
HAL Id: hal-04224933
https://hal.science/hal-04224933

Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BALoo: First and Efficient Countermeasure dedicated
to Persistent Fault Attacks

Pierre-Antoine Tissot, Lilian Bossuet, Vincent Grosso

To cite this version:
Pierre-Antoine Tissot, Lilian Bossuet, Vincent Grosso. BALoo: First and Efficient Countermeasure
dedicated to Persistent Fault Attacks. The 29th IEEE International Symposium on On-Line Testing
and Robust System Design, Jul 2023, Chania, Greece. pp.1-7, �10.1109/IOLTS59296.2023.10224871�.
�hal-04224933�

https://hal.science/hal-04224933
https://hal.archives-ouvertes.fr

BALoo: First and Efficient Countermeasure
dedicated to Persistent Fault Attacks

Pierre-Antoine Tissot1, Lilian Bossuet1 and Vincent Grosso1
1Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School,

Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France

Abstract—Persistent fault analysis is a novel and efficient
cryptanalysis method. The persistent fault attacks take advantage
of a persistent fault injected in a non-volatile memory, then
present on the device until the reboot of the device. Contrary
to classical physical fault injection, where differential analysis
can be performed, persistent fault analysis requires new analyses
and dedicated countermeasures. Persistent fault analysis requires
a persistent fault injected in the S-box such that the bijective
characteristic of the permutation function is not present anymore.
In particular, the analysis will use the non-uniform distribution
of the S-box values: when one of the possible S-box values never
appears and one of the possible S-box values appears twice.

In this paper, we present the first dedicated protection to
prevent persistent fault analysis. This countermeasure, called
BALoo for Bijection Assert with Loops, checks the property
of bijectivity of the S-box. We show that this countermeasure
has a 100% fault coverage for the persistent fault analysis,
with a very small software overhead (memory overhead) and
reasonable hardware overhead (logical resources, memory and
performance). To evaluate the overhead of BALoo, we provide
experimental results obtained with the software and the hardware
(FPGA) implementations of an AES-128.

Index Terms—Fault attacks, persistent fault analysis, fault
countermeasure, permutation properties.

I. INTRODUCTION

In our everyday life, we use more and more connected
devices which need to exchange secret data, thus, they need
to establish secure communications. One main component of
secure communication protocol is block ciphers, e.g. AES [1],
PRESENT [2]. Block ciphers are composed of three main
layers: key mixing, linear layer and non-linear layer. The
non-linear part of these block ciphers lies on a permutation
function, represented by an S-box. This function must bring
confusion and non-linearity to the state. Its security is then
crucial.

When implemented on physical devices, these ciphers are
vulnerable against physical attacks such as side-channel at-
tacks [3] (taking advantage of the circuit’s leakages) and fault
attacks [4] (taking advantage of the device’s sensitivity to
perturbations).

The principle of fault attacks is to use a physical threat (laser
injection [5], clock glitching [6], . . .) in order to inject faults
during an encryption and extract information by analyzing
the impact of the injected fault. Most of the studies already
done are based on transient faults: faults injected in run
time, with a unique and immediate impact [7]. The adversary
studies the difference between a faulty ciphertext and a fault-
free ciphertext, both encrypted from the same plaintext and

same key, to get information about the secret key. With
transient faults, the adversary can still get fault-free ciphertext.
However, the drawback of this type of injection is that the
adversary must inject a fault every time he wants the data to
be affected, and these injections can be hard to perform and
to success.

A novel type of fault analysis has been introduced by Zhang
et al. in [8]. The analysis is based on faults called persistent
injections, in opposition to transient faults. These faults are
performed to keep a data value faulty whenever this data is
used. This type of faults are more detailed in the following
background section. The analysis performed by Zhang et al.
is based on a persistent fault injected in the block cipher S-box.
This analysis is also detailed in the following section. How-
ever, no countermeasure against this precise type of injection
has been presented in the state of the art and persistent fault
were designed to bypass transient countermeasures. Indeed,
the attack has been studied several times and improved in
some aspects of the analysis [9] (reduces the constraints on
the injection), [10] (persistent fault analysis performed with
deep learning), but no countermeasures specifically designed
against persistent fault analysis have been presented. Indeed,
some on-line tests already exist [11], [12], but no specific test
against PFA.

