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Abstract

Backgrounds:
Value-based decision-making impairment in depression is a complex phenomenon: while some studies
did find evidence of blunted reward learning and reward-related signals in the brain, others indicate no
effect. Here we test whether such reward sensitivity deficits are dependent on the overall value of the
decision problem. 

Methods
We used a two-armed bandit task with two different contexts: one ‘rich’, one ‘poor’ where both options
were associated with an overall  positive,  negative expected  value,  respectively.  We tested patients
(N=30)  undergoing  a  major  depressive  episode  and  age,  gender  and  socio-economically  matched
controls (N=26). Learning performance followed by a transfer phase, without feedback, were analysed
to distangle between a decision or a value-update process mechanism. Finally, we used computational
model simulation and fitting to link behavioural patterns to learning biases.

Results
Control subjects  showed similar  learning performance in  the  ‘rich’ and the  ‘poor’ contexts,  while
patients displayed reduced learning in the ‘poor’ context. Analysis of the transfer phase showed that the
context-dependent impairment in patients generalized, suggesting that the effect of depression has to be
traced to the outcome encoding. Computational model-based results showed that patients displayed
higher learning rate for negative compared to positive outcomes (the opposite was true in controls). 

Conclusions
Our results illustrate that reinforcement learning performances in depression depend on the value of the
context. We show that depressive patients have a specific trouble in contexts with an overall negative
state value, which in our task is consistent with a negativity bias at the  learning rates level.
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Main Text 

Introduction:

Depression  is  a  common debilitating  disease  that  is  a  worldwide  leading  cause  of  morbidity  and
mortality. According to the latest estimates from World Health Organization, in 2015 more than 300
million people are now living with depression (World Health Organization, 2017)and anhedonia are
core symptoms of major depressive disorder. Those two symptoms are key criteria to the diagnostic of
Major  Depressive  Disorder  (MDD)  in  the  Diagnostic  and  Statistical  Manual  of  Mental  Disorders
(DSM-5)  (American  Psychiatric  Association,  2013).  Anhedonia  is  broadly  defined  as  a  decreased
ability to experience pleasure from positive stimuli. Specifically, it is described as a reduced motivation
to engage in daily life activities (motivational anhedonia) and reduced enjoyment of usually enjoyable
activities (consummator anhedonia).  

Depression is  a complex and heterogeneous disorder  implying instinctual,  emotional and cognitive
dysfunctions. Although its underlying mechanisms remain unclear, it has been proposed - based on the
importance of anhedonia and low mood in depression - that reduced reward processing, both in terms
of incentive motivation and reinforcement learning, plays a key role in the clinical manifestation of
depression (Admon & Pizzagalli, 2015; Chen et al., 2015; Eshel & Roiser, 2010; Q. J. Huys et al.,
2013; Safra et al., 2019; Whitton et al., 2016). This hypothesis implies that subjects with depression
should  display  reduced  reward  sensitivity  both  at  the  behavioral  and  neural  levels  in  value-based
learning. On the long term, a better understanding of these processes could help for the prevention and
management of depression.

Following  up  on  this  assumption,  numerous  studies  have  tried  to  identify  and  characterize  such
reinforcement learning deficits, however the results have been mixed so far. Indeed, while some studies
did find evidence of blunted reward learning and  reward-related signals in the brain, others indicate
limited or no effect  (Brolsma et al., 2020; Chung et al., 2017; Hägele et al., 2015; Rothkirch et al.,
2017;  Rutledge et  al.,  2017;  Shah et  al.,  1999).  Outside the  learning domain,  other  recent  studies
showed no disrupted valuation during decision-making under risk (Chung et al., 2017; Moutoussis et
al., 2018). It is also worth noting that many of previous studies identifying value-related deficits in
depression, only included one valence domain (i.e., only rewards or only punishments) and did not
directly contrast between rewards and punishments nor separate the two valence domains in different
experimental sessions (Admon & Pizzagalli, 2015; Elliott et al., 1996, 1997; Forbes & Dahl, 2012;
Gradin et al., 2011; Kumar et al., 2008; Pizzagalli, 2014; Vrieze et al., 2013; Zhang et al., 2013). A
recent  study  (Pike  &  Robinson,  2022),  where  reward  and  punishment  sensitivity  has  been
computationally  quantified  by  assuming different  learning rate  parameters  for  positive  or  negative
outcomes show that, compared to controls, patients; contrary to what is generally found in healthy
subjects (Chambon et al., 2020; Palminteri et al., 2017) are generally better explained assuming blunted
reward compared to punishment learning. 

