Mateus Simões
email: mateus.simoes@st.com

Lilian Bossuet
email: lilian.bossuet@univ-st-etienne.fr

Nicolas Bruneau
email: nicolas.bruneau@st.com

Vincent Grosso
email: vincent.grosso@univ-st-etienne.fr

Patrick Haddad
email: patrick.haddad@st.com

Thomas Sarno
email: thomas.sarno@st.com

Low-Latency Masking with Arbitrary Protection Order Based on Click Elements

Keywords: Side-channel attacks, hardware masking, asynchronous circuits, low-latency, leakage assessment

Masking is the main countermeasure against sidechannel attacks due to its sound formal proof of security and the scalability of its protection parameters. However, effective masking increases the implementation complexity by requiring additional silicon area, random number generators and higher latency. Thus, reducing the masking implementation costs while conserving its robustness under side-channel attacks is a relevant branch of research in hardware security applications.

Relying on the two-phase bundled-data protocol, this work presents a low-latency masking implementation with arbitrary protection order. In particular, we base our approach on the click elements to control the handshake logic, allowing us to implement asynchronous circuits using conventional synthesis tools. In this manner, we are able to obtain an effective single-cycle and protected implementation of the AES S-box requiring smaller silicon area and potentially lower power consumption compared to the state-of-the-art. Additionally, we detail the asynchronous design methodology that can be applied in different scenarios to improve the latency of secure hardware designs. Finally, we assess leakages to evaluate the robustness of our approach against side-channel attacks.

I. INTRODUCTION

Side-channel attacks [START_REF] Paul | Differential power analysis[END_REF] represent a threat to electronic systems designed to manipulate encrypted data. This class of security exploit allows an adversary to obtain sensitive information by observing the physical properties of a cryptographic device. In this manner, side-channel traces, such as power consumption and electromagnetic emanation, can be statistically analyzed to reveal secret data -e.g., the cipher key.

To avoid side-channel attacks, various countermeasures exist. Masking [START_REF] Chari | Towards sound approaches to counteract power-analysis attacks[END_REF], [START_REF] Goubin | DES and differential power analysis (the "duplication" method)[END_REF], the most relevant among these solutions, splits secret data into several uniformly distributed shares, rendering more complex to predict the side-channel behavior of a cryptographic device. Despite its sound formal proof of security [START_REF] Chari | Towards sound approaches to counteract power-analysis attacks[END_REF], implementing a secure masking scheme is not a straightforward task. Indeed, to satisfy different design and security properties, an effective masking scheme involves significant implementation resources. For instance, to avoid exploitable leakages due to physical hazards such as glitches [START_REF] Mangard | Side-channel leakage of masked CMOS gates[END_REF], [START_REF] Mangard | Successfully attacking masked AES hardware implementations[END_REF], hardware designers tend to add several register barriers in the circuit [START_REF] Faust | Composable masking schemes in the presence of physical defaults & the robust probing model[END_REF], which raises the latency of masked modules, i.e., the number of clock cycles needed to finish processing the data. In addition, the protected design requires higher area overhead due to the increase of the implementation complexity.

With the increasing proliferation of IoT devices, secure low-latency and area-efficient cryptographic modules become therefore necessary to satisfy commercial demands. In this manner, many techniques have been proposed to balance the masking implementation costs, with recent efforts aiming at the design of low-latency schemes based on different architectural approaches [START_REF] Arribas | LLTI: low-latency threshold implementations[END_REF], [START_REF] Groß | Generic low-latency masking in hardware[END_REF], [START_REF] Moradi | Side-channel analysis protection and low-latency in action -case study of PRINCE and Midori[END_REF], [START_REF] Nagpal | Riding the waves towards generic single-cycle masking in hardware[END_REF], [START_REF] Sasdrich | Low-latency hardware masking with application to AES[END_REF], [START_REF] Simões | Self-timed masking: Implementing first-order masked s-boxes without registers[END_REF]. Nevertheless, the reduction in the overall clock cycle score is accompanied by higher implementation costs and, in some cases, lower throughput. In fact, many of these solutions rely on asynchronous primitives and dual-rail encoding to obtain low-latency implementations. As a consequence, the overall silicon area is increased due to the chosen logic wiring. Thus, maintaining a single-rail channel may be a better option to achieve superior area efficiency.

Furthermore, designing asynchronous circuits is a challenging task, as most conventional EDA tools -e.g., Synopsys Design Compiler -are not suited to this hardware design approach. For this reason, clockless circuits are not widely adopted as a solution, despite its potential advantages in low power consumption and high performance [START_REF] Sparsø | Principles of Asynchronous Circuit Design: A Systems Perspective[END_REF]. Nevertheless, recent works have addressed different methodologies to use established tools, commonly used in synchronous design flow, to ease the implementation of asynchronous circuits [START_REF] Ghiribaldi | A transition-signaling bundled data NoC switch architecture for costeffective GALS multicore systems[END_REF], [START_REF] Li | A low-power asynchronous RISC-V processor with propagated timing constraints method[END_REF], [START_REF] Miorandi | Accurate assessment of bundled-data asynchronous NoCs enabled by a predictable and efficient hierarchical synthesis flow[END_REF], [START_REF] Wu | A design flow for click-based asynchronous circuits design with conventional EDA tools[END_REF]. Based on these methodologies, this work proposes a generic approach to design low-latency and areaefficient higher-order secure masking built upon the two-phase bundled-data communication protocol.