Our contribution is the proposition of the first countermea-
sure dedicated to persistent fault analysis. The solution is based
on the length of the cycles found with the loop construction
of any permutation function. We call this solution BALoo for
Bijection Assert with Loops. In this paper, we explain how
to construct loops from any permutation function (with some
results on widely used block ciphers, as well as on the NIST
Lightweight Cryptography candidates that use S-boxes in their
implementation and the AES). Then, we evaluate the overhead
of BALoo with an AES-128 software implementation and
AES-128 hardware implementation (FPGA).

The paper is divided as follows: Section II presents all the
background notions useful in the rest of the work (persistent
fault attack functioning and limitation and fault model con-
sidered). Section III is the BALoo presentation, this section
introduces and explains the solution and its fault coverage
against persistent fault injection. Section IV answers several
general questions on the loop construction of the permutations
and Section V gives the software and hardware overhead of
the BALoo solution.

II. BACKGROUND

This section presents the different useful notions for the rest
of the study: the persistent fault analysis and the fault models
targeted.

A. Persistent Fault Analysis

Fault attacks are threats against cryptographic implementa-
tion. Since their presentation in the late 90’s [4], [13], transient
faults (faults injected in run time that affect data during a
limited and short time) were used, and differential analysis
allows to recover some sensitive data. The main idea is to
compare the output of the algorithm with and without fault
injection, the difference helps the adversary to reduce the
guessing entropy of the sensitive data. Various methods have
been presented on different target, e.g. [7], [14]–[16].

Recently, persistent fault injection analysis has been in-
troduced [8]. The persistent fault injection affects the value
of a data stored in FPGA memory using the rowhammer
attack [17]. The target data remains faulty until the reboot
of the memory. With this principle, the adversary can inject
the fault at any moment of the device’s life, and the fault
will remain active until the reboot. With this type of fault,
the adversary is then immune to temporal redundancy. Indeed,
temporal redundancy is a widely used countermeasure based
on multiple encryptions of a plaintext and a comparison of
the obtained ciphertexts. As presented in [8], with a persistent
fault on an AES S-box, no matter how many times the same
plaintext is encrypted, the faulty ciphertexts are always the
same. A statistical study of the ciphertexts distribution can
lead the adversary to recover bytes of the last round subkey.
The probability distributions and their employment during the
analysis are shown in Figure 1. While non-invertible S-boxes
as been used in the past, e.g. DES [18], nowadays, with
better knowledge of Boolean vector function, permutations are
usually used for S-boxes, in the rest of the paper we assume
that the S-box is a permutation.

The adversary uses a divide-and-conquer approach, he at-
tacks each S-box byte independently. For each output word,
he captures the output of several encryptions {cj}, we denote
by Cj the random variable of the output of the cipher for the
word considered (j refers to the byte j of the word). From
these observations he can determine the probability of each
possible output cj (v represents the value of the AES S-box
that never appears and v∗ the value that appears twice):

• Pr(Cj = cj) = 0 ⇒ cj = v ⊕ kj ,
• Pr(Cj = cj) = maxc′j (Pr(Cj = c′j)) ⇒ cj = v∗ ⊕ kj ,
• 0 < Pr(Cj = cj) < maxc′j (Pr(Cj = c′j)) ⇒ cj ̸= v ⊕ kj

and cj ̸= v∗ ⊕ kj .
In this analysis, the adversary knows which fault was

injected (v and v∗ are known). Thus, from the distribution
of the {cj}, the adversary can use the two first relations to
recover the value of the secret subkey, e.g. Pr(Cj = cj) =
0 ⇒ kj = cj ⊕ v. With enough ciphertexts (Zhang et al.
give a result of around 2 000 faulty ciphertexts needed to
recover the key byte with v and v∗ known [8]), the probability

distribution of the ciphertext will get close to the one shown
in Figure 1, in the faulty encryption frame. Thanks to the fault
injection knowledge (v and v∗ known), the adversary can then
recover k. Note that here is presented the analysis with the best
knowledge about the injection, but Zhang et al. also present
several analyses with less constraints [9] (v and v∗ not known,
some injections not successful, . . .).

