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We give an explicit solution formula for the polynomial regression problem in terms of Schur polynomials and Vandermonde determinants. We thereby generalize the work of Chang, Deng and Floater to the case of model functions of the form n i=1 a i x d i for some integer exponents d 1 > d 2 > . . . > dn ≥ 0 and phrase the results using Schur polynomials. Even though the solution circumvents the well-known problems with the forward stability of the normal equations it is only of practical value if n is small since the number of terms in the formula grows rapidly with the number m of data points. The formula can be evaluated essentially without rounding.

Introduction

Linear regression goes back to ideas of A.M. Legendre [START_REF] Legendre | Nouvelles méthodes pour la détermination des orbites des comètes[END_REF] and C.F. Gauß [START_REF] Friedrich | Theoria combinationis observationum erroribus minimis obnoxiae[END_REF], while the first work on nonlinear regression is from 1815 and is due to J.D. Gergonne [START_REF] Diez | The application of the method of least squares to the interpolation of sequences[END_REF]. Nowadays regression is implemented in most of the mathematical software as a numerical routine and is widely used in statistics and science. The basic idea is to fit a model function, depending linearly on some parameters, to a set of data points in such a way that the sum of squares of the errors of the approximation is minimal.

In this paper we discuss the univariate case where the model function is a polynomial of the following form. Let d = (d 1 , d 2 , . . . , d n ) be an n-tuple of integers such that d 1 > d 2 > . . . > d n ≥ 0. By a polynomial of type d we mean a univariate function of the form f (x) = n i=1 a i x di with a i ∈ C. Let us assume that we have data points x = (x 1 , x 2 , . . . , x m ) T and y = (y 1 , y 2 , . . . , y m ) T ∈ C m . The interpolation problem f (x i ) = y i for i = 1, . . . , m is equivalent to the linear system

     x d1 1 x d2 1 . . . x dn 1 x d1 2 x d2 2 . . . x dn 2 . . . . . . . . . x d1 m x d2 m . . . x dn m           a 1 a 2 . . . a n      =      y 1 y 2 . . . y m      . (1.1)
Usually, this system is overdetermined (m > n) and inconsistent. Let us denote the coefficient matrix of this system by A ∈ C m×n and use the shorthand notation Aa = y for (1.1). Then the associated normal equation system

A * Aa = A * y, (1.2)
is consistent, where A * = A T denotes the Hermitian transpose of A. In fact, a = (a 1 , a 2 , . . . , a n ) T is a solution to (1.2) if and only if f (x) = n i=1 a i x di minimizes the distance m i=1 |f (x i )y i | 2 = ||Aa -y|| 2 = d(Aa, y) 2 . Here we use the Hermitian inner product on C n . For d = (n -1, n -2, . . . , 1, 0) this is known as the problem of polynomial regression of degree n -1. The resulting minimal distance d(Aa, y) is given by ||y|| 2 -A * y|a . Note that the coefficient matrix of (1.2),

A * A = m l=1 x di l x dj l i,j=1,...,n , (1.3)
is the Hankel matrix of the sequence of power sums if x ∈ R m and d = (n -1, n -2, . . . , 1, 0).

In this paper we exploit the fact that the system (1.2) is equivariant with respect to simultaneous permutation of the x i s and the y i s. It has a unique solution if and only if the columns of A are linearly independent, and we will use symmetric polynomials to provide concrete expressions (see Theorem 2.2 below) for this unique solution of (1.2). If d = (n -1, n -2, . . . , 1, 0) the solution is unique if and only of the data points are distinct. In fact we will construct for an injective A a matrix B ∈ C n×( m n-1 ) such that the solution operator A + to the minimal squares problem (also known as the Moore-Penrose pseudoinverse) can be written as

A + = BB * A * = B(AB) * . (1.4)
The projection to the image of A is then P = AB(AB) * . Writing the complementary projection as P ⊥ = 1 -P = 1 -AB(AB) * the error of the regression problem can be expressed as d(Av, u) = u|P ⊥ u . The formula for d = (n -1, n -2, . . . , 1, 0) was already elaborated previously by Chang, Deng and Floater in [START_REF] Chang | An interpolatory view of polynomial least squares approximation[END_REF] for weighted least squares without making use of symmetric functions. The weighted case will be discussed in Section 3.