We rely on handshake control circuits made of edgetriggered flip-flops to implement asynchronous masking with the aid of conventional synthesis tools. To illustrate this design approach, we present a case study of an asynchronous domainoriented masked AES S-box, a single-cycle implementation that achieves d-glitch-extended security [START_REF] Faust | Composable masking schemes in the presence of physical defaults & the robust probing model[END_REF] with lower area requirements compared to related solutions. We also compare the proposed AES S-box with its equivalent synchronous design to illustrate the potential advantages in terms of lower power consumption and higher throughput.

The paper is structured as follows: Sections II and III present the background and the related works, respectively. Section IV discusses the asynchronous design methodology. Then, Section V shows the implementation of the singlecycle AES S-box relying on the domain-oriented masking. Section V also examines the implementation results while Section VI reviews the security robustness of our designs against univariate and bivariate side-channel analysis. Finally, Section VII concludes the paper presenting some perspectives on the future work.

II. BACKGROUND

A. Masking

The masking countermeasure is based on secret sharing: an algorithm splits the secret data x into several shares x i in such a way that

x = x 0 • x 1 • • • • • x d , with the symbol • denoting a mathematical operation.
Knowledge of all shares S = (x 0 , x 1 , . . . x d) is required to recover the secret. Thus, a subset of S cannot reveal the unshared data x. In this context, the masking of a linear operation is straightforward, as the shares can be manipulated separately, that is, without recombining them back together. However, the same does not stand for non-linear functions, since recombining the shares may break their statistical independence. In fact, masking non-linear functions effectively is a critical aspect of hardware security.

To illustrate, let us take the domain-oriented masking (DOM) scheme [START_REF] Groß | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF] -which is based on Boolean sharing, i.e., • = ⊕, the XOR operator -to d th -order mask with

d + 1 shares the multiplication f (a, b) = a ⊗ b = z in GF (2 n), expressed as Z = A ⊗ B.
For a first-order masking, the sets A = (a 0 , a 1) and B = (b 0 , b 1) represent the input shares and Z = (z 0 , z 1) the output sharing. Assuming that the input shares are statistically independent, we want to solve

(z 0 ⊕ z 1) = (a 0 ⊕ a 1) ⊗ (b 0 ⊕ b 1). A non-linear layer computes the product terms a 0 ⊗ b 0 , a 0 ⊗ b 1 , a 1 ⊗ b 0 , a 1 ⊗ b 1
and adds a fresh random mask r to the cross-domain products, that is, a 0 ⊗ b 1 and a 1 ⊗ b 0 . Then, to ensure resistance against glitches [START_REF] Faust | Composable masking schemes in the presence of physical defaults & the robust probing model[END_REF], registers (-→) store the resulting shares (x 0 , x 1 , x 2 , x 3), as we can see in [START_REF] Arribas | LLTI: low-latency threshold implementations[END_REF]. The non-linear layer produces (d + 1) 2 shares and is followed by a sharing compression layer -as shown in [START_REF] Canright | A very compact s-box for AES[END_REF] for a first-order masking -to reduce the number of shares back to (d + 1), preventing a quadratic growth of the number of shares through the computation [START_REF] Reparaz | Consolidating masking schemes[END_REF].

f 0 (a 0 , b 0) = a 0 ⊗ b 0 -→ x 0 f 1 (a 0 , b 1) = (a 0 ⊗ b 1) ⊕ r -→ x 1 f 2 (a 1 , b 0) = (a 1 ⊗ b 0) ⊕ r -→ x 2 f 3 (a 1 , b 1) = a 1 ⊗ b 1 -→ x 3 (1)
z 0 = x 0 ⊕ x 1 z 1 = x 2 ⊕ x 3 (2)
Thanks to the register barrier between both layers and the ISW random refreshing method [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF] to mask the cross-domain products, d-glitch-extended probing security is satisfied [START_REF] Faust | Composable masking schemes in the presence of physical defaults & the robust probing model[END_REF]. A gate-level design of the DOM multiplier is shown in Fig. 1.

B. Two-Phase Bundled-Data Circuits and the Click Elements

The two-phase bundled-data is an asynchronous circuit implementation style introduced by Ivan Sutherland in [START_REF] Sutherland | Micropipelines[END_REF]. In this design approach, a bundled-data message carries the single-rail data signal alongside with the handshake logic, the request and acknowledgement signals, as shown in Fig. 2. The sender indicates data availability with the request signal. Then, the receiver uses the acknowledgement channel to signal the computation of the corresponding data. To meet data arrival timing requirements, delay elements are inserted in the request channel between the sender and the receiver. This delay is necessary to obtain a positive slack on the data channel, resulting in an effective data propagation.

