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and 0B. Pick y € Wg(zo) n dB. Understanding how a neighborhood of y in W ()
evolves when the base point x € 7 changes depends on the choice of a path ~ joining xg
to y in W*(xg) and of a covering of v by a chain of overlapping plaques. (Recall that
by definition a plaque is the intersection between a leaf an a flow box.) Notice first that
there is a uniform control of the length of a such a path ~: for instance we can take an
external ray and apply Proposition (see Remark . So the length of a minimal
chain of plaques joining ¢ to y is uniformly bounded, and there exists 6 = §(6) such that
if Diam,,(7) < d, then the continuation of the plaque containing y remains transverse
to 0B. Finally, the number of plaques required to cover 0W§(:L‘o) depends basically on
the volume of W3 (zg) for some r > 1, which in turn depends only on the degree of
WSg (o) for some r’ > r. By Proposition this degree is uniformly bounded. So the
number of plaques is uniformly bounded and we are done. O

We will also need the following extension lemma.

Lemma 5.7 ([35, Prop. 5.8]). There exists a neighborhood N of J© n'B such that the
stable lamination W* extends to a C' foliation of N'.

Observe that in [35] it is assumed that |Jac f| < d=2 but what is really needed for
extending the stable lamination is the boundedness of the vertical degree which holds in
our setting (cf. Proposition . The C! regularity of the holonomy will not be used in
the paper.

Using this extension lemma, we can extend Lemma to a statement about an open
neighborhood of Wi (zo) with exactly the same proof.

Lemma 5.8. Let xg € J be such that Wi (xo) is transverse to 0B. Then there exists 0
depending only on minyerTB(:no)malB z <TyW§(aco), [eﬂ) such that for every x € D"(xg, ),
W?(x) is transverse to 0B, deg Wi (x) = deg Wi (zo) and UxeDgO(aco,d Wi (x) is homeo-
morphic to D} (x0,0) x W (o).

5.2. Thin and thick components. In this section we study the geometry of the com-
ponents of J* NnB. The arguments rely mostly on the geometry of the stable lamination,
not on the dynamics of f. One main result is that thin components of K+ n B have a
simple leaf structure (Proposition . It follows that for a given component of J* N B,
either all its unstable slices are small, or all of them are large (Proposition . To-
gether with the results of this leads to a description and some regularity properties
of components of J* nB and K™ n B.

We start with a simple case.

Proposition 5.9. If x € J is such that K“(z) = J"(z) = {z} then Kg (z) = Jg (z) =
Wi ().

Proof. As observed above the inclusion Wj(z) < Kz (x) is obvious. For the converse
inclusion, observe that for every n € Z, K“(f"(x)) = {f"(x)}. For n > 1, consider a
small loop v, € W*(f™(z)) around f™(x) that is disjoint from K. By the local product
structure we can extend it to a germ of 3-manifold 7, transverse to W*(f"(z)), disjoint
from K, and of size uniformly bounded from below in the stable direction. Since Wi ()
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has finite vertical degree in 2B, it admits finitely many horizontal tangencies, so we can
fix 1 < r < 2 such that W is transverse to d(rB). Then by the Inclination Lemma, for
large n, f~" (7,) contains a small “tube” around W% (x) whose boundary is disjoint from
K. It follows that K (z) = W3 (), hence K (z) € Wi(z) 0 B. Finally WS (z) n B
has finitely many components, and one of them is Wi(x), so Kz (z) = W (). O

Here is a first interesting consequence.

Corollary 5.10. All but countably many components of K™ n B are vertical submani-
folds.

Proof. Fix a global unstable transversal A" in B. Then every component of Kt n B
intersects A¥. Indeed, for any such component C, 0C is contained in J7* so it contains
stable manifolds. Stable manifolds in B are vertical and of finite degree, so they have non-
trivial (transverse) intersection with A*. Now if C' is non-trivial, that is, not reduced to
a vertical submanifold, then by Proposition [5.9, any component of C'n A" is non-trivial,
and the result follows from Corollary O

Another case where Jg (z) is easily understood is when stable leaves are transverse to
0B.

Proposition 5.11. Assume that J“(x) is a leafwise bounded component such that for
every y € J*(z), Wi(y) is transverse to dB. Then

(3) i@ = | Wi,

yeJu(z)

Note that this result is not true if the transversality assumption is omitted (see Figure
for a visual explanation).

Proof. Let C be defined by the right hand side of . Since the Wi (y), y € J"(x),
are transverse to 0B, they vary continuously with y. It follows that C is a closed
connected set. To show that C' = Jg (z), it is convenient to use the extension of the
stable lamination to a neighborhood of J* n B (given in Lemma [5.7). Let (U,) be a
basis of open neighborhoods of J"(z) in W"(z) such that for every n, oU, n J = &.
For every 6 > 0, U, is contained in the d-neighborhood of J*(x) for large n. Thus, by
Lemma the leaves issued from U, are transverse to 8I~B% and stay close to C. Let ﬁn

be the saturation of U, in the extended foliation. Then (U,,) is a basis of neighborhoods
of C'in B such that dU, is disjoint from J*. We conclude that C = Jg (z). O

The structure of J () is not so easy to describe without this transversality assump-
tion. Still, the argument can (almost) be salvaged if J%(x) is small enough. This will be
a key property in the following.

Proposition 5.12. There exists 1 > 0 such that if x € J is such that Diam,(J"(x)) <
1, then there exists 1 < r < 2 such that for every y € J"(x), W(y) is transverse to
d(rB) and J"(x) can be followed under holonomy along Wi (x). In particular J () is
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homeomorphic to J*(x) x Wi(x) and

(4) T (@) € Tig(e) = Wi(J'(x) « Wag(J" (@) = | Wis(w).
yeJu(x)

Recall that Diam, denotes the diameter relative to the normalized leafwise metric d
induced by the affine structure. By polynomial convexity, if K*“(x) is leafwise bounded,
then J¥(z) = ;K*(x) so Diam,(K"(z)) = Diam,(J"(z)). Recall from §2.3|that by the
Koebe Distortion Theorem, the ambient distance d and the leafwise Euclidean distance
d¥ are equivalent in a small neighborhood of z, with universal bounds, i.e. in some
neighborhood of x in W*(z) we have d/2 < d¥ < 2d. In particular if Diamg,(J"%(x))
is small enough then Diam(J*(x)) and Diam(K"(z)) are comparable to Diamg(J"*(x))
(where Diam denotes the ambient diameter).

Proof of Proposition[5.13 Recall that every leaf of the stable lamination in 3B is a
vertical disk of degree bounded by D, so by the Riemann-Hiirwitz formula it admits at
most D — 1 horizontal tangencies. For £ = 0,...,D, let rp, = 1 + %, and fix 6 < 8%,
where () is as in Lemma Let z € J be arbitrary. By the pigeonhole principle, there
exists k € {0,..., D — 1} such that W3g(«) has no horizontal tangency in 744 1B\r;B. So
by Lemma (scaled to 2B and applied to any a such that |a| = R(rx + 7%+1)/2, where

R is the radius of B) we infer that
min_ £ (T, Wi (xo), [e1]) > 0, where 1), = 21 Tk+1
yEma('r;B) 5

Therefore, by Lemma and Remark there exists d; depending only on 6, hence
ultimately only on D, hence on f, such that if Diam,(J“(x)) < d1, then for every
y € J*(x), W;ZB is transverse to d(r.B) and W,,‘ZE(JU(IE)) is topologically a product.
This completes the proof of the first part of the proposition. From this point, the
description of Jyg(z) in directly follows from Proposition O

It follows from this analysis that if C' is a semi-local component of J*, then either all
its unstable slices are large or all of them are small.