Here  we  speculate  that  the  lack  of  concordant  results  may  be  in  part  explained  by  the  fact  that
reinforcement  learning impairment in depression is  dependent  on the overall  value of the learning
context. In fact, computational studies clearly illustrate that the behavioural consequences of blunted
reward and punishment sensitivity depend on the underlying distribution of outcome. More specifically,
Cazé  and Van Der  Meer  (Cazé  & van  der  Meer,  2013) showed that  greater  sensitivity  to  reward
compared to  punishment  (positivity  bias;  as proxied by different  learning rates;  Pike & Robinson,
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2022)  advantages  learning  in  contexts  with  poor  overall  reward  expectation  (i.e.,  ‘poor’ contexts)
compared those with high overall reward expectation (‘rich’ contexts). Conversely, greater sensitivity
to punishment compared to reward (negativity bias) should advantage learning in ‘rich’ context. As a
consequence, if depressive patients present blunted reward compared to punishment sensitivity (i.e., a
negativity bias) this should induce a difference in performance, specifically in ‘poor’ contexts, where
displaying a positivity bias is optimal. 

To test the hypothesis , we adapted a standard protocol composed by  a learning and a post-learning
transfer phase. The learning phase included two different contexts: one defined as ‘rich’ (in which the
two options have an overall positive expected value) and the other as ‘poor’ (two options with an
overall negative expected value). In contrast with the learning phase, there was no feedback in the
transfer phase, in order to probe the subjective values of the options without modifying it (Bavard et al.,
2018;  Frank  et  al.,  2004;  Palminteri  et  al.,  2015).  In similar  tasks,  healthy  subjects  are  generally
reported to be able to learn equally from rewards and punishments (Palminteri et al., 2015; Pessiglione
et al., 2006). However, based on the idea that depression blunts reward sensitivity and that a positivity
bias is advantageous in the ‘poor’ contexts, we expected a learning asymmetry in MDD patients. More
precisely, learning rate differences should induce lower performance in the ‘poor’ context in MDD
patients. 

In addition to choice data, we also analysed reaction times and outcome observation times as ancillary
measures  of attention and performance.  Previous  findings suggest  that  negative value contexts  are
associated with overall slower responses (Fontanesi, Gluth, et al., 2019; Fontanesi, Palminteri, et al.,
2019).  However,  previous  studies  did  not  find  any  specific  reaction  time  signatures  in  patients
(Brolsma et al., 2021; Chase et al., 2010; Douglas et al., 2009; Knutson et al., 2008)

115

120

125

130

135



Methods 

Participants and inclusion criteria

Fifty-six subjects were recruited in a clinical center (the Ginette Amado psychiatric crisis center) in
Paris  between  May  2016  and  July  2017.  Inclusion  criteria  were  a  diagnosis  of  major  unipolar
depression diagnosed by a psychiatrist and an age between 18 and 65 years old (see Table 1). A clear,
oral and written explanation was also delivered to all participants.  All procedures contributing to this
work comply with the ethical standards of the relevant national and institutional committees on human
experimentation and with the Helsinki Declaration of 1975, as revised in 2008. In total, we tested N=30
patients  undergoing  a  Major  Depressive  Episode  (MDE)  and  N=26  age-,  gender-  and
socioeconomically-matched controls.  For patients, exclusion criteria were the presence of psychotic
symptoms or a diagnosis of chronic psychosis, severe personality disorder, neurological or any somatic
disease that might cause cognitive alterations, neuroleptic treatment, electro-convulsive therapy in the
past 12 months and current substance use. Psychiatric co-morbidities were established by a clinician
with a semi-structured interview based on the Mini International Neuropsychiatric Interview (MINI)
(Sheehan et  al.,  1998).  Our final sample,  some patients (n=13) presented anxiety-related disorders.
Among  them,  some  (n=6)  presented  isolated  anxiety-related  disorders  (social  anxiety  n=2;  panic
disorder n=2; agoraphobia n=1 ; claustrophobia n=1) and the rest of the group (n=7) presented several
associated  anxiety-related  disorders  (agoraphobia  n=  4;   panic  disorder  n=4;  social  anxiety  n=3;
generalized  anxiety  n=3;  OCD n=1;  PTSD n=1).  Others  (n=8) presented  substance abuse disorder
(cannabis n=3; alcohol n=4; cocaine n=2).  All patients were undertaking medication (see Table 2 for
details).  Participants  included  in  the  healthy  volunteer  group  had  no  past  or  present  psychiatric
diagnosis and were not taking any psychoactive treatment 

Behavioral testing

Patients volunteering to take part in the experiment were  welcomed in a calm office away from the
center’s activity where they were given information about the aim and the procedure of the study. The
study was verbally described as an evaluation of cognitive functions through a computer « game ». The
diagnostic  of  MDE  and  the  presence  of  psychiatric  co-morbidities  were  assessed  with  the  MINI
screener completed in a semi-structured interview with a psychiatrist by the MINI. The subjects were
then asked to complete several questionnaires assessing their level of optimism (Life Orientation Test-
Revised (LOT-R), an optimism analogue scale (created for this study to contrast usual and current level
of optimism) and the severity of depression (Beck Depression Inventory – II) (Beck et al., 1996). The
participants were told they were going to play a simple computer game, whose goal was to earn as
many points as possible. Written instructions were provided and  verbally reformulated if necessary.
There was no monetary compensation as patients did the task alongside a psychiatric assessment. To
match patients’ conditions, controls did not receive any compensation either. 