In this work, the handshake logic triggers the local control pulse when the correspondent request or acknowledgement signal transitions, which is known as two-phase protocol. The local control pulses are generated by click elements, an asynchronous control circuit introduced in [START_REF] Ad | Click elements: An implementation style for data-driven compilation[END_REF] to implement two-phase bundled-data handshake logic. The click element relies on edge-triggered flip-flops and combinatorial gates available in any standard cell library; it is thus an alternative to handshake controllers built upon Muller's C-elements [START_REF] Muller | A theory of asynchronous circuits[END_REF], [START_REF] Sutherland | Micropipelines[END_REF] and latches [START_REF] Singh | MOUSETRAP: ultra-highspeed transition-signaling asynchronous pipelines[END_REF]. In this manner, a hardware engineer is able to use conventional EDA software to perform static timing analysis, easing the design of asynchronous circuits with the aid of established tools [START_REF] Li | A low-power asynchronous RISC-V processor with propagated timing constraints method[END_REF], [START_REF] Wu | A design flow for click-based asynchronous circuits design with conventional EDA tools[END_REF].

A design of the click element is shown in Fig. 3. If req_m = ack_m, new data coming from the sender m are available at the input channel. On the other hand, the receiver n has collected the output data when req_n = ack_n. When new input data, derived from the preceding block, are available, and the current data have been received by the following neighbor, a local pulse, denoted fire, is generated to trigger the corresponding flip-flop. Note that, as expected for the twophase protocol, both the rising and the falling edges of the request signal can produce a fire pulse, as shown in Fig. 4.

We opt to use the click element as a handshake control circuit because it only requires typical cells present in any technology library. Furthermore, the generated pulses can be instantiated as clock objects, allowing us to perform static timing analysis. We do not use dont_touch constraints on our click element description.

III. RELATED WORK: LOW-LATENCY MASKING

The first work that borrows asynchronous primitives to implement low-latency masking was presented by Moradi and Schneider in [START_REF] Moradi | Side-channel analysis protection and low-latency in action -case study of PRINCE and Midori[END_REF]. In their work, they implement fully unrolled first-order Threshold Implementations (TI) [START_REF] Nikova | Threshold implementations against side-channel attacks and glitches[END_REF] of PRINCE and Midori built upon Wave Dynamic Differential Logic (WDDL) [START_REF] Tiri | A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation[END_REF], which relies on dual-rail encoding to produce bitwise operators.

Sasdrich et al. [START_REF] Sasdrich | Low-latency hardware masking with application to AES[END_REF] employed the LUT-based Masked Dual-Rail with Pre-charge Logic (LMDPL) [START_REF] Leiserson | Gatelevel masking under a path-based leakage metric[END_REF] masking scheme to implement a low-latency AES. By using the pre-charge / evaluation logic with monotonic functions they were able to obtain a glitch-free circuit [START_REF] Popp | Masked dual-rail pre-charge logic: DPA-resistance without routing constraints[END_REF]. Nevertheless, besides being limited to first-order security, their AES design presents a high silicon area cost, as the dual-rail blocks are duplicated in order to perform the evaluation and pre-charge phases in parallel.

More recently, Nagpal et al. [START_REF] Nagpal | Riding the waves towards generic single-cycle masking in hardware[END_REF] presented a low-latency DOM implementation also built upon WDDL gates, but employing Muller C-elements [START_REF] Muller | A theory of asynchronous circuits[END_REF] as synchronization modules, whose results have shown to be higher-order secure. A similar approach is proposed in [START_REF] Simões | Self-timed masking: Implementing first-order masked s-boxes without registers[END_REF], employing data-driven handshake logic built upon Muller C-elements to replace clocked register barriers with self-timed latches in a DOM architecture.

In contrast to the dual-rail approach, but also based on the DOM scheme, Gross et al. proposed the first generic lowlatency masking (GLM) [START_REF] Groß | Generic low-latency masking in hardware[END_REF]. In their work, they skip the compression of shares after the non-linear layer, eliminating the register barrier in [START_REF] Arribas | LLTI: low-latency threshold implementations[END_REF]. However, the number of shares shows a quadratic growth after each masked multiplication. In consequence, the area and randomness costs increase substantially, and special care has to be taken during implementation to avoid collisions when composing multiple masked multipliers.

With an algorithmic approach, Arribas et al. proposed the Low-Latency Threshold Implementations (LLTI) [START_REF] Arribas | LLTI: low-latency threshold implementations[END_REF]. However, their AES S-box design brings high area overhead and is computed in two combinatorial steps, divided by a register layer, limiting its composability in some low-latency scenarios.