Fig. 1. Overview of persistent fault analysis [8]. v represents the value of
the AES S-box that never appears and v∗ the value that appears twice.

The fault model only takes into account faults that delete
at least one value of the S-box. Indeed, the rearrangements
of the S-box are not considered as usable S-boxes as the
adversary cannot exploit a faulty probability of distribution if
the distribution is the same before and after the fault injection.
The persistent fault analyses presented so far exploit a value
distribution that is different from the non-faulty one.

Contrary to transient analysis, the adversary does not need
to have control on the plaintexts. He just requires random
ciphertexts.

B. Multiple Fault Injections

When analyzing a persistent fault injection, the main in-
formation acquired by the adversary is the probability of
distribution of the ciphertexts. The goal of the attack is to
highlight the value that never appears or the value that appears
twice. If multiple faults are injected in the S-box, several
values would be deleted and several other values would have
a higher probability of occurrence: Pr(Cj = cj) = 0 is
true for several cj , and maxcj (Pr(Cj = cj)) is also reached
for multiple values (see Figure 2). Thus, the attack would
be less efficient with several faults injected. Clearly, if two
values cj1 , cj2 never appear, the adversary cannot decide if
kj = v ⊕ cj1 or kj = v ⊕ cj2 , hence he has 2 candidates for
each subkey, he thus needs to test all full key candidates 216 to
recover the good one, when considering AES-128 case study.

Fig. 2. Probability Distribution in case of a Multiple faults injection

However, a fault that affects only one byte brings high
constrains on the injection: the adversary has to be able to
attack the memory with a very precise threat.

C. Fault Models

To describe the fault models that we use in this work,
some notations must be introduced. The injected faults will
be indexed by the integer r, and each fault has its own value,
denoted fr. Then, the i-th value of the S-box is Si, and its
faulty value by the fault fr is Sfr

i .
Moreover, an injected fault will have three different impacts

on the data, depending on the injection technique (∨ denote
a Or operation, ∧ a And operation and ⊕ a Xor operation).
Usually, only one kind of modification is considered possible,
thus the operation is given by the context.

• SET model: Sfr
i = Si ∨ fr

• RESET model: Sfr
i = Si ∧ fr

• FLIP model: Sfr
i = Si ⊕ fr

An example of a fault injection with the SET model (f0 =
010 and Sf0

5 = S5 ∨ f0) is presented in Table I. Sf0
x denotes

a faulty S-box with a value (3) that appears twice and a value
(1) that never appears. In another case, Sf1,f2

x is a faulty S-box
with the FLIP model (f1 = f2 = 110 with Sf1

3 = S3 ⊕ f1
and Sf2

7 = S7 ⊕ f2) but is still a permutation and then it is
not usable by the adversary.

TABLE I
FAULT INJECTION EXAMPLE ON A SIMPLE S-BOX.

x 0 1 2 3 4 5 6 7
Sx 3 5 0 2 7 1 6 4
Sf0
x 3 5 0 2 7 3 6 4

Sf1,f2
x 3 5 0 4 7 1 6 2

In the Sf0
x situation, let’s suppose that in the ciphertexts, the

value 7 never appears, the value 5 appears twice as much and
the other values appear with a 1

8 probability. With enough
ciphertexts, all values but the value 7 are found, then the
adversary knows that cjmin = 7. With the fault f0 (f0 = 3)

injected, and the value v = 1 corresponding to the output
of the S-box that disappeared, the adversary can compute
kj = cjmin ⊕ v = 7⊕ 1 = 6. The adversary has found the last
round key kj = 6.

The robustness of the solutions proposed is detailed accord-
ing to the different fault models.

III. PROPOSED COUNTERMEASURE

The main goal of the proposed countermeasure is to detect
if an usable (from the adversary point of view) permanent fault
has been injected in the S-box. Indeed, a check of all the values
of the S-box must reveal that they all emerge exactly once.
To do it, the first naive idea would be to use redundancy as
used in usual faults injection countermeasures. Nevertheless,
persistent fault is naturally resistant to temporal redundancy
as the fault is permanent: for a fixed plaintext, the ciphertext
will always be the same no matter when the encryption is
done. According to the fault model, persistent fault analysis
can also resist to spatial redundancy because the adversary is
able to inject the same fault in both S-boxes (being able to
inject one fault in one S-box is as difficult as injecting a fault
in another S-box). Another approach is to use the fact that the
S-box is a permutation function and to find intrinsic properties
of this function that allow to detect fault injections. This last
approach is detailed in the next subsection.

