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Abstract. For a hyperbolic polynomial automorphism of C2 with a disconnected
Julia set, and under a mild dissipativity condition, we give a topological description of
the components of the Julia set. Namely, there are finitely many “quasi-solenoids” that
govern the asymptotic behavior of the orbits of all non-trivial components. This can
be viewed as a refined Spectral Decomposition for a hyperbolic map, as well as a two-
dimensional version of the (generalized) Branner-Hubbard theory in one-dimensional
polynomial dynamics. An important geometric ingredient of the theory is a John-like
property of the Julia set in the unstable leaves.
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1. Introduction

1.1. Preamble on hyperbolic dynamics. The classical Spectral Decomposition of a
hyperbolic (Axiom A) real diffeomorphism f of a compact manifold (developed by Smale,
Anosov, Sinai, Bowen, and others) provides us with a rather complete topological picture
of its dynamics. Namely, the non-wandering set Ωpfq is decomposed into finitely many
basic sets, each of which modeled on an irreducible Markov chain. Among these basic
sets there are several attractors that govern the asymptotic behavior of generic points of
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the manifold. This picture has become a prototype for numerous other settings, includ-
ing one-dimensional, non-invertible, holomorphic, partially or non-uniformly hyperbolic
dynamical systems.

In the context of complex polynomial automorphisms of C2, hyperbolic maps arise
naturally as perturbations of one-dimensional hyperbolic polynomials. They were first
studied in the late 1980s by Hubbard and Oberste-Vorth [24, 25] who showed that their
topological structure can be fully described in terms of the original one-dimensional
maps, whose Julia set and attracting cycles get perturbed to the basic sets of f (see also
Fornæss-Sibony [19]).

Computer experiments indicate that, though hyperbolicity is not a prevalent phenom-
enon in dimension two, there should exist still plenty of non-perturbative examples. The
first such candidate (a quadratic Hénon map with two co-existing attracting cycles) was
proposed by Hubbard; it was further investigated by Oliva in his thesis [38]. However, it
is a challenging problem, which requires computer assistance, to prove the hyperbolicity
of a particular example, and this one still remains unconfirmed. Some time later, Ishii
justified the hyperbolicity of several other non-perturbative Hénon maps: see [26, 27, 28]
(of course, along with each such example comes an open set of hyperbolic parameters).

A systematic theory of hyperbolic polynomial automorphisms of C2 was launched by
Bedford and Smillie in the early 1990’s , relying notably on methods from Pluripotential
Theory. In particular, they showed in [3] that any such a map only has one non-trivial
basic set, its Julia set Jpfq, while all others are just attracting cycles. Further combi-
natorial study of hyperbolic Hénon maps was carried out by Ishii and Smillie [29].

In this paper we will reveal a finer structure of the Julia set, related to its connected
components, that leads to a finer “spectral decomposition”. Namely, under mild dissipa-
tivity assumptions, we will show that there are finitely many quasi-solenoids that govern
the asymptotic behavior of all non-trivial components. Some of these quasi-solenoids
are tame (i.e. lie on the boundary of the basins of some attracting cycles), while others
might be queer (we do not know whether they actually exist).

Let us conclude this preamble by suggesting a potentially important role that hyper-
bolic maps may play in the Hénon story. They are not only interesting simple models for
the general non-uniformly hyperbolic situation, but they may also be seen as “germs” for
a Renormalization Theory which would lead to self-similarity features of the parameter
spaces. In this respect, renormalizing hyperbolic Hénon maps around quasi-solenoids
would be the beginning of this story.

1.2. One-dimensional prototype. Understanding the topological structure of the Ju-
lia set is one of the most basic problems in holomorphic dynamics. For polynomials in
one variable, Fatou and Julia proved that the connectivity properties of the Julia set
are dictated by the dynamical behavior of critical points. When the critical points do
not escape, the Julia set J is connected; on the contrary, if all critical points do escape,
J is a Cantor set. If J is connected and locally connected, the theory of external rays
of Douady and Hubbard [13] and the theory of geodesic laminations of Thurston [44]
give a topological model for the Julia set as the quotient of the circle by an equivalence
relation which records the landing pattern of external rays. When the Julia set of a
polynomial is disconnected, it admits uncountably many components, and one challenge
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is to characterize when a component is non-trivial (i.e. not a point) in terms of the
induced dynamics on the set of components. It turns out that this happens when and
only when this component is preperiodic to a component containing a critical point:
this is due to Branner and Hubbard [9] for cubic polynomials, and Qiu and Yin [41]
in the general case (based upon the Kahn-Lyubich machinery [30, 31]). Then one may
describe non-trivial periodic components by realizing them as Julia sets of connected
polynomial-like maps and using the Douady and Hubbard Straightening Theorem [14].

In the hyperbolic case, the above theory is much easier and had belonged to folklore
of the field:

Theorem 1.1. Let p be a hyperbolic polynomial in C, with a disconnected Julia set.
Then the filled Julia set K has uncountably many components, and only countably of
them are non-trivial. Any non-trivial component is preperiodic, and there are finitely
many periodic components, each of which containing an attracting periodic point.

Note that this is really a statement about polynomials: there are examples of hyper-
bolic rational maps on P1 whose Julia sets are Cantor sets of circles [37].

1.3. Main result. In this article we address similar issues in the setting of polynomial
automorphisms of C2. Let f be a polynomial automorphism of C2 with non-trivial
dynamics: by this we mean for instance that the algebraic degree of the iterates fn tend
to infinity (see below §2.1 for more details on this). Its Julia set J “ Jf is the set of
points at which both pfnqně0 and pf´nqně0 are not locally normal. We also classically
denote by K` (resp. K´), the set of points with bounded forward (resp. backward)
orbits, K “ K` XK´ and J˘ “ BK˘, so that J “ J` X J´. The complex Jacobian
Jac f is a non-zero constant. Thus, replacing f by f´1 if necessary, without loss of
generality we assume from now on that |Jac f | ď 1.

In this context, the connected vs. disconnected dichotomy for the Julia set was studied
by Bedford and Smillie [6], who proved that the connectedness of J , or equivalently of
K, is equivalent to the non-existence of “unstable critical points”, which are defined
as tangencies between certain dynamically defined foliations. (Recall that f has no
critical point in the usual sense, but these unstable critical points play the same role as
escaping critical points in dimension one.) Bedford and Smillie also showed that when
J is connected, there is a well-defined family of external rays along unstable manifolds,
parameterized by a “solenoid at infinity”, which is the inverse limit of the dynamical
system defined by z ÞÑ zd on the unit circle.

To proceed further and try to extend the Douady-Hubbard description of the Julia
set in terms of the combinatorics of external rays, given our current state of knowledge,
we need to assume that f is uniformly hyperbolic. Recall from [3] that f is said to be
hyperbolic if J is a hyperbolic set, which must then be of saddle type. In this case, f
satisfies Smale’s Axiom A in C2, and the Fatou set is the union of finitely many basins
of attraction. (See [27] for an introductory account to this topic, which also discusses
some combinatorial/topological models for Julia sets.)

By using the convergence of unstable external rays, it was shown in [7] that if f
is hyperbolic and J is connected, then J can be described as a finite quotient of the
solenoid at infinity. A non-trivial consequence of the results of [5],[6] and [7] is that in
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this case f cannot be conservative, that is, |Jac f | ă 1 (see [7, Cor. A.3]; recall that
we assume |Jac f | ď 1 here). An alternate argument for this fact was given by the
first-named author in [15], where it is shown that a hyperbolic automorphism f with
connected Julia set must possess an attracting periodic point, so in particular |Jac f | ă 1.
Surprisingly enough, the existence of an attracting point does not seem to follow easily
from the description of J as a quotient of the solenoid.

In this article we focus on the disconnected case. A motivating question is the following
conjecture from [15].

Conjecture 1.2. Let f be a dissipative and hyperbolic automorphism of C2, without
attracting points. Then J is a Cantor set.

Our main result is an essentially complete generalization of Theorem 1.1 in two di-
mensions, under a mild dissipativity assumption.

Main Theorem. Let f be a hyperbolic polynomial automorphism of C2, with a discon-
nected Julia set, and such that |Jac f | ă 1{deg f . Then there are uncountably many
components of J , which can be of three (mutually exclusive) types:

(1) point;
(2) leafwise bounded;
(3) or quasi-solenoid.

Quasi-solenoidal components are periodic and there are only finitely many of them. Any
component of type (2) is wandering and converges to a quasi-solenoidal one under for-
ward iteration. The components of K are classified accordingly.

Under an additional assumption (NDH) on the behavior of stable holonomy between
components, any quasi-solenoidal component of K contains an attracting periodic point.

Here deg f refers to the dynamical degree of f , which is the growth rate of algebraic
degree under iteration (see §2.1). By definition, a component of J is leafwise bounded if
it is a relatively bounded subset of some unstable manifold; this implies that its topol-
ogy is that of a full plane continuum, properly embedded in C2. A quasi-solenoid is a
connected component with local product structure, which is totally disconnected in the
stable direction and locally connected and leafwise unbounded in the unstable direction
(see Definition 6.2). Components of type (2) are analogous to strictly preperiodic com-
ponents in dimension 1; note however that by the local product structure of J there are
uncountably many of them. Countability is restored by saturating with semi-local stable
manifolds (see Theorem 5.20). The meaning of the (NDH) assumption will be explained
below.

1.4. Outline. Let us discuss some of the main ideas of the proof, which occupies the
most part of the paper. First, the assumption on the Jacobian is used to guarantee that
the slices of J (resp. K) by stable manifolds are totally disconnected. It is reminiscent of
the stronger substantial dissipativity assumption |Jac f | ă 1{pdeg fq2 used in [17, 34, 35].
We could indeed use substantial dissipativity and Wiman’s Theorem in the style of
these papers to achieve stable total disconnectivity. However, hyperbolicity allows for
a Hausdorff dimension calculation which gives a better bound on the Jacobian (see
Section 4).



STRUCTURE OF HYPERBOLIC MAPS 5

The key step of the finiteness property in the main theorem is an analysis of geometry
of the unstable slices of J and K. Using external rays, we first show in Section 3 that the
complement of K along unstable manifolds satisfies a weak version of the John property.
This property implies that the components of K XW u are locally connected, and that
locally there are only finitely many components of diameter bounded from below.

This finiteness is used to get a classification of semi-local components of J` and K`.
By this we mean that we fix a large bidisk B (in adapted coordinates) in which J` and
K` are vertical-like objects, and we look at components of J` X B (resp. K` X B).
We prove that these semi-local components behave like components of J (resp. K) for
one-dimensional polynomials: only countably many of them are non-trivial, that is, not
reduced to vertical submanifolds, and any non-trivial such component is preperiodic.
Besides the finiteness induced by the John-like property, this relies on a key homogeneity
property of such a semi-local component: either all its unstable slices are “thin”, or all
of them are “thick”. To prove this thin-thick dichotomy we show that if a semi-local
component admits a thin unstable slice, then by a careful choice of B we can arrange
that the stable foliation of this semi-local component is transverse to BB. It follows that
this component has a global product structure in B (see Section 5 for details).

If C is a non-trivial component of J , it is easy to see that the ω-limit set of C must be
contained in one of the finitely many thick semi-local components of J`. We show that
it must have local product structure, hence be a quasi-solenoidal component of J . The
main step is the following: for large m ‰ n, by the expansion in the unstable direction,
the unstable slices of fmpCq and fmpCq have a diameter bounded from below, so if xn P
fnpCq is close to xm P f

mpCq, by the finiteness given by the John-like property, fnpCq
and fmpCq must correspond one to the other under local stable holonomy. Furthermore,
such a quasi-solenoidal component must coincide with the limit set of its semi-local
component in J`, and the finiteness of the number of attractors follows (see Section 6).

To get a complete generalization of the one-dimensional situation, it remains to show
that such a quasi-solenoidal component must “enclose” some attracting periodic point.
Unfortunately, all our attempts towards this result stumbled over the following issue: if
x, y P J are such that y P W spxq, the stable holonomy induces a local homeomorphism
JXW u

locpxq Ñ JXW u
locpyq. The point is that it might not be the case in general that this

local homeomorphism can be continued along paths in JXW upxq, even when JXW upxq
is a relatively bounded subset of W upxq. (Compare with the Reeb phenomenon for
foliations, illustrated in Figure 1.) This is a well-known difficulty in hyperbolic dynamics,
which was encountered for instance in the classification of Anosov diffeomorphisms (see
§8.1 for a short discussion). If this continuation property holds – this is the Non-
Divergence of Holonomy (NDH) property referred to in the main theorem– then we
can indeed conclude that non-trivial periodic components of K contain attracting orbits
(see Section 8, in particular Theorem 8.4). This yields in particular a conditional proof
of Conjecture 1.2. Let us also note that a simple instance where the NDH property
holds is when the stable lamination of J` is transverse to BB (for some choice of B), a
property which can be checked in practice on specific examples.

In the course of the paper, we also establish a number of complementary facts, which
do not enter into the proof of the main theorem: the existence of an external ray landing
at every point of J (see Theorem 3.4); the structure of attracting basins (see § 7.2); a
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simple topological model for the dynamics on Julia components (see § 7.3); the topo-
logical transitivity of quasi-solenoids (see Theorem 8.7). In Appendix A we sketch the
construction of the core of a quasi-solenoidal component, which aims at describing its
topological structure.

Notes and acknowledgments. Some of these results were already announced at the
conference “Analytic Low-Dimensional Dynamics” in Toronto in June 2019. We are
grateful to Pierre Berger for pointing out Proposition 4.3 to us. The second-named
author was partially supported by an NSF grant, Hagler and Clay Fellowships. Part of
this work was carried out during his visits of the Hagler Institute for Advanced Study at
Texas A&M, the Center of Theoretical Studies at ETH Zürich, and MSRI at Berkeley.
We thank these institutions for their generous support.

2. Preliminaries and notation

2.1. Vocabulary of complex Hénon maps. If B “ D ˆ D is a bidisk, we denote
by BvB “ BD ˆ D (resp. BhB “ D ˆ BD) the vertical (resp. horizontal) boundary.
An object in B is horizontal if it intersects BB only in BvB, and likewise for vertical
objects. A closed horizontal submanifold is a branched cover of finite degree over the
first projection.

Let us collect some standard facts and notation (see [21, 3, 2, 19]). If f is a polynomial
diffeomorphism of C2 with non-trivial dynamics, then by making a polynomial change
of coordinates we may assume that f is a composition of complex Hénon mappings
pz, wq ÞÑ ppipzq ` aiw, aizq. In particular degpfnq “ pdeg fqn for every n ě 0. We fix
such coordinates from now on. As it is customary in this area of research, we will often
abuse terminology and simply refer to f as a complex Hénon map. The degree of f is
d “

ś

degppiq ě 2 and the relation degpfnq “ dn holds so that d coincides with the
so-called dynamical degree of f .

In these adapted coordinates, there exists R ą 0 such that for the bidisk B :“
Dp0, Rq2, we have that fpBqXB (resp. f´1pBqXB) is horizontally (resp. vertically) con-
tained in B and the points of BvpBq (resp. BhpBq escape under forward (resp. backward)
iteration.

§ K˘ is the set of points with bounded forward orbits under f˘1 and K “ K` X

K´. Note that K` is vertical in B and fpB X K`q Ă K`. Similarly, K´ is
horizontal and f´1pBXK´q Ă K´.

§ J˘ “ BK˘ are the forward and backward Julia sets. If f is dissipative then
K´ “ J´.

§ J “ J` X J´ is the Julia set.