In this paper, we present a secure area-efficient and lowlatency masking design approach with arbitrary protection order, as a consequence of using the DOM as a case study. To trigger the register layers, we employ an asynchronous control circuit whose gate-level implementation requires logic cells present in any technology library, making it more convenient to traditional synchronous design flows and easing the application of our masking methodology using already established EDA tools. Also, we focus on bundled-data circuits to avoid the limitations inherent to the dual-rail encoding [START_REF] Kulikowski | Power attacks on secure hardware based on early propagation of data[END_REF], [START_REF] Moradi | Masked dual-rail precharge logic encounters state-of-the-art power analysis methods[END_REF]. Furthermore, we want to eliminate the need of pre-charging a glitch-resistant masking, which may improve throughput IV. CLICK-BASED DESIGN METHODOLOGY Fig. 5 illustrates a simple bundled-data pipeline with click elements. When input data are ready, a transition of the request signal req_m indicates their availability. For instance, the req_m triggers the fire_1 pulse allowing the register R 1 to capture the data_m. After capturing the data and processing them through the combinatorial circuit C 1 , the acknowledgement output of the second handshake controller transitions, signaling the completion of this step. Now, the next transition of the request signal can produce a new fire pulse. In this manner, both the rising and the falling edges of the request and acknowledgement signals indicate, respectively, data availability and that the data have been processed. The register barriers neighboring the combinatorial blocks are triggered by the correspondent fire signal. The ack_n and req_n of the click i are the ack_m and req_m of the click j, with j = i + 1.

Note that the timing requirements of a combinatorial circuit must match the request channel delay between the neighboring pair of click elements. For example, the block C 1 must have a stable output before the arrival of a fire_2 pulse at the R 2 register. To match the delay between click elements, a chain of buffers (illustrated as) is added to the request channels. We apply a technique based on the works presented in [START_REF] Wu | A design flow for click-based asynchronous circuits design with conventional EDA tools[END_REF] and in [START_REF] Li | A low-power asynchronous RISC-V processor with propagated timing constraints method[END_REF] to determine the delay lines. The core idea behind their approach is defining the fire pulses as clocks during synthesis in order to report the timing requirements of a path. Thus, we can design the necessary delay chain of a request channel.

A. Delay Matching

The process to match the delays of the request channels is described as follows. First, we declare the variables used to store the delay values for each request channel. Initially, these variables are initialized to zero.

Then, we use the command create_clock to define the first fire signal as a physical clock in the design. Next, we derive new clock objects for the following fire pulses from its preceding fire signal as a master clock. For that, we use the create_generated_clock command to generate the new clock objects from an existing physical clock in the design. This command also allows us to define a phase relationship among the local pulses.

For instance, in our work we use the configuration below to derive a generated clock fire shifted by t time units from the source clock clk. create_generated_clock -name fire \ -source clk -edges {1 2 3} -edge_shift {t t t} Once the fire pulses are defined as clocks, we can report the timing constraints of a combinatorial path between two of them. For example, let us take the timing path between fire_1 and fire_2 in Fig. 5, whose start point is the output of R 1 and the end point is the input of R 2 . The setup and the hold time of R 1 and R 2 have to be satisfied to ensure the correct functioning of the circuit. Equation (3) shows a rough way to estimate the necessary delay t delay,req of a request

t delay,req > t clk→q + t logic + t setup (3)
With t clk→q the propagation delay of the flip-flop, t logic the propagation delay of the combinatorial circuit and t setup the setup time of the flip-flop. Similarly, the hold time t hold is expressed in (4).

t hold < t delay,ack + t clk→q,cd + t logic,cd (4)
With t delay,ack the delay in the acknowledgement channel, t clk→q,cd the contamination delay of the flip-flops and t logic,cd the contamination delay of the combinatorial logic. In general, t clk→q,cd > t hold and, due to the gate-level design of the click element, t delay,ack > t hold . Therefore, no buffer is needed in the acknowledgement channel.

To ensure appropriate setup time and hold time, we can for instance report the slack of a timing path using the report_timing command from fire_1 to fire_2. The slack, expressed in [START_REF] Ghiribaldi | A transition-signaling bundled data NoC switch architecture for costeffective GALS multicore systems[END_REF], is the difference between the data required time and the data arrival time, see Fig. 6. If the static timing analysis reports a negative slack, the delay in the correspondent request channel is not enough and has to be increased.

t slack = t required -t arrival (5)
Based on the reported value, we use the set_min_delay command to redefine the delay of the request channel. This command adds a chain of buffers on the defined path in order to satisfy the desired delay. To avoid the suppression of the delay lines during the ASIC synthesis, we add -manuallya single buffer with set_dont_touch constraints to each request channel. Then, we are able to define the buffer chain length using the set_min_delay command, to set a delay of t time units from the req_n output to the req_m input between two click elements.

Initially, we report the slack values without adding the appropriate delay elements. Hence, we could perform a first synthesis following the definition of the clock pulses. After the first compilation, we report the timing requirements in order to obtain the slack values for each timing path. Based on these values, we redefine the delay lines with a 10% margin [START_REF] Wu | A design flow for click-based asynchronous circuits design with conventional EDA tools[END_REF] and the created clocks to match the data required time. Then we can re-synthesize the design with the correct delays. In general, two iterations are necessary to meet the timing requirements. The flowchart in Fig. 7 illustrates the synthesis flow described in this section.