Proposition 5.13. There exists 0 < 81 < o such that for every component C of J* B
the following alternative holds:

(i) either for every x € C n J, Diamy J*(z) < d2;

(ii) or for every x € C n J, Diamg, J*(x) > 0;.

In addition if (i) holds then C satisfies the conclusions of Proposition .

Referring to this dichotomy in the following, we will say that a component is thin
(resp. thick) if it satisfies (i) (resp. (ii)). We stress that the Proposition asserts that
a component is thick as soon as one of its unstable slices has intrinsic diameter larger

than d2. As seen before (see e.g. Corollary , if A" is an unstable transversal, every
semi-local component of J* intersects A%, so from Theorem we immediately deduce:

Corollary 5.14. There are only finitely many thick components of J* n B.

Proposition [5.13]is a direct consequence of the following lemma.
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Lemma 5.15. Let 61 be as in Proposition [5.13. There exists 62 > 61 such that if x is
such that Diamg (J*(x)) < &1, then for every y € Jg (z) n J, Diamy,(J*(y)) < do.

Proof. Indeed by Proposition if Diam, (J*(x)) < &1, then any point in Jg () can
be joined to y € J*(x) by a path contained in W3 (y). Furthermore, as explained in the
proof of Lemma the plaque-length of such a 7 is uniformly bounded. The bound
on Diamy(J"(y)) then follows from the uniform continuity of holonomy along bounded
paths in the stable lamination. O

Remark 5.16. The argument of Propositions and makes no use of the fact that
J"(z) is a component of J n W*"(xz). Thus the same statements hold for the saturation
by semi-local stable leaves of any (say closed) subset X of an unstable manifold: if its
diameter of X is small enough then, changing the bidisk B if necessary, the saturation
X of X by semi-local stable manifolds is a product and all the stable slices of X have a
small diameter.

Proposition 5.17. Let A" be an unstable transversal in B. For every connected compo-
nent C of J* B (resp. K™ nB), C n A" admits finitely many connected components.

Proof. Let us first discuss the case of components of J© N B. For thick components, the
result follows immediately from Corollary so we may assume that C is thin. As
already seen, C' intersects A%. Pick x € C' n A%, in particular x € J. Since C is thin,
for some 1 < r < 2, WS () is transverse to 0(rB) and by Proposition J"(z) can
be followed under holonomy along W2 (x). Since W2 (x) and A" have finitely many
intersection points, we infer that J% (z) n A has finitely many connected components.
Finally, J§ (z) = C coincides with the component of .J % () n\B containing z, so Cn A" is
a union of connected components of J () N A* and we conclude that there are finitely
many of them.

We now discuss components of K n B. Recall from Lemma that for such a
component C, 0C is a component of J© n B. Assume first that such a component A is
thin. Given z € A n A% J%(z) can be followed under holonomy along W% () for some
1 < r < 2. If the polynomial hull of J"(z) is non-empty, then it has a small diameter and
it can be followed by holonomy in rB along the extended foliation just as in Proposition
(.12 and it is topologically a product. It follows that C' n A" is the polynomial hull of
Jg () nA" and it has finitely many components. On the other hand, if every component
of 0C is thick, then dC n A% is contained in the finitely many components of KT n A%
of diameter greater than some 4, and so is C' n A¥. This concludes the proof. ([

We conclude this subsection by giving a general description of components of J n
B. Fix an unstable transversal A“. Let x € J n A" and consider Wg(J%(z)) =
Uyesu @) Wi (). If every Wi (y) is transverse to 0B then by Proposition Wi(J*(z)) =
Jg (z). In the general case we define a relation between components of J© n A% by
declaring that C < Cs if and only if there exists « € Cy such that Wj(z) n Cy # & (or
equivalently there exists (x1,22) € C1 x Cy such that Wg(x1) = Wj(z2)). Then extend
this relation to an equivalence relation (still denoted by <) by allowing finite chains
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C1,...,C,. Finally we define
wi(M@) = | UM

CoJu(x) yeC
Proposition 5.18. For any z € J, J5 (z) coincides with ﬁ\/ﬁ(J“(x))

Proof. By Proposition Jg () n A" admits finitely many connected components
(Ci)ier. Every point z € Jg (z) belongs to some Wi(y), y € A%, and necessarily y
belongs to some Cj, say Cj,. Furthermore, if 2’ € Jg (z) is close to z, by the continuity
of stable manifolds, there exists y' € A" close to y such that 2’ € Wj(y'). Since the C;
are at positive distance from each other it follows that y' belongs to Cj,. In other words,
W5 (Ci,) is relatively open in Ji (z). Clearly W5(Cj,) is connected, and even arcwise
connected since by Theorem [3.6|C; is locally connected. Thus the W3 (C;) realize a finite
cover of Jg (z) by connected open sets, which are contained in or disjoint from Jg (z).
Define a non-oriented graph on I by joining ¢ and j whenever W;(C;) n Wi(C;) # &.
If we fix 49 such that Wg(Cy,) < Jg (), it follows that Jg (x) = J;ez, Wi (Ci) where I
is the component of ig in the graph. This is exactly the announced description. U

Let us point out the following interesting consequence of the proof:

Corollary 5.19. Every connected component of J© n'B (resp. KT nB) is locally
connected.

Proof. Given a component Jg (z) of J* n B, with notation as in the previous proof,
(W5(Cy))ier is a finite cover of Jg (z) by locally connected and relatively open sets: local
connectedness follows. If now C is a component of Kt n B, we saw in the proof of
Proposition that 0C' is a finite union of components of J* N B, therefore 0C is
locally connected. General topology then implies that C' is locally connected and we are
done. O

5.3. Induced dynamics on the set of components of J*. We still consider a uni-
formly hyperbolic dissipative Hénon map, with a disconnected and stably totally discon-
nected Julia set, and fix a large bidisk B as before. Since f maps Kt nB (resp. J© nB)
into itself, it induces a dynamical system on the set of its connected components. Recall
that a component is said non-trivial if it is not reduced to a vertical submanifold.

Theorem 5.20. Let f be dissipative and hyperbolic with a disconnected and stably totally
disconnected Julia set and B = C? be a large bidisk. Then K+ nB (resp. J* nB) admits
uncountably many components, at most countably many of which being non-trivial. Any
non-trivial connected component of K™ nB (resp. J* nB) is preperiodic, and there are
finitely many non-trivial periodic components.

Remark 5.21. Notice a periodic component of K+ n B can be trivial, that is, a vertical
submanifold. Since it is mapped into itself by some fV in this case we conclude that it
is of the form Wj(x) for some saddle periodic point .

Lemma 5.22. The function y — Diamy(J"“(y)) (resp. y — Diamy(K"(y))) is upper
semi-continuous on J. In particular if y, — Yoo and (Diamy, (K"(y,))) is unbounded,
then K%(yo) is leafwise unbounded, and likewise for J*.
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Proof. Recall that Diam,(J*(y)) = Diam,(K"(y)) for every y € J (including the case
where it is infinite) so it is enough to deal with K" (y). Assume first that the y, belong
to the same local leaf and y,, — yoo. If K%(ys) is leafwise bounded, we can consider a
closed loop v enclosing it and disjoint from K*. Then for large enough n, 7 also encloses
K"(yp), and any cluster value of this sequence for the Hausdorff topology is a continuum
contained in K+ and containing yo,. It follows that

lim sup Diam,,, (K“(y»)) < Diamy, (K"(yx))

n—0o0

hence

lim sup Diam,, (K*(yn)) < Diamy, (K"“(yx)),

n—0o0

as desired. Of course if K"(yy) is leafwise unbounded, the inequality is obvious.