At this stage it is already apparent that the approach has practical limitations. The problem is that the number of columns of B is From the point of view of stability, however, the situation is much better. The least squares problem has a forward error that is measured by κ 2 (A) 2 if the error of the minimal squares approximation is large and κ 2 (A) if it is small (see [START_REF] Nicholas | Accuracy and stability of numerical algorithms[END_REF]Theorem 20.1]). Here κ 2 (A) denotes the condition number of the matrix A1 . The forward error for solving the normal equation directly is, on the other hand, about κ 2 (A) 2 (see [START_REF] Nicholas | Accuracy and stability of numerical algorithms[END_REF]Subsection 20.4]). Therefore, from the point of view of forward stability, the normal equation are considered problematic. This is particularly important for regression since κ 2 (A) for matrices of Vandermonde type can be large (see, for example, [START_REF] Victor | How bad are Vandermonde matrices?[END_REF]). Our explicit solution does not have this defect. Problems with the stability can only occur in the polynomial evaluations and matrix multiplications involved in the formula. But in principle those calculations can be done essentially without rounding (only at the last step there is a division).

The solution formula

We now recall the definition of Schur polynomials. Any decreasing sequence λ = (λ 1 , . . . , λ n ) of integers λ 1 ≥ λ 2 ≥ . . . ≥ λ n ≥ 0 represents a partition of N = n i=1 λ i into at most n parts. We denote by δ(n) the partition (n-1, n-2, . . . , 1, 0) of N = n 2 . We introduce the alternating polynomial

a λ (z) = |(z λj i ) i,j=1,...,n | for z = (z 1 , . . . , z n ). Note that a δ(n) (z) = 1≤i<j≤n (z i -z j ) =: V (z) is the Vandermonde determinant. The Schur polynomial associated to λ = (λ 1 , . . . , λ n ) is s λ (z) := a λ+δ(n) (z) a δ(n) (z) = |(z λj +n-j i ) i,j=1,...,n | V (z)
,

where the partition λ + δ(n) results from the componentwise addition of λ and δ(n). This, indeed, defines a polynomial as every alternating polynomial is divisible by the Vandermonde determinant. In fact, s λ is a polynomial with non-negative integer coefficients that can be determined by counting out semistandard Young tableaux of shape λ.

Given x := (x 1 , . . . , x m ) ∈ C m and k = (k 1 , k 2 , . . . , k n ) with 1 ≤ k 1 < k 2 < . . . < k n ≤ m, we write x k := (x k1 , . . . , x kn ) ∈ C n .
We can view k as an element of [m] n , the collection of all n-element subsets of [m] = {1, 2, . . . , m}. We note the following immediate result. Proposition 2.1. For all m, n ∈ Z >0 , and partitions λ = (λ 1 , . . . , λ n ) and ν = (ν 1 , . . . , ν n ), and

x 1 , x 2 , . . . , x m ∈ C holds m k=1 x λi+n-i k x νj +n-j k i,j=1,...,n = k∈( [m] n ) s λ (x k )s ν (x k )|V (x k )| 2 .
Proof. With the Cauchy-Binet formula we have

m k=1 x λi+n-i k x νj +n-j k i,j=1,...,n = (x λi+n-i k ) T k∈[m],i∈[n] (x νj +n-j k ) k∈[m],j∈[n] = 1≤k1<...<kn≤m (x λj +n-j ki ) T i,j=1,...,n (x νj +n-j ki ) i,j=1,...,n = 1≤k1<...<kn≤m s λ (x k )V (x k )s ν (x k )V (x k ) = k∈( [m] n ) s λ (x k )s ν (x k )|V (x k )| 2 .
We associate to d