V. MASKED IMPLEMENTATION: DOM CASE STUDY

Since this work focuses on the design methodology of lowlatency masking, we rely on a secure scheme with arbitrary protection order. Thus, we can evaluate the effectiveness of our approach against side-channel analysis and estimate the implementation overheads. Indeed, this methodology can be applied to any masking scheme containing register barriers in order to obtain a single-cycle circuit.

For benchmark reasons, our low-latency AES S-box implementation is based on the Canright's design [START_REF] Canright | A very compact s-box for AES[END_REF], which is composed of eight combinatorial stages. Each stage is preceded by a barrier of registers, as shown in Fig. 8. To obtain a single-cycle design, we trigger each register barrier with a local clock pulse derived from a click element. There are eight click elements C i in total, one for each register barrier. To match the timing of each combinatorial block, we add a chain of buffers between the control circuits in such a way that the request signal propagation delay is higher than its corresponding data arrival time.

Our AES architecture is locally asynchronous and globally synchronous. To shift the circuit out of steady state into normal operation, we introduce a clocked element, named source, that produces the first request signal, triggering the handshake logic to process the current data. Therefore, the asynchronous pipeline is triggered by a synchronous clock, whose period must satisfy the throughput of the click-based pipeline. The last click element, identified as sink, does not output a request signal. Fig. 9 shows the design of the source and sink blocks used in our design.

Since the input of the S-box remains constant during the computation of the masked byte, we remove the registers after the inner-domain operations of the DOM multiplier, as shown in Fig. 10. Moreover, note that we do not use registers to store the LSB and MSB in GF (2 2) and GF (2 4), as shown in Fig. 8. This results in a smaller design -compared with the original DOM implementation in [START_REF] Groß | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF] -by reducing the number of flip-flops in our click-based masked version of the Canright's AES S-box.

A. Synthesis Results

We use Synopsys Design Compiler to synthesize our design using a STM40 nm standard cell library. The area results are normalized in terms of gate equivalent metric (GE) with a two-input NAND gate from the selected library as reference. We do not use compile_ultra scripts.

R R R R R R CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 clock source sink delay A R Map R ν ⊗ γ 2 GF (2 4) Multip. N ⊗ Γ 2 GF (2 2) Multip. () -1 GF (2 2) Multip. GF (2 2) Multip.
GF (2 4) Multip.

GF (2 4) Multip.

Map

Table I reports the performance figures of different masked AES S-box

We show several first-order designs, but we focus on the low-latency solutions to compare the higherorder approaches whose results are available. We present the implementation outcomes of our design up to the third protection order.

Our click-based implementation is very competitive in terms of gate counting. Indeed, by employing the two-phase bundled-data protocol, instead of the dual-rail encoding, we present the smallest design -with a significant margin -among the lowlatency solutions. The removal of the flip-flops formerly used to store inner-domain products combined with the withdrawn of the LSB and MSB registers contributes with the reduction of the overall silicon area of our masked AES S-box based on Galois-field arithmetic. Therefore, applying our technique to the AES S-box shown in [START_REF] Ueno | A systematic design of tamper-resistant Galois-field arithmetic circuits based on threshold implementation with (d + 1) input shares[END_REF], which relies on a similar approach to achieve higher efficiency compared to the Canright's proposal, could result in an even more compact and efficient design.

References [START_REF] Nagpal | Riding the waves towards generic single-cycle masking in hardware[END_REF] and [START_REF] Simões | Self-timed masking: Implementing first-order masked s-boxes without registers[END_REF] eliminate glitches as a result of a monotonic pre-charge / evaluate logic. However, the use of Muller cells may require engineering tricks in order operate correctly under conventional design flows, as it is not a default element in most technology libraries. Moreover, they rely on the DOM multiplier, which is designed to be secure even in the presence of glitches, diminishing the benefits of using complex glitch-free techniques. Furthermore, despite allowing to completely eliminate glitches, dual-rail circuits tend to be significantly larger and may be susceptible to exploitable sidechannel leakages due to unbalanced routing [START_REF] Moradi | Masked dual-rail precharge logic encounters state-of-the-art power analysis methods[END_REF] and early propagation effect [START_REF] Kulikowski | Power attacks on secure hardware based on early propagation of data[END_REF].