Following [6], we say that f is unstably disconnected if for some (and hence any) saddle
periodic point p, W uppq X K` admits a compact component (relative to the topology
induced by the biholomorphism W uppq » C), and unstably connected otherwise. If f
is unstably disconnected, then it admits an unstable transversal ∆u, that is a relatively
compact domain in W uppq which is a horizontal submanifold in B: indeed pick a bounded
Jordan domain U ĂW uppq containing a compact component of W uppq XK` such that
BU XK` “ H and iterate it forward.
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2.2. Hyperbolicity and local product structure. Throughout the paper we assume
that f is hyperbolic on J (hence Axiom A on C2 by [3]), with hyperbolic splitting
TC2|J “ Eu ‘ Es. Then there exists a continuous Riemannian metric |¨| on J and
constants s ă 1 ă u such that for any x P J , and any v P Eupxqz t0u, |Dfx ¨ v| ě u |v|
(resp. for any v P Espxq, |Dfx ¨ v| ď s |v|). By [16], it is enough to assume that f is
hyperbolic on J‹, where J‹ is the closure of saddle periodic points (and a posteriori one
deduces that J “ J‹).

In this situation the local stable and unstable manifolds of points of J have local
uniform geometry: there exists a uniform r ą 0 such that for every x P J , W upxq (resp.
W spxq is of size r at x, in the sense that it contains a graph of slope at most 1 over a
disk of radius r in Eupxq (resp. Espxq). The reader is referred to [8, 1] for a detailed

study of this notion. We denote by W
s{u
δ pxq the local stable/unstable manifold of radius

δ at x, which is by definition the component of W s{upxq in Bpx, δq. When the precise

size does not matter, we simply denote them by W
s{u
loc . Slightly reducing the expansion

constant u if necessary, given two points z, z1 in some local unstable manifold W u
δ pxq,

there is a uniform constant C such that dpf´npzq, f´npz1qq ď Cu´n, for all n ě 0.

There exists δ ą 0 and a neighborhood N of J such that the restriction to N of the
family local stable/unstable manifolds of radius δ is a lamination, denoted by Wu{s. The
Julia set has local product structure so there is a covering by topological bidisks Q (flow

boxes) such that the laminations Wu{s are trivial in Q and

J XQ » pW s
Qpxq X Jq ˆ pW

u
Qpxq X Jq “ pW

s
Qpxq X J

´q ˆ pW u
Qpxq X J

`q.

It is shown in [3] that the family of global stable and unstable manifolds of points of

J also has a lamination structure, which will be denoted by Ws{u. More precisely, in
the dissipative case, Ws is a lamination of J` is laminated by stable manifolds and the
other hand, Wu is a lamination of J´z ta1, . . . , aNu, where ta1, . . . , aNu is the finite set
of attracting periodic points of f . No unstable leaf extends across an attracting point,
even as a singular analytic set: indeed an unstable leaf is biholomorphic to C, therefore
such an extension would yield a submanifold of C2 biholomorphic to a (possibly singular)
copy of P1, which is impossible.

Under additional dissipativity assumptions, it was shown in [35] that the stable lam-
ination Ws in B can be extended to a C1 foliation in some neighborhood of J`: see
Lemma 5.7 below.

Let us conclude this paragraph with a useful elementary result.

Lemma 2.1. If f is hyperbolic, every holomorphic disk contained in K` is either con-
tained in the Fatou set or in the stable manifold of a point of J .

Proof. Indeed, if ∆ is a disk contained in K` then ∆ is a Fatou disk, i.e. pfn|∆qně0 is a
normal family. Now there are two possibilities: either ∆ is contained in IntpK`q hence in
the Fatou set, or it intersects J`. In the latter case, either ∆ is contained in a stable leaf
or by [2, Lem. 6.4], ∆ must have a transversal intersection with some unstable manifold,
so by the Inclination Lemma it is not a Fatou disk, which is a contradiction. �
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2.3. Affine structure. Global stable and unstable manifolds are uniformized by C, so
they admit a natural affine structure. Since any automorphism of C is affine, f acts
affinely on leaves. In particular there is a well defined notion of a round disk, which
is f -invariant. Likewise, the Euclidean distance is well-defined in the leaves, up to a
multiplicative constant.

For any x P J we choose a uniformization ψux : C „
ÝÑW upxq such that ψuxp0q “ x and

|pψuxq
1p0q| “ 1

Lemma 2.2. The family of uniformizations pψuxqxPJ is continuous up to rotations, that
is, if xn Ñ x then pψuxnq is a normal family and its cluster values are of the form ψuxpe

iθ¨q.

Proof. The result follows from the continuity of the affine structure on the unstable
leaves (see Theorem B.1). �

It is unclear whether the assignment J Q x ÞÑ ψux can be chosen to be continuous, that
is, if a consistent choice of rotation factor eiθ can be made. This can be done locally
but there might be topological obstructions to extend the continuity to J . Notice that
the pψuxq provide a normalization for the leafwise Euclidean distance. The normalized
Euclidean distance on W upxq will be denoted by dux.. If C Ă W upxq, its diameter with
respect to dux will be denoted by Diamx. By Lemma 2.2, dux varies continuously with x.
For R ą 0 we let Du

xpx,Rq :“ ψuxpDp0, Rqq.

By construction, f is a uniformly expanding linear map in these affine coordinates,
that is f ˝ ψux “ ψufpxqpλ

u
x¨q, with |λux| “

›

›df |Eu
x

›

›. By hyperbolicity there is a positive

constant C such that for every x P J ,

(1)

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ź

i“0

λuf ipxq

ˇ

ˇ

ˇ

ˇ

ˇ

ě Cun,

where u ą 1 was defined in §2.2.

By the Koebe Distortion Theorem there exists a uniform r ą 0 such that the Dupx, rq
are contained in the flow boxes (see e.g. [8, Lemma 3.7]). By the local bounded geometry
of the leaves, the distance induced by the affine structure on the Dupx, rq is equivalent
to that induced by the ambient Hermitian structure. Then, iterating finitely many times
we can promote this result on the Dupx,Rq for every given R ą 0.

All the above discussion holds for stable manifolds, with superscripts u replaced by s.

2.4. Connected and semi-local components. For every x P J (or more generally
x P K` X B) we denote by K`

B pxq the connected component of x in K` X B, which is a

vertical subset of B. It follows from the Hénon-like property that fpK`
B pxqq Ă K`

B pfpxqq,
thus f induces a (non-invertible) dynamical system on the set of connected components
of K` X B. The same discussion applies to components of J` X B. More generally, for
any closed connected subset C Ă J (resp. C Ă K), we define J`B pCq (resp. K`

B pCq)
to be the connected component of C in J` X B (resp. K` X B). Of course for x P C,
J`B pxq “ J`B pCq holds. A related concept is W s

Bpxq, the component of B X W spxq

containing x. If we set W s
BpCq “

ď

xPC

W s
Bpxq then W s

BpCq is contained in K`
B pCq but this
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inclusion may be strict. This phenomenon may happen when for some x P C, W s
Bpxq is

tangent to BB (see Figure 1).

C ′

C

Figure 1. Discontinued holonomy. The green components belong to K`B pCq

but not to W s
BpCq (in blue). The red part of C cannot be followed under stable

holonomy to C 1 due to a Reeb-like phenomenon.

For x P K, we denote by Kspxq (resp. Kupxq) the connected component of K X

W spxq “ K´ XW spxq (resp. K XW upxq “ K` XW upxq) containing x, and also Kpxq
its connected component in K. For x P J , we define Jspxq, Jupxq and Jpxq similarly.
More generally, if needed, we use the notation CompEpxq for the connected component
of x in a set E.

We use the subscript ‘i’ to denote topological operations (interior, closure, etc.) rela-
tive to the intrinsic topology in stable/unstable manifolds.

Lemma 2.3. Assume that f is hyperbolic. Then every connected component of K`XB
has a connected boundary, which is a component of J` X B.

Proof. Observe that if p is an interior point of K`XL, where L is a horizontal line, then
it belongs to a Fatou disk. Since L is not contained in J`, by Lemma 2.1, we get that
p P IntpK`q. This implies that for every x P K` X B, BK`

B pxq Ă
Ť

tPD BLtpK
`
B pxq XLtq,

where Lt “ D ˆ ttu and BLt refers to the boundary in Lt. The converse inclusion is
obvious, so BK`

B pxq X B “
Ť

tPD BLtpK
`
B pxq X Ltq. Since K`

B pxq X Lt is compact and
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polynomially convex, and obviously K`
B pxq “

Ť

tPDK
`
B pxq XLt, this means that K`

B pxq

is obtained from BK`
B pxq X B by filling the holes of all components of BLpK

`
B pxq X Lq

in every horizontal line. Now assume BK`
B pxq X B is disconnected, so we can write it as

B1YB2, where each Bi is relatively open and B1XB2 “ H. In every horizontal slice L,

BiXL must be a union of components of BLpK
`
B pxq XLq. For i “ 1, 2, let pBi be the set

obtained by filling the holes of Bi in each horizontal line in B. The previous discussion

shows that K`
B pxq “

pB1 Y pB2, where the pBi are relatively open in K`
B pxq and disjoint.

This is a contradiction, therefore BK`
B pxq X B is connected.

For the second statement, simply observe that if D Ă J` X B is a connected set such
that BK`

B pxqXB Ă D, then D is contained in K`
B pxq and also in BK` so D Ă BK`

B pxqXB
and we are done. �

2.5. Basic properties of leafwise components. Here we assume that f is a hyper-
bolic and dissipative complex Hénon map. The following result is well-known.

Lemma 2.4. For every x P K we have IntipK
upxqq Ă IntpK`q and BipK

upxqq Ă J .
In particular if IntipK

upxqq is non-empty, each of its components is contained in an
attracting basin. Likewise IntiK

spxq “ H and Jspxq “ Kspxq.

Proof. Indeed, since stable and unstable manifolds cannot coincide along some open set,
if ∆ is a disk contained in Kupxq, it follows from Lemma 2.1 that ∆ Ă IntpK`q, and the
remaining conclusions follow. �

For x in J , Kupxq may be bounded or unbounded for the intrinsic (leafwise) topology.
By the maximum principle, Kupxq is polynomially convex, so if Kupxq (or equivalently
Jupxq) is leafwise bounded, then Kupxq is simply the polynomially convex hull of Jupxq
(i.e. is obtained by filling in the leafwise bounded components of the complement).

Lemma 2.5. Given x P K, in the following properties we have pivq ô piiiq ñ piiq ô piq:

(i) Kupxq is leafwise bounded;
(ii) Jupxq is leafwise bounded;

(iii) W u
B pxq is leafwise bounded;

(iv) W u
B pxq is a closed horizontal submanifold of B.

Furthermore if (ii) holds, then (iii) holds for fnpxq for sufficiently large n.

Proof. The implication piq ñ piiq follows directly from the fact that Jupxq “ BiK
upxq.

Now assume that Jupxq is leafwise bounded. Working in W upxq » C, we have that
Kupxq is a closed connected polynomially convex set and Jupxq is a bounded connected
component of BiK

upxq. Since every point of Jupxq lies on the boundary of W upxqzK`

(for the intrinsic topology), the compact set obtained by filling the holes of Jupxq must
be Kupxq, so the converse implication holds.

Since Kupxq ĂW u
B pxq, obviously (iii) implies (i). Conversely, Kupxq is the decreasing

intersection of the sequence of components of x in W upxq X f´npBq. Hence, if Kupxq
is leafwise bounded it follows that CompWupxqXf´npBq pxq is leafwise bounded for large

enough n, and so does W upfnpxqq X B.
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Recall that for every x, W upxq is an injectively immersed copy of C, whose image is
a leaf of the lamination of J´z ta1, . . . , aNu. Here the ai are the attracting points, and
a leaf never extends to a submanifold in the neighborhood of ai (1). In particular, J´ is
laminated near BB. If W u

B pxq is leafwise bounded, then it is of the form ψuxpΩq, where Ω

is some bounded open set in C. Since ψu extends to a neighborhood of Ω, W u
B pxq it is

a properly embedded submanifold of B, which extends to a neighborhood of B. So (iii)
implies (iv). Finally, if (iv) holds, since J´ is a lamination near BB, we see that W u

B pxq

extends to a submanifold S in a neighborhood of B. Then W u
B pxq is relatively compact

in S Ă W upxq so if Ω is such that ψuxpΩq “ W u
B pxq then Ω is relatively compact in C,

and (iii) follows. �

3. External rays

In this section we study external rays along the unstable lamination (i.e. along J´) for
a hyperbolic complex Hénon map. The existence and convergence properties of external
rays were studied in the unstably connected case in [6, 7]. Recall that when |Jacpfq| ă 1,
unstable connectedness is equivalent to the connectedness of J . The results that we prove
here do not rely on any unstable connectivity or dissipativity assumption, nevertheless
what we have in mind is the case of a dissipative unstably disconnected map.

3.1. Escaping from K` along an external ray. By definition, an unstable external
ray (simply called “external rays” in the following) is a piecewise smooth continuous
path contained in a leaf W upxq of the unstable lamination, which is a union of gradient
lines of G`|Wupxq outside the (leafwise locally finite) set of critical points of G`|Wupxq.

As usual we assume that G` is strictly monotone along external rays (which will be
considered as ascending or descending depending on the context). We do not prescribe
rules for the behavior of rays hitting critical points, so in particular there is no attempt
at defining a notion of “external map”.

In the next proposition the length of curves is relative to the ambient metric in C2.
We show that external rays ascend fairly quickly.

Proposition 3.1. Let f be a hyperbolic polynomial automorphism of C2 of dynamical
degree d ą 1. For every r1 ă r2 there exists `pr1, r2q such that for every x P J´zK`

such that if G`pxq “ r1, any external ray through x reaches tG` “ r2u along a path
whose length is bounded by `pr1, r2q. In addition `pr1, r2q is bounded by a function `pr2q

depending only on r2. Furthermore `pr1, r2q Ñ 0 when r1 Ñ r2 and `pr2q “ Oprα2 q when
r2 Ñ 0, for some α ą 0.

Remark 3.2. Notice that no dissipativity is assumed here so the result holds along stable
leaves as well.

Proof. Start with r1 “ 1 and r2 “ d. In J´ X t1 ď G` ď du the leaves of Wu have
uniform geometry and no leaf of Wu is contained in an equipotential hypersurface of the
form tG` “ Cu, in particular unstable critical points have uniform order. Thus by com-
pactness and continuity of G`, we infer the existence of uniform δ0 and `0 such that for

1Indeed otherwise this would induce a compactification of unstable manifolds, yielding an embedding
of P1 into C2.
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every x P J´Xt1 ď G` ď du, any external ray through x of length `0 reaches tG` “ ru
with r ě G`pxq ` δ0. By concatenating such pieces of rays, we deduce the conclusion of
the proposition for r1 “ 1 and r2 “ d (and `p1, dq ď pd´ 1q`0{δ0). Pulling back finitely
many times and concatenating again, we get a similar conclusion for tr0 ď G` ď du for
any fixed r0.

Let us now fix r0 such that t0 ă G ď dr0u X J´ is contained in W u
locpJq. Any piece

of external ray between the levels tG` “ r0{d
nu and

 

G` “ r0{d
n´1

(

is the pull-back
of a piece of external ray in tr0 ď G` ď dr0u. Thus by concatenation it follows that
any external ray starting from tG` “ r0{d

nu reaches tG` “ r0u along a path of length

bounded by ď C`pr0, dr0q

n
ÿ

k“1

u´k, where u is the expansion constant introduced in §2.2.

This proves the existence of the functions `pr1, r2q and `pr2q

The same ideas imply immediately that `pr1, r2q Ñ 0 when r1 Ñ r2. For the last
statement simply note that for every r1 ă r2 ď r0,

`pr1 ă r2q ď C
8
ÿ

k“k0

u´k “ Opu´k0q

where k0 is the greatest integer such that r0d
´k0 ě r2, therefore `pr1 ă r2q “ Oprα2 q,

with α “ log u
log d . �

It is easy to deduce from these ideas that all (descending) external rays land. However,
since there is no well defined external map, the characterization of the set of landing
points does not seem to follow directly from this landing property.