As in previous studies of reinforcement learning the behavioral protocol was divided into a learning
phase and a transfer phase (Chase et al., 2010; Frank et al.,  2004; Palminteri & Pessiglione, 2013)
(Figure 1A). Options were materialized by abstract symbols (agathodaimon font). Symbols appeared in
pairs  of  abstract  symbols  displayed  on  a  black  screen.,  During  the  learning  phase,  options  were
presented  in  fixed  pairs,  while  during  the  transfer  phase  they  were  presented  in  all  possible
combinations  (Figure  1B).  Before  the  subjects  were  told  that  one  of  the  two  options  was  more
advantageous than the other  and encouraged to identify it  to maximize their  (fictive)  reward.  The
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reward probability attached to each symbol was never explicitly given and the subjects had to learn it
through trial and error. Each symbol was associated to a fixed reward probability. Reward probabilities
were inspired by previous empirical and theoretical studies (Cazé & van der Meer, 2013; Chambon et
al.,  2020;  Palminteri  & Pessiglione,  2017) and distributed across  symbols  as  follows:  10% /  40%
(‘poor’ context), 60% / 90% (“rich context”). The reward probabilities were decided in order to have
the same choice difficulty (as indexed by the difference in expected value between the two options)
across choice contexts. The learning phase was further divided in two sessions of 100 trials each (each
involving both the ‘rich’ and the ‘poor’ context repeated 50 times).  

In the transfer phase the 8 different symbols were presented by pairs in all binary combinations four
times (including pairing that had never been displayed together in the previous phase; 112 trials).  The
subjects had to choose which symbol deemed the more rewarding, however, in the transfer phase, no
feedback was provided in order not to interfere with subjects’ final estimates of option values (Chase et
al., 2010; Frank et al., 2004; Palminteri & Pessiglione, 2017).The subjects were told to use instinct
when doubting. The aim of the transfer phase was to assess the participants’ learning process on a
longer  time scale  than the  learning phase,  which  is  supposed to  mainly  rely  on working memory
(Collins & Frank, 2012) capacity to remember and extrapolate the symbols’ subjective values out of
their initial context (generalization).

When the symbols appeared on the screen, the subject had to choose between the two symbols by
pushing a right or a left key on a keyboard. In rewarded/punished trials a green/red smiley/sad face and
“+1pts” / “-1pts” appeared on screen. In order to be sure that the subjects paid attention to the feedback,
they had to push the up key after a win and the down key after a loss to move to the next trial (Figure
1C;  top). Trials in the transfer phase different in that the feedback was not displayed (Figure 1C;
bottom). 

Dependent variables

The main behavioral variables of our study are the correct choice rates, as measured in the learning and
the transfer  phase.  A choice  is  defined ‘correct’ (coded as  ‘1’)  if  the  participant  picks  the  reward
maximizing option,  incorrect (coded as ‘0’) otherwise. In the learning phase, the correct choice is,
therefore picking ‘A’ in  the ‘rich’ context  and ‘B’ in  the ‘poor’ contexts  (Figure 1B).  For display
purposes, the learning curves were smoothed (five trials sliding average) (Figure 2A). In the transfer
phase, the correct choice was defined in a trial-by-trial basis and depended on the particular presented
combination (note that in some trials, a correct choice could not be defined, as the comparison involved
two symbols with the same value, originally presented in different sessions).  (Figure 1B). For display
purpose, concerning the transfer phase, we also considered the choice rate, defined as how many time
an options have been chosen, divided by the numbers of time an option have been presented (calculated
across all possible combinations except the similar option ones) (Figure 2B). As ancillary exploratory
dependent variables we also looked at two different measures of response times. More precisely, we
extracted the reaction times (i.e., the time spent between symbols’ onset and choice;  Figure 3A) and
the outcome observation time (i.e., the time spent between reward onset and key press to next trial;
Figure  3B).  For  display  purposes,  also  response  time  curves  were  smoothed  (five  trials  sliding
average).  
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Statistical analyses

The  dependent  variables  were  analyzed  using  Generalized  Linear  Mixed  Models  (GLMM)  as
implemented by the function glmer of the software R (R version 3.6.3 (2020-02-29)  R Core Team
(2022)) and the package lme4 (lme4 version: 1.1-27.1; Bates et al., 2015). The GLMMs of correct
choice rates (both in the learning and the transfer test) used a binomial linking function, while those of
response times (both reaction times and outcome observation time) used a gamma linking function (Yu
et al., 2022). All GLMMs were similarly constructed and included ‘subject’ number as a random effect
and ‘group’ (between-subject variable: controls versus patients), ‘context’ (within-subject variable) and
interaction between the two as fixed-effects. For dependent variables extracted from the learning phase
the ‘context’ within subject variable corresponded to whether the measure was taken from the ‘rich’ or
the ‘poor’ context. In the GLMM of the correct choice rate in the transfer test the variable ‘condition’
took three levels that corresponded to whether or not the choice under consideration involved the best
possible option in the ‘rich’ condition (‘A present)’; whether or not the choice under consideration
involved the worst possible option in the ‘poor’ condition (‘D present’) and all the other trials (‘other’)
(see Figure 1B). Post hoc comparisons were assessed by comparing the marginal means of the contrast
of interest to zero.  All p-values are reported after Tukey’s correction for multiple comparisons. 