Assume now that the ¥, belong to different local leaves. As before, the case where
K"(ys) is leafwise unbounded is obvious. If K%(ys) is leafwise bounded, again we
consider a closed loop v enclosing it and disjoint from K. In addition we can assume
that Diam,, () is arbitrary close to Diam,, (K"(yx)). When vy, — yx, 7 can be lifted
to a loop 7, in W"(y,), with roughly the same diameter (here we use the continuity
of the leafwise distance dy), and K*(yn) is enclosed in 7y,. The semi-continuity of the
diameter follows. (]

Proof of Theorem [5.20, Fix an unstable transversal A%, and recall that any component
of KT nB (resp. J* nB) intersects A%. By [6, Thm 7.1], J© n A% admits uncountably
many point components, thus the first assertion of the theorem follows from Proposition
Then Corollary asserts that at most countably many components are non-
trivial.

Let z € J* n A" and assume that J (z) (or equivalently K3 (z)) is non-trivial. Since
A" is a global transversal, J“(z) is leafwise bounded. For n = 0, J"(z,) = f™(J*(x))
where x,, = f"(x), and by ,

(5) Diam,,, (J“(zy)) = Cu" Diam,(J"(x)) — o0.

n—0o0

Let zo be any accumulation point of (x,). By Lemma J4(xe) is leafwise un-
bounded, and so does K*“(xq).

By local product structure, for large n, the holonomy along the stable lamination

defines a projection
D"(x,,3/2) 0 JT — D"(24,2) n JT

which we simply denote by 7°. It is Lipschitz (see Lemma and a homeomorphism
onto its image. Notice that 7°(D"(zy,,3/2) n J*) contains D*(z, 1) n J* for large n.
For large n, J“(x,) intersects the boundary of D*(x,,, 3/2), so the sets J*(7m*(x,,)) define
a sequence of components of J* N D%(x4,1) of diameter bounded from below. From
Theorem we infer that this sequence is finite. Let us denote by Cj, j = 1,...,N
these components. By the Pigeonhole Principle there exist n # n’ such that 7(z;,) and
7s(xy) belong to the same Cj, thus x,, and xz,, belong the local stable saturation of Cj.
Therefore the sequence (J5 (2,)) is eventually periodic, and so is (Kg (zn)).

Consider now a non-trivial periodic component C' of J* n B. Then it is of the form
Jg (x) for some x € A" n JT. The previous argument shows that there are points
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2’ € C'nJ such that J*(z') is leafwise unbounded. By Proposition [5.13] the components
of the slices J§ n A" have diameter uniformly bounded from below (here we use the
fact that for every x € A¥ n J7T, the distance d¥ is uniformly comparable to the ambient
distance on A"). Thus, by Theorem only finitely many such components can arise
and we conclude that C' belongs to a finite set of components. The corresponding result
for components of KT n B follows from Lemma g

Remark 5.23. Using techniques similar to those of it is easily seen that any com-
ponent of Kt n B has finitely many preimages. In other words, the induced dynamical
system on components of K™ n B is finite-to-1. Indeed assume by contradiction that
C is a component such that f~1(C) n B has infinitely many preimages C;. Then by
Theorem for some i, C* n A" has a component of small diameter. Therefore by
pushing forward, there is some = € C' n J such that Diam,(J%(x)) is small, that is,
Jg (z) (or equivalently K3 (z)) is thin. But it is easy to show that a thin component
admits finitely many preimages, and we arrive at the desired contradiction. O

6. COMPONENTS OF J AND K

We keep the same setting as before, that is, f is a uniformly hyperbolic dissipative
Hénon map, with a disconnected and stably totally disconnected Julia set. In this sec-
tion, we complete the proof of the main theorem by classifying the connected components
of J and K.

We start with an easy fact. Recall the notation E(x) = Compg(x).

Proposition 6.1. If x € J is such that J“(x) is leafwise bounded then J(z) = J"(x).

Proof. First, J“(x) is a connected set such that z € J*(z) < J so it is contained in J(x).
To prove the converse statement, let (U,,) be a sequence of open neighborhoods of J*(x)
in W*(x) decreasing to J“(x) and such that o;U, nJ = ¢J. Since J*(z) = {z}, for every
n any sufficiently small loop « about x in W#(x) can be propagated along U, to yield
an open set ﬁn such that 6ﬁn = 7. Note that we did not prove any extension result for
the unstable lamination, so we cannot simply say that we propagate v by using some
“unstable holonomy”. On the other hand we can simply use the inclination lemma, by
pushing forward a small thickening of f~"(v) as a 3 manifold transverse to W*(f~"(x)).
Finally, for every n, 5[771 is relatively open and closed in J, so it contains J(x) and we
conclude that J(z) = J"(x). O

To understand the structure of periodic components of .J, let us introduce a definition.

Definition 6.2. A quasi-solenoid is a saddle hyperbolic set such that f*(A) = A for
some k and:

» A is connected;

» A has local product structure;

» for every x € A, A n W"(x) is leafwise unbounded and locally connected, and
A N W*#(z) is totally disconnected.
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Observe that in this definition we do not require that A n W} (z) is a Cantor set. In
other words, we allow for isolated points in a stable transversal (this phenomenon will
be ruled out later under appropriate hypotheses, see Theorem [8.7)).

Theorem 6.3. Let f be dissipative and hyperbolic with a disconnected and stably totally
disconnected Julia set and B be as above. Let C be a periodic component of J© n B
and k be its period. Then A := ﬂnzo fk"(C) s a point or a quasi-solenoid, and it is a
connected component of J.

Proof. Replacing f by some iterate, we may assume C' is invariant, thatis, k = 1. If C'isa
vertical manifold, it follows from Remark[5.21|that A is a point, and the other properties
follow easily, so the interesting case is when C is non-trivial. Then, arguing in the proof
of Theorem by (), C' contains points such that Diam,(J%(z)) is arbitrary large,
so it is thick in the sense of Proposition m Define A := (1,50 f"(C) = (N2 ["(C).
Since by assumption f(C) < C, A is a decreasing intersection of compact connected sets.
Hence A is an invariant connected hyperbolic set contained in J, and f(A) = A. Let us
show that it is a connected component of J. For this, let A’ be the connected component
of A in J. By definition A = A’. Since A’ is connected and contained in J* n B, it must
be contained in C. Furthermore since f(A) = A, and f permutes the components of J,
we have that f(A’) = A’, hence for every n = 1, f~"(A’) = C, and we conclude that
A < (=0 fM(C) = A, as was to be shown.

We claim that for every x € A, J%(x) is leafwise unbounded. Indeed for every z € A, we
have that = = f"(x_,) with x_,, = f7"(x) € C and since C is thick, Diam, , (J“(z_y))
is uniformly bounded from below, and the result follows.

By Lemma for every x € A, there are only finitely many components of J
D"(z,1) intersecting ¢;D"(x,1) and D%(x,1/2). A simple compactness argument using
the holonomy invariance of J* shows that this number is uniformly bounded, therefore
there exists a uniform § > 0 such that leafwise unbounded components of J* intersecting
D"(x,1/2) are §-separated in D*(x, 1) relative to the distance dY (or equivalently, relative
to the ambient one). From this we deduce that for every x € A, there exists § > 0 such
that A coincides with J"(x) in W§'(z), and it follows from Theorem (3.6 that A is locally
connected in the unstable direction.