A few low-latency solutions eliminate the need of fresh random masks. Arribas et al. [START_REF] Arribas | LLTI: low-latency threshold implementations[END_REF] presents two low-latency TI without online randomness. In addition to the four input shares -which requires three random variables to mask the secret -to achieve first-order masking, the resulting implementation costs preclude its use in area-efficient scenarios. Furthermore, higher-order TI needs fresh random masks in order to be higher-order secure [START_REF] Reparaz | A note on the security of higher-order threshold implementations[END_REF]. Similarly, the d th -order "zerolatency" implementation, by Gross et al. [START_REF] Groß | Generic low-latency masking in hardware[END_REF], brings unpractical area costs and requires the duplication and random re-sharing of the inputs to avoid exploitable side-channel leakages due to collisions of shares. Our implementation requires 18(d 2 + d) fresh random bits to achieve d th -order masking, as the Canright's design has 36 AND gates [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF]. The original DOM design in [START_REF] Groß | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF] uses half of the same amount as 18 AND gates are computed within a single combinatorial circuit between two register layers. Note that computing one AES round within a single cycle requires twenty times this amount of randomness -if the AES key schedule is masked.

We refer to Table II for the timing performance figures of several first-order low-latency masking implementation of the AES. Despite achieving secure single-cycle masking computation, the maximum frequency of our solution is lower compared to the low-latency masking techniques present in the state-of-the-art. Indeed, there are eight synchronization stages within our AES S-box, whose delays have to be matched correctly and with a security margin. Thus, applying the clickbased masking to a more compact architecture with lower synchronization stages may improve the throughput.

As mentioned, despite adopting asynchronous techniques, a synchronous clock signal triggers the S-box computation. Thus, our AES S-box is processed within a single-cycle and allows the computation of the shift rows, mix columns and add round key functions during the same period. Therefore, we could classify our implementation as a "zero-latency" one, as defined in [START_REF] Groß | Generic low-latency masking in hardware[END_REF], since no globally-clocked registers are required once the AES S-box computation is started. This is not the case for the LLTI [START_REF] Arribas | LLTI: low-latency threshold implementations[END_REF] and for the single-cycle masking with arbitrary protection order shown in [START_REF] Groß | Generic low-latency masking in hardware[END_REF].

Therefore, our S-box design allows the secure computation of an AES round within a single cycle. However, the clock period must match the circuit's critical path. Since we perform one round per cycle with locally clocked layers, the maximum Certainly, a traditional synchronous design may achieve higher clock frequency due to the smaller critical path. Nevertheless, our approach considers the local propagation time of a combinatorial block instead of using a global clock whose frequency is defined by the worst-case critical path. Moreover, eight clock cycles are needed to compute the synchronous Sbox, while our design can output the correct byte in one clock cycle, which makes our solution more suitable in low-latency scenarios with an appropriate clock frequency.

From the click-based AES S-box, we implemented three d th -order masked AES128 encryption variants: 8-bit, 32-bit and 128-bit serialized data path. We refer to Table III for the performance figures of our different AES128 encryption implementations.

The appropriate length of the bit serialized data path depends on the application. Thus, the current comparison aims at presenting the performance figures -in terms of area, fresh randomness and encryption latency -of a click-based AES architecture for different cases. We also present the Area × Latency product as a metric of the trade-off between both characteristics.

The 8-bit and 32-bit versions have an architecture similar to [START_REF] Moradi | Pushing the limits: A very compact and a threshold implementation of AES[END_REF]. The 8-bit variant has only one S-box, which is also used during the key schedule, as well as the 32-bit case, which contains four S-boxes. The 128-bit variant performs a round function within one clock cycle and solves the sixteen SubBytes in parallel alongside with the key schedule, totaling twenty S-boxes. Therefore, the round keys used in the encryption are masked in all variants. Unmasking the key would improve the area and latency results, but we decide to maintain the key masked for benchmark reasons.

B. Toggle Rate

With the objective of gauging the power consumption of our approach compared to the clocked implementation, that is, the original design proposed in [START_REF] Groß | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF], we observe the toggle rate of the synchronous and click-based DOM of the Canright's AES S-box. We use a hundred thousand traces to compute the average signal toggle rate of the simulated devices during the computation of a SubBytes; thereupon, we integrate the resulting toggle activity to compute the mean, which gives us a rough estimation of the power consumption. The results are shown in Fig. 11.

Our first-order solution has a toggle rate ≈77% smaller than the synchronous implementation operating in pipeline mode. When the synchronous design operates without a pipeline, similar to our application, this gap is reduced to ≈ 57%. Indeed, besides operating without a pipeline, this synchronous design updates the random refresh bits every positive clock edge, which explains the difference in the toggle rate despite its similarity with the click-based design. Therefore, our asynchronous solution shows a lower toggle rate, which indicates a potential reduction in power consumption.

C. FPGA Implementation

We managed to set minimum path delays on the request channel using an ASIC synthesis flow with Synopsys Design Compiler. By adding a buffer manually and applying dont_touch constraint on it, we prevent the tool from modifying the buffer chains during optimization. However, we were not able to do the same for the FPGA implementation using Xilinx Vivado. To solve this issue, we describe the chain of buffers whose length is a user-defined parameter. We report the slack in the same manner to find the parameter values that meet the timing requirements. Fig. 12 shows a hardware description of a delay line used to implement a chain of buffers in an FPGA.

