Rodolphe Piteira
email: piteira@free.fr

Julien Bernard
email: julien.bernard@femto-st.fr

Hervé Manier
email: herve.manier@utbm.fr

Marie-Ange Manier
email: marie-ange.manier@utbm.fr

Une variante de recherche adaptative dans les grands voisinages pour le problème de job shop

Keywords:

Introduction

La méthode Adaptive Large Neighborhood Search (ALNS) est une métaheuristique utilisée pour explorer de grands voisinages à l'aide d'opérateurs de destruction et de reconstruction de solutions [2]. Parmi les problèmes qui ont de grands voisinages figure le problème de job shop. Ce problème se caractérise par n jobs constitués de n i opérations (1 ≤ i ≤ n) à ordonnancer sur m machines. La j e opération du job i, notée O ij , doit s'effectuer sur la machine M ij donnée avec un temps d'exécution p ij donné. On note N = n i le nombre total d'opérations. On cherche à minimiser le temps de complétion maximum C max .

Nous proposons une variation de la recherche adaptative de [2] pour le problème de job shop que nous analysons à travers des expériences sur des instances classiques de la littérature.

Recherche adaptative pour le problème de job shop

Notre objectif est de tester la pertinence des associations entre représentations des solutions (codages) et voisinages pour la conception de méta-heuristiques plus efficaces. Ainsi, plutôt que de considérer classiquement des opérateurs de destruction et de reconstruction, notre algorithme adaptatif utilise des couples codages-voisinages.

Notre algorithme part d'une solution courante. Ensuite, il effectue les actions suivantes pendant un certain nombre d'itérations : (1) un codage-voisinage ℓ parmi les q couples est choisi aléatoirement proportionnellement à sa pondération α ℓ , tel que α ℓ = 1. À l'initialisation, α ℓ = 1 q ;

(2) le meilleur voisin est choisi parmi un certain nombre (noté essais) de solutions du voisinage de la solution courante ; (3) les pondérations sont ajustées : si le voisin est meilleur, alors α ℓ est augmenté de e, sinon il ne change pas de valeur sauf si on considère une pénalisation (pénal = 1) auquel cas on diminue α ℓ de e ; puis toutes les pondérations sont normalisées pour que leur somme soit toujours égale à 1 ; (4) si le voisin est meilleur que la solution courante, alors il devient la solution courante.

Expérience et résultats

Pour nos expériences, nous considérons deux codages : le codage par job, noté job, (un vecteur de taille N qui contient n i fois le job i) et le codage par machine, noté mch, (un vecteur de m listes ordonnées d'opérations affectées à chacune des machines) ; ainsi que trois opérateurs de voisinage classiques : l'échange d'adjacent (adj), l'échange (swp), l'insertion (ins). L'opérateur de voisinage s'applique directement sur le vecteur dans le cas du codage par job et sur une des m listes choisie aléatoirement dans le cas du codage par machine. FIG. 1 -C max médian en fonction de e, pour chacune des 6 instances étudiées Les valeurs de e testées sont 0.005, 0.008, 0.01, 0.02, 0.05, 0.08. Trois configurations de essais ont été testées : 1, 10 et une configuration spéciale avec 12 pour le codage par job et 8 pour le codage par machine pour compenser les temps de calcul des voisins. Enfin, un cas spécial a été expérimenté où le calcul de e prend en compte l'amélioration du C max en comparant aux cinq dernières améliorations (bonus = 1). Enfin, nous avons choisi 6 instances de la littérature [1, 3] (n et m entre parenthèses) : ft10 (10, 10), ta01 (15, 15), ta11 (20, 15), ta21 (20, 20), ta61 (50, 20), ta80 (100, 20). Pour chaque lot de paramètres, entre 10 et 30 expériences sont lancées, le nombre d'itérations est fixé à 20 × n × m.

La figure 1 montre les C max médians pour chacune des instances en fonction de e. La pénalisation avec un seul essai (en rouge) est la pire des configurations. La configuration essais à 12/8 se comporte de manière similaire avec ou sans pénalisation (marron et vert) et est performante sur les grandes instances. La pénalisation est utile quand essais vaut 10 (orange vs violet). L'ajout du bonus (rose) est utile pour les petites instances. Quant à l'influence de e, on observe que des petites valeurs de e sont préférables pour les petites instances tandis que des grandes valeurs de e sont préférables pour les grandes instances.

Dans la configuration avec bonus, pénalisation et 10 essais (rose), c'est généralement job-adj qui devient prépondérant pour les petites instances, et mch-adj pour les grandes instances. Dans la configuration sans pénalisation et 12/8 essais, aucun codage-voisinage ne sort du lot pour les petites instances, tandis que job-ins est prépondérant pour les grandes instances.

Conclusion

La variante de recherche adaptative que nous proposons pour le problème de job shop fonctionne de manière satisfaisante et offre des premiers résultats intéressants sur des instances classiques, y compris par rapport à l'ALNS de [2].

Références

[1] Henry Fisher. Probabilistic learning combinations of local job-shop scheduling rules. Industrial scheduling, pages 225-251, 1963.

[2] David Pisinger and Stefan Ropke. Large neighborhood search. In Michel Gendreau and Jean-Yves Potvin, editors, Handbook of Metaheuristics, pages 399-419. Springer US, Boston, MA, 2010.

[3] Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2) :278-285, 1993.