A. Permutation properties

Three properties of a permutation that could detect fault
injections are detailed.

The first one is that the sum of all the elements i of the
permutation function is a known constant. This constant can
be pre-computed and compared to the actual sum.

Since we consider permutations of n-bit words, we also
know that the Xor of the 2n possible values of words should
be 0. Using Xor operation instead of Add operation is also a
solution to detect an injected fault.

The last property is that any permutation function can be de-
composed as a set of cycles. For example, the S-box presented
in Table II, can be decomposed in (0, 3, 2)(1, 5)(4, 7)(6).
Where (0, 3, 2) means that S0 = 3, S3 = 2 and S2 = 0 and
thus, these three values form a permutation loop.

TABLE II
S-BOX EXAMPLE WITH THE FOLLOWING SET OF LOOPS

(0, 3, 2)(1, 5)(4, 7)(6).

x 0 1 2 3 4 5 6 7
Sx 3 5 0 2 7 1 6 4

For each specific S-box, the loops have a precise length.
The calculation of these lengths (Algorithm 1) can be used
to detect faults as we propose for the BALoo countermeasure
(Algorithm 2). Indeed, a modification in a loop length can
only happen if at least a faulty value of the S-box is present.

We can see that the permutation function properties are
easy to check. However, it can happen that some very precise
injections sometimes lead to undetectable faults, as we will
see in the next section.

Algorithm 1 length function
Require: S-box S, first index i, target length l
Ensure: length calculated = length targeted

t = 1 ▷ loop length
j = i ▷ index
while (S[j] ̸= i)&(t < l + 1) do ▷ first index not reach +
length < target

j = S[j] ▷ next step
t++ ▷ actual length + 1

return t == l ▷ length computed = target ?

Algorithm 2 BALoo countermeasure
Require: An n-bit S-box S and the list of loop length Ll and

start index Li and their number s.
Ensure: Fault detection
FaultD = False

j = 0
while j < s do

FaultD = FaultD ∨ ¬length(S,Li(j), Ll(j))
j ++

return FaultD

B. Fault coverage

1) Add property: This solution is based on the addition of
all the values of the S-box that should give a constant result.
With the SET (resp. RESET) fault model, no matter how
many faults are injected, their index targeted, and their value,
the sum is always higher (resp. lower) to the pre-computed
value and the faults are always detected.

However, with the FLIP fault model, some faults remain
undetected. Indeed, if some bits are flipped to 1, other bits can
be flipped to 0 to compensate and keep the same result of the
sum.

2) Xor property: This solution is based on the Xor of all
the values of the S-box that should give 0. If some faults
modify the final result of the Xor, then the faults are detected.
However, no matter the fault model used, some combinations
of fault injections are still undetected for FLIP , SET and
RESET models, as several faults can offset each other and
lead to an exclusive sum of 0.

3) BALoo countermeasure (Algorithm 2) : As presented
before, any S-box can be represented by a set of loops. A loop
begins with a value (any value of the loop), and contains all
the steps until recovering the original value. For example, the
AES S-box is composed of 5 loops. The loop which contains
the value 11 is 27-step length: S11 = 43, S43 = 241, ...,
S158 = 11 (this loop is illustrated on the first loop on Figure 3).
The important information about loops is their length. For
example, with the AES S-box, the length of the loop in which
we can find the 11 value is exactly 27. If a fault affects a value
of this loop, the length becomes either lower or higher to the
former length. Then, by measuring the loop lengths, we can
detect fault injections. However, in the fault model in which
any type of fault is possible, some precise fault selection leads

to undetected injections. A simple example of this fault type
is presented in the second loop of Figure 3. The length of this
loop is still 27 but three faults are injected in the S-box. Yet,
these faults modify the S-box, but the faulty S-box remains a
permutation function (the faulty values are just swapped with
other faulty values), then the injected fault cannot be used
by any persistent fault analysis as presented in [8] because
this type of fault that does not create a modification in the
probability distribution of the S-box values. As a consequence,
the BALoo countermeasure does not admit any undetected
faults that could be exploited by an adversary who applies
a Persistent Fault Analysis [8].