VI. SIDE-CHANNEL ANALYSIS

We simulate the signal switching activity of our low-latency AES S-box to evaluate its robustness against side-channel attacks. Our back-annotated analysis considers the standard cell timing characteristics in order to perform a realistic modeling, taking into account the occurrence of glitches. We use Mentor Graphics QuestaSim to perform logic simulations; the tool outputs VCD files which are parsed to obtain the toggle behavior of all internal wires of the masked circuit. This method allows us to model the system's side-channel behavior in a noiseless manner with a sampling frequency of 10 GHz. Fig. 13 shows the block diagram illustrating the acquisition of simulated traces used in our side-channel leakage assessment. We apply the fixed vs random t-test methodology 1 proposed by Goodwill et al. [START_REF] Goodwill | A testing methodology for side-channel resistance validation[END_REF]. It uses the t-statistics, as expressed in [START_REF] Goodwill | A testing methodology for side-channel resistance validation[END_REF], to determine whether the difference in the means of two distributions provides sufficient evidence to reject the null hypothesis. Thus, a distribution Q 0 represents the set of traces corresponding to a random input and a second population Q 1 groups the traces obtained after computing the pre-defined input.

t = µ 0 -µ 1 v0 n0 + v1 n1 (6)
Where µ i represents the expected value of the population Q i , while v i denotes its variance and n i the cardinality of the associated set. In short, a side-channel leakage can be potentially exploited during an attack when the resulting tstatistics exceeds a threshold of ±4.5 [START_REF] Schneider | Leakage assessment methodology -A clear roadmap for side-channel evaluations[END_REF].

A. Univariate analysis

In the univariate analysis, all samples are processed independently as the shares were manipulated in parallel and leaked at the same instant, which is typically the case for hardware designs. Fig. 14 shows the first-order t-test on the first-order masked AES S-box using ten million traces. No exploitable side-channel leakages were identified in the first-order analysis. Nevertheless, second-order leakages were spotted for this implementation, as we can see in Fig. 15. Both results were expected outcomes. To protect the system against analysis, we increased the number of shares up to three to obtain a secondorder masked implementation. Fig. 16 shows the secondorder t-test on our second-order masked AES S-box using ten million traces. No exploitable side-channel leakages were detected, indicating the effectiveness of our implementation against higher-order attacks.

However, by increasing the order of the side-channel analysis to d = 3, exploitable leakages were detected, as shown in Fig. 17, which demonstrates the vulnerability of a second order masked design against third-order side-channel attacks.

We also perform the same third-order univariate analysis on our AES S-box masked with four shares, Fig. 18. As expected, no side-channel leakages were detected in this case, indicating that our single-cycle S-box is robust against higherorder attacks. From these results, we can confirm that our approach does not weaken the DOM and can be potentially applied in different cryptographic systems in order to achieve single-cycle implementation without penalizing its security properties. We highlight that, the higher the masking order, the more complex it is to perform a successful side-channel attack in practice.

B. Bivariate analysis

The univariate setting considers the case in which the shares are processed in parallel, resulting in the sum of the share's exploitable side-channel leakage at the same sample point. However, if different shares leak at different spots, a univariate analysis is not capable of proving reliable side-channel leakage assessment. In this case, the different sample points of the set of traces have to be combined prior to the t-test. [START_REF] Schneider | Leakage assessment methodology -A clear roadmap for side-channel evaluations[END_REF].

To ensure the robustness of our click-based approach, we also perform bivariate analysis on our second-order design. Fig. 19 shows the bivariate analysis for the second-order AES S-box using ten million traces. The upper triangle shows the results when the random mask refresh is disabled, while the lower triangle illustrates the side-channel analysis when fresh randomness is employed. The result obtained for the unprotected setting uses only 0.1% of the number of traces used in the protected scenario, that is, ten thousand against ten million traces.

The blue and red dots shown in Fig. 19 represent sample points in which the multivariate t-statistics exceeds the ±4.5 threshold. As expected, without refreshing the random masks, exploitable leakages were detected in our design, confirming the need of online randomness to obtain a secure masking implementation. It also reaffirms that our click-based approach does not bring any weakness to the secure design, even in bivariate analysis.

VII. CONCLUSION

Low-latency masking is an important topic in secure hardware implementation. Indeed, given the growth of IoT applications, many embedded systems require cryptographic solutions offering lower latency and better area efficiency. In this context, this work presents the smallest masking implementation of a single-cycle AES S-box with arbitrary protection order to date.

To achieve low-latency, we rely on a click-based asynchronous design methodology, allowing hardware engineers to use a conventional synthesis flow to implement singlecycle cryptographic blocks that are secure against d th -order side-channel analysis. Also, despite the potential low-power and high performance of asynchronous circuits, this design approach is not widely used in secure hardware applications yet. Therefore, this work also helps to bridge the gap between asynchronous circuit design and hardware masking schemes.