Corollary 3.3 (John-Hölder property). There exists a constant α ą 0 such that for any
sufficiently small η ą 0, for any x P J´zK` sufficiently close to K`, there exists a path
of length at most Opηαq in W upxqzK` joining x to a point η-far from K`.

Proof. By the previous proposition, there exists a path of length Oprα1q joining x to a
point y such that G`pyq “ r. Now the Green function is Hölder continuous (see [19])
and that K` “ tG` “ 0u, so dpx,K`q ě Crα2 . The result follows. �

This John-Hölder property has deep consequences for the topology of K` XW upxq,
which will play an important role in the paper. Intuitively it means that there cannot
exist long “channels” between local components of K`.

This property is strongly reminiscent of the so-called John condition for plane domains,
which have been much studied in one-dimensional dynamics, in relation with non-uniform
hyperbolicity (see e.g. [12, 23]). In the Hénon context, it was shown in [7] that for
unstably connected hyperbolic maps, the components of W upxqzK` satisfy the John
property. It is very likely that using the continuity of affine structure along unstable
leaves, their arguments can be adapted to the disconnected case as well: this would
upgrade Corollary 3.3 to the actual John condition. One advantage of this weaker
property is that it makes no reference to the affine structure of the leaves, so it is more
flexible and may be adapted to semi-local situations (e.g. Hénon-like maps).
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3.2. Accesses and landing.

Theorem 3.4. Let f be a hyperbolic polynomial automorphism of C2 with dynamical
degree d ą 1.

(1) For every x P J , Dupx, 1qzK` admits finitely many connected components, and
at least one of these components contains x in its closure.

(2) For any component Ω of Dupx, 1qzK` such that Ω Q x there is an external ray
landing at x through Ω.

For the proof, it is convenient to work in the affine coordinates given by the unstable
parameterizations. We work in the disks Dupx, 1q and measure path length relative to
the normalized affine metric, which is equivalent to the ambient one.

Proof. The first observation is that Dupx, 1qzK` contains x in its closure: otherwise x
would lie in the leafwise interior of K`, thus contradicting Lemma 2.4. Furthermore,
by the maximum principle, if y P Dupx, 1qzK` is arbitrary, the component of y in
Dupx, 1qzK` reaches the boundary of Dupx, 1q.

We claim that there exists η1 ą 0 such that for any x P J and any component Ω of
Dupx, 1qzK` such that ΩXDu px, 1{4q ‰ H, then:

supG`|Dupx,1{2qXΩ ě η1.

This follows directly from Proposition 3.1: indeed there exists η1 ą 0 such that any
point of J´zK` reaches tG` “ η1u along a path of length 1{4. By the Hölder continuity
of G`, we infer that any such component Ω contains a disk of radius Cηα1 , so there are
finitely many of them.

In particular if pxnq is a sequence in Dupx, 1qzK` converging to x, infinitely many
of them must belong to the same component Ω of Dupx, 1qzK`, which shows that Ω
contains x. This proves assertion (1) of the theorem.

Fix now a component Ω of Dupx, 1qzK` such that Ω Q x. Let η1 be as above and fix
ε such that ε ă η1{d and `pε, dεq ă min p1{2, pu´ 1q{2q where `p¨q is as in Proposition
3.1 and the constant u was defined in §2.2. We do the following construction: for every
point y P tG` “ εu X D

u
px, 1{2q, we consider all ascending external rays emanating

from y until they reach tG` “ dεu. The lengths of the corresponding rays is not larger
than `pε, dεq. These are the rays of 0th generation and we denote by E0 the set of their
endpoints (2), which by the assumption on `pε, dεq is contained in tG` “ dεuXDupx, 1q.
We note that E0 is a closed set because it is the ending point set of a compact family of
external rays. Since ε ă η1{d, E0 has non-empty intersection with Ω.

Performing the same construction in Dupfpxq, 1q we obtain a set of rays of 0th gen-
eration in that disk, which connect tG` “ εu XD

u
pfpxq, 1{2q to tG` “ dεu, and their

endpoints lie in
 

G` “ dε
(

XD
u
ˆ

fpxq,
1

2
` `pε, dεq

˙

.

2Recall that since we do not prescribe the behavior of external rays at critical points of G` there is no
reason that external rays fill up the whole unstable lamination, so E0 could be smaller than

 

G` “ dε
(
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The pull-backs of these rays by f have their endpoints in

 

G` “ ε
(

XD
u
ˆ

x,
1

u

ˆ

1

2
` `pε, dεq

˙˙

Ă
 

G` “ ε
(

XDu

ˆ

x,
1

2

˙

,

by the assumption on `pε, dεq. These are the rays of 1st generation in Dupx, 1q. We
define E1 Ă E0 to be the closed set of points for which we can concatenate a ray of 0th
generation with a ray of 1st generation to descend all the way to tG` “ ε{du. Notice
that fpΩq X Dupfpxq, 1q is not necessarily connected, so it is a union of components

of Dupfpxq, 1qzK`, and since fpΩq Q fpxq, at least one of these components reaches
Dupfpxq, 1{2q, so it contains rays of 0th generation. This shows that E1 has non-empty
intersection with Ω.

Continuing inductively this construction, we obtain a decreasing sequence pEnq of
closed subsets in tG` “ dεu XDupx, 1q, each of which intersecting Ω. If e P

Ş

nEn XΩ,
then there is a ray through e (hence in Ω) converging toK`, whose part in

 

εd´n´1 ď G` ď εd´n
(

is the pull-back under fn of a piece of external ray in Dupfnpxq, 1q. Therefore this ray
lands at x, and the proof of assertion (2) is complete. �

Remark 3.5. The existence of a convergent external ray along any access to a saddle
periodic point can be obtained exactly as in the 1-dimensional case (see [18]), without
assuming uniform hyperbolicity. In that case the Denjoy-Carleman-Ahlfors Theorem is
used instead of the John-Hölder property to guarantee the finiteness of the number of
local components.

3.3. Topology of K` XW u. In this section we review the consequences of Corollary
3.3 for the topology of unstable components of K`.

Theorem 3.6. Let f be a hyperbolic Hénon map. Then for every x P J :

(i) every component of K` XW upxq (resp. J` XW upxq) is locally connected;
(ii) for any smoothly bounded domain Ω Ă W upxq, for every δ ą 0, K` X Ω (resp.

J` X Ω) admits at most finitely many components of diameter larger than δ.

As before this follows from [7] when f is unstably connected (see Theorems 3.5 and
5.6 there), so we focus on the unstably disconnected case. In this case it is known that
K`XW upxq has uncountably many point components (see [7, Thm 3.1]). Using (ii) we
can be more precise:

Corollary 3.7. Let f be hyperbolic and unstably disconnected. Then for every x P J ,
all but at most countably many components of K` XW upxq are points.

Let us stress that the conclusions of the theorem follow solely from Corollary 3.3
together with some elementary topological considerations. Remark also that the as-
sumption that Ω has smooth boundary in (ii) is necessary: indeed otherwise it could cut
a component of K` in infinitely many parts of large diameter (think e.g. of the closed
unit square cut out by some comb-like domain).

Part or all of Theorem 3.6 is presumably known to specialists, however for complete-
ness we provide some details. Let us first define a notion of “fast escaping from a compact
set”.
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Definition 3.8. Let Ω be a smoothly bounded domain in C and K be a closed subset
in Ω Ă C. We say that K satisfies the fast escaping property in Ω if there exists an
increasing continuous function ` with `p0q “ 0 such that for any sufficiently small η ą 0
and any x R K, there exists a path γ : r0, 1s Ñ ΩzK of length at most `pηq such that
γp0q “ x and dpγp1q,Kq ě η.

Corollary 3.3 asserts that if f is hyperbolic, then for every x P J , and any leafwise
bounded domain Ω ĂW upxq, K`XW upxq satisfies the fast escaping property in Ω with
`pηq “ cηα. Note that both properties (i) and (ii) in Theorem 3.6 are local in W upxq so
the choice of ambient or leafwise topology or metric is harmless.

The following lemma takes care of item (ii) of the theorem.

Lemma 3.9. Let K be a closed subset of a smoothly bounded domain Ω Ă C, satisfy-
ing the fast escaping property. Then for every δ ą 0, there are at most finitely many
components of K (resp. of IntpKq, of BK) of diameter greater than δ.

Proof. We first prove the result for K and IntpKq and then explain how to modify the
proof to deal with BK. Let us first assume that Ω is the unit square Q, and denote by π1

and π2 the coordinate projections of Q. Assume by contradiction that there are infinitely
many components pCiqiě0 of K with diameter ě δ. Then there exists π P tπ1, π2u such
that infinitely many Ci satisfy DiampπpCiqq ě δ{2. Therefore there is an interval I
of length δ{4 such that for infinitely many i, Ci disconnects the strip π´1pIq, and we
conclude that π´1pIqz

Ť

Ci has infinitely many connected components Uj going all the
way across the strip. (Notice that the Uj may contain other points of K.) Let c be the
center point of I. Since the Ci are distinct components of K, for each j there exists a
point xj in UjXπ

´1pcq which does not belong to K. If η is chosen such that `pηq “ δ{20
we infer from the fast escaping property that for every j, Uj contains a disk of radius η,
which is the desired contradiction.

For IntpKq the argument is identical except that instead of c we take a small open
interval I 1 about c and argue that if the Ci are distinct components of IntpKq, there
exists xj P Uj X π

´1pI 1q which does not belong to K.

In the general case, take a square Q such that Ω Ť Q and replace K by K 1 “ K X Ω.
Let us check that K 1 satisfies the fast escaping property in Q. Indeed, if x P QzK 1 we
have either x P Ω, x P BΩ or x P QzΩ. In the first case we take the path γ given by the
fast escaping property of K in Ω. In the second case, any small ball B about x intersects
ΩzK, and we simply take a path starting from some x1 P BX pΩzKq. Finally in the last
case we use the fact that Ω has the fast escaping property in Q.

By the first part of the proof we conclude that K 1 has finitely many components of
diameter ě δ. Since any component of K (resp. IntpKq) is contained in a component of
K 1 (resp. IntpK 1q), we are done.

The proof that BK admits only finitely many components of diameter greater than δ
goes exactly along the same lines. We assume that there are infinitely many components
Ci of BK disconnecting the strip π´1pIq, so that π´1pIqz

Ť

Ci also has infinitely many
components Uj . The difference with the previous case is that some of these components
may be completely included in K. We modify the argument as follows. Denote by U 1j
the components completely included in K and by U2j the remaining ones. We claim
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that there are infinitely many U2j ’s. Indeed since the Ci are components of BK, two

components of the form U 1j must be separated by a component of the form U2j . So

there are infinitely many such components. Then we take a small open interval I 1 Ă I
containing c and we repeat this argument, to obtain that there are infinitely many j’s
such that U2j Xπ

´1pI 1q contains a point xj that does not belong to K. Then we proceed
with the proof as in the previous case, by constructing infinitely many disjoint disks of
radius η in Q to get a contradiction. �

Proof of (i) in Theorem 3.6. Since J` X W upxq “ BipK
` X W upxqq, general topology

implies that local connectivity of J` X W upxq implies that of K` X W upxq (see [33,
§49.III]) so it is enough to focus on J`. For convenience we plug in some dynamical
information. Since f is unstably disconnected, it admits an unstable transversal ∆u,
that is a horizontal disk of finite degree in B contained in some unstable manifold (of
a periodic saddle point, say). For every x P J , W spxq intersects ∆u: this easily follows
from the density of W spxq in J` and the local product structure. Fix y PW spxq X∆u.
By using the local holonomy along the stable lamination W u

locpxq ÑW u
locpyq, we see that

J` XW upxq is locally connected at x if and only if J` XW upyq is locally connected at
y. Therefore it is enough to show that J` X ∆u is locally connected. Since K` X ∆u

is polynomially convex and compactly contained in ∆u it follows that Ω :“ ∆uzK` is
connected and J`X∆u “ BΩ. Likewise every component of BΩ is of the form BA, where
A is a component of ∆u X K`. For such a component, by Carathéodory’s Theorem
local connectivity of BA is equivalent to that of A, which is of course equivalent to local
connectivity of A at every point of its boundary. Let us fix x0 P BA: to complete the
proof we have to show that A is locally connected at x0.

Assume by contradiction that A is not locally connected at x0. Then for small ε ą 0
such that if C denotes the component of AXBpx0, εq, then x0 “ limxn, where xn belongs
to AzC. Without loss of generality we can assume that xn P Bpx0, ε{2q. Let Cn “
CompAXBpx0,εqpxnq, which by definition is disjoint from C. Passing to a subsequence if

necessary, we may assume that the Cn are disjoint (the construction here is similar to
that of convergence continua in [33, §49.VI]). Since C and the Cn intersect BBpx0, εq,
their diameter is bounded from below by some δ ą 0. From this point the proof is
similar to that of of Lemma 3.9: we can find an orthogonal projection π such that C
and the Cn cross the strip π´1pIq horizontally and π´1pIqzpC Y

Ť

Cnq admits infinitely
many connected components Uj going all the way across the strip. If π´1pcq denotes the
center line of the strip, for every j, π´1pcq XUj has non-trivial intersection with Ω, and
the fast escaping property of Ω gives a contradiction as before. �

3.4. Complement: John-Hölder property in basins. We illustrate the comments
from § 3.1 on the versatility of the John-Hölder property by sketching a proof of the
following result.

Theorem 3.10. Let f be a hyperbolic polynomial automorphism of C2, and B be an
attracting basin. Then the John-Hölder property holds in B, i.e. for any component Ω of
BXW upxq there exists η0 depending only on Ω such that for any y P Ω sufficiently close
to J , there exists a path in of length Opηαq in W upxq joining y to a point η-far from J .



STRUCTURE OF HYPERBOLIC MAPS 17

Remark 3.11. A difference between this result and Corollary 3.3 is that in Corollary 3.3
the constant η0 is independent of the component of W upxqzK`, because G` reaches
arbitrary large values in each component. Here the situation is different because B X
W upxq typically has (infinitely) many small components, so how far we can get from the
boundary really depends on the component.

Proof. For convenience we present a proof which is purposely close to that of Proposi-
tion 3.1 and Corollary 3.3. Replace f some iterate so that B is the basin of attraction
of a fixed point a with multipliers λ1, λ2, with |λ2| ď |λ1|. There exists a biholo-
morphism φ : B Ñ C2, which conjugates the dynamics to that of the triangular map
pz1, z2q ÞÑ pλ1z1 ` rpz2q, λ2z2q, where r is a polynomial which is non-zero only when

there is a resonance λ2 ‰ λj1 between the eigenvalues (see [43]). Introduce the function

H̃pz1, z2q “ |z1 ´ rpz2{λ2q|
2
` |z2|

2α , where α “
log λ1

log λ2
ě 1

and put H “ H̃ ˝ φ. This is a smooth strictly psh function on B which satisfies H ˝ f “
|λ1|

2H. To get a better analogy with the previous case we may consider H´1 which

satisfies H´1 ˝ f “ |λ1|
´2H´1, and tends to zero when approaching J . The restriction

of this function to any local unstable disk in Bz tau is non-constant and one easily checks
that its set of critical points is discrete.