Let us show that A has local product structure. For this, let y1,y2 € A be close (i.e.
d(y1,y2) < 0), denote by 7° : Wi (y1) — Wj.(y2) the projection along stable leaves,
and let zo = 7°(y1). Since J%(y1) and J*(y2) are leafwise unbounded, if d(y,y2) is small
enough, J"(z2) intersects ¢;D"%(y2,1), and so does J"(y2). By definition of ¢, it follows
that J%(y2) = J"(#2), hence y2 and z2 belong to the same connected component of J.
In particular, zo belongs to C. Since f~! contracts distances along unstable manifolds,
and respects connected components of J, we can repeat this argument with f~"(y2) and
f7™(22) for any n = 0 and we conclude that zo € A, as was to be shown. (]

Theorem 6.4. Let f be dissipative and hyperbolic with a disconnected and stably totally
disconnected Julia set. Then every component of J is either

(1) a point;

(2) or of the form J"(z) with J"(x) non-trivial and leafwise bounded;

(8) or a periodic quasi-solenoid.
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In addition:

(i) There are finitely many quasi-solenoidal components
(i) Every periodic component of J is either a point or a quasi-solenoid.
(iii) Every non-trivial component of J is attracted by a quasi-solenoid. More precisely,
given a non-trivial component C for every § > 0 there exists n such that f**(C) c
W3 (A), where A is a quasi-solenoid of period k.

Note that in assertion (#), the uniformity of n as a function of ¢ is not a direct
consequence of the fact that w(C) < A.

Proof. To establish the announced trichotomy, by Proposition [6.1] it is enough to show
that if C'is a component such that for some z € C, J*(x) is leafwise unbounded, then C'is
a periodic quasi-solenoid. Note that for every n > 1, J*(f~"(x)) is leafwise unbounded.
Therefore the component of f~™(z) in J* N B is thick in the sense of Proposition
and by Corollary Jg (f~™(x)) belongs to a finite set of semi-local components.
Thus there exists a component C* of J* n B and an infinite sequence n; such that
f™i(x) € C*, hence C* is periodic of some period k and reversing time we get that
J*(x) is included in A := (7,5 ¥ (C*). By Theorem A is a quasi-solenoid and
J(x)=C=A.

Since there are only finitely many periodic semi-local components of J T, this argument
shows that J has only finitely many solenoidal components.

For assertion (i7), let C' be a periodic component of J which is not reduced to a point,
and let x € C. Without loss of generality we assume C' is fixed. Expansion in the
unstable direction shows that if J"(z) is leafwise bounded, then J"(x) = {x}, which is
a contradiction. Thus by the first part of the proof, C' is a quasi-solenoid.

To prove (i), let C' be a non-trivial component of J, and for some large bidisk
B, let C* be the component of J© N B containing C. Then by Theorem CT is
ultimately periodic (with preperiod k), thus by Theorem Mnso f kn(C) is a periodic
quasi-solenoid A. This shows that C is attracted by A in the sense that for large n,
fF7(C) is contained in a é-neighborhood of A. To get the more precise statement that
¥ (C) = W§(A), we have to show that W$(A) is relatively open in C* n J. The
argument is the same as for the local product structure: since large leafwise components
of J are separated by some uniform distance and C' is thick, if z € C' n J is sufficiently
close to y € A, W _(z) n W% (y) must belong to a large component of W} (y) n J,
therefore it belongs to J"(y), and we are done. O

Remark 6.5. Leafwise bounded components of J are locally connected, as follows from
Theorem [3.6] On the other hand a quasi-solenoid is not locally connected, since it locally
has the structure of a Cantor set times a (locally) connected set.

The following result says that there is a 1-1 correspondence between components of
K and J, so that the previous theorems yield a description of components of K as well.

Proposition 6.6. Fvery component of K contains a unique component of J.
For polynomials in one variable, the analogous statement is the fact that every com-

ponent of K has a connected boundary, which follows from polynomial convexity. Here,
components of K have empty interior so this has to be formulated differently.
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Proof. Every component of K contains a point of J, for otherwise it would be contained
in Int(K ™), so it is of the form K (z) for some x € J. If J(z) = {x} the result is obvious.
Now assume that J“(z) is leafwise bounded. By Lemma[2.4] K*(z) is obtained by filling
the holes of J"(x) in W"(z) ~ C, so J%(z) is equal to the intrinsic boundary of K*(x)
and the result follows.

The most interesting case is when J(z) is a quasi-solenoid. Replacing f by f* for
some k > 1, we may assume that J(z) is fixed. We proved in Theorem that
J(x) = Np=o /"(Jg (x)). The very same proof shows that K(z) = (1,5 f"(Kp (2)).
By Lemma 0K3 () contains a unique component of J () (namely, its boundary),
and we conclude by arguing that if K(z) contained two distinct components J(x) and
J(y) of J, then K3 (x) would contain J (z) and Jg (y), which must be distinct because

Mnso [ (Jg (@) # MNn=0 f™(J4 (y)), and this is impossible. O
7. COMPLEMENTS

We keep the setting as in Sections[5land [6] Here we prove a number of complementary
facts which do not enter into the proof of the main theorem, so we sometimes allow the
presentation to be a little sketchy.

7.1. Transitivity. A desirable property of quasi-solenoids is transitivity, or chain tran-
sitivity. At this stage we are not able to show that quasi-solenoidal components are
transitive, but let us already explain a partial result in this direction. The full state-
ment will be obtained in Theorem under an additional assumption.

Proposition 7.1. If A is a quasi-solenoidal component of J of period k, there ezists a
quasi-solenoid A < A of period kl, which is saturated by unstable components (that is, if
z e N then J%(z) = A'), with the property that f*|x: is topologically mizing. In addition,

stable slices of A’ are Cantor sets and for every periodic point pe A, A = J*(p).

This proposition follows from general facts from hyperbolic dynamics. Let us recall
some basics. Recall that a If A is a compact hyperbolic set with local product structure,
then by Smale’s Spectral Decomposition Theorem (see e.g. [46, §4.2]), the non-empty
closed invariant subset

Q:=C(f[a) = Per(f[a)
(where by definition C(f|a) is the chain recurrent set of f|5) admits a decomposition of
the form Q = Q1 U --- U Qu. The Q; are called the basic pieces. They are closed (and
hence relatively open in €2), f induces a permutation on the basic pieces and if ¢ is the
least integer such that f9(€;) = ;, then f9|,, is topologically mixing. In addition, €2
and the ; have local product structure.

Proof. For notational simplicity replace f* by f so that k = 1. Consider the w-limit
set w(A) = J,epw(x). Since a limit point is non-wandering, it is chain recurrent,
so w(A) < Q. Conversely, since any periodic point is an w-limit point, we see that
Per(f|a) € w(A), hence Q < w(A) and w(A) = . Then the Shadowing Lemma implies
that A € W*(Q) = U,eq W*(2). Fix a small § > 0: then W?*(Q) = 5o f 7" (W5(2)).
By Baire’s theorem, there exists n such that f=™ (W (£2)) has non-empty relative interior
in A, hence so does W3 (£2), and we conclude that for some ig, W3 (£2;,) has relative
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non-empty interior in A. Let us show that A’ = Q;, satisfies the requirements of the
proposition.

If £ is the least integer such that f(A’) = A’, the fact that f%|5/ is topologically
mixing follows from the Spectral Decomposition Theorem. Since A’ has local product
structure and W (A’) has relative non-empty interior in A, we see that there exists a
relatively open subset U in A’ such that for any zg € U, a neighborhood of xg in J*(x¢)
in contained in A’. Since f¢|y: is topologically transitive we may assume that x has a
dense orbit under f¢. So if y € A’ is arbitrary we can find a sequence (n;) such that
[ (xg) — y. By expansion in the unstable direction, there exists a uniform § > 0 such
that for every j, % (A’) = A’ contains a d-neighborhood of £ (xq) in J*(f* (2¢)), so
by local product structure we conclude that a neighborhood of y in J*(y) is contained in
A’. On the other hand since A’ is closed it is also relatively closed in unstable manifolds.
This shows that A’ is saturated by unstable components.