Model fitting and model simulations 

To  link  the  behavioral  performance  in  our  task  to  computational  processes,  we  performed  some
simulations.  More  specifically,  to  assess  the  behavioral  consequences  of  learning  rate  biases,  we
simulated a  variant  of  a  standard  cognitive  model  of  reinforcement  learning literature.  The model
assumes that subjective option values (Q-values) are learnt from reward prediction errors (RPE) that
quantify the difference between expected and obtained outcome (Sutton & Barto, 2018). In this model
Q-values are calculated for each combination of states (s; in our task the four contexts; Figure 1B) and
actions (a; in our task the symbols).  Most of those models assume that subjective options values are
updated  following  a  Rescorla-Wagner  rule  (Rescorla  &  Wagner,  1972).  However,  to  assess  the
behavioral consequences of a positivity and negativity bias, based on previous studies (Chambon et al.,
2020; Frank et al.,  2007; Niv et al.,  2012), we modified the standard model by including different
learning rates for positive and negative prediction errors (that in our design are respondent to positive
and negative outcomes): 

Q (s , a ) ⇐ Q (s , a )+{α + × (r −Q ( s , a ) ) , ifr>0
α - × (r −Q ( s , a ) ) , ifr<0

The model  decision rule  was implemented as a  softmax function,  that  calculate  the probability  of
choosing a given option as a function of the difference between the Q-values of the two options, as
follows: 

Pt ( s , a )= 1

1+e
(Qt (s , b )− Qt ( s ,a )

β )
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To assess the effect of the positivity and negativity bias on learning performance of our task we ran
extensive model simulation where artificial agents played our learning task (i.e., a ‘rich’ and a ‘poor’
context, for 50 trials each). More specifically, we simulated two different sets of learning rates (10000
virtual agents each). One set represented agent with a positivity bias (i.e., α+ > α-) the other set agents
with a negativity bias (α+ < α-). The value of the parameters (learning rates and temperatures) were
randomly drown from uniform distributions; the temperature was drawn from  ∈ U(0,1) the learning
rates (for example in the positivity bias case) were drawn from α+ ∈ U(0,1) and  α- ∈ U(0, α+). 

After running the simulations, we also fitted the on the empirical data. More specifically, we focused
on fitting the transfer phase choices, because it allows to estimate learning rates involved in long term
learning, which are not contaminated by working memory or choice perseveration biases (Collins &
Frank, 2012; Frank et al., 2007; Katahira et al., 2017). The model free parameters (temperature and
learning rates) were fitted at the individual level using the fmincon function (Optimization Toolbox
R2021b.  MATLAB.  (2021).  9.11.0.1809720  (R2021b). 2021B,  Natick,  Massachusetts:  The
MathWorks, Inc.) via log model evidence maximization as previously described (Daw et al.,  2011;
Wilson & Collins, 2019).
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Results:

Demographics.

Patients and controls were matched in age (t(51)=-1.1 , p=0.28), gender (t(53)=1.15 , p=0.29) and years
of education (t(54)=-1.59 , p=0.12). Concerning the optimism measures, patients with depression were
found to be less optimistic in all scales (LOT-R: t(47)=-7.42 , p=1.76e-09 ; usual optimism: t(51)=-2.29
,  p=0.03 ; current optimism: t(50)=-10.34 ,  p=4.19e-14). Furthermore, the comparison between usual
vs.  current  optimism  in  patients  and  controls,  revealed  that  only  patients  were  significantly  less
optimistic than usual at the moment of the test (patients: t(29)=8.26 , p=4.21e-09  ; controls  t(25)=-
1.53 , p=0.14 ), consistent with the fact that they were undergoing an MDE. All patients were taking at
least one psychotropic medication at the moment of test. Their average BDI was: 29.37 and they had,
on average, 1.8 previous MDE in the past.

 
Learning phase results

Global inspection of the learning curves (Figure 2A) suggests that, overall, participants were able to
learn to respond correctly. Indeed, all the learning curves are above chance whatever the group or the
context. A more detailed inspection reveals that controls’ learning curves were unaffected by the choice
context  (‘rich’ vs.  ‘poor’),  while  patients’ learning curves  were  different  depending on the  choice
context (with a lower correct response rate in the ‘poor’ context).