= (d 1 , . . . , d n ) a partition λ = (λ 1 , . . . , λ n ) by λ = d -δ(n), i.e., λ k := d k + k -n for k = 1, . . . , n. Note that λ is a partition of D -n 2 . Moreover, let d i = (d 1 , . . . , d i-1 , d i+1 , . . . , d n ) and put λ[i] = d i -δ(n -1). We see that λ[i] is a partition of D -d i -n-1
2 . We apply Proposition 2.1 to obtain the following result.

Theorem 2.2. Let x 1 , . . . , x m ∈ C with m ≥ n such that the system (1.2) has a unique solution.

Then, using the notation above, this unique solution a = (a 1 , . . . , a n ) as a function of d, x, y is

a i = n j=1 (-1) i+j   l∈( [m]
n-1 )

s λ[i] (x l )s λ[j] (x l )|V (x l )| 2   m k=1 x dj k y k k∈( [m] n ) |s λ (x k )V (x k )| 2 (2.1)
for i = 1, . . . , n. In particular, if x 1 , . . . , x m are positive real numbers with at least n distinct values, then (1.2) has a unique solution.

Proof. The system (1.2) has a unique solution if and only if the matrix A * A is invertible, and we have a = (A * A) -1 A * y. Applying the formula for the inverse of A * A gives

a i = n j=1 (-1) i+j M ji (A * y) j |A * A| ,
where M ji denotes the determinant of the submatrix of A * A formed by deleting the jth row and ith column of

A * A. We have (A * y) j = m k=1
x dj k y k for the jth component of the vector A * y. Moreover, combining (1.3) and Proposition 2.1 gives

|A * A| = m k=1 x λi+n-i k x λj +n-j k i,j=1,...,n = k∈( [m] n ) s λ (x k )s λ (x k )|V (x k )| 2 = k∈( [m] n ) |s λ (x k )V (x k )| 2 .
A similar argument applies for

M ji = l∈( [m] n-1 ) s λ[i] (x l )s λ[j] (x l )|V (x l )| 2 .
Finally, recall that s λ is a polynomial with non-negative integer coefficients. Thus, V (x k ) is nonzero for any vector x k of distinct complex numbers, and s λ (x k ) is positive for any vector x k of positive real numbers.

We can reformulate Theorem 2.2 also in terms of the solution operator A + = BB * A * of the minimal squares problem, i.e., the Moore-Penrose pseudoinverse. The matrix B ∈ C n×( m n-1 ) is given by the formula,

B il := (-1) i a λ[i] (x l ) k∈( [m] n ) |a λ (x k )| 2 = (-1) i s λ[i] (x l )V (x l ) k∈( [m] n ) |s λ (x k )V (x k )| 2 , (2.2)
where we understand the set [m] n-1 to be endowed with some fixed total order for indexing the columns of the matrix B.

2.1. The case of polynomial regression. Consider the case d = (n-1, n-2, . . . , 1, 0) of polynomial regression of degree n -1. In this case, λ k = 0 for all k so that λ

[i] = (1, . . . , 1 i-1 , 0, . . . , 0 n-i ).
As s λ = 1, Equation (2.1) becomes

a i = n j=1 m k=1 (-1) i+j x n-j k y k l∈( [m] n-1 ) s λ[i] (x l )s λ[j] (x l )|V (x l )| 2 k∈( [m] n ) |V (x k )| 2 . (2.3)

Weighted regression

What has been said in Section 2 can be easily adapted to regression with weighted least squares (see [START_REF] Chang | An interpolatory view of polynomial least squares approximation[END_REF]). Let us first investigate what happens to the normal equations if we work with a non-standard inner product. Proof. Let G = W * W be the Gram matrix so that u|v := u * Gv. We have u * (A )