Let us show that for every periodic point p € A’, Ju(p) = A’. Let N = ¢m be the
period of p. Since ff| is topologically mixing, f“"|s/ is topologically transitive, so
there exists y arbitrary close to p such that (f"™(y))n=0 is dense in A’. Let 3/ be the
projection of y in W}%_(p) under stable holonomy. By local product structure, y" belongs
to J%(p), and y' € W*(y) so (f"™(y')) is dense, too. Since all these points belong to
J%(p), we conclude that J*(p) is dense in A’ as asserted.

For p as above, since J"(p) is leafwise unbounded, it must accumulate non-trivially
in A’. More precisely, there exists € A’ and a sequence of points x,, € J*(p), with x,, ¢
W (z) and x, — x. Note that by local product structure, Wi (x,) n A’ corresponds to
W () n A" under local stable holonomy. Now as before there exists y' € W .(p) n A/
whose orbit is dense in A’. Thus any z € A’ is the limit of f™i(y’) for some subsequence
nj. But f"(y') is an accumulation point of W (" (y")) n A/, so the same holds for
z, and we conclude that A’ is transversally perfect in the stable direction, hence it is
transversally a Cantor set. U

7.2. Basins and solenoids. Assume that f has an attracting cycle {a1, ...aq} of exact
period q. We denote by B its basin of attraction, which is made of k connected compo-
nents B; biholomorphic to C2. For every i we can write B; "B as the (at most) countable
union (B; ;) =0 of its components, with a; € B;o. We refer to these open sets as basin
components and to B; o as the immediate basin of a;. Note that if we replace f by f9,
the basin of attraction of a; is now made of a single component, but B; (¢ is unchanged.

By definition a Jordan star in U < C is a finite union of simple Jordan arcs in U,
intersecting at a single point.

Theorem 7.2. Let f be dissipative and hyperbolic with a disconmnected and stably totally
disconnected Julia set. Suppose that f admits an attracting fixed point with immediate
basin By. Then:

(i) 0By is a properly immersed topological submanifold of dimension 3, which intersects
any global unstable transversal in finitely many Jordan domains.

(i3) (=0 OBo is a quasi-solenoid, whose unstable slices are Jordan stars. In particular
there is a (saddle) periodic point in 0By.
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We can be more precise about the structure of 0By: locally it is homeomorphic to
the product of a 2-disk by a Jordan star. The proof of the theorem shows that if the
components of By n A% have disjoint closures, then these stars are reduced to Jordan
arcs, that is, 0By is a topological submanifold.

The following basic fact is crucial for the proof.

Lemma 7.3. The stable lamination W?* respects basin boundaries. That is, if x € J*+
belongs to the boundary of an attracting basin B, then so does its image under stable
holonomy.

Proof. This follows readily from the existence of a local extension of the stable lamination
(Lemma [5.7): indeed if a leaf of the extended foliation joined a point from Int(K*) to a
point of (KT)¢, it would have to intersect J*. (See also [I6], Step 3 of the proof of the
main theorem, for an alternate argument without extending the stable lamination.) O

Proof of Theorem[7.3. Fix a global unstable transversal A*. Since every semi-local sta-
ble manifold intersects A%, By n A" is non-empty, and by the Maximum Principle each
of its connected components is a topological disk. Pick such a connected component
Q. By the John-Holder property (Theorem , 0§ is locally connected, and by
the Maximum Principle again there is no cut point, and it follows that ¢ is a Jordan
domain (see [40, Thm 2.6]).

If the diameter of Qo is small then, by Remark enlarging B if necessary the
saturation 0€) of 0y by semi-local stable leaves is topologically a product and we infer
that 0Qgn A" has finitely many components. Otherwise the diameter is large and by the
same remark, every component of 029 n A" has a large diameter. Then the finiteness of
the number of such components follows from the John-Holder property of W¥(z)\K ¥,
Proposition [5.17], and the finiteness statement for interior components in Lemma |3.9

By the Maximum Principle, if Qy and €1 are two components of By n A% such that
Qo N Q1 # , then Qy N is a single point. Indeed if this set contained two distinct
points z and z’, by using crosscuts of €y and Q; ending at z and 2’ we could construct
a Jordan domain U with oU < Qy u Q4, and U would be contained in the Fatou set,
a contradiction. Create a plane graph from By n A" whose vertices are its components
and edges are added when two components touch. The Maximum Principle again shows
that this graph is a finite union of trees. Since the stable holonomy respects 0By and
0By is obtained from 0By N A" by saturating by stable manifolds, the description of 0By
as a properly immersed topological submanifold of dimension 3 follows.

The proof of the second item of the theorem is similar to that of Theorem [6.3] First,
0By is connected: the argument is identical to that of Lemma [2.3] Then, for every x €
0By J~, there are only finitely many components of Byn D"(z, 1) (resp. dBynD"(x, 1))
intersecting D"(xz,1/2). Indeed, observe first that it is enough to prove this in D%(z,r)
for some uniform r. By the uniform boundedness of the degree of semi-local stable
manifolds in B, there is a uniform r such that D*(x,r) can be pushed to A" by stable
holonomy, and the applying item (i) of the theorem completes the argument. From this
point we proceed exactly as in Theorem The existence of a periodic point in 0By
follows from general hyperbolic dynamics (see the comments after Proposition . ([
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Remark 7.4. Tt follows from this description that if = € A lies at the boundary of By, then
in W*(x), x belongs to the boundary of a component  of By n W*(x). In particular,
) is a Fatou disk contained in Comp g (z).

Remark 7.5. We do not know whether components of By n A" can actually bump into
each other, or equivalently if ﬂn>0 0By does contain stars. If bumping occurs, let E be
the finite set of points at which the closures of the components of By n A" touch each
other. Then Wy (E) is a finite union of vertical submanifolds, and f(Wg(E)) € Wi(E).
It follows that (1),~, f™(W§g(E)) is a finite set of periodic points, and for any other point
z in the limiting quasi solenoid A := (7,5, 0By, A n W (z) is a Jordan arc. Thus,
roughly speaking, A has the structure of finitely many solenoids attached at periodic
“unction” points.

7.3. Branched Julia set model. Let A be a quasi-solenoidal component of J, and
without loss of generality assume that A is fixed. Let J]]:{ (A) be its connected component
in J]}'{ and consider its intersection D := JI; (A) n A" with some unstable transversal,
which is made of finitely many thick components. Introduce a relation ~ on D by
x ~ y if and only if W2(z) = W2(y), where by definition W(z) = (.- W(SHE)B(:E).
Equivalently = ~ y iff W(x) n Wj(y) # : concretely, this means that z and y are
related when they are connected by a stable manifold which is tangent to dB. This
defines a closed equivalence relation on D. We denote by D := D/ ~ the quotient
topological space, which is compact (and Hausdorff) and by = : D — D the natural
projection. Since f(Wz(z)) = Wg(f(z)), f descends to the quotient D:=D/~toa

well defined continuous map f.

Geometrically D has to be thought of as a branched Julia set, lying on the branched
surface —in the sense of Williams [45]— obtained by collapsing the semi-local stable leaves
of the extended stable lamination. Then f is expanding on the plaques of this branched
manifoldEL and its iterates are uniformly quasiconformal wherever defined, since they are
obtained by iterating f and projecting along the stable lamination. Observe that f is not
necessarily surjective, since for every x € D, f"(x) eventually belongs to Wi (A), which
may be smaller than Jg (A) (cf. Figure . On the other hand by the last assertion of
Theorem there exists a uniform N such that f~(Jg (A)) = Wi(A). It follows that
the sequence [ycp<n f¥(D) is stationary for n > N and that D' := w(Wg(A) n AY), is
an invariant, closed, and plaque-open subset of D on which f is surjective.

Proposition 7.6. With the above definitions, the dynamical system (j},f) is topologi-
cally conjugate to the natural extension of (D, f) (or equivalently (D', f)).