Arguing in Proposition 3.1, we define a family of rays in B by considering gradi-
ent lines of H (or equivalently H´1) along Wu , first in the fundamental domain
!

|λ1|
2
ď H´1 ď 1

)

and then in
 

0 ă H´1 ď 1
(

by pulling back. It follows that for

every component Ω of B XW upxq, for every 0 ă r1 ă r2 ă maxΩ

ˇ

ˇH´1
ˇ

ˇ, and any y P Ω

such that H´1pyq “ r1, there exists a ray of length `pr1, r2q “ Oprα2 q joining y to a point
of

 

H´1 “ r2

(

.

To conclude the argument we need to adapt the proof of Corollary 3.3, which relies
on the Hölder continuity of the Green function. Instead we use an argument based on
uniform hyperbolicity. Indeed, let x P J and y P W u

locpxq be such that dupx, yq “ ε. We
want to show that H´1pyq À εα for some α. By the expansion along unstable manifolds
and the local uniform geometry it takes at most N ď C |log ε| iterates to map y into a
given compact subset of B. Hence

H´1pyq “ |λ1|
2N H´1pfN pyqq ď C |λ1|

2N
ď C |λ1|

2C|log ε|
“ Cε´2C log|λ1|

and we are done. �

4. Stable total disconnectedness

We say that f (or J) is stably totally disconnected if for every x P J , W spxq X J´ is
totally disconnected. Note that since J has local product structure with respect to the
stable and unstable laminations, W spxq X J “W spxq X J´.

Proposition 4.1. Let f be a hyperbolic Hénon map. The following assertions are equiv-
alent.

(i) Every leaf of the stable lamination in B is a vertical submanifold of finite degree.
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(ii) The leaves of the stable lamination in B are vertical submanifolds of uniformly
bounded degree.

(iii) For every x in J , Jspxq “ Kspxq “ txu, that is, f is stably totally disconnected.

Note that dissipativity is not required here, so this result holds in the unstable direc-
tion as well.

Proof. The implication piiq ñ piq is obvious and its converse piq ñ piiq follows from the
semi-continuity properties of the degree and is identical to [35, Lemma 5.1]. To prove
that piiiq ñ piq we use Lemma 2.5 for the stable lamination: indeed if Jspxq is a point
for every x, then all 4 conditions of Lemma 2.5 are equivalent, and the equivalence of
properties (ii) and (iii) there yield the result. Finally, piiq ñ piiiq does not require
hyperbolicity and was established in [15, Prop. 2.14]. For convenience, let us recall
the argument: for every vertical disk D of degree ď k, and every component D1 of
D X fpBq, the modulus of the annulus DzD1 is bounded below by m “ mpkq ą 0, and
for every x P J there is an infinite nest of such annuli surrounding the component of x
in W spxq X J . So W spxq X J is totally disconnected and we are done. �

A way to ensure the boundedness of the degrees of semi-local stable manifolds origi-
nates in [17] and relies on Wiman’s theorem for entire functions. The following result is
contained in [35].

Proposition 4.2. Let f be a hyperbolic Hénon map such that |Jac f | ď d´2. Then f is
stably totally disconnected.

Proof (sketch). Fix x P J and v P Espxq. Uniform hyperbolicity together with the
assumption on the Jacobian imply that }dfnx pvq} ď Csn, where s ă d´2. Denote as
before ψs‚ the normalized stable parameterization. It follows that fn˝ψsxp¨q “ ψsfnpxqpλn¨q,

where |λn| ď Csn. Then from the relation

G´ ˝ ψsxpλ
´1
n ζq “ dnG´ ˝ ψsfnpxqpζq

we deduce that G´˝ψsx is a subharmonic function of order smaller than 1{2 and Wiman’s
theorem implies that Comppψs

xq
´1pBqpxq is a bounded domain in C, thus W s

Bpxq has
bounded vertical degree and we are done. �

Another idea, which was communicated to us by Pierre Berger, is to use a Hausdorff
dimension argument to prove directly that stable slices of J are totally disconnected.
Indeed the Hausdorff dimension of stable slices of J´ can be estimated using thermo-
dynamic formalism for hyperbolic maps. This turns out to give a better bound on the
Jacobian.

Proposition 4.3. Let f be a hyperbolic Hénon map such that |Jac f | ă d´1. Then f is
stably totally disconnected.

Proof. Since J is a locally maximal hyperbolic set and the dynamics along stable mani-
folds is conformal, there is an exact formula for the Hausdorff dimension of J XW s

locpxq
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for any x P J´, given by:

(2) δs :“ dimH pJ XW
s
locpxqq “

hκspfq

´
ş

log
ˇ

ˇdf |Espxq

ˇ

ˇ dκspxq

(see Pesin’s book [39, Thm 22.1]; this goes back to the work of Manning and McCluskey
[36]), where κs is a certain invariant measure (the unique equilibrium state associated to
δs log |df |Es |) and hκspfq is its measure theoretic entropy. By the variational principle we
have that hκspfq ď log d. On the other hand the Lyapunov exponent in the denominator
in the right hand side of (2) is bounded below by |log |Jac f || ą log d. Therefore we
conclude that dimH pJ XW

s
locpxqq ă 1 from which it follows that J XW s

locpxq is totally
disconnected. �

Question 4.4. Is a dissipative hyperbolic Hénon map always stably totally disconnected?

5. Classification of semi-local components of K` and J`

Throughout this section, f is a dissipative and hyperbolic complex Hénon map of degree
d with a disconnected Julia set (or equivalently, f is unstably disconnected). We assume
moreover that f is stably totally disconnected. The results of §4 imply that this holds
whenever |Jac f | ă 1{d. We fix a large bidisk B as before, and our purpose is to classify
the connected components of J` X B and study the induced dynamics on this set of
components.

5.1. Geometric preparations. We start with some general lemmas about vertical
submanifolds in a bidisk. We define the angle =pv, wq between two complex directions
v and w at x P C2 to be their distance in PpTxC2q » P1 relative to the Fubini-Study
metric induced by the standard Hermitian structure of TxC2 » C2.

Lemma 5.1. Let M be a vertical submanifold in D ˆ D, and let a P D and r ą 0
such that M has no horizontal tangency in DˆDpa, 2rq. Then there exists a universal
constant C0 such that for any x P DˆDpa, rq, the angle between TxM and the horizontal
direction is bounded from below by C0r.

Proof. If M has no horizontal tangency in DˆDpa, 2rq, then M X pDˆDpa, 2rqq is the
union of degpMq vertical graphs. Let Γ be one of these graphs. Then ϕ :“ π1 ˝ pπ2|Γq´1

maps Dpa, 2rq into 2D and Γ “ tpϕpwq, wq, w P Dpa, 2rqu. By the Cauchy estimate, we
get that |ϕ1| ď 2{r on Dpa, rq and the result follows. �

A typical use of this result is by taking the contraposite: if a vertical submanifold M
in DˆD has a near horizontal tangency in DˆDpa, rq, then it has an actual horizontal
tangency in DˆDpa, 2rq. Let us denote by re1s P PpTC2q the horizontal direction.

Corollary 5.2. Let M be a vertical submanifold in D ˆ D which extends as a vertical
submanifold to D ˆ p3{2qD. There exists a universal constant C1 such that if for some
a P D, there exists x P M X pD ˆ tauq such that =pTxM, re1sq ă θ, then there exists
a1 P p3{2qD such that |a´ a1| ă C1θ and M is tangent to Dˆ ta1u.

For the sake of completeness let us also state a slightly stronger result:
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Corollary 5.3. Let M be a vertical submanifold in D ˆ D of degree at most k which
extends as a vertical submanifold to Dˆr0D for some r0 ą 1 (say r0 “ 3{2). There exists
a function h “ hk such that hpθq Ñ 0 as θ Ñ 0 with the following property: if x PM is
such that the angle between TxM and the horizontal direction is bounded by θ ! 1 then
there exists x1 PM with dpx, x1q ď hpθq such that M has a horizontal tangency at x1.

Proof. Indeed, letting a “ π2pxq, and applying Corollary 5.2 we see that the connected
component of M containing x in Dpa,C1θq ˆD cannot be a vertical graph, so it admits
a horizontal tangency. Furthermore, an easy compactness argument shows that the
diameter of a connected component of MXDpa, rqˆD is bounded by hkprq with hkprq Ñ
0 as r Ñ 0. The result follows. �

Remark 5.4. It is likely that hkprq “ O
`

r1{k
˘

but the precise argument needs to be
found.

The following result is a precise version of the Reeb stability theorem (see [11]) which
is specialized to our setting.

Lemma 5.5. Let x0 P J be such that W s
Bpx0q is transverse to BB. Then there exists

δ depending only on minyPW s
B
px0qXBB =

´

TyW
s
Bpx0q, re1s

¯

such that if τ Ă Jupx0q is a

connected compact set containing x0, of diameter less than δ, then for every x P τ ,
W spxq is transverse to BB, degW s

Bpxq “ degW s
rBpx0q and

Ť

xPτ W
s
Bpxq is homeomorphic

to τ ˆW s
Bpx0q.

Note that it is slightly abusing to say that W s
Bpxq is transverse to BpBq since W s

Bpxq

precisely stops at BB. Of course W s
Bpxq extends to a neighborhood of B and what we

mean is transversality for this extension.

Remark 5.6. Later on we will use this lemma with rB instead of B for 1 ď r ď 2
(see Proposition 5.12). It will be important there that the constant δ is uniform with
r P r1, 2s, which easily follows from the proof.

Proof. Set θ “ minyPW s
B
px0qXBB =

´

TyW
s
Bpx0q, re1s

¯

. The stable lamination in a neigh-

borhood of B is covered by finitely many flow boxes. So there exists r ą 1 depending
only on θ such that W s

rBpx0q is transverse to BprBq. Since the stable leaves in B are
simply connected, we can apply a local version of the Reeb stability theorem (see [11,
Prop. 11.4.8]) which asserts that when τ Ă JXW upx0q is sufficiently small, for x P τ , by
local triviality of the stable lamination, the domain W s

rBpx0q Ă W spx0q can be lifted to
a domain Dx ĂW spxq, and the collection tDx, x P τu is topologically a product. Since
W s

Bpx0q is transverse to BB, W s
Bpx0q Ă W s

rBpx0q is a smoothly bounded domain and,
reducing τ if necessary, the transversality persists, CompDxXBpxq varies continuously
and

Ť

xPτ W
s
Bpxq is a product. Finally, if we fix any horizontal line, say close to BB by

transversality and continuity, its number of intersection points with W s
Bpxq is constant,

hence the statement on the degree.

What remains to be seen is why the size of the allowed transversal τ depends only on
the minimal angle θ. This follows from the mechanism of Reeb stability. What we need
to know is how far we can push x in τ so as to keep the transversality between W s

Bpxq
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and BB. Pick y P W s
Bpx0q X BB. Understanding how a neighborhood of y in W spx0q

evolves when the base point x P τ changes depends on the choice of a path γ joining x0

to y in W spx0q and of a covering of γ by a chain of overlapping plaques. (Recall that
by definition a plaque is the intersection between a leaf an a flow box.) Notice first that
there is a uniform control of the length of a such a path γ: for instance we can take an
external ray and apply Proposition 3.1 (see Remark 3.2). So the length of a minimal
chain of plaques joining x0 to y is uniformly bounded, and there exists δ “ δpθq such that
if Diamx0pτq ă δ, then the continuation of the plaque containing y remains transverse
to BB. Finally, the number of plaques required to cover BW s

Bpx0q depends basically on

the volume of W s
rBpx0q for some r ą 1, which in turn depends only on the degree of

W s
r1Bpx0q for some r1 ą r. By Proposition 4.1 this degree is uniformly bounded. So the

number of plaques is uniformly bounded and we are done. �

We will also need the following extension lemma.

Lemma 5.7 ([35, Prop. 5.8]). There exists a neighborhood N of J` X B such that the
stable lamination Ws extends to a C1 foliation of N .

Observe that in [35] it is assumed that |Jac f | ă d´2 but what is really needed for
extending the stable lamination is the boundedness of the vertical degree which holds in
our setting (cf. Proposition 4.1). The C1 regularity of the holonomy will not be used in
the paper.

Using this extension lemma, we can extend Lemma 5.5 to a statement about an open
neighborhood of W s

Bpx0q with exactly the same proof.

Lemma 5.8. Let x0 P J be such that W s
Bpx0q is transverse to BB. Then there exists δ

depending only on minyPW s
rB
px0qXBB =

´

TyW
s
Bpx0q, re1s

¯

such that for every x P Dupx0, δq,

Wspxq is transverse to BB, degWs
Bpxq “ degW s

Bpx0q and
Ť

xPDu
x0
px0,δ

W s
Bpxq is homeo-

morphic to Du
x0px0, δq ˆW

s
Bpx0q.

5.2. Thin and thick components. In this section we study the geometry of the com-
ponents of J`XB. The arguments rely mostly on the geometry of the stable lamination,
not on the dynamics of f . One main result is that thin components of K` X B have a
simple leaf structure (Proposition 5.12). It follows that for a given component of J`XB,
either all its unstable slices are small, or all of them are large (Proposition 5.13). To-
gether with the results of §3.3 this leads to a description and some regularity properties
of components of J` X B and K` X B.

We start with a simple case.

Proposition 5.9. If x P J is such that Kupxq “ Jupxq “ txu then K`
B pxq “ J`B pxq “

W s
Bpxq.

Proof. As observed above the inclusion W s
Bpxq Ă K`

B pxq is obvious. For the converse
inclusion, observe that for every n P Z, Kupfnpxqq “ tfnpxqu. For n ě 1, consider a
small loop γn ĂW upfnpxqq around fnpxq that is disjoint from K`. By the local product
structure we can extend it to a germ of 3-manifold rγn transverse to W upfnpxqq, disjoint
fromK`, and of size uniformly bounded from below in the stable direction. SinceW s

2Bpxq
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has finite vertical degree in 2B, it admits finitely many horizontal tangencies, so we can
fix 1 ď r ď 2 such that W s

rB is transverse to BprBq. Then by the Inclination Lemma, for
large n, f´n prγnq contains a small “tube” around W s

rBpxq whose boundary is disjoint from
K`. It follows that K`

rBpxq “W s
rBpxq, hence K`

B pxq ĂW s
rBpxq XB. Finally W s

rBpxq XB
has finitely many components, and one of them is W s

Bpxq, so K`
B pxq “W s

Bpxq. �

Here is a first interesting consequence.

Corollary 5.10. All but countably many components of K` X B are vertical submani-
folds.

Proof. Fix a global unstable transversal ∆u in B. Then every component of K` X B
intersects ∆u. Indeed, for any such component C, BC is contained in J` so it contains
stable manifolds. Stable manifolds in B are vertical and of finite degree, so they have non-
trivial (transverse) intersection with ∆u. Now if C is non-trivial, that is, not reduced to
a vertical submanifold, then by Proposition 5.9, any component of CX∆u is non-trivial,
and the result follows from Corollary 3.7. �

Another case where J`B pxq is easily understood is when stable leaves are transverse to
BB.

Proposition 5.11. Assume that Jupxq is a leafwise bounded component such that for
every y P Jupxq, W s

Bpyq is transverse to BB. Then

(3) J`B pxq “
ď

yPJupxq

W s
Bpyq.

Note that this result is not true if the transversality assumption is omitted (see Figure
1 for a visual explanation).

Proof. Let C be defined by the right hand side of (3). Since the W s
Bpyq, y P J

upxq,
are transverse to BB, they vary continuously with y. It follows that C is a closed
connected set. To show that C “ J`B pxq, it is convenient to use the extension of the
stable lamination to a neighborhood of J` X B (given in Lemma 5.7). Let pUnq be a
basis of open neighborhoods of Jupxq in W upxq such that for every n, BUn X J “ H.
For every δ ą 0, Un is contained in the δ-neighborhood of Jupxq for large n. Thus, by

Lemma 5.8 the leaves issued from Un are transverse to BB and stay close to C. Let rUn
be the saturation of Un in the extended foliation. Then prUnq is a basis of neighborhoods

of C in B such that B rUn is disjoint from J`. We conclude that C “ J`B pxq. �

The structure of J`B pxq is not so easy to describe without this transversality assump-
tion. Still, the argument can (almost) be salvaged if Jupxq is small enough. This will be
a key property in the following.