* x = u * GAx for all u ∈ C m , x ∈ C n so that (A ) * = GA.
This in turn can be written as A = (GA) * and hence

A Aa = A * G * Aa = (W A) * W A a and A * G * y = (W A) * W y.
We now assume that W = diag(w 1 , . . . , w m ) for some weights w 1 , . . . , w m ∈ C × . Instead of minimizing Aa -y, Aa -y we are now going to minimize Aa -y|Aa -y , i.e., to solve (W A) * W A a = (W A) * W y. We introduce the shorthand notation

|w k | 2 := n j=1 |w kj | 2 ,
where k ∈ [m] n is interpreted as 1 ≤ k 1 < k 2 < . . . < k n ≤ m. A little modification of the argument of Proposition 2.1 yields the formula

m k=1 |w k | 2 x λi+n-i k x νj +n-j k i,j=1,...,n = k∈( [m] n ) |w k | 2 s λ (x k )s ν (x k )|V (x k )| 2 .
As a consequence the solution formula (2.1) of Theorem 2.2 becomes

a i =   l∈( [m] n-1 ) |w l | 2 s λ[j] (x l )s λ[j] (x l )|V (x l )| 2   m k=1 |w k | 2 x dj k y k k∈( [m] n ) |w k | 2 s λ (x k )s ν (x k )|V (x k )| 2 ,
while the pseudoinverse turns into BB * A * W * W with 

B il = (-1) i w l s λ[i] (x l )V (x l ) k∈( [m] n ) |w k | 2 |s λ (x k )V (x k )| 2 .
s λ (x 1 , x 2 , x 3 ) = (x 1 + x 2 )(x 1 + x 3 )(x 2 + x 3 ), s λ[1] (x 1 , x 2 ) = x 1 + x 2 , s λ[2] (x 1 , x 2 ) = (x 1 + x 2 )(x 2 1 + x 2 2 ), s λ[3] (x 1 , x 2 ) = x 2 1 x 2 2 (x 1 + x 2 )
. Then Equation (2.1) yields

a 1 = 3 j=1 (-1) j+1 l∈( [m]
2 )

s λ[1] (x l )s λ[j] (x l )|V (x l )| 2 m k=1 x dj k y k k∈( [m]
3 )

|s λ (x k )V (x k )| 2 = l∈( [m] 2 ) |x 2 l1 -x 2 l2 | 2 m k=1 x 4 k y k -(x 2 l1 + x 2 l2 )x 2 k y k + x 2 l1 x 2 l2 y k k∈( [m] 3 ) (x 2 k1 -x 2 k2 )(x 2 k1 -x 2 k3 )(x 2 k2 -x 2 k3 ) 2 , a 2 = 3 j=1 (-1) j l∈( [m]
2 )

s λ[2] (x l )s λ[j] (x l )|V (x l )| 2 m k=1 x dj k y k k∈( [m]
3 )

|s λ (x k )V (x k )| 2 = - l∈( [m]
2 )

|x 2 l1 -x 2 l2 | 2 (x 2 l1 + x 2 l2 ) m k=1 x 4 k y k -(x 2 l1 + x 2 l2 )x 2 k y k + x 2 l1 x 2 l2 y k k∈( [m] 3 ) (x 2 k1 -x 2 k2 )(x 2 k1 -x 2 k3 )(x 2 k2 -x 2 k3 ) 2 ,
and

a 3 = 3 j=1 (-1) j+1 l∈( [m]
2 )

s λ[3] (x l )s λ[j] (x l )|V (x l )| 2 m k=1 x dj k y k k∈( [m]
3 )

|s λ (x k )V (x k )| 2 = l∈( [m]
2 )

|x 2 l1 -x 2 l2 | 2 x 2 l1 x 2 l2 m k=1 x 4 k y k -(x 2 l1 + x 2 l2 )x 2 k y k + x 2 l1 x 2 l2 y k k∈( [m] 3 ) (x 2 k1 -x 2 k2 )(x 2 k1 -x 2 k3 )(x 2 k2 -x 2 k3 ) 2 .
The matrix entry B il is given by .