Proof. Tndeed define h : lim(D, f) — A by h((Zn)nez) = [nz0 [T (W (z—n)), whose
inverse is y — h™1(y) = ((WE(f"(¥)))Inez. O

3Here by plaque we mean one of the finitely many overlapping disks which make up a local chart of
a branched manifold, see [45] Def. 1.0]
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8. NON-DIVERGENCE OF HOLONOMY AND APPLICATIONS

8.1. The NDH property. We say that the property of Non-Divergence of Holonomy
(NDH) holds if for every pair of points x,y € J such that y belongs to W*(z), the stable
holonomy, which is locally defined from a neighborhood of z in W*(x) to a neighborhood
of y in W¥(y), can be continued along any path contained in J*(x).

Remark 8.1.

(1) The stable holonomy h : W*(x) — W*(y) is independent of the choice of a path
¢ from x to y in W#(x) because W#(x) is simply connected.

(2) An unstable component J"(z) is typically not simply connected (since it may en-
closes the trace of an attracting basin on W"(x)). So even if the stable holonomy
from z to y admits an extension along continuous paths, it does not generally
yield a well-defined map from J*(x) to J*(y).

We do not know any example where the NDH property fails. An analogue of this
property was studied in the context of the classification of Anosov diffeomorphisms,
where it is expected to be a crucial step in the classification program. It was established
in the two dimensional case in [20] (see also [10} [32] for related results).

Back to automorphisms of C2?, we have the following simple criterion:

Proposition 8.2. A sufficient condition for the NDH property is that the stable lami-
nation W* of JT is transverse to 0B (No Tangency condition, NT).

Proof. Assume that the No Tangency condition holds and let x,y € J be such that y
belongs to W*(x). Replacing z and y by f*(z) and f*(y) for some positive k, we may
assume that y € Wi (x). There is a germ of stable holonomy h sending a neighborhood
of z in J*(x) to some neighborhood of y € J%(y). Let v : [0,1] — J%(x) be a continuous
path: we have to show that h can be continued along «. For this, introduce E < [0, 1]
the set of parameters ¢ such that h can be continued along 7|[g 4 and h(y(t)) € Wi (v(1)).
Obviously, E is a relatively open subinterval of [0, 1] containing 0, and the proof will
be complete if we show that F is closed. Thus, assume that (¢,) € EY is an increasing
sequence converging to to, and let y,, be any cluster value of the sequence (h(y(t,))).
The main observation is that since W?* is transverse to 0B, Wg(y(t,)) converges to
W§(v(t)) in the Hausdorff topology, with multiplicity 1, or equivalently in the C*
topology. Furthermore, by the uniform boundedness of the vertical degree, there is a
uniform L such that for every n, there is a path of length at most L joining ~(¢,) to
h(y(ty)) in W#(~y(t,)). It follows that the assignment ~(t,) — h(y(¢y) is equicontinuous.
Let yo be a cluster value of (h(y(ty))). The equicontinuity property shows that h(~(¢,))
actually converges to yo, and also that the the points h(7y(¢,)) belong to the same local
plaque of the unstable lamination, which must thus coincide with W} (y«). From this
we conclude that h extends to a neighborhood of 7(ty), with A(v(ty)) = yw, and we
are done. O

One may argue that the NT condition is not intrinsic since it depends on the choice
of the bidisk B. To get around this issue we may consider the following variant:
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(NT¢) there exists R > 0 such that the stable foliation admits no tangency with the
hypersurface {G~ = R}.

Note that the level set {G~ = R} is smooth near J* for every R > 0: indeed by the
local structure of G~ near infinity this is the case when R is large, and then we use
invariance to propagate this property to all R > 0. Arguing exactly as in the previous
proposition shows that the NT g property implies NDH.

Using this idea also enables us to understand more precisely how the NDH property
may fail. If  and y are two points in J with y € W#(z), define the Green distance

dg(z,y) := inf max(G™|.)
cx—yY

where the infimum runs over the set of continuous paths ¢ : [0,1] — W?*(z) joining
x to y. Since W*(z) n J is totally disconnected, this indeed defines an ultrametric
on W*(x) n J, which is uniformly contracted by f: dg(f(z), f(y)) = d tda(z,y). It
provides an intrinsic way of measuring how far we need to go in C? to connect two
unstable components by stable manifolds. Arguing exactly as in Proposition shows:

Proposition 8.3. Let x,y € J with y € W*5(x) and denote by h the germ of stable
holonomy h : W (x) — Wit (y). Let v : [0,1] — J"(x) be a continuous path and
assume that h can be continued along y([0,t*)). Then h admits an extension to t* if and
only if dg(y(t), h(y(t))) is bounded as t — t*.

8.2. No queer components.

Theorem 8.4. Let f be dissipative and hyperbolic, with a disconnected and stably totally
disconnected Julia set. Assume further that the NDH property holds. Then any non-
trivial periodic component of K contains an attracting point.

Proof. We argue by contradiction: assume that A is a component of K which does not
contain any attracting periodic point. Let C be the component of A in Kt n B. Our
hypothesis implies that C' has empty interior, so C' is a component of J© nB (and A is
a component of J. Fix an unstable transversal A" and let F be a component of C' n A",
which must have empty interior in A" by Lemma [2.1 Thus E is a locally connected
continuum with empty interior, that is, a dendrite.

Lemma 8.5. For every x € E, W*(z) n E = {z}.

Assuming this lemma for the moment, let us complete the proof. By the expansion
in the unstable direction, for every x € F, there exists §; > 0 such that for every n > 0,
f™(FE) is not relatively compact in D"(f"(x),d1), and by the John-Hélder property,
there exists d2 > 0 such that any two components of f"(E) in D*(f"(x), 1) intersecting
D"(f™(z),01/2) are d2-separated. Fix a covering of J by unstable flow boxes. By the
product structure of J, there exists ¢ > 0 such that if y,z € f*(E) are e-close in C?
but not on the same unstable plaque, then the components Comp fn(gy~pu(y,s,)(y) and
Comp fn(g)~pu(z6,)(2) are related by local stable holonomy. Finally, by expansion along
the unstable direction and the previous separation property, f(F) cannot be contained
in boundedly many unstable plaques as n — o0. Thus, for sufficiently large n we can
find two points in f*(F) which are e-close in C? but not on the same unstable plaque,
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so there exists y € f"(F) such that W} (y) intersects f"(E) in another point. This
contradicts Lemma 8.5 and we are done. O

Proof of Lemma[8.5. Assume that W#*(z) n E contains another point y # z. Then the
stable holonomy defines a germ of homeomorphism h : £ n U, — E n Uy, where U, is
some neighborhood of = (resp. y). By the NDH property, h can be continued along paths
in E. Since FE is simply connected, this extends to a globally defined map h: F — E,
sending x to y, which is a local homeomorphism, hence a covering, so again using the
fact that F is simply connected, we conclude that h is a homeomorphism.

It is a classical fact that any continuous self-map of F admits a fixed point. For the
reader’s convenience let us include the argument. View E as a subset of the plane. Then,
by the Carathéodory theorem, the Riemann map C\D — C\E extends to a continuous
and surjective map 0D — 0F = E. From this we can construct a topological disk U > F
and a retraction r : U — E: indeed take the disk bounded by some equipotential and
define r as collapsing each external ray to its endpoint. Now let ¢ = hor. Since g maps
U into itself, by the Brouwer fixed point theorem it admits a fixed point zg. Finally,
since g(U) < E, x¢ belongs to E, so g(zo) = h(r(xo)) = h(zo) = 2.