Correct response rate (as proxied by the intercept of our GLMM) in the learning phase (Figure 2A)
indicated that  overall  performance is  significantly above chance  (χ2(1,56)=16.17 ,  p<0.001) which
reflects the fact that accuracy was, in average, well above chance level  (0.5). There was  no significant
effect of context (χ2(1,56)=0.046 , p=0.83) and no main effect of group (χ2(1,56)=2.86 , p=0.091)
meaning  that  there  were  no  overall  significant  differences  between  the  patients  and  controls  and
between the ‘rich’ and ‘poor’ contexts. However, there was a significant interaction between context
and group (χ2(1,56)=5.88 , p=0.015).  Concerning the interaction context and group, post hoc tests
indicated  that  it  was  driven  by  an  effect  of  context  present  in  patients  (slope=-0.72  ,  SE=0.24  ,
p<0.0027), but not in controls  (slope=-0.063 , SE=0.29 , p=0.83).

These results therefore show a specific impact of the context on the two groups. Patients displayed
higher accuracy in the  ‘rich’ compared to the ‘poor’ contexts, while controls were affected this factor
as expected from previous articles in the literature (Palminteri et al., 2015; Pessiglione et al., 2006). 

Critically,  learning phase results  cannot  establish whether  the performance asymmetry observed in
patients stems from the learning (i.e., how values are updated) or a decision effect (i.e., how options are
selected) processes. To tease apart these interpretations we turned to the analysis of the transfer phase
performance.

Transfer phase analysis

The visual inspection of the option-by-option choice rate in the transfer phase, showed that subjects
were able to retrieve the values of the options and express meaning preferences among them  (Figure
2B). In fact, in all groups, the options ‘A’ (overall highest value) were chosen much more frequently
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compared to options ‘D’ (overall lowest value) in both groups. Intermediate value options (‘B’ and ‘C’)
scored in between the extreme one (with a pattern reminiscent of relative value encoding; Klein et al.,
2017; Palminteri & Lebreton, 2021). 

Before assessing whether the learning asymmetry observed in patients in the learning phase replicated
in the transfer phase, one has to keep in mind that there were not only two fixed choices contexts in the
transfer phase, but rather options were presented in all possible combinations. Accordingly, the context
factor used for the transfer test contained three levels, defined by the presence of particular options: 1)
trials involving the ‘A’ options (and not ‘D’); 2) trials involving the ‘D’ options (and not ‘A’); 3) other
trials. Also in the transfer test, average correct response rate (as proxied by the intercept of our GLMM)
shows that overall performance was significantly above chance (χ2(1,56)=15.9 ,  p<0.001). We also
found a significant effect of group (χ2(1,56)=6.83 , p=0.009), no effect of context (χ2(1,56)=2.23 ,
p=0.327) and a very strong and significant group by context interaction (χ2(1,56)=53.21 , p<0.001).
Post-hoc tests reveal that controls were equally able to make the correct decision in contexts involving
seeking ‘A’ or those involving avoiding ‘D’ (slope=-0.004 , SE=0.1 , p=0.999) whereas patients were
strikingly better at seeking ‘A’ than avoiding ‘D’ (slope=1.06 , SE=0.1 , p<0.001).  

These results are consistent with the learning phase results. The context-specific asymmetry in patients
that we found in the learning phase was also present in the transfer phase where all the different options
were extracted from their initial context and paired with other options. It allows us to conclude that the
performance asymmetry can be traced back to the learning asymmetry, where negative outcomes (more
frequent following the worst possible option ‘D’) seem to exert a smaller effect on patients’ learning
performances than positive ones (more frequent following the best possible option ‘A’) (Frank et al.,
2004).

Modelling results 

Model simulations  indicate  that  learning biases  affect  performance in  a  context-dependent  manner
(Figure 3A). More specifically in our task, a positivity bias (α+ >α-) is associated to similar accuracy in
the ‘rich’ and ‘poor’ contexts, while a negativity bias (α+ <α-) is associated much higher accuracy in the
‘rich’ compared to the ‘poor’ context. The reason for this result can be traced down to the idea that it is
rational to preferentially learn from rate outcomes  (Cazé & van der Meer, 2013). Comparing model
simulations to our data, we note that the ‘positivity bias’ pattern is closer to the result obtained from the
healthy control participants, while the ‘negativity bias’ pattern is closer to the result obtained from the
patients. Intriguingly, the ‘positivity bias’ behavioral pattern closely resembles that observed in healthy
participants,  while  the  ‘negativity  bias’ pattern  closely  reminds  the  one  observed in  patients,  thus
indicating that patients are better explained by a computational negativity bias. 