B il = (-1) i (x l1 -x l2 )s λ[i] (x l ) k∈( [m] 3 ) (x 2 k1 -x 2 k2 )(x 2 k1 -x 2 k3 )(x 2 k2 -x 2 k3 ) 2 , i.e., B 1,l = x 2 l2 -x 2 l1 k∈( [m] 3 ) (x 2 k1 -x 2 k2 )(x 2 k1 -x 2 k3 )(x 2 k2 -x 2 k3 ) 2 , B 2,l = x 4 l1 -x 4 l2 k∈( [m] 3 ) (x 2 k1 -x 2 k2 )(x 2 k1 -x 2 k3 )(x 2 k2 -x 2 k3 ) 2 , B 3,l = x 2 l1 x 2 l2 (x 2 l2 -x 2 l1 ) k∈( [m] 3 ) (x 2 k1 -x 2 k2 )(x 2 k1 -x 2 k3 )(x 2 k2 -x 2 

Complexity

Here we are examining the complexity of possible evaluations of Equation (1.4). The simple message is that, for fixed n and d 1 , it can be estimated asymptotically as O (m n ) for m → ∞ (for an introduction to asymptotic analysis the reader may consult [START_REF] Graham | Concrete mathematics: a foundation for computer science[END_REF]). The dominating contributions are coming from the matrix multiplication and the evaluation of the denominator. The coefficients of the estimates depend on n and d 1 , the details of these dependencies depend on the details of the evaluation. The presentation the material is hopefully intelligible for people that are not accustomed to counting floating point operations (FLOPs). We have to conclude that for n > 3 evaluating our formulas is not competitive with the numerical algorithms commonly used.

First, recall that the complexity of naively multiplying three matrices 

X ∈ C n×m , Y ∈ C m×k , Z ∈ C k×l is O(nmk + mkl). So the complexity of naively multiplying BB * A * is O n(n + m) m n-1 as B ∈ C n×( m n-1 ) , B * ∈ C ( m n-1 )×n , A * ∈ C n×m . Since for positive integers M, N we have M N N ≤ M N ≤ eM N N we can estimate n(n + m) m n -1 ≤ n(n + m) e n -1 n-1 m n-1 .
m n ∼ n 2 e em n
n . This is because

n n = (n -1) n n n -1 n = (n -1)(n -1) n-1 1 1 -1/n n ∼ (n -1)(n -1) n-1 e ,
which implies

1 (n-1) n-1 ∼ (n-1) en n . From this, we deduce O n(n + m) m n-1 = O n 2 e em n
n . Now we would like to investigate the complexity of evaluating the matrix B of Equation (2.2). In the denominator we have to evaluate s λ (x k ). We could do that using a multivariate Horner's scheme for evaluating a polynomial f , the number of FLOPs being 2

deg(f )+m m -2 (see [2, Theorem 3.1]). Hence with deg(s λ (x k )) = |λ| = n k=1 (d k +k -n) = n+1 2 -n 2 + n k=1 d k = -n 2 + n k=1 d k this is 2 |λ|+m m -2. But 2 |λ|+m m -2 = O ((|λ| + m) m
) grows extremely rapidly with the number of data points m. A better choice seems to be the second Jacobi-Trudi identity (see [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF]Equation (3.5)]), expressing s λ (x k ) as a λ 1 × λ 1 -determinant in the elementary symmetric polynomials. To evaluate the elementary symmetric polynomials one has to expand (X -

x 1 )(X -x 2 ) . . . (X -x m ). If (X -x 1 )(X -x 2 ) . . . (X -x k-1 ) is already expanded, then expanding (X -x 1 )(X -x 2 ) . . . (X -x k-1 ) • (X -x k ) just needs 2(k -1)
extra multiplications and k extra additions, i.e., 3(k -1) + 1 more FLOPs. Hence evaluating the elementary symmetric polynomials costs

m k=1 (3(k -1) + 1) = 3 m 2 + m = O m 2
FLOPs. Calculating the determinant costs in the worst case O λ 3 1 FLOPs (see [START_REF] Nicholas | Accuracy and stability of numerical algorithms[END_REF]). For the specific Schur polynomials in question λ 1 = d 1 , and the cost of evaluating such a Schur polynomial can be estimated as O m 2 + d 