Compared to similar asynchronous low-latency solutions based on the dual-rail protocol, we achieve a smaller silicon area of the AES S-box by employing the bundled-data protocol. Furthermore, the logic depth is reduced, which may improve the overall performance of our design compared to these dual-rail implementations under the same technology and circuit logic. Also, bundled-data circuits resemble traditional synchronous design, which eases the application of this methodology by hardware security engineers familiar with already established synthesis flows.

Lower latency comes at the cost of larger critical path, which limits the maximal operation frequency of the system. However, instead of waiting several clock cycles to compute a secure function, our approach reduces the latency to a single clock while satisfying the necessary formal security properties. Additionally, one can potentially improve the throughput of the AES S-box by applying our click-based approach to a more compact design, with lower synchronization stages, which could also result in an even smaller implementation, depending on the chosen architecture.

We present the case study of the domain-oriented masking scheme to illustrate the methodology employed in this work. By relying on a known secure implementation, we aim at measuring the overheads of converting a synchronous design into an asynchronous circuit based on the two-phase bundleddata protocol. Moreover, we were also interested in assessing the leakages to evaluate the robustness of our click-based solution against side-channel attacks. Indeed, our implementation approach does not reduce the reliability of the originally synchronous design against exploits, indicating an efficient way to implement higher-order secure low-latency masking based on synchronous d th -order protected implementations.

Compared to its synchronous counterpart, the overall toggle rate of our DOM implementation is reduced, which indicates a potential advantage in low power scenarios.

Finally, despite presenting an AES S-box use case, the proposed method can be applied to different cryptographic modules to improve latency.

1 Fig. 1 .Fig. 2 .

 112 Fig. 1. The first-order DOM multiplier.

Fig. 3 .Fig. 4 .

 34 Fig.3. A single stage bundled-data pipeline with a click element.

Fig. 5 .

 5 Fig. 5. A simple bundled-data pipeline with click elements.

Fig. 6 .

 6 Fig.6. The data arrival time and the data required time.

Fig. 7 .

 7 Fig. 7. Synthesis flow with delay matching process.

Fig. 8 .Fig. 9 . 1 Fig. 10 .

 89110 Fig. 8. A low-latency implementation of the Canright's AES S-box design based on click elements.

Fig. 11 .Fig. 12 .Fig. 13 .

 111213 Fig. 11. Comparison of the toggle rate of the click-based and synchronous DOM implementations of the Canright's AES S-box.

Fig. 14 .Fig. 15 .

 1415 Fig.14. First-order t-test results for the first-order masked AES S-box using ten million traces.

Fig. 16 .Fig. 17 .Fig. 18 .

 161718 Fig.[START_REF] Mangard | Successfully attacking masked AES hardware implementations[END_REF]. Second-order t-test results for the second-order masked AES S-box using ten million traces.

 order multivariate t-statistics

Fig. 19 .

 19 Fig.19. Second-order bivariate analysis results for the second-order masked low-latency implementation of the AES S-box. The lower triangle shows the t-test results when the random mask refreshing is enabled. The upper triangle shows the t-test results when the random mask refreshing is turned off.

TABLE II TIMING

 II PERFORMANCE OF DIFFERENT LOW-LATENCY FIRST-ORDER MASKED AES128 ENCRYPTION.

	Design	Technology S-box Latency Frequency
			[cycles]	[MHz]
	Gross et al. [8]	UMC 90nm	0	288
	Gross et al. [8]	UMC 90nm	1	356
	Gross et al. [8]	UMC 90nm	2	584
	Sasdrich et al. [29]	UMC 90nm	1	400
	Arribas et al. [1] a	NanGate 45nm	1	277
	Arribas et al. [1] b	NanGate 45nm	1	40
	Nagpal et al. [22]	UMC 65nm	1	192
	Simões et al. [31]	STM 40nm	1	5
	this work	STM 40nm	1	55
	a Low-Latency Threshold Implementation		
	b Threshold Implementation		
	operation frequency of our application is limited. For the first-
	order masking, our synthesized AES S-box design achieves a
	frequency of 55 MHz, while its synchronous counterpart can
	operate at 250 MHz. Considering the synthesis of both designs
	under the same technology, the maximum frequency is reduced
	by a factor of five, approximately.		

TABLE III PERFORMANCE

 III FIGURES OF OUR MASKED AES ENCRYPTION IMPLEMENTATIONS BASED ON CLICK ELEMENTS.

	Data Path	Area	Refresh Latency	Area vs Latency
	[bits]	[kGE] [bits/cycle]	[cycles] [GE×cycles×10 -6]
	First-order masked implementations		
	8	6.42	36	216	1.39
	32	12.73	144	54	0.69
	128	43.45	720	11	0.48
	Second-order masked implementations		
	8	10.64	108	216	2.30
	32	22.77	432	54	1.23
	128	83.82	2160	11	0.92
	Third-order masked implementations		
	8	15.35	216	216	3.32
	32	35.25	864	54	1.90
	128	136.92	4320	11	1.51

We use SCALib for side-channel analysis: github.com/simple-crypto/scalib