To  formally  substantiate  this  intuition,  we  submitted  the  learning  rates  fitted  from transfer  phase
choices to a 2x2 ANOVA, with group (patients vs. controls) and valence (positive or negative learning
rate), as between- and within-subject variables, respectively (Figure 3B). The results showed a main
effect  of patient group (F(1,107)=5.26, p=0.024; Eta2 (partial)=0.05, 95% CI [3.37e-03, 1.00]),  no
main  effect  of  valence  other  (F(1,107)=3.27e-03,  p=0.954;  Eta2  (partial)=3.06e-05,  95% CI [0.00,
1.00]),  and,  crucially,  a  significant  valence-by-group  interaction  (F(1,107)=7.58,  p=0.007;  Eta2
(partial)=0.07,  95%  CI  [0.01,  1.00]).  Finally,  we  detected  no  significant  different  in  the  choice
temperature (t(48)=1.64 , p=0.11). 
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Response time analysis

As an exploratory analysis, to assess how learning performance reflected into response times (both at
the decision and the learning phase), we looked at reaction and outcome observation times during the
learning phase.  Reaction time (defined as the difference between stimuli onset and button pressing to
make a decision) showed a main effect of the context (χ2(1,56)=9.83 , p=0.002), with reaction tiles
being higher in the ‘poor’ compared to the ‘rich’ condition, which is consistent with previous studies
showing valence induced slowing in reinforcement learning (Fontanesi, Palminteri, et al., 2019; Figure
4A). Reaction times showed is no significant main effect of the group (χ2(1,56)=0.03 , p=0.86) nor
interaction between context and group (χ2(1,56)=0.12 , p=0.73). Post hoc tests showed that the effect of
context was significant in both controls (slope=0.047, SE=0.016 , p<0.003) and patients (slope=-0.043
SE=0.0067 , p<0.001).

Outcome observation time (defined as the difference between the outcome onset and button pressing to
move to the next trial)  also displayed  no significant effect of the context (χ2(1,56)=10.39 ,  p<0.123)
but no effect of the group (χ2(1,56)=2.17 , p=0.14) nor interaction (χ2(1,56)=0.39 , p=0.53) (Figure
4B).

Taken together  reaction  and outcome observation  time analysis,  suggest  that  learning performance
asymmetry in patients could not be accounted for by reduced engagement and outcome processing
during the learning task. 
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Discussion:

Summary

In the present study, we assessed reinforcement learning with a behavioral paradigm involving two
different reward contexts - one ‘rich’ with a positive overall expected value and one ‘poor’ with a
negative overall expected value - in patients undergoing a major depressive episode and age-, gender-
and education-matched healthy volunteers.

We used reinforcement learning task featuring two different learning contexts:  one with an overall
positive expected value (‘rich’ context) and one with a overall negative expected value (‘poor’ context).
Coherent with previous studies, healthy subjects learned equally well in both contexts (Palminteri &
Pessiglione, 2017). On the other hand, patients with depression displayed reduced correct response rate
in the ‘poor’ context.  This context-dependent learning asymmetry found in the learning phase was
confirmed in the analysis of the transfer phase, where subjects were asked to retrieve and generalize the
values learned during the learning sessions. 

In standard reinforcement  learning tasks,  a  participant  has  to learn the value of  the options  select
among them. A deficit in reinforcement learning can therefore arise from two possible causes. On one
hand, it  can be caused by a learning impairment, i.e.,  failing to accurately update the value of the
stimulus. On the other hand, it can be the result of a decision impairment. In this scenario, a participant
could still end up selecting the wrong stimuli even though the learning process in itself is intact. Our
design, coupling a learning phase with feedback and a transfer phase, where we shuffled all options
without any feedback, allows us to separate these two possible sources of error. Indeed, a decision-
related problem would lead to a specific impairment during the learning phase but in the transfer phase,
there should be none or only an unspecific impairment. On the other side, an valence-specific update-
related deficit would originate in the learning phase (when feedback is provided) and would therefore
propagate in the transfer phase and be associated only to the concerned specific options (Frank et al.,
2007).

Our results  are consistent  with this  second scenario,  as we showed that patients were less able  to
identify the correct response of the ‘poor’ context both in the learning and the transfer phase. Hence,
this suggests that the asymmetrical performance observed in patients, stems from the learning process
per se and not from the decision process. Therefore, we suppose that this asymmetric learning pattern is
the consequence of a more complex mechanism, embedded in the learning process and triggered by
affectively negative situations or less frequent affectively positive situations (‘poor’ context).

Our  results  suggest  that  learning performances  in  depression  are  dependent  on the  valence  of  the
context. More specifically, patients undergoing a  major depressive episode seem to perform worst at
learning in negative value context, compared to positive one. This was true despite the fact that the two
contexts are matched in difficulty. Accordingly, control participants on the contrary show no difference
in performance between the two contexts. Prima facie, this observation challenges some formulations
of the negative bias hypothesis described in the literature. Some studies describe negative affective
biases in several cognitive processes, such as emotion, memory and perception, as an increased and
aberrant saliency of negative affective stimuli (for review see Gotlib & Joormann, 2010; Joormann &
Quinn, 2014). From this view, one could extrapolate that, contrary to what we observed in our data,
MDD patients should display, if anything, higher performance in the ‘poor’ contexts. This prediction
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contrasts with a computational definition of negativity bias, as a difference between learning rates for
positive and negative outcomes (or reward prediction errors). In fact, model simulations studies clearly
show that learning positivity or negativity biases affect performance in a context-dependent manner
that in our case is consistent with the idea of a negativity bias in depression (Bavard & Théro, 2018;
Cazé & van der Meer, 2013). The results was confirmed by model simulations and analysis of learning
rates that were fitted from transfer phase choices and, even if  it  is  hard to find in the literature a
systematic pattern, it is consistent with a recent computational meta analyses by Pike and co (Beck,
1967; Brolsma et al., 2020; Chase et al., 2010; Eshel & Roiser, 2010; Gradin et al., 2011; Henriques et
al, 1994; Q. J. Huys et al., 2013; Knutson et al., 2008; Kumar et al., 2008; Murphy et al., 2003; Pike &
Robinson, 2022; Pizzagalli et al., 2005; Steele et al., 2007; Ubl et al.,  2015; Whitton et al., 2016).
Crucially,  consistent  with  our  simulations,  The  overall  good  performance  of  patients  and  more
specifically in the ‘rich’ context indicated that patients displayed not generic impairments. Overall good
performance of patients in some control conditions is actually not uncommon and can be explained by
the fact that patients in general are more focused and more involved than controls in this type of study
(the so-called Hawthorne effect), because the result of this experiment is much more “meaningful” for
them than it is for controls (Frank et al., 2004).