Fig. 3. Example of an AES loop with a length of 27.

C. Robustness

To validate the theoretical fault coverage results, the dif-
ferent countermeasures are implemented and tested. For each
fault model and each number of injected faults, 10 000 000
tests are performed. The random fault model is the worst case
for the adversary and thus gives the upper bound of the fault
coverage. Indeed, if the fault coverage is different than 100%,
that means that with an adversary in a stronger model (chosen
fault), the fault coverage can be as low as 0.

Figure 4 shows the fault coverage of the BALoo counter-
measure in the SET or RESET fault model. Indeed, both
give the same results as the models are similar. The fault
coverage of BALoo is presented in comparison with the other
solutions (Xor, Add and Duplication).

Figure 5 shows the fault coverage of the BALoo counter-
measure in the FLIP fault model, with the same comparison
with the other solutions.

In each fault model, the spatial duplication countermeasure
(with the S-box duplicated and a vote between the values of
the S-boxes) leads to undetected faults. Indeed, for an even
number of faults, half of the faults are injected in the first
S-box, and the other half in the other S-box. The faults must
have the same impact on both S-boxes to be undetected: same
S-box value and same impact of this value. This reasoning can
also be applied to a n-time duplication, with (n + 1) faults
injected in the (n+ 1) duplicated S-boxes.

The Add solution gives a 100% fault coverage in the
SET /RESET model and a lower coverage in the FLIP
model. The Xor solution leads to undetected fault in both
models.

2 4 6 8

98.5

99

99.5

100

number of faults injected

fa
ul

t
co

ve
ra

ge
(%

)

BALoo
Duplication

Add
Xor

Fig. 4. Fault coverage for the SET and RESET models.

2 4 6 8

99.6

99.7

99.8

99.9

100

number of faults injected

fa
ul

t
co

ve
ra

ge
(%

)

BALoo
Duplication

Add
Xor

Fig. 5. Fault coverage FLIP model.

The BALoo countermeasure always gives 100% fault
coverage as no fault included in the fault model can be
undetected. Indeed, a function is a permutation if and only
if a loop construction can be extracted from the function. In
a formal loop definition, each value is the only input of a
value and the only output of another value (note that both
values can be the same and both can also be the original
value). A function constructed from loops is then always a
permutation and a permutation can always be interpreted as
a set of loops. With this property, the exploitable faults lead
to functions that are not permutations and then the BALoo
countermeasure always detects them.

The next step is to see how to compute the length of loops
to implement the BALoo countermeasure for any block cipher
with bijective S-box.

IV. LOOPS ON S-BOXES IN A GENERAL CASE

The loop decomposition of a S-box is unique. To use the
BALoo countermeasure, the loops must be previously found,

and their length computed in off-line. Algorithm 3 shows how
to find the different loops from an S-box. This algorithm can
be processed for any S-box, no matter its size.

Algorithm 3 Find the loops of an S-box.
Require: S-box S
Ensure: Loops of S
loops = [] ▷ List of the loops
while len(loops) < len(S) do

i = 0
while i ∈ loops do ▷ First index of the next loop

i++

l = [i]
while S[l[−1]] ̸= i do ▷ The loop l is not complete

l.append(S[l[−1]])

loops.append(l) ▷ l is complete and added to loops

return loops

The application of the algorithm on several widely used
cipher S-boxes is presented in Table III with the number of
loops and the longest loop (in case of a parallel verifica-
tion, the longest loop determines the countermeasure dura-
tion). The block ciphers are: LOW MC [19], PRESENT [2],
PRINCE [20], GIFT [21], NOEKEON [22], PRIMATE [23],
ELEPHANT [24], GIFT-COFB [21], AES [1] and ROMU-
LUS [25].

For the GIFT-COFB cipher, several S-boxes are used in the
same substitution layer. We add an index to differentiate the
different S-boxes of this cipher.