Proposition 5.12. There exists δ1 ą 0 such that if x P J is such that DiamxpJ
upxqq ď

δ1, then there exists 1 ď r ď 2 such that for every y P Jupxq, W s
rBpyq is transverse to

BprBq and Jupxq can be followed under holonomy along W s
rBpxq. In particular J`rBpxq is
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homeomorphic to Jupxq ˆW s
rBpxq and

(4) J`B pxq Ă J`rBpxq “W s
rBpJ

upxqq ĂW s
2BpJ

upxqq “
ď

yPJupxq

W s
2Bpyq.

Recall that Diamx denotes the diameter relative to the normalized leafwise metric dux
induced by the affine structure. By polynomial convexity, if Kupxq is leafwise bounded,
then Jupxq “ BiK

upxq so DiamxpK
upxqq “ DiamxpJ

upxqq. Recall from §2.3 that by the
Koebe Distortion Theorem, the ambient distance d and the leafwise Euclidean distance
dux are equivalent in a small neighborhood of x, with universal bounds, i.e. in some
neighborhood of x in W upxq we have d{2 ď dux ď 2d. In particular if DiamxpJ

upxqq
is small enough then DiampJupxqq and DiampKupxqq are comparable to DiamxpJ

upxqq
(where Diam denotes the ambient diameter).

Proof of Proposition 5.12. Recall that every leaf of the stable lamination in 3B is a
vertical disk of degree bounded by D, so by the Riemann-Hürwitz formula it admits at
most D ´ 1 horizontal tangencies. For k “ 0, . . . , D, let rk “ 1 ` k

D , and fix θ ă C0
8D ,

where C0 is as in Lemma 5.1. Let x P J be arbitrary. By the pigeonhole principle, there
exists k P t0, . . . , D ´ 1u such that W s

2Bpxq has no horizontal tangency in rk`1BzrkB. So
by Lemma 5.1 (scaled to 2B and applied to any a such that |a| “ Rprk ` rk`1q{2, where
R is the radius of B) we infer that

min
yPXBpr1kBq

=pTyW
s
Bpx0q, re1sq ě θ, where r1k “

rk ` rk`1

2
.

Therefore, by Lemma 5.5 and Remark 5.6 there exists δ1 depending only on θ, hence
ultimately only on D, hence on f , such that if DiamxpJ

upxqq ď δ1, then for every
y P Jupxq, W s

r1kB
is transverse to Bpr1kBq and W s

r1kB
pJupxqq is topologically a product.

This completes the proof of the first part of the proposition. From this point, the
description of J`2Bpxq in (4) directly follows from Proposition 5.11. �

It follows from this analysis that if C is a semi-local component of J`, then either all
its unstable slices are large or all of them are small.

Proposition 5.13. There exists 0 ă δ1 ď δ2 such that for every component C of J`XB
the following alternative holds:

(i) either for every x P C X J , Diamx J
upxq ď δ2;

(ii) or for every x P C X J , Diamx J
upxq ą δ1.

In addition if (i) holds then C satisfies the conclusions of Proposition 5.12.

Referring to this dichotomy in the following, we will say that a component is thin
(resp. thick) if it satisfies (i) (resp. (ii)). We stress that the Proposition asserts that
a component is thick as soon as one of its unstable slices has intrinsic diameter larger
than δ2. As seen before (see e.g. Corollary 5.10), if ∆u is an unstable transversal, every
semi-local component of J` intersects ∆u, so from Theorem 3.6 we immediately deduce:

Corollary 5.14. There are only finitely many thick components of J` X B.

Proposition 5.13 is a direct consequence of the following lemma.
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Lemma 5.15. Let δ1 be as in Proposition 5.12. There exists δ2 ě δ1 such that if x is
such that DiamxpJ

upxqq ď δ1, then for every y P J`B pxq X J , DiamypJ
upyqq ď δ2.

Proof. Indeed by Proposition 5.12, if DiamxpJ
upxqq ď δ1, then any point in J`B pxq can

be joined to y P Jupxq by a path contained in W s
2Bpyq. Furthermore, as explained in the

proof of Lemma 5.5, the plaque-length of such a γ is uniformly bounded. The bound
on DiamypJ

upyqq then follows from the uniform continuity of holonomy along bounded
paths in the stable lamination. �

Remark 5.16. The argument of Propositions 5.12 and 5.13 makes no use of the fact that
Jupxq is a component of J XW upxq. Thus the same statements hold for the saturation
by semi-local stable leaves of any (say closed) subset X of an unstable manifold: if its
diameter of X is small enough then, changing the bidisk B if necessary, the saturation
X̂ of X by semi-local stable manifolds is a product and all the stable slices of X̂ have a
small diameter.

Proposition 5.17. Let ∆u be an unstable transversal in B. For every connected compo-
nent C of J` XB (resp. K` XB), C X∆u admits finitely many connected components.

Proof. Let us first discuss the case of components of J`XB. For thick components, the
result follows immediately from Corollary 5.14, so we may assume that C is thin. As
already seen, C intersects ∆u. Pick x P C X ∆u, in particular x P J . Since C is thin,
for some 1 ď r ď 2, W s

rBpxq is transverse to BprBq and by Proposition 5.12, Jupxq can
be followed under holonomy along W s

rBpxq. Since W s
rBpxq and ∆u have finitely many

intersection points, we infer that J`rBpxq X∆u has finitely many connected components.

Finally, J`B pxq “ C coincides with the component of J`rBpxqXB containing x, so CX∆u is

a union of connected components of J`rBpxqX∆u and we conclude that there are finitely
many of them.

We now discuss components of K` X B. Recall from Lemma 2.3 that for such a
component C, BC is a component of J` X B. Assume first that such a component A is
thin. Given x P AX∆u. Jupxq can be followed under holonomy along W s

rBpxq for some
1 ď r ď 2. If the polynomial hull of Jupxq is non-empty, then it has a small diameter and
it can be followed by holonomy in rB along the extended foliation just as in Proposition
5.12 and it is topologically a product. It follows that C X∆u is the polynomial hull of
J`B pxqX∆u and it has finitely many components. On the other hand, if every component
of BC is thick, then BC X∆u is contained in the finitely many components of K` X∆u

of diameter greater than some δ, and so is C X∆u. This concludes the proof. �

We conclude this subsection by giving a general description of components of J` X
B. Fix an unstable transversal ∆u. Let x P J X ∆u and consider W s

BpJ
upxqq “

Ť

yPJupxqW
s
Bpyq. If everyW s

Bpyq is transverse to BB then by Proposition 5.11, W s
BpJ

upxqq “

J`B pxq. In the general case we define a relation between components of J` X ∆u by
declaring that C1 Ø C2 if and only if there exists x P C1 such that W s

Bpxq XC2 ‰ H (or
equivalently there exists px1, x2q P C1 ˆ C2 such that W s

Bpx1q “ W s
Bpx2q). Then extend

this relation to an equivalence relation (still denoted by Ø) by allowing finite chains
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C1, . . . , Cn. Finally we define

xW s
BpJ

upxqq :“
ď

CØJupxq

ď

yPC

W s
Bpyq.

Proposition 5.18. For any x P J , J`B pxq coincides with xW s
BpJ

upxqq.

Proof. By Proposition 5.17, J`B pxq X ∆u admits finitely many connected components

pCiqiPI . Every point z P J`B pxq belongs to some W s
Bpyq, y P ∆u, and necessarily y

belongs to some Ci, say Ci0 . Furthermore, if z1 P J`B pxq is close to z, by the continuity
of stable manifolds, there exists y1 P ∆u close to y such that z1 P W s

Bpy
1q. Since the Ci

are at positive distance from each other it follows that y1 belongs to Ci0 . In other words,
W s

BpCi0q is relatively open in J`B pxq. Clearly W s
BpCi0q is connected, and even arcwise

connected since by Theorem 3.6 Ci is locally connected. Thus the W s
BpCiq realize a finite

cover of J`B pxq by connected open sets, which are contained in or disjoint from J`B pxq.
Define a non-oriented graph on I by joining i and j whenever W s

BpCiq XW s
BpCjq ‰ H.

If we fix i0 such that W s
BpCi0q Ă J`B pxq, it follows that J`B pxq “

Ť

iPI0
W s

BpCiq where I0

is the component of i0 in the graph. This is exactly the announced description. �

Let us point out the following interesting consequence of the proof:

Corollary 5.19. Every connected component of J` X B (resp. K` X B) is locally
connected.

Proof. Given a component J`B pxq of J` X B, with notation as in the previous proof,

pW s
BpCiqqiPI is a finite cover of J`B pxq by locally connected and relatively open sets: local

connectedness follows. If now C is a component of K` X B, we saw in the proof of
Proposition 5.17 that BC is a finite union of components of J` X B, therefore BC is
locally connected. General topology then implies that C is locally connected and we are
done. �

5.3. Induced dynamics on the set of components of J`. We still consider a uni-
formly hyperbolic dissipative Hénon map, with a disconnected and stably totally discon-
nected Julia set, and fix a large bidisk B as before. Since f maps K`XB (resp. J`XB)
into itself, it induces a dynamical system on the set of its connected components. Recall
that a component is said non-trivial if it is not reduced to a vertical submanifold.

Theorem 5.20. Let f be dissipative and hyperbolic with a disconnected and stably totally
disconnected Julia set and B Ă C2 be a large bidisk. Then K`XB (resp. J`XB) admits
uncountably many components, at most countably many of which being non-trivial. Any
non-trivial connected component of K`XB (resp. J`XB) is preperiodic, and there are
finitely many non-trivial periodic components.

Remark 5.21. Notice a periodic component of K` X B can be trivial, that is, a vertical
submanifold. Since it is mapped into itself by some fN in this case we conclude that it
is of the form W s

Bpxq for some saddle periodic point x.

Lemma 5.22. The function y ÞÑ DiamypJ
upyqq (resp. y ÞÑ DiamypK

upyqq) is upper
semi-continuous on J . In particular if yn Ñ y8 and pDiamynpK

upynqqq is unbounded,
then Kupy8q is leafwise unbounded, and likewise for Ju.
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Proof. Recall that DiamypJ
upyqq “ DiamypK

upyqq for every y P J (including the case
where it is infinite) so it is enough to deal with Kupyq. Assume first that the yn belong
to the same local leaf and yn Ñ y8. If Kupy8q is leafwise bounded, we can consider a
closed loop γ enclosing it and disjoint from K`. Then for large enough n, γ also encloses
Kupynq, and any cluster value of this sequence for the Hausdorff topology is a continuum
contained in K` and containing y8. It follows that

lim sup
nÑ8

Diamy8pK
upynqq ď Diamy8pK

upy8qq

hence
lim sup
nÑ8

DiamynpK
upynqq ď Diamy8pK

upy8qq,

as desired. Of course if Kupy8q is leafwise unbounded, the inequality is obvious.

Assume now that the yn belong to different local leaves. As before, the case where
Kupy8q is leafwise unbounded is obvious. If Kupy8q is leafwise bounded, again we
consider a closed loop γ enclosing it and disjoint from K`. In addition we can assume
that Diamy8pγq is arbitrary close to Diamy8pK

upy8qq. When yn Ñ y8, γ can be lifted
to a loop rγn in W upynq, with roughly the same diameter (here we use the continuity
of the leafwise distance duy), and Kupynq is enclosed in rγn. The semi-continuity of the
diameter follows. �

Proof of Theorem 5.20. Fix an unstable transversal ∆u, and recall that any component
of K`XB (resp. J`XB) intersects ∆u. By [6, Thm 7.1], J`X∆u admits uncountably
many point components, thus the first assertion of the theorem follows from Proposition
5.9. Then Corollary 5.10 asserts that at most countably many components are non-
trivial.

Let x P J`X∆u and assume that J`B pxq (or equivalently K`
B pxq) is non-trivial. Since

∆u is a global transversal, Jupxq is leafwise bounded. For n ě 0, Jupxnq “ fnpJupxqq
where xn “ fnpxq, and by (1),

(5) DiamxnpJ
upxnqq ě Cun DiamxpJ

upxqq ÝÑ
nÑ8

8.

Let x8 be any accumulation point of pxnq. By Lemma 5.22, Jupx8q is leafwise un-
bounded, and so does Kupx8q.

By local product structure, for large n, the holonomy along the stable lamination
defines a projection

Dupxn, 3{2q X J
` Ñ Dupx8, 2q X J

`

which we simply denote by πs. It is Lipschitz (see Lemma 5.7) and a homeomorphism
onto its image. Notice that πspDupxn, 3{2q X J`q contains Dupx8, 1q X J` for large n.
For large n, Jupxnq intersects the boundary of Dupxn, 3{2q, so the sets Jupπspxnqq define
a sequence of components of J` X Dupx8, 1q of diameter bounded from below. From
Theorem 3.6 we infer that this sequence is finite. Let us denote by Cj , j “ 1, . . . , N
these components. By the Pigeonhole Principle there exist n ‰ n1 such that πspxnq and
πspxn1q belong to the same Cj , thus xn and xn1 belong the local stable saturation of Cj .
Therefore the sequence pJ`B pxnqq is eventually periodic, and so is pK`

B pxnqq.

Consider now a non-trivial periodic component C of J` X B. Then it is of the form
J`B pxq for some x P ∆u X J`. The previous argument shows that there are points
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x1 P CXJ such that Jupx1q is leafwise unbounded. By Proposition 5.13, the components
of the slices J`B X ∆u have diameter uniformly bounded from below (here we use the
fact that for every x P ∆uXJ`, the distance dux is uniformly comparable to the ambient
distance on ∆u). Thus, by Theorem 3.6 only finitely many such components can arise
and we conclude that C belongs to a finite set of components. The corresponding result
for components of K` X B follows from Lemma 2.3. �

Remark 5.23. Using techniques similar to those of §5.2 it is easily seen that any com-
ponent of K` X B has finitely many preimages. In other words, the induced dynamical
system on components of K` X B is finite-to-1. Indeed assume by contradiction that
C is a component such that f´1pCq X B has infinitely many preimages Ci. Then by
Theorem 3.6, for some i, Ci X ∆u has a component of small diameter. Therefore by
pushing forward, there is some x P C X J such that DiamxpJ

upxqq is small, that is,
J`B pxq (or equivalently K`

B pxq) is thin. But it is easy to show that a thin component
admits finitely many preimages, and we arrive at the desired contradiction. �

6. Components of J and K

We keep the same setting as before, that is, f is a uniformly hyperbolic dissipative
Hénon map, with a disconnected and stably totally disconnected Julia set. In this sec-
tion, we complete the proof of the main theorem by classifying the connected components
of J and K.

We start with an easy fact. Recall the notation Epxq “ CompEpxq.

Proposition 6.1. If x P J is such that Jupxq is leafwise bounded then Jpxq “ Jupxq.

Proof. First, Jupxq is a connected set such that x P Jupxq Ă J so it is contained in Jpxq.
To prove the converse statement, let pUnq be a sequence of open neighborhoods of Jupxq
in W upxq decreasing to Jupxq and such that BiUnXJ “ H. Since Jspxq “ txu, for every
n any sufficiently small loop γ about x in W spxq can be propagated along Un to yield

an open set rUn such that B rUn “ H. Note that we did not prove any extension result for
the unstable lamination, so we cannot simply say that we propagate γ by using some
“unstable holonomy”. On the other hand we can simply use the inclination lemma, by
pushing forward a small thickening of f´npγq as a 3 manifold transverse to W spf´npxqq.