O m 2 + m n d 3 1 = O m 2 + e n n m n d 3 1 .
For m n ≥ 2 the cost of it is roughly the same as that of the matrix multiplication. The numerator can be analyzed along similar lines, yielding an estimate

O m 2 + n m n -1 d 3 1 = O m 2 + n e n -1 n-1 m n-1 d 3 1 .
Note here that the evaluations of the elementary symmetric polynomials can be repurposed, hence they contribute m(3m + 2) = O(m 2 ) FLOPs. For m n > 2 the cost of evaluating the numerator is negligible in comparison to the contribution of the denominator. 5.1. A numerical example. Let us look into a concrete example of the evaluation that we implemented into Mathematica [10] for d = (4, 2, 0), i.e., the model function to fit is again

f (x) = a 1 x 4 + a 2 x 2 + a 3 .
To give a practical application, this could, for example, be taken as a model function used for digital image processing of a human mouth. Let us assume for the moment f (x) to be non-constant. From f (x) = 4a 1 x 3 + 2a 2 x = 2x 2a 1 x 2 + a 2 we deduce that for a 1 a 2 ≥ 0 there is just one extremum. Otherwise there are three extrema x = 0 and x = ± -a 2 /(2a 1 ). Here we take the liberty to ignore the non-generic case a 1 = 0. From the sign of a 1 a 2 a machine could infer if the mouth is smiling (i.e., a 1 a 2 > 0) or frowning (i.e., a 1 a 2 < 0) 2 .

To investigate empirically the running time of the evaluation of our Formula (2.1) we created data points by superimposing random noise on the evaluations of The range for x is here [-500, 500]∩ Z. In Figure 1 we show an example of a regression obtained this way with = 10, i.e., m = 101 data points. In Figure 2 we depict how the running time of our implementation rises when we increase the number of data points.

Recursive evaluations

Observe that, when fitting a fixed polynomial f (x) = n i=1 a i x di to a large data set or multiple data sets, the partitions λ and λ[i], i = 1, . . . , n, depend only on d. Therefore, the polynomials s λ[i] and s λ can be computed and stored once (e.g., using the second Jacobi-Trudi identity). In addition, if a data set is enlarged, Equation (2.1) can be used recursively as we now describe. In this way, amending one additional data point to a data set of m -1 data points reduces the complexity of the evaluations from O(m n ) to O(m n-1 ) for large m.

Suppose that one has applied Equation (2.1) to a collection of data points x = (x 1 , x 2 , . . . , x m ) T and y = (y 1 , y 2 , . . . , y m ) T . In this process, one stores not only the a i , but the following quantities. For i = 1, . . . , n and j = 1, . . . , n, define

S i,j (x) = l∈( [m] n-1 ) s λ[i] (x l )s λ[j] (x l )|V (x l )| 2 , T j (x, y) = m k=1 x dj k y k ,
and let