TABLE III
DETERMINATION OF THE LOOPS LENGTH ON SEVERAL USED S-BOXES

Cipher Block size Number of loops Longest length
LOW MC 3 3 6
PRESENT 4 4 7
PRINCE 4 4 8

GIFT 4 2 9
NOEKEON 4 10 2
PRIMATE 4 5 11

ELEPHANT 4 2 13
GIFT-COFB1 5 2 31
GIFT-COFB2 5 4 10
GIFT-COFB3 5 2 31
GIFT-COFB4 5 8 5

AES 8 5 87
ROMULUS 8 12 140

For example, the length of the AES loops found are:
• 87 for the loop with the value 4
• 81 for the loop with the value 1
• 59 for the loop with the value 0
• 27 for the loop with the value 11
• 2 for the loop with the value 115

V. BALOO SOFTWARE AND HARDWARE OVERHEAD

This section presents the overhead of the BALoo coun-
termeasure with a software implementation and an hardware
implementation (FPGA) of an AES-128.

A. Software memory overhead

The software overhead measured is the number of S-box
memory accesses of the BALoo countermeasure. A single AES
SubBytes operation needs 16 S-box bytes read instructions
and a full AES-128 encryption is composed by 10 rounds
which call the SubBytes function once. That means that for
every encryption, 160 bytes are accessed in memory. The
persistent fault analysis [8] shows that even with the strongest
adversary, around 2000 ciphertexts are needed to recover
the key (guessing entropy close to 0). With this hypothesis,
we choose to perform a fault injection check every 1000
encryptions (until a fault detection) to stay robust against
the persistent fault analysis (guessing entropy higher than 40
bits). The BALoo countermeasure browses all the S-box values
once, which means 256 memory bytes read instructions. 256
countermeasure calls are thus added every 160 000 encryption
accesses (a memory calls overhead of 0.16%). If a developer
wants to keep a higher guessing entropy he can apply the
BALoo countermeasure every 500 encryption and keep more
than 80 bits of guessing entropy for an overhead of 0.32%.

B. Hardware overheads

The hardware overhead of the BALoo countermeasure is
measured according to three resources: the number of logical
elements, the number of registers and the memory bits used.
The device on which the AES and its protection are imple-
mented is the FPGA Intel Cyclone V. We use Quartus II with
best effort for performance and area synthesis options.

The AES implementation is composed by 16 S-boxes used
in parallel to encrypt a plaintext in only 11 clock cycles.
However, this means that the BALoo countermeasure must
be applied on all of the 16 S-boxes. Instead of applying the
countermeasure on all the 16 S-boxes (this solution was tested
and results are very costly as 16 S-boxes must be protected,
giving an overhead of 356% in terms of logical elements),
we add another S-box to reach 17 S-boxes. These 17 S-boxes
allow to verify one S-box in the same time as the other 16 are
used.

The verification of one S-box is at most 256 clock cycles
long, and one encryption takes 11 cycles. That means that
a check is around 24 encryptions and the check of all the
17 S-boxes takes 408 encryptions. With the limit of 1000
encryptions to avoid Persistent Fault Analysis, the AES im-
plementation with this protection is secured.

This countermeasure adds 1 S-box but also some multiplex-
ers in order to select which S-boxes are used and which S-box
is verified. The implementation costs results are presented in
Table IV. The overhead of the protection is quite similar to the
naive comparison solution, but with the advantage of detecting
all the faults injected. Moreover, to accelerate the detection,
another S-box can be added to check two S-boxes at the same
time. The overhead of this 18th S-box is small in comparison
with the 17 S-boxes implementation.

Moreover, an estimation of the theoretical maximum fre-
quency of the FPGA is given, as well as the power consump-

TABLE IV
IMPLEMENTATION RESULTS ON FPGA AND PROTECTION OVERHEAD.

Performances with Cyclone V 5CGXFC9E7F35C8

FPGA resources

Logic
Registers

Memory Power Fmax

(ALM) bits (mW) (MHz)

AES 339 13 32 768 566,32 94

Secure AES with
608 34 34 816 568,78 58

17 S-boxes

Secure AES with
763 43 36 864 568,48 51

18 S-boxes

Overhead %

Logic
Registers

Memory Power Fmax

(ALM) bits (mW) (MHz)

Secure AES with
79 162 6 0,43 -38

17 S-boxes

Secure AES with
125 231 13 0,38 -46

18 S-boxes

tion of the circuit. Note that those data are only estimations
provided by the Quartus-II tool.