Finally, for every n, B rUn is relatively open and closed in J , so it contains Jpxq and we
conclude that Jpxq “ Jupxq. �

To understand the structure of periodic components of J , let us introduce a definition.

Definition 6.2. A quasi-solenoid is a saddle hyperbolic set such that fkpΛq “ Λ for
some k and:

§ Λ is connected;
§ Λ has local product structure;
§ for every x P Λ, Λ XW upxq is leafwise unbounded and locally connected, and

ΛXW spxq is totally disconnected.
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Observe that in this definition we do not require that ΛXW s
locpxq is a Cantor set. In

other words, we allow for isolated points in a stable transversal (this phenomenon will
be ruled out later under appropriate hypotheses, see Theorem 8.7).

Theorem 6.3. Let f be dissipative and hyperbolic with a disconnected and stably totally
disconnected Julia set and B be as above. Let C be a periodic component of J` X B
and k be its period. Then Λ :“

Ş

ně0 f
knpCq is a point or a quasi-solenoid, and it is a

connected component of J .

Proof. Replacing f by some iterate, we may assume C is invariant, that is, k “ 1. If C is a
vertical manifold, it follows from Remark 5.21 that Λ is a point, and the other properties
follow easily, so the interesting case is when C is non-trivial. Then, arguing in the proof
of Theorem 5.20, by (5), C contains points such that DiamxpJ

upxqq is arbitrary large,

so it is thick in the sense of Proposition 5.13. Define Λ :“
Ş

ně0 f
npCq “

Ş

ně0 f
npCq.

Since by assumption fpCq Ă C, Λ is a decreasing intersection of compact connected sets.
Hence Λ is an invariant connected hyperbolic set contained in J , and fpΛq “ Λ. Let us
show that it is a connected component of J . For this, let Λ1 be the connected component
of Λ in J . By definition Λ Ă Λ1. Since Λ1 is connected and contained in J`XB, it must
be contained in C. Furthermore since fpΛq “ Λ, and f permutes the components of J ,
we have that fpΛ1q “ Λ1, hence for every n ě 1, f´npΛ1q Ă C, and we conclude that
Λ1 Ă

Ş

ně0 f
npCq “ Λ, as was to be shown.

We claim that for every x P Λ, Jupxq is leafwise unbounded. Indeed for every x P Λ, we
have that x “ fnpx´nq with x´n “ f´npxq P C and since C is thick, Diamx´npJ

upx´nqq
is uniformly bounded from below, and the result follows.

By Lemma 3.9, for every x P Λ, there are only finitely many components of J X
Dupx, 1q intersecting BiD

upx, 1q and Dupx, 1{2q. A simple compactness argument using
the holonomy invariance of J` shows that this number is uniformly bounded, therefore
there exists a uniform δ ą 0 such that leafwise unbounded components of J` intersecting
Dupx, 1{2q are δ-separated in Dupx, 1q relative to the distance dux (or equivalently, relative
to the ambient one). From this we deduce that for every x P Λ, there exists δ ą 0 such
that Λ coincides with Jupxq in W u

δ pxq, and it follows from Theorem 3.6 that Λ is locally
connected in the unstable direction.

Let us show that Λ has local product structure. For this, let y1, y2 P Λ be close (i.e.
dpy1, y2q ! δ), denote by πs : W u

locpy1q Ñ W u
locpy2q the projection along stable leaves,

and let z2 “ πspy1q. Since Jupy1q and Jupy2q are leafwise unbounded, if dpy1, y2q is small
enough, Jupz2q intersects BiD

upy2, 1q, and so does Jupy2q. By definition of δ, it follows
that Jupy2q “ Jupz2q, hence y2 and z2 belong to the same connected component of J .
In particular, z2 belongs to C. Since f´1 contracts distances along unstable manifolds,
and respects connected components of J , we can repeat this argument with f´npy2q and
f´npz2q for any n ě 0 and we conclude that z2 P Λ, as was to be shown. �

Theorem 6.4. Let f be dissipative and hyperbolic with a disconnected and stably totally
disconnected Julia set. Then every component of J is either

(1) a point;
(2) or of the form Jupxq with Jupxq non-trivial and leafwise bounded;
(3) or a periodic quasi-solenoid.



STRUCTURE OF HYPERBOLIC MAPS 29

In addition:

(i) There are finitely many quasi-solenoidal components
(ii) Every periodic component of J is either a point or a quasi-solenoid.

(iii) Every non-trivial component of J is attracted by a quasi-solenoid. More precisely,
given a non-trivial component C for every δ ą 0 there exists n such that fknpCq Ă
W s
δ pΛq, where Λ is a quasi-solenoid of period k.

Note that in assertion (ii), the uniformity of n as a function of δ is not a direct
consequence of the fact that ωpCq Ă Λ.

Proof. To establish the announced trichotomy, by Proposition 6.1 it is enough to show
that if C is a component such that for some x P C, Jupxq is leafwise unbounded, then C is
a periodic quasi-solenoid. Note that for every n ě 1, Jupf´npxqq is leafwise unbounded.
Therefore the component of f´npxq in J` X B is thick in the sense of Proposition 5.13,
and by Corollary 5.14, J`B pf

´npxqq belongs to a finite set of semi-local components.
Thus there exists a component C` of J` X B and an infinite sequence ni such that
f´nipxq P C`, hence C` is periodic of some period k and reversing time we get that
Jupxq is included in Λ :“

Ş

ně0 f
knpC`q. By Theorem 6.3, Λ is a quasi-solenoid and

Jpxq “ C “ Λ.

Since there are only finitely many periodic semi-local components of J`, this argument
shows that J has only finitely many solenoidal components.

For assertion (ii), let C be a periodic component of J which is not reduced to a point,
and let x P C. Without loss of generality we assume C is fixed. Expansion in the
unstable direction shows that if Jupxq is leafwise bounded, then Jupxq “ txu, which is
a contradiction. Thus by the first part of the proof, C is a quasi-solenoid.

To prove (iii), let C be a non-trivial component of J , and for some large bidisk
B, let C` be the component of J` X B containing C. Then by Theorem 5.20 C` is
ultimately periodic (with preperiod k), thus by Theorem 6.3,

Ş

ně0 f
knpC`q is a periodic

quasi-solenoid Λ. This shows that C is attracted by Λ in the sense that for large n,
fknpCq is contained in a δ-neighborhood of Λ. To get the more precise statement that
fknpCq Ă W s

δ pΛq, we have to show that W s
δ pΛq is relatively open in C` X J . The

argument is the same as for the local product structure: since large leafwise components
of J are separated by some uniform distance and C is thick, if x P C X J is sufficiently
close to y P Λ, W s

locpxq X W u
locpyq must belong to a large component of W u

locpyq X J ,
therefore it belongs to Jupyq, and we are done. �

Remark 6.5. Leafwise bounded components of J are locally connected, as follows from
Theorem 3.6. On the other hand a quasi-solenoid is not locally connected, since it locally
has the structure of a Cantor set times a (locally) connected set.

The following result says that there is a 1-1 correspondence between components of
K and J , so that the previous theorems yield a description of components of K as well.

Proposition 6.6. Every component of K contains a unique component of J .

For polynomials in one variable, the analogous statement is the fact that every com-
ponent of K has a connected boundary, which follows from polynomial convexity. Here,
components of K have empty interior so this has to be formulated differently.
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Proof. Every component of K contains a point of J , for otherwise it would be contained
in IntpK`q, so it is of the form Kpxq for some x P J . If Jpxq “ txu the result is obvious.
Now assume that Jupxq is leafwise bounded. By Lemma 2.4, Kupxq is obtained by filling
the holes of Jupxq in W upxq » C, so Jupxq is equal to the intrinsic boundary of Kupxq
and the result follows.

The most interesting case is when Jpxq is a quasi-solenoid. Replacing f by fk for
some k ě 1, we may assume that Jpxq is fixed. We proved in Theorem 6.3 that
Jpxq “

Ş

ně0 f
npJ`B pxqq. The very same proof shows that Kpxq “

Ş

ně0 f
npK`

B pxqq.

By Lemma 2.3, BK`
B pxq contains a unique component of J`B pxq (namely, its boundary),

and we conclude by arguing that if Kpxq contained two distinct components Jpxq and
Jpyq of J , then K`

B pxq would contain J`B pxq and J`B pyq, which must be distinct because
Ş

ně0 f
npJ`B pxqq ‰

Ş

ně0 f
npJ`B pyqq, and this is impossible. �

7. Complements

We keep the setting as in Sections 5 and 6. Here we prove a number of complementary
facts which do not enter into the proof of the main theorem, so we sometimes allow the
presentation to be a little sketchy.

7.1. Transitivity. A desirable property of quasi-solenoids is transitivity, or chain tran-
sitivity. At this stage we are not able to show that quasi-solenoidal components are
transitive, but let us already explain a partial result in this direction. The full state-
ment will be obtained in Theorem 8.7 under an additional assumption.

Proposition 7.1. If Λ is a quasi-solenoidal component of J of period k, there exists a
quasi-solenoid Λ1 Ă Λ of period k`, which is saturated by unstable components (that is, if
x P Λ1 then Jupxq Ă Λ1), with the property that fk`|Λ1 is topologically mixing. In addition,

stable slices of Λ1 are Cantor sets and for every periodic point p P Λ1, Λ1 “ Juppq.

This proposition follows from general facts from hyperbolic dynamics. Let us recall
some basics. Recall that a If Λ is a compact hyperbolic set with local product structure,
then by Smale’s Spectral Decomposition Theorem (see e.g. [46, §4.2]), the non-empty
closed invariant subset

Ω :“ Cpf |Λq “ Perpf |Λq
(where by definition Cpf |Λq is the chain recurrent set of f |Λ) admits a decomposition of
the form Ω “ Ω1 Y ¨ ¨ ¨ Y ΩN . The Ωi are called the basic pieces. They are closed (and
hence relatively open in Ω), f induces a permutation on the basic pieces and if q is the
least integer such that f qpΩiq “ Ωi, then f q|Λi is topologically mixing. In addition, Ω
and the Ωi have local product structure.

Proof. For notational simplicity replace fk by f so that k “ 1. Consider the ω-limit
set ωpΛq “

Ť

xPΛ ωpxq. Since a limit point is non-wandering, it is chain recurrent,
so ωpΛq Ă Ω. Conversely, since any periodic point is an ω-limit point, we see that
Perpf |Λq Ă ωpΛq, hence Ω Ă ωpΛq and ωpΛq “ Ω. Then the Shadowing Lemma implies
that Λ Ă W spΩq “

Ť

xPΩW
spxq. Fix a small δ ą 0: then W spΩq “

Ť

ně0 f
´n pW s

δ pΩqq.

By Baire’s theorem, there exists n such that f´n pW s
δ pΩqq has non-empty relative interior

in Λ, hence so does W s
δ pΩq, and we conclude that for some i0, W s

δ pΩi0q has relative
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non-empty interior in Λ. Let us show that Λ1 “ Ωi0 satisfies the requirements of the
proposition.

If ` is the least integer such that f `pΛ1q “ Λ1, the fact that f `|Λ1 is topologically
mixing follows from the Spectral Decomposition Theorem. Since Λ1 has local product
structure and W s

δ pΛ
1q has relative non-empty interior in Λ, we see that there exists a

relatively open subset U in Λ1 such that for any x0 P U , a neighborhood of x0 in Jupx0q

in contained in Λ1. Since f `|Λ1 is topologically transitive we may assume that x0 has a
dense orbit under f `. So if y P Λ1 is arbitrary we can find a sequence pnjq such that

f `nj px0q Ñ y. By expansion in the unstable direction, there exists a uniform δ ą 0 such
that for every j, f `nj pΛ1q “ Λ1 contains a δ-neighborhood of f `nj px0q in Jupf `nj px0qq, so
by local product structure we conclude that a neighborhood of y in Jupyq is contained in
Λ1. On the other hand since Λ1 is closed it is also relatively closed in unstable manifolds.
This shows that Λ1 is saturated by unstable components.

Let us show that for every periodic point p P Λ1, Juppq “ Λ1. Let N “ `m be the
period of p. Since f `|Λ1 is topologically mixing, f `m|Λ1 is topologically transitive, so
there exists y arbitrary close to p such that pf `mnpyqqně0 is dense in Λ1. Let y1 be the
projection of y in W u

locppq under stable holonomy. By local product structure, y1 belongs

to Juppq, and y1 P W spyq so pf `mnpy1qq is dense, too. Since all these points belong to
Juppq, we conclude that Juppq is dense in Λ1, as asserted.

For p as above, since Juppq is leafwise unbounded, it must accumulate non-trivially
in Λ1. More precisely, there exists x P Λ1 and a sequence of points xn P J

uppq, with xn R
W u

locpxq and xn Ñ x. Note that by local product structure, W u
locpxnqXΛ1 corresponds to

W u
locpxq X Λ1 under local stable holonomy. Now as before there exists y1 P W u

locppq X Λ1

whose orbit is dense in Λ1. Thus any z P Λ1 is the limit of fnj py1q for some subsequence
nj . But fnj py1q is an accumulation point of W s

locpf
nj py1qq X Λ1, so the same holds for

z, and we conclude that Λ1 is transversally perfect in the stable direction, hence it is
transversally a Cantor set. �

7.2. Basins and solenoids. Assume that f has an attracting cycle ta1, . . . aqu of exact
period q. We denote by B its basin of attraction, which is made of k connected compo-
nents Bi biholomorphic to C2. For every i we can write BiXB as the (at most) countable
union pBi,jqjě0 of its components, with ai P Bi,0. We refer to these open sets as basin
components and to Bi,0 as the immediate basin of ai. Note that if we replace f by f q,
the basin of attraction of ai is now made of a single component, but Bi,0 is unchanged.

By definition a Jordan star in U Ă C is a finite union of simple Jordan arcs in U ,
intersecting at a single point.

Theorem 7.2. Let f be dissipative and hyperbolic with a disconnected and stably totally
disconnected Julia set. Suppose that f admits an attracting fixed point with immediate
basin B0. Then:

(i) BB0 is a properly immersed topological submanifold of dimension 3, which intersects
any global unstable transversal in finitely many Jordan domains.

(ii)
Ş

ně0 BB0 is a quasi-solenoid, whose unstable slices are Jordan stars. In particular
there is a (saddle) periodic point in BB0.
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We can be more precise about the structure of BB0: locally it is homeomorphic to
the product of a 2-disk by a Jordan star. The proof of the theorem shows that if the
components of B0 X ∆u have disjoint closures, then these stars are reduced to Jordan
arcs, that is, BB0 is a topological submanifold.

The following basic fact is crucial for the proof.

Lemma 7.3. The stable lamination Ws respects basin boundaries. That is, if x P J`

belongs to the boundary of an attracting basin B, then so does its image under stable
holonomy.

Proof. This follows readily from the existence of a local extension of the stable lamination
(Lemma 5.7): indeed if a leaf of the extended foliation joined a point from IntpK`q to a
point of pK`qA, it would have to intersect J`. (See also [16], Step 3 of the proof of the
main theorem, for an alternate argument without extending the stable lamination.) �

Proof of Theorem 7.2. Fix a global unstable transversal ∆u. Since every semi-local sta-
ble manifold intersects ∆u, B0 X∆u is non-empty, and by the Maximum Principle each
of its connected components is a topological disk. Pick such a connected component
Ω0. By the John-Hölder property (Theorem 3.10), BΩ0 is locally connected, and by
the Maximum Principle again there is no cut point, and it follows that Ω0 is a Jordan
domain (see [40, Thm 2.6]).