N i (x, y) = n j=1 (-1) i+j S i,j (x)T j (x, y) and D(x) = k∈( [m] n ) |s λ (x k )V (x k )| 2
denote the numerators and denominator in the expression for a i in Equation (2.1). Enlarging the data set by one point, let x = (x 1 , x 2 , . . . , x m , x m+1 ) T and y = (y 1 , y 2 , . . . , y m , y m+1 ) T We express N i (x , y ) as

n j=1 (-1) i+j    l∈( [m+1] n-1 ) s λ[i] (x l )s λ[j] (x l )|V (x l )| 2    m+1 k=1 x dj k y k = n j=1 (-1) i+j   Si,j(x, y) + l∈( [m] n-2 ) s λ[i] (x l,m+1 )s λ[j] (x l,m+1 )|V (x l,m+1 )| 2    × T j (x, y) + x dj m+1 y m+1 = N i (x, y) + n j=1 (-1) i+j S i,j (x, y)x dj m+1 y m+1 + l∈( [m] n-2 ) s λ[i] (x l,m+1 )s λ[j] (x l,m+1 )|V (x l,m+1 )| 2 l∈( [m] n-2 ) T j (x, y) + x dj m+1 y m+1 . Let R i,j (x , y ) = l∈( [m] n-2 ) s λ[i] (x l,m+1 )s λ[j] (x l,m+1 )|V (x l,m+1 )| 2 ,
and then we can express N i (x , y ) as

N i (x, y) + n j=1 (-1) i+j S i,j (x, y) + R i,j (x , y ) x dj m+1 y m+1 + R i,j (x , y )T j (x, y) .
Similarly, D(x, x m+1 ) can be written

k∈( [m+1] n ) |s λ (x k )V (x k )| 2 = D(x) + k∈( [m] n-1 ) |s λ (x k,m+1 )V (x k,m+1 )| 2 .
This yields the following expression for the a i to fit to the data set (x , y ):

(6.1) a i = Dai + n j=1 (-1) i+j (Si,j + Ri,j) x d j m+1 ym+1 + Ri,jTj D + k∈( [m] n-1 ) |s λ (x k,m+1 )V (x k,m+1 )| 2
for i = 1, . . . , n, where D = D(x), S i,j = S i,j (x, y), etc., and R i,j = R i,j (x , y ).

6.1. Recursive evaluation of even polynomials of degree 4. As an illustration, let us consider the case of fitting a polynomial of the form f (x) = a 1 x 4 + a 2 x 2 + a 3 treated in Section 4.1.

Fitting such a polynomial to a data set x = (x 1 , x 2 , . . . , x m ) T and y = (y 1 , y 2 , . . . , y m ) T involves computing

S 1,1 (x) = l∈( [m]
2 )

|x 2 l1 -x 2 l2 | 2 , S 1,2 (x) = S 2,1 (x) = l∈( [m]
2 )

(x 2 l1 + x 2 l2 )|x 2 l1 -x 2 l2 | 2 , S 1,3 (x) = S 3,1 (x) = l∈( [m]
2 ) 2 ) 3 )

x 2 l1 x 2 l2 |x 2 l1 -x 2 l2 | 2 , S 2 
x 2 l1 x 2 l2 (x 2 l1 + x 2 l2 )|x 2 l1 -x 2 l2 | 2 , S 3 
(x 2 k1 -x 2 k2 )(x 2 k1 -x 2 k3 )(x 2 k2 -x 2 k3 ) 2 .
Given these quantities, one can fit the data set x = (x, x m+1 ) and y = (y, y m+1 ) with an additional point by computing 2 )

(x 2 k1 -x 2 k2 )(x 2 k1 -x 2 m+1 )(x 2 k2 -x 2 m+1 ) 2
as well as 3m additional entries B i,l,m+1 for i = 1, 2, 3 and l = 1, . . . , m.

m n- 1 ,

 1 which is only reasonable in the typical situation when m n for roughly the values n = 2, 3, 4, 5. The number of floating point operations (FLOPs) for the naive multiplication BB * A * is then n(n + m) m n-1 . For m n 0 this number of operations can be estimated by n(n + m) m n-1 = O n 2 e em n n . Similar estimates appear when counting the floating point operations for evaluating B (see Section 5).

Lemma 3 . 1 .