In addition to choice data, in our studies we collected two different response time measures. The first
one, reaction time, was classically defined as the time between the stimuli onset the choice button
press.  Reaction times were not different between our groups of participants, indicating that in our
experiment we were not able to provide support for the idea of a generalized sensorimotor slowing in
patients (Byrne, 1976).  On the other hand, reaction times were strongly affected by the experimental
condition, being significantly slower in the ‘poor’ context in both groups. This finding is at apparent
odds with the fact that objective difficulty (as quantified by the difference in value between the two
options) was matched across contexts (note that this effect was also present in healthy controls, who
displayed equal performance in both conditions). However, slower reaction times in the ‘poor’ context
are  consistent  with  recent  findings  (Fontanesi,  Palminteri,  et  al.,  2019).  Indeed,  previous  studies
coupling behavioral decision diffusion model analyses with reinforcement learning paradigms indicate
that reaction times are tend to be slower in negative valence contexts, compared to positive valence
ones.  This  effect  is  well  captured  by  a  combination  of  increased  non-decision  time  (a  possible
manifestation  of  Pavlovian-to-instrumental  transfer;  (Guitart-Masip  et  al.,  2012)  and  increased
cautiousness (a possible manifestation of loss attention; Yechiam & Hochman, 2014). we also recorded
the outcome observation times, that quantify the time separating the onset of the outcome from the
button press necessary to move to the subsequent trial. Overall, outcome observation times were not
significantly modulated by our factors, therefore indicating that the learning asymmetry observed in
patients could not be explained by not processing outcome information. 

Our  study of  course  suffers  from few important  limitations.  One limitation  is  the  relatively  small
sample size, which is of course due to the fact that our study was monocentric and went for a relatively
short  time  period.  We  note,  however,  that  several  meaningful  insights  concerning  impairment  of
reinforcement learning in psychiatric diseases has been obtained until very recently from studies with
sample size comparable to our (Chase et al., 2010; Frank et al., 2004; Henriques & Davidson, 2000; Q.
J.  M.  Huys  et  al.,  2016;  Moutoussis  et  al.,  2018;  Murphy  et  al.,  2003;  Rothkirch  et  al.,  2017;
Rupprechter et al., 2018). Future, multi-centric, studies will be required to overcome this issue and
probe the replicability and generalizability of our findings. Furthermore, by openly sharing our data,
our study may contribute to (computational) meta-analysis (Pike & Robinson, 2022).Another limitation
of our study is that patients were medicated at the time of the experiment.  Even though studies have
found effects on performance on medicated and unmedicated patients (Douglas et al., 2009; Steele et
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al.,  2007),  it  is  always  difficult  to  control  for  this  effect,  especially  when  certain  patients  take
medications  for  other  comorbidities.  Additionally,  the  role  of  serotonin  in  reward  and punishment
learning is far from being understood (Palminteri & Pessiglione, 2013). In some tasks, it  has been
shown to improve performance in a valence-independent manner, making unlikely that the observed
effect was a consequence of medication (Palminteri et al., 2012). So, under the theory that serotonin
drives punishment avoidance learning, we would observe the opposite effect. Finally, as MDD is a
polysemic condition, and even though we tried to monitor and control the inclusion of patients to avoid
interference  with  other  mental  conditions,  some patients  had  other  symptoms,  especially  addictive
disorders, that should be considered in future studies. 