If the diameter of Ω0 is small then, by Remark 5.16, enlarging B if necessary the

saturation yBΩ0 of BΩ0 by semi-local stable leaves is topologically a product and we infer

that yBΩ0X∆u has finitely many components. Otherwise the diameter is large and by the

same remark, every component of yBΩ0X∆u has a large diameter. Then the finiteness of
the number of such components follows from the John-Hölder property of W upxqzK`,
Proposition 5.17, and the finiteness statement for interior components in Lemma 3.9.

By the Maximum Principle, if Ω0 and Ω1 are two components of B0 X∆u such that
Ω0 X Ω1 ‰ H, then Ω0 X Ω1 is a single point. Indeed if this set contained two distinct
points z and z1, by using crosscuts of Ω0 and Ω1 ending at z and z1 we could construct
a Jordan domain U with BU Ă Ω0 Y Ω1, and U would be contained in the Fatou set,
a contradiction. Create a plane graph from B0 X∆u whose vertices are its components
and edges are added when two components touch. The Maximum Principle again shows
that this graph is a finite union of trees. Since the stable holonomy respects BB0 and
BB0 is obtained from BB0X∆u by saturating by stable manifolds, the description of BB0

as a properly immersed topological submanifold of dimension 3 follows.

The proof of the second item of the theorem is similar to that of Theorem 6.3. First,
BB0 is connected: the argument is identical to that of Lemma 2.3. Then, for every x P
BB0XJ

´, there are only finitely many components of B0XD
upx, 1q (resp. BB0XD

upx, 1q)
intersecting Dupx, 1{2q. Indeed, observe first that it is enough to prove this in Dupx, rq
for some uniform r. By the uniform boundedness of the degree of semi-local stable
manifolds in B, there is a uniform r such that Dupx, rq can be pushed to ∆u by stable
holonomy, and the applying item (i) of the theorem completes the argument. From this
point we proceed exactly as in Theorem 6.3. The existence of a periodic point in BB0

follows from general hyperbolic dynamics (see the comments after Proposition 7.1). �
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Remark 7.4. It follows from this description that if x P Λ lies at the boundary of B0, then
in W upxq, x belongs to the boundary of a component Ω of B0 XW upxq. In particular,
Ω is a Fatou disk contained in CompKpxq.

Remark 7.5. We do not know whether components of B0 X∆u can actually bump into
each other, or equivalently if

Ş

ně0 BB0 does contain stars. If bumping occurs, let E be
the finite set of points at which the closures of the components of B0 X∆u touch each
other. Then W s

BpEq is a finite union of vertical submanifolds, and fpW s
BpEqq ĂW s

BpEq.
It follows that

Ş

ně0 f
npW s

BpEqq is a finite set of periodic points, and for any other point
x in the limiting quasi solenoid Λ :“

Ş

ně0 BB0, Λ X W u
locpxq is a Jordan arc. Thus,

roughly speaking, Λ has the structure of finitely many solenoids attached at periodic
“junction” points.

7.3. Branched Julia set model. Let Λ be a quasi-solenoidal component of J , and
without loss of generality assume that Λ is fixed. Let J`B pΛq be its connected component

in J`B and consider its intersection D :“ J`B pΛq X ∆u with some unstable transversal,
which is made of finitely many thick components. Introduce a relation „ on D by
x „ y if and only if W s

Bpxq “ W s
Bpyq, where by definition W s

Bpxq “
Ş

εą0W
s
p1`εqBpxq.

Equivalently x „ y iff W s
Bpxq XW s

Bpyq ‰ H: concretely, this means that x and y are
related when they are connected by a stable manifold which is tangent to BB. This
defines a closed equivalence relation on D. We denote by D̃ :“ D{ „ the quotient

topological space, which is compact (and Hausdorff) and by π : D Ñ D̃ the natural

projection. Since fpW s
Bpxqq Ă W s

Bpfpxqq, f descends to the quotient D̃ :“ D{ „ to a

well defined continuous map f̃ .

Geometrically D̃ has to be thought of as a branched Julia set, lying on the branched
surface –in the sense of Williams [45]– obtained by collapsing the semi-local stable leaves

of the extended stable lamination. Then f̃ is expanding on the plaques of this branched
manifold3, and its iterates are uniformly quasiconformal wherever defined, since they are
obtained by iterating f and projecting along the stable lamination. Observe that f is not
necessarily surjective, since for every x P D, fnpxq eventually belongs to W s

BpΛq, which
may be smaller than J`B pΛq (cf. Figure 1). On the other hand by the last assertion of

Theorem 6.4, there exists a uniform N such that fN pJ`B pΛqq Ă W s
BpΛq. It follows that

the sequence
Ş

0ďkďn f̃
kpD̃q is stationary for n ě N and that D̃1 :“ πpW s

BpΛq X∆uq, is

an invariant, closed, and plaque-open subset of D̃ on which f̃ is surjective.

Proposition 7.6. With the above definitions, the dynamical system pΛ, fq is topologi-

cally conjugate to the natural extension of pD̃, f̃q (or equivalently pD̃1, f̃q).

Proof. Indeed define h : lim
ÐÝ
pD̃, f̃q Ñ Λ by hppx̃nqnPZq “

Ş

ně0 f
npW s

Bpx´nqq, whose

inverse is y ÞÑ h´1pyq “ ppW s
Bpf

npyqqqnPZ. �

3Here by plaque we mean one of the finitely many overlapping disks which make up a local chart of
a branched manifold, see [45, Def. 1.0]



STRUCTURE OF HYPERBOLIC MAPS 34

8. Non-divergence of holonomy and applications

8.1. The NDH property. We say that the property of Non-Divergence of Holonomy
(NDH) holds if for every pair of points x, y P J such that y belongs to W spxq, the stable
holonomy, which is locally defined from a neighborhood of x in W upxq to a neighborhood
of y in W upyq, can be continued along any path contained in Jupxq.

Remark 8.1.

(1) The stable holonomy h : W upxq ÑW upyq is independent of the choice of a path
c from x to y in W spxq because W spxq is simply connected.

(2) An unstable component Jupxq is typically not simply connected (since it may en-
closes the trace of an attracting basin on W upxq). So even if the stable holonomy
from x to y admits an extension along continuous paths, it does not generally
yield a well-defined map from Jupxq to Jupyq.

We do not know any example where the NDH property fails. An analogue of this
property was studied in the context of the classification of Anosov diffeomorphisms,
where it is expected to be a crucial step in the classification program. It was established
in the two dimensional case in [20] (see also [10, 32] for related results).

Back to automorphisms of C2, we have the following simple criterion:

Proposition 8.2. A sufficient condition for the NDH property is that the stable lami-
nation Ws of J` is transverse to BB (No Tangency condition, NT).

Proof. Assume that the No Tangency condition holds and let x, y P J be such that y
belongs to W upxq. Replacing x and y by fkpxq and fkpyq for some positive k, we may
assume that y P W s

Bpxq. There is a germ of stable holonomy h sending a neighborhood
of x in Jupxq to some neighborhood of y P Jupyq. Let γ : r0, 1s Ñ Jupxq be a continuous
path: we have to show that h can be continued along γ. For this, introduce E Ă r0, 1s
the set of parameters t such that h can be continued along γ|r0,ts and hpγptqq PW s

Bpγptqq.
Obviously, E is a relatively open subinterval of r0, 1s containing 0, and the proof will
be complete if we show that E is closed. Thus, assume that ptnq P E

N is an increasing
sequence converging to t8, and let y8 be any cluster value of the sequence phpγptnqqq.
The main observation is that since Ws is transverse to BB, W s

Bpγptnqq converges to
W s

Bpγpt8qq in the Hausdorff topology, with multiplicity 1, or equivalently in the C1

topology. Furthermore, by the uniform boundedness of the vertical degree, there is a
uniform L such that for every n, there is a path of length at most L joining γptnq to
hpγptnqq in W spγptnqq. It follows that the assignment γptnq ÞÑ hpγptnq is equicontinuous.
Let y8 be a cluster value of phpγptnqqq. The equicontinuity property shows that hpγptnqq
actually converges to y8, and also that the the points hpγptnqq belong to the same local
plaque of the unstable lamination, which must thus coincide with W u

locpy8q. From this
we conclude that h extends to a neighborhood of γpt8q, with hpγpt8qq “ y8, and we
are done. �

One may argue that the NT condition is not intrinsic since it depends on the choice
of the bidisk B. To get around this issue we may consider the following variant:
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(NTG) there exists R ą 0 such that the stable foliation admits no tangency with the
hypersurface tG´ “ Ru.

Note that the level set tG´ “ Ru is smooth near J` for every R ą 0: indeed by the
local structure of G´ near infinity this is the case when R is large, and then we use
invariance to propagate this property to all R ą 0. Arguing exactly as in the previous
proposition shows that the NTG property implies NDH.

Using this idea also enables us to understand more precisely how the NDH property
may fail. If x and y are two points in J with y PW spxq, define the Green distance

dGpx, yq :“ inf
c:xÑy

maxpG´|cq

where the infimum runs over the set of continuous paths c : r0, 1s Ñ W spxq joining
x to y. Since W spxq X J is totally disconnected, this indeed defines an ultrametric
on W spxq X J , which is uniformly contracted by f : dGpfpxq, fpyqq “ d´1dGpx, yq. It
provides an intrinsic way of measuring how far we need to go in C2 to connect two
unstable components by stable manifolds. Arguing exactly as in Proposition 8.2 shows:

Proposition 8.3. Let x, y P J with y P W spxq and denote by h the germ of stable
holonomy h : W u

locpxq Ñ W u
locpyq. Let γ : r0, 1s Ñ Jupxq be a continuous path and

assume that h can be continued along γpr0, t‹qq. Then h admits an extension to t‹ if and
only if dGpγptq, hpγptqqq is bounded as tÑ t‹.

8.2. No queer components.

Theorem 8.4. Let f be dissipative and hyperbolic, with a disconnected and stably totally
disconnected Julia set. Assume further that the NDH property holds. Then any non-
trivial periodic component of K contains an attracting point.

Proof. We argue by contradiction: assume that Λ is a component of K which does not
contain any attracting periodic point. Let C be the component of Λ in K` X B. Our
hypothesis implies that C has empty interior, so C is a component of J` X B (and Λ is
a component of J . Fix an unstable transversal ∆u and let E be a component of CX∆u,
which must have empty interior in ∆u by Lemma 2.1. Thus E is a locally connected
continuum with empty interior, that is, a dendrite.

Lemma 8.5. For every x P E, W spxq X E “ txu.

Assuming this lemma for the moment, let us complete the proof. By the expansion
in the unstable direction, for every x P E, there exists δ1 ą 0 such that for every n ě 0,
fnpEq is not relatively compact in Dupfnpxq, δ1q, and by the John-Hölder property,
there exists δ2 ą 0 such that any two components of fnpEq in Dupfnpxq, δ1q intersecting
Dupfnpxq, δ1{2q are δ2-separated. Fix a covering of J by unstable flow boxes. By the
product structure of J , there exists ε ą 0 such that if y, z P fnpEq are ε-close in C2

but not on the same unstable plaque, then the components CompfnpEqXDupy,δ1qpyq and

CompfnpEqXDupz,δ1qpzq are related by local stable holonomy. Finally, by expansion along

the unstable direction and the previous separation property, fnpEq cannot be contained
in boundedly many unstable plaques as n Ñ 8. Thus, for sufficiently large n we can
find two points in fnpEq which are ε-close in C2 but not on the same unstable plaque,
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so there exists y P fnpEq such that W s
locpyq intersects fnpEq in another point. This

contradicts Lemma 8.5 and we are done. �

Proof of Lemma 8.5. Assume that W spxq X E contains another point y ‰ x. Then the
stable holonomy defines a germ of homeomorphism h : E X Ux Ñ E X Uy, where Ux is
some neighborhood of x (resp. y). By the NDH property, h can be continued along paths
in E. Since E is simply connected, this extends to a globally defined map h : E Ñ E,
sending x to y, which is a local homeomorphism, hence a covering, so again using the
fact that E is simply connected, we conclude that h is a homeomorphism.

It is a classical fact that any continuous self-map of E admits a fixed point. For the
reader’s convenience let us include the argument. View E as a subset of the plane. Then,
by the Carathéodory theorem, the Riemann map CzD Ñ CzE extends to a continuous
and surjective map BDÑ BE “ E. From this we can construct a topological disk U Ą E
and a retraction r : U Ñ E: indeed take the disk bounded by some equipotential and
define r as collapsing each external ray to its endpoint. Now let g “ h ˝ r. Since g maps
U into itself, by the Brouwer fixed point theorem it admits a fixed point x0. Finally,
since gpUq Ă E, x0 belongs to E, so gpx0q “ hprpx0qq “ hpx0q “ x0.

To conclude the proof we show that the existence of such a fixed point contradicts the
hyperbolicity of f . For this, fix a continuous path pxtqtPr0,1s joining x0 to x1 :“ x and let
t‹ “ max tt P r0, 1s, hpxtq “ xtu, which satisfies 0 ď t‹ ă 1. As t ą t‹ tends to t‹, we see
that the two point set txt, hpxtqu collapses to txt‹u. This means that there is a tangency
between the stable lamination and ∆u at xt‹ , which is the desired contradiction. �

Remark 8.6. With notation as in the proof of the theorem, it is not difficult to deduce
from the proof that for every δ ą 0, for n ě npδq there exists a non-trivial simple
closed curve contained in W s

δ pf
npEqq. So by the last assertion of Theorem 6.4, there is

a non-trivial simple closed curve contained in W s
δ pΛq. Without the NDH property, we

cannot exclude a situation where these simple closed curves do not enclose an attracting
basin. We may qualify these dendrites and their limit sets as queer components of J . So
Theorem 8.4 asserts that under the NDH property, queer components of J do not exist.

8.3. Topological mixing.

Theorem 8.7. If the NDH property holds, if Λ is a quasi-solenoidal component of period
k, then fk|Λ is topologically mixing. In particular Λ is transversally a Cantor set.

Proof. Without loss of generality we may assume k “ 1. We resume Proposition 7.1
and its proof. Let Λ1 be as in Proposition 7.1, and let us show that Λ1 “ Λ. Since Λ1 is
saturated in the unstable direction, W spΛ1q is relatively open in Λ. The NDH property
shows that if y P W spΛ1q, then Jupyq Ă W spΛ1q: indeed the set of points z P Jupyq
such that z P W spΛ1q is open because W spΛ1q is relatively open, and since Jupyq is
arcwise connected, the the NDH property implies that it is closed as well. Thus by the
local product structure of Λ, we conclude that W spΛ1q is relatively closed in Λ, and by
connectedness we conclude that W spΛ1q “ Λ.

Fix a small δ ą 0. By Baire’s theorem, we infer that f´npW s
δ pΛ

1qq has non-empty
relative interior in Λ for large n, hence so does W s

δ pΛ
1q by invariance. Arguing as in

Proposition 7.1, we see that by topological transitivity, W s
δ pΛ

1q is actually relatively



STRUCTURE OF HYPERBOLIC MAPS 37

open in Λ. Therefore
Ť

ně0 f
´n pW s

δ pΛ
1qq is an open cover of Λ and by compactness we

conclude that Λ is contained in
Ť

0ďnďn0
f´n pW s

δ pΛ
1qq for some n0. and since fn0pΛq “ Λ

we finally deduce that Λ ĂW s
δ pΛ

1q. Since δ was arbitrary, Λ Ă Λ1, and we are done. �

Remark 8.8. A similar argument shows that under the NDH property, the quasi-solenoids
obtained as limit sets of basin boundaries in Theorem 7.2 are transitive.

As a consequence of transitivity we can be more precise about the topological structure
of periodic components of K.