 31 Let W ∈ GL m (C) be an invertible matrix and define the inner product u|v := u * W * W v on C m . Let A denote the adjoint of A ∈ C m×n = Hom (C n , C m ) with respect to | , i.e., A u|x = u|Ax for all u ∈ C m , x ∈ C n . Then the normal equation A Aa = A y for a, y ∈ C n can be written as (W A) * W A a = (W A) * W y.

4 . Examples 4 . 1 .

 441 Even polynomials of degree 4. Consider the case d = (4, 2, 0) of fitting an even polynomial of the form f (x) = a 1 x 4 + a 2 x 2 + a 3 . In this case, λ = (2, 1, 0); λ[1] = (1, 0); λ[2] = (3, 0); and λ[3] = (3, 2); from which one computes

k3 ) 2 . 4 . 2 .

 242 Fitting power functions. Suppose d = (d), i.e., the function to fit is the power function f (x) = x d . Then λ = λ = d so that s λ = x d , and d 1 = λ[START_REF] Chang | An interpolatory view of polynomial least squares approximation[END_REF] is the empty partition. Equation (

For n m this in turn can be estimated by O nm m n- 1 =

 1 

3 1 .

 1 Evaluating the full Vandermonde determinant costs m 2 = O(m 2 ) FLOPs, and hence evaluating all of those in the denominator by diving out linear factors m 2 + 2m(m -n) = O(m 2 ) FLOPs. So the complexity of evaluating the denominator is

2

  In physics this type of model functions plays a role in the study of phase transitions associated to the phenomenon of spontaneous symmetry breaking.

Figure 1 .

 1 Figure 1. Here = 10. The dashed graph is the one the function g(x) of Equation (5.1), the solid one is the graph of f (x).

Figure 2 .

 2 Figure 2. Here we put a doubly logarithmic plot of the running time (measured in seconds) of our implementation on the y-axis against the number of data points on the x-axis. The slope equals approximately 3, verifying empirically our predicted complexity of the evaluation as O(m 3 ).

-x 4 l2 | 2 ,S 2 , 3

 4223 (x) = S 3,2 (x) = l∈( [m]

2 )

 2 ,3 (x) = l∈( [m] |x l1 | 4 |x l2 | 4 |x 2 l1 -x 2 l2 | 2 , T j (x, y) = m k=1 x dj k y k , j = 1, 2, 3; (d 1 , d 2 , d 3 ) = (4, 2, 0), N i (x, y) = (-1) i -S i,1 (x)T 1 (x, y) + S i,2 (x)T 2 (x, y) -S i,3 (x)T 3 (x, y) , i = 1, 2, 3,andD(x) = k∈( [m]

R 1 , 1 (x , y ) = m l=1 |x 2 l -x 2 m+1 | 2 ,R 1 , 2 (x 2 l + x 2 m+1 )|x 2 l -x 2 m+1 | 2 ,R 1 , 3 l=1 x 2 l x 2 m+1 |x 2 l -x 2 m+1 | 2 ,R 2 , 2 (x , y ) = m l=1 |x 4 l -x 4 m+1 | 2 , 2 l2 -x 2 l1D 3 .

 112221222221322222442223 (x , y ) = R 2,1 (x , y ) = m l=1 (x , y ) = R 3,1 (x , y ) = m R 2,3 (x , y ) = R 3,2 (x , y ) = m l=1 x 2 l x 2 m+1 (x 2 l + x 2 m+1 )|x 2 l -x 2 m+1 | 2 , R 3,3 (x , y ) = m l=1 |x l | 4 |x m+1 | 4 |x 2 l -x 2 m+1 | 2 ,as well as the new denominator terms k∈( the data set (x, y), one may remember the matrix B as the denominator D(x) above and the entriesB 1,l = xTo compute the new matrix B for fitting an enlarged data set, one would compute the new denominator D(x) = k∈([m] 

It can be expressed, for example, as the ratio of the biggest over the smallest singular value of A.
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