The logic overhead is +79% with one verification S-box
and +125% with two verification S-boxes. With both check
configuration, the memory overhead is very low.

As the critical path is increased, the maximum frequency
is then reduced, but with no optimization on the implementa-
tion, the reduction is reasonable (around −35%). This result
depends on many synthesis parameters, but it gives a general
idea of the overhead.

This solution has a slightly smaller overhead than spatial
redundancy, but with the advantage of fault coverage and the
possibility to accelerate detection, with low-cost additional
permutations.

VI. CONCLUSION

This paper presents the first countermeasure dedicated to
permanent fault analysis of symmetric block cipher. Our
proposed countermeasure, called BALoo, achieves a 100%
fault coverage in any fault model with a very small memory
overhead (around 0.1% for a software AES implementation)
and a limited hardware overhead. This hardware overhead is
measured on a FPGA and with a hardware AES implementa-
tion which uses 16 different S-boxes. BALoo protects all of
the 16 different S-boxes used in this implementation, with the
addition of a 17th S-box to verify the integrity of one S-box
when the 16 others can keep on encrypting, and cycling on
the S-box checked.

REFERENCES

[1] J. Daemen and V. Rijmen, “The block cipher rijndael,” in Smart Card
Research and Applications, This International Conference, CARDIS
’98, Louvain-la-Neuve, Belgium, September 14-16, 1998, Proceedings
(J. Quisquater and B. Schneier, eds.), vol. 1820 of Lecture Notes in
Computer Science, pp. 277–284, Springer, 1998.

[2] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: an ultra-
lightweight block cipher,” in Cryptographic Hardware and Embedded
Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings (P. Paillier and I. Verbauwhede,
eds.), vol. 4727 of Lecture Notes in Computer Science, pp. 450–466,
Springer, 2007.

[3] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings (M. J. Wiener, ed.), vol. 1666 of Lecture Notes
in Computer Science, pp. 388–397, Springer, 1999.

[4] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings (B. S. K. Jr., ed.), vol. 1294 of Lecture
Notes in Computer Science, pp. 513–525, Springer, 1997.

[5] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
in Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers (B. S. K. Jr., Ç. K. Koç, and C. Paar, eds.), vol. 2523
of Lecture Notes in Computer Science, pp. 2–12, Springer, 2002.

[6] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-depth and black-
box characterization of the effects of clock glitches on 8-bit mcus,”
in 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2011, Tokyo, Japan, September 29, 2011 (L. Breveglieri, S. Guil-
ley, I. Koren, D. Naccache, and J. Takahashi, eds.), pp. 105–114, IEEE
Computer Society, 2011.

[7] B. Colombier, P. Grandamme, J. Vernay, É. Chanavat, L. Bossuet,
L. de Laulanié, and B. Chassagne, “Multi-spot laser fault injection setup:
New possibilities for fault injection attacks,” in Smart Card Research and
Advanced Applications - 20th International Conference, CARDIS 2021,
Lübeck, Germany, November 11-12, 2021, Revised Selected Papers
(V. Grosso and T. Pöppelmann, eds.), vol. 13173 of Lecture Notes in
Computer Science, pp. 151–166, Springer, 2021.

[8] F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi,
and K. Ren, “Persistent fault analysis on block ciphers,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 3, pp. 150–172, 2018.

[9] F. Zhang, Y. Zhang, H. Jiang, X. Zhu, S. Bhasin, X. Zhao, Z. Liu, D. Gu,
and K. Ren, “Persistent fault attack in practice,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, p. 172–195,
Mar. 2020.

[10] Y. Cheng, C. Ou, F. Zhang, and S. Zheng, “Dlpfa: Deep learning
based persistent fault analysis against block ciphers.” Cryptology ePrint
Archive, Paper 2023/021, 2023. https://eprint.iacr.org/2023/021.

[11] G. D. Natale, M. Doulcier, M. Flottes, and B. Rouzeyre, “Self-test
techniques for crypto-devices,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 18, no. 2, pp. 329–333, 2010.