Proposition 8.9. Let f be dissipative and hyperbolic, with a disconnected and stably
totally disconnected Julia set. Assume further that the NDH property holds. Then for
any non-trivial component D of K, D X IntpK`q is dense in D. Equivalently, for any
x P D, D XW upxq is the closure of its interior for the intrinsic topology.

Proof. The equivalence between the two assertions follows from Lemma 2.1, Lemma 7.3,
and the local product structure. Let D be as in the statement of the proposition and
C be its component in K` X B. Let also Λ the unique component of J contained in D
(Proposition 6.6). Without loss of generality we may assume that D (hence C and Λ) is
fixed by f . By Theorem 8.4 D contains an attracting periodic point a, so the immediate
basin B0 of a is contained in C. By Theorem 7.2, BB0 contains a saddle periodic point
p, which must belong to Λ (indeed by Lemma 2.3 and Theorem 6.3, Λ “

Ş

ně0 f
npBCq).

The topological mixing of f |Λ (Theorem 8.7) classically implies that W sppqXΛ is dense
in Λ. Indeed let U be a product neighborhood of p in Λ, and V be an arbitrary open
subset of Λ. Then for sufficiently large q ě 0 there exists yq P V such that f qpyqq P U .
Since Λ has local product structure rf qpyqq, ps :“ W u

locpf
qpyqq XW s

locppq belongs to Λ,
hence increasing n again if needed, zq :“ f´qprf qpyqq, psq is a point in W sppq X V .

To conclude from this point, we observe that by Remark 7.4 (applied to f´qpB0q) zq
belongs to the boundary of a component Ω of W upzqqX f

´qpB0q contained in D, and we
are done. �

8.4. Concluding remarks. The non-existence problem for queer components bears
some similarity with another well-known open problem: the non-existence of Herman
rings for complex Hénon maps (see [4] for an early account). Indeed assume that f
admits a Herman ring, that is, a Fatou component Ω biholomorphic to the product of an
annulus times C. More precisely there exists a biholomorphism h : Ω Ñ AˆC, where A
is a standard annulus, which conjugates f to px, yq ÞÑ peiθx, δyq, |δ| ă 1. Assume further
that J is disconnected, and fix an unstable transversal ∆u (recall that its existence does
not require f to be hyperbolic). Then if C is an invariant circle in A, f admits an
invariant “cylinder” C “ h´1pC ˆ Cq. Any component of C X∆u is a piecewise smooth
immersed curve, and a contradiction would follow if we can show that it bounds a disk
in ∆u (since by the maximum principle this disk would be a Fatou disk, whose normal
limits would fill up the annulus). In other words, if f admits a Herman ring, C X∆u is
a countable union of dendrites whose saturation under the stable foliation of C bounds
a disk, but not a holomorphic disk (compare with Remark 8.6). Note however that a
limitation to the analogy between the two problems is that the NDH property holds
trivially in the Herman ring case, so the difficulty is of a different nature.
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Appendix A. The core of a quasi-solenoid

In this Appendix, we sketch the construction of the core of a quasi-solenoidal compo-
nent, which should intuitively be understood as the space obtained from this component
after removing all “bounded decorations” in unstable manifolds. Initially designed as a
potential tool to prove the non-existence of queer quasi-solenoids, it also gives interest-
ing information on the combinatorial structure of tame ones. It would be interesting to
compare it with other constructions such as Ishii’s Hubbard trees (see [27]). We keep
the setting as in the previous sections, that is f is a uniformly hyperbolic dissipative
Hénon map, with a a disconnected and stably totally disconnected Julia set.

A.1. Number of accesses. The discussion in this paragraph is reminiscent from [7,
§7], which deals with the connected case. Pick x P J . For any R ą 0, define Nupx,Rq
to be the number of connected components Ω of Dupx,RqzJ such that x P Ω. Since
K XDupx,Rq has the John-Hölder property, Corollary 3.3 implies that Nupx,Rq ă 8.
Thus, R ÞÑ Nupx,Rq is a integer-valued non-increasing function which drops when two
components of Dupx,RqzJ merge. The limit

Nu
locpxq :“ lim

RÑ0
Nupx,Rq

is the number of local accesses to x, and

Nupxq :“ lim
RÑ8

Nupx,Rq

is the number of connected components of W upxqzJ . Note that if Jupxq is bounded
then Nupxq “ 1, so this notion is interesting only when x belongs to a quasi-solenoidal
component.

We can also restrict to counting accesses from infinity, that is components ofDupx,RqzK`,
and we obtain corresponding numbers Nu

8px,Rq, N
u
8,locpxq and Nu

8pxq. We have that

Nu
8pxq ď Nupxq (and similarly for the other quantities), and, since every point of J is

accessible from infinity, Nu
8pxq ě 1. (4)

Lemma A.1. Nu (resp. Nu
8) is upper semicontinuous on J , that is, for any k ě 1,

tx, Nupxq ě ku is closed.

Proof. We deal with Nu, the proof for Nu
8 is similar. It is enough to assume that

k ě 2. By the local product structure of J , it is enough to study the semi-continuity of
x ÞÑ Nupxq separately along stable and unstable manifolds. Let us start by studying this
semicontinuity along a local stable transversal. We have to prove that tx, Nupxq ă ku
is open. Indeed assume that there are j ă k accesses to x in W upxqzJ . This means that
for large R, Dupx,RqzJ has j connected components accumulating at x. If x1 P W spxq
then the local stable holonomy between W u

locpxq and W u
locpx

1q is a homeomorphism,
which locally preserves the number of components of W u

locpxqzJ . In addition if x1 is
sufficiently close to x, this holonomy is defined in Dupx,Rq. Indeed for this it is enough

4The John-Hölder property of the basin of infinity directly guarantees the finiteness of Nu
8,locpxq, but

not that of Nu
locpxq (see Remark 3.11). This property can actually be salvaged as follows: if for small R,

Nu
px,Rq is large, then for some k " 1, Nu

pfk
pxq, 1q is large, and projecting to some fixed transversal

yields a contradiction.
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to iterate backwards until f´npDupx,Rqq is contained in the domain of the extended
stable lamination. Therefore, there is a large domain D1 in W upx1q such that D1zJ has j
connected components accumulating on x1. Since the number of components may drop
when enlarging this disk further, we conclude that Nupx1q ď j.

Now we work inside a given unstable manifold. Let R be such that Nupx, sq “
Nupxq “ j for s ě R ´ 1. By the Hölder-John property, for R1 ă R, Dupx,RqzJ
admits finitely many components intersecting Dupx,R1q. So if Nupxq “ j, there is some
0 ă ε ă 1 such that only j of these components reach Dupx, εq, and we conclude that
for x1 P Dupx, εq, Nupx1, R´ 1q ď j, hence Nupx1q ď j, as asserted. �

Since f acts linearly on unstable parameterizations, Nupx,Rq “ Nupfpxq, λuRq, and
we obtain:

Corollary A.2. If Nu
locpxq ě k then for any y P ωpxq, Nupyq ě k.

An argument similar to that of the second part of Lemma A.1 implies (compare [7,
pp. 490-491]):

Lemma A.3. For any R ą 0 and any x P Λ, the set ty PW upxq, Nupy,Rq ě 3u is
discrete for the intrinsic topology.

Proposition A.4. The set tx P J, Nupxq ě 3u is a finite set of saddle periodic points.

Proof. By Lemma A.3, the set tx P J, Nupx,Rq ě 3u is contained in a countable union of
local stable manifolds. Since any point in J can be joined to a given unstable transversal
∆u by a stable path of uniform length, by taking small enough R we infer that the
projection of this set to ∆u is actually finite. Therefore, the set tx P Λ, Nupxq ě 3u is
a closed invariant set contained in a finite union of semi-local stable manifolds, so it is
finite. �

A.2. Definition(s) and properties of the core. Let Λ be a quasi-solenoidal compo-
nent of J . There are several possible definitions for the core of Λ. It is unclear for the
moment which choice is the most appropriate. We define:

§ CorepΛq “ tx P Λ, Nupxq ě 2u
§ Core1pΛq “ ω ptx P Λ, Nu

locpxq ě 2uq

By Corollary A.2 we have the inclusion Core1pΛq Ă CorepΛq, and it is an open problem
whether equality holds It is obvious from the definition that CorepΛq (resp. Core1pΛq)
is invariant and Lemma A.1 implies that it is closed. Hence it is a closed hyperbolic set.
Another natural open question is whether CorepΛq is connected.

The core of the Julia set is the union of the cores of its finitely many quasi-solenoidal
components. If x P J is any point such that W upxqzJ has several local accesses, then
ωpxq Ă CorepJq.

We say that x P CorepΛq is regular if Nupxq “ 2 and singular otherwise. Recall that
the singular set is a finite set of periodic points. Note that if x belongs to the core, then
Jupxq disconnects W upxq.

Conjecture A.5. CorepΛq has local product structure near any regular point, and is
locally the product of a Jordan arc by a totally disconnected set.
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On the other hand, CorepΛq does not have local product structure in the neighborhood
of any of its singular points, unless it is locally contained in a single unstable manifold.
So the structure of the core should be that of a union of solenoids joined at finitely
many branch points. It seems that in the example described in [26, Thm 4.23], one
quasisolenoidal component has a core made of two solenoids attached at a fixed saddle
point.

Note that if Λ is not a queer component, that is the associated component of K
contains an attracting periodic point, then the solenoid at the boundary of the immediate
basin, constructed in § 7.2, is contained in the core. Indeed it is obtained by taking limits
of Jordan arcs locally separating an attracting basin from the basin of infinity. So the
topological structure of the core should give an account how these various basins are
organized and attached to each other in Λ (compare with the Hubbard tree in one-
dimensional dynamics).

Finally, we may also define Core8pΛq “ tx P Λ, Nu
8pxq ě 2u. (If Λ is a queer com-

ponent, then Core8pΛq “ CorepΛq.) We expect that Core8pΛq is a finite set. Indeed, if
not, it should contain a Jordan arc such that every point is accessible from both sides
by the basin of infinity, and such arcs should not exist. Indeed, iterating forward, and
arguing as in Theorem 8.4, a large iterate of this arc must spiral and come close to itself,
hence, projecting to an unstable transversal, this would cut out a Fatou disk, and we
conclude that one side of the arc is contained in an attracting basin.

Appendix B. Continuity of affine structure

Here we present the following mild generalization of a theorem by Étienne Ghys [22].
Recall that the ratio of a triple pu, v, wq P C3 is u´v

u´w .

Theorem B.1. Let ψ : CÑ C2 be an injective holomorphic immersion, and L “ ψpCq.
Assume that pLnq is a sequence of immersed complex submanifolds converging to L in
the following sense: if K Ť L is any relatively compact subset (relative to the leafwise
topology), then Ln contains a graph over a neighborhood of K for large n, that is there
exists a neighborhood NpKq of K in L and a sequence of injective holomorphic maps
πn : NpKq Ñ Ln such that πnpxq Ñ x for every x. Assume further that for every n, Ln
is biholomorphic to C.

Then the affine structures on the Ln converge to that of L in the following sense: for
any compact set K Ť L as above and any triple px, y, zq P K3, if pxn, yn, znq P πnpNpKqq
are close to pπnpxq, πnpyq, πnpzqq and converge to px, y, zq, then the corresponding ratios
converge as well.

The point of this statement is to emphasize that there is no need in Ghys’ theorem to
work with the leaves of a Riemann surface lamination. Also, compactness of the ambient
space is not required. The theorem is certainly not written in its most general form: one
might assume more generally that

§ the πn are p1` εnq quasi-conformal for some εn Ñ 0;
§ L and the Ln are parabolic Riemann surfaces instead of copies of C.

The adaptation is left to the reader. Notice also that any submanifold V of a Stein
manifold admits a neighborhood W endowed with a holomorphic retraction W Ñ V
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(see [42, Cor. 1]). Therefore our convergence assumption essentially means that Ln
converges to L with multiplicity 1.

Proof. We follow [22, §4] closely. Pick a triple of distinct points px, y, zq in L and R0 such
that ψpDp0, R0qq contains x, y, z. For α P L let rα “ ψ´1pαq. Without loss of generality
we may assume R0 “ 1. Let R be a large positive number to be determined. For
n ě npRq, πn is well defined in ψpDp0, Rqq. Let pxn, yn, znq P πnpDp0, 1qq

3 converging
to px, y, zq, and fix ε ą 0.. Then by assumption pπ´1

n pxnq, π
´1
n pynq, π

´1
n pznqq converges

to px, y, zq for the leafwise topology in L. Let ψn : C Ñ Ln be any parameterization,
and let rxn “ ψ´1

n pxnq, ryn “ ψ´1pynq and rzn “ ψ´1pznq. Without loss of generality we
may assume rxn “ 0. We have to show that for large n, the ratio of prxn, ryn, rznq is close
to that of prx, ry, rzq.

By assumption hn :“ ψ´1
n ˝πn ˝ψ : Dp0, Rq Ñ C is an injective holomorphic map. By

renormalizing ψn we may assume that h1np0q “ 1 (we use Ln » C precisely here). Then
by the Koebe distortion theorem, hn is almost affine in Dp0, 1q, that is, it distorts the
ratios of points in Dp0, 1q by some small amount εpRq. Fix R so large that εpRq ă ε. In
particular for n ě npRq we get that

ˇ

ˇ

ˇ

ˇ

hnprxq ´ hnpryq

hnprxq ´ hnprzq
´

rx´ ry

rx´ rz

ˇ

ˇ

ˇ

ˇ

ď ε.

Now for α P K, hnprαq is the parameter in C corresponding to πnpαq P Ln, so rαn is close
to hnprαq in C and for large n we also get that

ˇ

ˇ

ˇ

ˇ

hnprxq ´ hnpryq

hnprxq ´ hnprzq
´

rxn ´ ryn
rxn ´ rzn

ˇ

ˇ

ˇ

ˇ

ď ε,

and we are done. �

References

[1] Eric Bedford and Romain Dujardin. Topological and geometric hyperbolicity criteria for polynomial
automorphisms of C2. Ergodic Theory Dynam. Systems, 42(7):2151–2171, 2022.

[2] Eric Bedford, Mikhail Lyubich, and John Smillie. Polynomial diffeomorphisms of C2. IV. The
measure of maximal entropy and laminar currents. Invent. Math., 112(1):77–125, 1993.

[3] Eric Bedford and John Smillie. Polynomial diffeomorphisms of C2: currents, equilibrium measure
and hyperbolicity. Invent. Math., 103(1):69–99, 1991.

[4] Eric Bedford and John Smillie. Polynomial diffeomorphisms of C2. II. Stable manifolds and recur-
rence. J. Amer. Math. Soc., 4(4):657–679, 1991.

[5] Eric Bedford and John Smillie. Polynomial diffeomorphisms of C2. V. Critical points and Lyapunov
exponents. J. Geom. Anal., 8(3):349–383, 1998.

[6] Eric Bedford and John Smillie. Polynomial diffeomorphisms of C2. VI. Connectivity of J . Ann. of
Math. (2), 148(2):695–735, 1998.

[7] Eric Bedford and John Smillie. Polynomial diffeomorphisms of C2. VII. Hyperbolicity and external
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École Norm. Sup. (4), 18(2):287–343, 1985.
[15] Romain Dujardin. Some remarks on the connectivity of Julia sets for 2-dimensional diffeomorphisms.

In Complex dynamics, volume 396 of Contemp. Math., pages 63–84. Amer. Math. Soc., Providence,
RI, 2006.

[16] Romain Dujardin. Saddle hyperbolicity implies hyperbolicity for polynomial automorphisms of C2.
Math. Res. Lett., 27(3):693–709, 2020.

[17] Romain Dujardin and Mikhail Lyubich. Stability and bifurcations for dissipative polynomial auto-
morphisms of C2. Invent. Math., 200(2):439–511, 2015.
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