To conclude the proof we show that the existence of such a fixed point contradicts the
hyperbolicity of f. For this, fix a continuous path (2)e[o,1] joining zo to 71 := x and let
t* = max {t € [0,1], h(z¢) = x+}, which satisfies 0 < t* < 1. As ¢ > t* tends to t*, we see
that the two point set {x, h(x¢)} collapses to {x4}. This means that there is a tangency
between the stable lamination and A" at x4, which is the desired contradiction. O

Remark 8.6. With notation as in the proof of the theorem, it is not difficult to deduce
from the proof that for every § > 0, for n > n(d) there exists a non-trivial simple
closed curve contained in Wy'(f™(E)). So by the last assertion of Theorem there is
a non-trivial simple closed curve contained in W3 (A). Without the NDH property, we
cannot exclude a situation where these simple closed curves do not enclose an attracting
basin. We may qualify these dendrites and their limit sets as queer components of J. So
Theorem [8.4] asserts that under the NDH property, queer components of J do not exist.

8.3. Topological mixing.

Theorem 8.7. If the NDH property holds, if A is a quasi-solenoidal component of period
k, then f¥|a is topologically mizing. In particular A is transversally a Cantor set.

Proof. Without loss of generality we may assume k£ = 1. We resume Proposition
and its proof. Let A’ be as in Proposition and let us show that A’ = A. Since A’ is
saturated in the unstable direction, W#(A’) is relatively open in A. The NDH property
shows that if y € W*(A), then J%(y) < W*(A’): indeed the set of points z € J"(y)
such that z € W#(A’) is open because W*(A') is relatively open, and since J"(y) is
arcwise connected, the the NDH property implies that it is closed as well. Thus by the
local product structure of A, we conclude that W*(A') is relatively closed in A, and by
connectedness we conclude that W5 (A") = A.

Fix a small 6 > 0. By Baire’s theorem, we infer that f~"(W3(A’)) has non-empty
relative interior in A for large n, hence so does W§(A’) by invariance. Arguing as in
Proposition we see that by topological transitivity, W7 (A’) is actually relatively
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open in A. Therefore | J,~, f™" (W5 (A’)) is an open cover of A and by compactness we
conclude that A is contained in (o, <, =" (W (A)) for some ng. and since f"(A) = A
we finally deduce that A < W (A). Since 6 was arbitrary, A ¢ A/, and we are done. [

Remark 8.8. A similar argument shows that under the NDH property, the quasi-solenoids
obtained as limit sets of basin boundaries in Theorem are transitive.

As a consequence of transitivity we can be more precise about the topological structure
of periodic components of K.

Proposition 8.9. Let f be dissipative and hyperbolic, with a disconnected and stably
totally disconnected Julia set. Assume further that the NDH property holds. Then for
any non-trivial component D of K, D n Int(K™) is dense in D. Equivalently, for any
x €D, DnWH"(z) is the closure of its interior for the intrinsic topology.

Proof. The equivalence between the two assertions follows from Lemma Lemma
and the local product structure. Let D be as in the statement of the proposition and
C be its component in Kt nB. Let also A the unique component of .J contained in D
(Proposition [6.6). Without loss of generality we may assume that D (hence C' and A) is
fixed by f. By Theorem D contains an attracting periodic point a, so the immediate
basin By of a is contained in C'. By Theorem 0By contains a saddle periodic point
p, which must belong to A (indeed by Lemma and Theorem A =,50 [M(0C)).
The topological mixing of f|x (Theorem [8.7)) classically implies that W#*(p) n A is dense
in A. Indeed let U be a product neighborhood of p in A, and V' be an arbitrary open
subset of A. Then for sufficiently large ¢ > 0 there exists y, € V such that f%(y,) € U.
Since A has local product structure [f9(yq),p] :== Wit.(f9(y)) n W} .(p) belongs to A,
hence increasing n again if needed, z, := f~4([f%(yq),p]) is a point in W*(p) n V.

To conclude from this point, we observe that by Remark (applied to f74(Bp)) z4
belongs to the boundary of a component Q of W*(z,) n f~9(By) contained in D, and we
are done. (|

8.4. Concluding remarks. The non-existence problem for queer components bears
some similarity with another well-known open problem: the non-existence of Herman
rings for complex Hénon maps (see [4] for an early account). Indeed assume that f
admits a Herman ring, that is, a Fatou component €2 biholomorphic to the product of an
annulus times C. More precisely there exists a biholomorphism h : 2 — A x C, where A
is a standard annulus, which conjugates f to (z,y) — (¢?z, §y), |6] < 1. Assume further
that J is disconnected, and fix an unstable transversal A" (recall that its existence does
not require f to be hyperbolic). Then if C' is an invariant circle in A, f admits an
invariant “cylinder” C = h=1(C x C). Any component of C n A" is a piecewise smooth
immersed curve, and a contradiction would follow if we can show that it bounds a disk
in A" (since by the maximum principle this disk would be a Fatou disk, whose normal
limits would fill up the annulus). In other words, if f admits a Herman ring, C n A" is
a countable union of dendrites whose saturation under the stable foliation of C bounds
a disk, but not a holomorphic disk (compare with Remark . Note however that a
limitation to the analogy between the two problems is that the NDH property holds
trivially in the Herman ring case, so the difficulty is of a different nature.
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APPENDIX A. THE CORE OF A QUASI-SOLENOID

In this Appendix, we sketch the construction of the core of a quasi-solenoidal compo-
nent, which should intuitively be understood as the space obtained from this component
after removing all “bounded decorations” in unstable manifolds. Initially designed as a
potential tool to prove the non-existence of queer quasi-solenoids, it also gives interest-
ing information on the combinatorial structure of tame ones. It would be interesting to
compare it with other constructions such as Ishii’s Hubbard trees (see [27]). We keep
the setting as in the previous sections, that is f is a uniformly hyperbolic dissipative
Hénon map, with a a disconnected and stably totally disconnected Julia set.

A.1. Number of accesses. The discussion in this paragraph is reminiscent from [7|
§7], which deals with the connected case. Pick x € J. For any R > 0, define N"(z, R)
to be the number of connected components 2 of D%(z, R)\J such that x € Q. Since
K n D%(x, R) has the John-Holder property, Corollary implies that N*%(x, R) < oo.
Thus, R — N“(z, R) is a integer-valued non-increasing function which drops when two
components of D"(z, R)\J merge. The limit

Nito(a) = lim N"(a, R)
is the number of local accesses to x, and
N%(z) := lim N“(z, R)
R—0

is the number of connected components of W*(z)\J. Note that if J*(z) is bounded
then N"(z) = 1, so this notion is interesting only when z belongs to a quasi-solenoidal
component.

We can also restrict to counting accesses from infinity, that is components of D%(z, R)\K T,
and we obtain corresponding numbers NZ (7, R), N3 ,.(z) and N%(z). We have that
N¥%(x) < N“(z) (and similarly for the other quantities), and, since every point of J is
accessible from infinity, N%(z) > 1. (EI)

Lemma A.1. N* (resp. NY) is upper semicontinuous on J, that is, for any k > 1,
{z, N"(x) = k} is closed.

Proof. We deal with N, the proof for N} is similar. It is enough to assume that
k = 2. By the local product structure of J, it is enough to study the semi-continuity of
x — N"(z) separately along stable and unstable manifolds. Let us start by studying this
semicontinuity along a local stable transversal. We have to prove that {z, N"(z) < k}
is open. Indeed assume that there are j < k accesses to  in W*(x)\J. This means that
for large R, D"(x, R)\J has j connected components accumulating at z. If 2’ € W*(x)
then the local stable holonomy between W} (z) and W _(z') is a homeomorphism,
which locally preserves the number of components of W% (z)\J. In addition if 2’ is
sufficiently close to z, this holonomy is defined in D*%(x, R). Indeed for this it is enough

4The John-Hélder property of the basin of infinity directly guarantees the finiteness of Ny, ;,.(z), but
not that of Nj“.(z) (see Remark [3.11). This property can actually be salvaged as follows: if for small R,
N*(z, R) is large, then for some k » 1, N*“(f*(z),1) is large, and projecting to some fixed transversal
yields a contradiction.