[12] 13th IEEE International On-Line Testing Symposium (IOLTS 2007), 8-
11 July 2007, Heraklion, Crete, Greece, IEEE Computer Society, 2007.

[13] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults (extended abstract),” in
Advances in Cryptology - EUROCRYPT ’97, International Conference
on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding (W. Fumy, ed.), vol. 1233 of
Lecture Notes in Computer Science, pp. 37–51, Springer, 1997.

[14] G. Piret and J. Quisquater, “A differential fault attack technique against
SPN structures, with application to the AES and KHAZAD,” in Cryp-
tographic Hardware and Embedded Systems - CHES 2003, 5th Interna-
tional Workshop, Cologne, Germany, September 8-10, 2003, Proceedings
(C. D. Walter, Ç. K. Koç, and C. Paar, eds.), vol. 2779 of Lecture Notes
in Computer Science, pp. 77–88, Springer, 2003.

[15] T. Fukunaga and J. Takahashi, “Practical fault attack on a cryptographic
LSI with ISO/IEC 18033-3 block ciphers,” in Sixth International Work-
shop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2009,
Lausanne, Switzerland, 6 September 2009 (L. Breveglieri, I. Koren,

D. Naccache, E. Oswald, and J. Seifert, eds.), pp. 84–92, IEEE Computer
Society, 2009.

[16] A. Baksi, S. Bhasin, J. Breier, D. Jap, and D. Saha, “A survey on fault
attacks on symmetric key cryptosystems,” ACM Comput. Surv., vol. 55,
no. 4, pp. 86:1–86:34, 2023.

[17] Y. Kim, R. Daly, J. S. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ACM/IEEE
41st International Symposium on Computer Architecture, ISCA 2014,
Minneapolis, MN, USA, June 14-18, 2014, pp. 361–372, IEEE Computer
Society, 2014.

[18] National Institute of Standards and Technology, “Data encryption stan-
dard (des).” FIPS Publication 46-3, October 1999.

[19] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for MPC and FHE,” in Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I (E. Oswald and M. Fischlin, eds.), vol. 9056 of
Lecture Notes in Computer Science, pp. 430–454, Springer, 2015.

[20] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçin, “PRINCE - A low-latency block cipher for
pervasive computing applications - extended abstract,” in Advances in
Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings (X. Wang and K. Sako, eds.),
vol. 7658 of Lecture Notes in Computer Science, pp. 208–225, Springer,
2012.

[21] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
“GIFT: A small present - towards reaching the limit of lightweight
encryption,” in Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings (W. Fischer and N. Homma, eds.), vol. 10529 of
Lecture Notes in Computer Science, pp. 321–345, Springer, 2017.

[22] J. Daemen and V. Rijmen, “Rijndael for AES,” in The Third Advanced
Encryption Standard Candidate Conference, April 13-14, 2000, New
York, New York, USA, pp. 343–348, National Institute of Standards and
Technology,, 2000.

[23] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha,
and K. Yasuda, “APE: authenticated permutation-based encryption for
lightweight cryptography,” IACR Cryptol. ePrint Arch., p. 791, 2013.

[24] T. Beyne, Y. L. Chen, C. Dobraunig, and B. Mennink, “Multi-user
security of the elephant v2 authenticated encryption mode,” in Selected
Areas in Cryptography - 28th International Conference, SAC 2021,
Virtual Event, September 29 - October 1, 2021, Revised Selected Papers
(R. AlTawy and A. Hülsing, eds.), vol. 13203 of Lecture Notes in
Computer Science, pp. 155–178, Springer, 2021.

[25] T. Iwata, M. Khairallah, K. Minematsu, and T. Peyrin, “Duel of the ti-
tans: The romulus and remus families of lightweight AEAD algorithms,”
IACR Cryptol. ePrint Arch., p. 992, 2019.

https://eprint.iacr.org/2023/021

	Introduction
	Background
	Persistent Fault Analysis
	Multiple Fault Injections
	Fault Models

	Proposed countermeasure
	Permutation properties
	Fault coverage
	Add property
	Xor property
	BALoo countermeasure (Algorithm 2)

	Robustness

	Loops on S-boxes in a general case
	BALoo Software and Hardware Overhead
	Software memory overhead
	Hardware overheads

	Conclusion
	References