In the literature, is has been repeatedly shown  that controls perform equally when they have to choose
a reward or avoid a punishment. It is also frequent that patients with mental or neurological disorders
other than MDD show an imbalance behavior when implicated in a task with a reward selection and a
punishment  avoidance  (Frank  et  al.,  2004).  Studying  several  aspects  of  reward  processing  that
correspond to different neurobiological circuits and exploring dysregulation across different psychiatric
disorders could be a very efficient way to unfold abnormalities in reward-related decision making. It
could be interesting to apply our task to other psychiatric disorders in order to identify neurobiological
signatures and develop more targeted and promising treatments (Brolsma et al., 2020; Insel et al., 2010;
Whitton et al., 2015).
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Data availability
Data collected for this paper, a R script presenting the main figures of the paper as well as some Matlab
simulation files are available here https://github.com/hrl-team/Data_depression
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Group Patients Controls Significance
Gender (%female) 30 (53.33) 26 (61.53) P = 0.54
Age (mean±sem) 36.5 ± 2.80 40.35 ± 2.09 P= 0.28
Education 1.97 ±  0.24 2.42 ± 0.21 P = 0.12
Usual Optimism 5.98 ± 0.42 7.16 ± 0.30 P= 0.03
Current Optimism 2.38 ± 0.40 7.46 ± 0.29 P= 4.19e-14
LOTR 9.1 ± 0.79 16 ± 0.49 P= 1.76e-09
BDI 29.37 ± 0.22 - -
Previous MDE 1.8 ± 0.38 - -

Table 1:
Descriptive statistics for age, gender, education, usual optimism (LOT-R: Life Orientation Test –
Revised), current optimism, depression scores (BDI: Beck Depression Inventory) and number of
major depressive episodes (MDE). Education: years after graduation For each sample, the mean of
each variable is presented with its standard error of the mean. 

Medication Number of Patients
SSRI 22

Benzodiazepine 21
Tricyclic antidepressant 2

Tetracyclic antidepressant 1
Phenothiazine 2
Corticosteroïds 1

Others 2

Table 2: 
Patients’ treatments. ‘SSRI’: selective serotonin reuptake inhibitor;  ‘others’: anti-arrhythmic agent
or vitamins. 
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Figures legends

 Figure 1: experimental methods.  (A) Time course of the experiment: after written instruction the
experiment started with a short training (16 trials) using different stimuli (letters). The training was
followed by two learning sessions, each with 4 different stimuli, arranged in fixed pairs. Each pair
was presented 50 times,  learning to 200 trials  in  total.  After  the last  session,  participants were
administered a transfer phase where all stimuli from the learning sessions were presented in all
possible combinations. All pair-wise combinations (28) were presented 4 times, learning to 112
trials  in  total.  (B)  Option  pairs. Each  learning  sessions  featured  two  2  fixed  pairs  of  options
(contexts), characterized by different outcomes values: a ‘rich’ one with an overall positive expected
value (the optimal option with a 0.9 probability of reward) and a ‘poor’ context (the optimal option
with a 0.4 probability of reward).  The two contexts were presented in an interleaved manner during
the learning phase. On the transfer phase all 8 symbols from the learning phase (2 symbols x 2
contexts x 2 learning sessions) were presented in every possible combination.  Grey boxed indicate
the comparisons between options with the same value (e.g., A vs A’), which were not included in the
statistical analysis of the transfer test (because there is no accurate response).  (C) Successive screen
in the learning phrase (top) and the transfer phase (bottom). Durations are given in milliseconds. 
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Figure 2: choice data. (A) ‘Correct choice rate’ is the probability of picking the most rewarding
option.  Thick  lines  represent  smoothed  running average  (5  trials  kernel)  and shaded  areas  the
standard error of the mean. The violet dots correspond to trials displaying a significant difference
among conditions (p<0.05; calculated on the raw, unsmoothed, data points). (B) ‘Choice rate’ is the
probability of picking a given symbols in any given choice pair.  The choice rates are averages
across  symbols  belonging  to  the  first  and  second  session  (in  Figure  1,  denoted  A and  A’,
respectively).  Areas represent probability  density  functions.  Boxes represent confidence interval
(95%) and dots represent individual subjects.

800

805



Figure 3:  model-based results.  (A)  The panels  depict  the  results  of  model  simulations  where
agents are represented by a two learning rates model, featuring either a positivity or a negativity
bias (N=1000 virtual subjects per group; see methods for more details about the simulations). The
leftmost  panel  (green)  show  the  simulations  of  agents  displaying  a  positivity  bias,  while  the
rightmost panel (orange) displays the simulations of agents displaying a negativity bias.  Thick lines
represent smoothed running average (5 trials kernel) and shaded areas the standard error of the
mean.  (B)  The panels represent learning rates for positive (green) and negative (red) prediction
errors separately for healthy controls (leftmost panel) and patients (rightmost panel) 
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Figure 4: response times.  (A) ‘Reaction time’ is the time separating the options onset from the
moment the participant  selects  of  one of the two  options.  Trials  are  grouped by condition and
averaged  across  sessions.  Durations  are  given  in  milliseconds. Thick  lines  represent  smoothed
running average (5 trials kernel) and shaded areas the standard error of the mean. The violet dots
correspond to trials displaying a significant difference among conditions (p<0.05; calculated on the
raw, unsmoothed, data points).  (B)  Outcome observation time is the time separating the outcome
onset  from the  moment  the  participant  confirms  the  outcome to  move to  the  subsequent  trial.
Legend as in (A).
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