STRUCTURE OF HYPERBOLIC MAPS 39

to iterate backwards until f~"(D%(x, R)) is contained in the domain of the extended
stable lamination. Therefore, there is a large domain D’ in W*(2') such that D\ .J has j
connected components accumulating on z’. Since the number of components may drop
when enlarging this disk further, we conclude that N*(z') < j.

Now we work inside a given unstable manifold. Let R be such that N"(z,s) =
N¥%(z) = j for s > R — 1. By the Holder-John property, for R < R, D“(z, R)\J
admits finitely many components intersecting D"(x, R). So if N%(x) = j, there is some
0 < e < 1 such that only j of these components reach D*(x,¢), and we conclude that
for 2/ € D"(z,¢), N*“(2’, R — 1) < j, hence N*(z’) < j, as asserted. O

Since f acts linearly on unstable parameterizations, N“(x, R) = N“(f(x), \*R), and
we obtain:

Corollary A.2. If N (x) = k then for any y € w(x), N*(y) > k.

An argument similar to that of the second part of Lemma implies (compare [7,
pp. 490-491)):

Lemma A.3. For any R > 0 and any x € A, the set {y € W¥%(x), N"(y,R) = 3} is
discrete for the intrinsic topology.

Proposition A.4. The set {x € J, N“(x) = 3} is a finite set of saddle periodic points.

Proof. By Lemmal[A.3] the set {z € J, N“(x, R) > 3} is contained in a countable union of
local stable manifolds. Since any point in J can be joined to a given unstable transversal
A" by a stable path of uniform length, by taking small enough R we infer that the
projection of this set to A" is actually finite. Therefore, the set {x € A, N"(z) > 3} is
a closed invariant set contained in a finite union of semi-local stable manifolds, so it is
finite. O

A.2. Definition(s) and properties of the core. Let A be a quasi-solenoidal compo-
nent of J. There are several possible definitions for the core of A. It is unclear for the
moment which choice is the most appropriate. We define:

» Core(A) = {x e A, N%(z) > 2}
» Core/(A) =w ({x e A, N (z)=2})

By Corollary we have the inclusion Core’(A) < Core(A), and it is an open problem
whether equality holds It is obvious from the definition that Core(A) (resp. Core’(A))
is invariant and Lemma [A.T|implies that it is closed. Hence it is a closed hyperbolic set.
Another natural open question is whether Core(A) is connected.

The core of the Julia set is the union of the cores of its finitely many quasi-solenoidal
components. If z € J is any point such that W*(x)\J has several local accesses, then
w(z) < Core(J).

We say that x € Core(A) is regular if N*(x) = 2 and singular otherwise. Recall that
the singular set is a finite set of periodic points. Note that if x belongs to the core, then
J%(x) disconnects W"(z).

Conjecture A.5. Core(A) has local product structure near any reqular point, and is
locally the product of a Jordan arc by a totally disconnected set.
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On the other hand, Core(A) does not have local product structure in the neighborhood
of any of its singular points, unless it is locally contained in a single unstable manifold.
So the structure of the core should be that of a union of solenoids joined at finitely
many branch points. It seems that in the example described in [26, Thm 4.23], one
quasisolenoidal component has a core made of two solenoids attached at a fixed saddle
point.

Note that if A is not a queer component, that is the associated component of K
contains an attracting periodic point, then the solenoid at the boundary of the immediate
basin, constructed in §[7.2] is contained in the core. Indeed it is obtained by taking limits
of Jordan arcs locally separating an attracting basin from the basin of infinity. So the
topological structure of the core should give an account how these various basins are
organized and attached to each other in A (compare with the Hubbard tree in one-
dimensional dynamics).

Finally, we may also define Cores(A) = {x € A, N%(x) = 2}. (If A is a queer com-
ponent, then Corey(A) = Core(A).) We expect that Corey(A) is a finite set. Indeed, if
not, it should contain a Jordan arc such that every point is accessible from both sides
by the basin of infinity, and such arcs should not exist. Indeed, iterating forward, and
arguing as in Theorem a large iterate of this arc must spiral and come close to itself,
hence, projecting to an unstable transversal, this would cut out a Fatou disk, and we
conclude that one side of the arc is contained in an attracting basin.

APPENDIX B. CONTINUITY OF AFFINE STRUCTURE

Here we present the following mild generalization of a theorem by Etienne Ghys [22].
Recall that the ratio of a triple (u,v,w) € C3 is “=%

u—w’

Theorem B.1. Let ¢ : C — C? be an injective holomorphic immersion, and L = 1(C).
Assume that (Ly) is a sequence of immersed complex submanifolds converging to L in
the following sense: if K € L is any relatively compact subset (relative to the leafwise
topology), then Ly contains a graph over a neighborhood of K for large n, that is there
exists a neighborhood N(K) of K in L and a sequence of injective holomorphic maps
7+ N(K) — L, such that m,(x) — x for every x. Assume further that for every n, L,
1s btholomorphic to C.

Then the affine structures on the L,, converge to that of L in the following sense: for
any compact set K € L as above and any triple (x,y,2) € K3, if (2n, Yn, 2n) € To(N(K))
are close to (mn(x), mn(y), n(2)) and converge to (x,y, z), then the corresponding ratios
converge as well.

The point of this statement is to emphasize that there is no need in Ghys’ theorem to
work with the leaves of a Riemann surface lamination. Also, compactness of the ambient
space is not required. The theorem is certainly not written in its most general form: one
might assume more generally that

» the 7, are (1 + &,) quasi-conformal for some ¢, — 0;
» L and the L,, are parabolic Riemann surfaces instead of copies of C.

The adaptation is left to the reader. Notice also that any submanifold V of a Stein
manifold admits a neighborhood W endowed with a holomorphic retraction W — V
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(see [42, Cor. 1]). Therefore our convergence assumption essentially means that L,
converges to L with multiplicity 1.

Proof. We follow [22], §4] closely. Pick a triple of distinct points (x,y, z) in L and Ry such
that ¢ (D(0, Ry)) contains x,y, z. For a € L let & = 1~ !(a). Without loss of generality
we may assume Ry = 1. Let R be a large positive number to be determined. For
n = n(R), m, is well defined in (D(0, R)). Let (Zn,Yn,2n) € mn(D(0,1)) converging
to (z,y, 2), and fix ¢ > 0.. Then by assumption (7, (z,), 7, (yn), 7, (2n)) converges
to (x,y, z) for the leafwise topology in L. Let 1, : C — L,, be any parameterization,
and let T, = ¥, H(zn), Jn = ¥ (yn) and 2, = ¥~ 1(2,). Without loss of generality we
may assume I, = 0. We have to show that for large n, the ratio of (%, yn, 2) is close
to that of (%, 7, 2).

By assumption h,, := 9, ! om, 01 : D(0, R) — C is an injective holomorphic map. By
renormalizing 1), we may assume that h},(0) = 1 (we use L,, ~ C precisely here). Then
by the Koebe distortion theorem, h,, is almost affine in D(0,1), that is, it distorts the
ratios of points in D(0,1) by some small amount (R). Fix R so large that e(R) < e. In
particular for n = n(R) we get that
ho(Z) — ha(§) T —
hn(Z) — hn(2) 2 —
Now for a € K, hy, (&) is the parameter in C corresponding to m,(«) € Ly, so &, is close
to hy(@) in C and for large n we also get that
hn(%) — hn(g) - *%n — ?jn
hn(Z) — hn(2)  Zp — 2,

and we are done. O

y
S| <e.
z

<e,
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