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Simulation testing is an essential stage to preparing vehicles for a variety of possible and dangerous situations in order to validate autonomous driving algorithms on mobile systems. However, transferring the model issued from the algorithms to reality can be challenging. Mixedreality environments facilitate testing models on real vehicles with reduced financial and safety risks. By introducing virtual elements to the agent's environment perception, mixed-reality frameworks can reduce the risks and costs associated with testing on real roads while enabling researchers to explore a greater number of potentially critical situations. This paper presents a mixed reality framework based on depth cameras. The framework uses an augmentation approach to combine objects from two environments (virtual and real) in a single world. The implementation details of the proposed method are discussed, and the qualitative and quantitative analysis of the experimental results demonstrate the potential of the proposed framework.

I. INTRODUCTION

Every day, road crashes involving various types of vehicles such as cars, buses, motorcycles, bicycles, trucks, and pedestrians cause nearly 3,700 fatalities worldwide. Among those killed, over 50% are pedestrians, cyclists, or motorcyclists [START_REF] Ainouz | Global Status Report on Road Safety 2018[END_REF]. According to a study done by the US National Highway Traffic Safety Administration (NHTSA), 94% of car accidents are caused by human error [START_REF]Automated Vehicles for Safety | NHTSA[END_REF]. In this context, fully autonomous vehicles might cut the number of road mortality by up to 94% by reducing accidents caused by humans [START_REF]Automated Driving Systems 2.0: A Vision for Safety[END_REF]. Moreover, autonomous driving (AD) has the potential to completely restructure the transportation industry through offering a more efficient and convenient option for travel. In the past few years, technology has progressed quickly, and self-driving cars are already being tested on roads all over the world. Among the many advantages of autonomous driving include improved safety, less traffic congestion, and more energy efficiency [START_REF] Aria | Investigation of automated vehicle effects on driver's behavior and traffic performance[END_REF]. Regardless of the potential benefits of autonomous driving, there are still obstacles to be addressed. One challenge is the requirement of new rules and laws that control the use of autonomous vehicles on public roadways. It includes matters such as liability in the event of an accident and the necessity for cybersecurity precautions to stop autonomous vehicle hacking [START_REF] Barabas | Current challenges in autonomous driving[END_REF]. Another challenge is the development of a reliable and accurate AD system that is able to detect potential dangers on the road such as pedestrians, cars, and other obstacles. This system should be able to anticipate how these potential threats will *This work was supported by the ANR RAIMo under grant reference ANR-20-CHIA-0021 1 Authors are with INSA Rouen Normandy, LITIS laboratory, UR4108 76000 Rouen, France firstname.lastname@insa-rouen.fr behave and act accordingly. However, developing and testing such systems is not an easy task because many variables can affect their accuracy, such as weather, lighting, and other road users' behavior.

For this matter, significant testing and training are required to ensure the safety and reliability of AD systems. The vehicle needs to experience a variety of scenarios in different weather conditions, various traffic circumstances, and dangerous situations, e.g., a pedestrian crossing suddenly. Running tests in simulation is one way of evaluating the system by testing a variety of scenarios without taking risks. However, simulators are not able to precisely recreate all the complex and unpredictable real-world scenarios the vehicle might encounter in addition to the vehicle dynamics and road conditions. An emerging solution for this issue is to combine the advantages of testing in simulation and testing in the real world by augmenting the real environment with virtual objects. This technique is called mixed-reality (MR) testing. It facilitates the use of a real vehicle and real sensors in a controlled virtual environment. By simulating various traffic situations and risks, MR environment offers a more secure and efficient way of testing autonomous vehicles before deploying them on public roads. Most MR frameworks designed in the literature use LiDAR data to augment the vehicle's perception by adding virtual pedestrians [START_REF] Zofka | The sleepwalker framework: Verification and validation of autonomous vehicles by mixed reality lidar stimulation[END_REF], [START_REF] Genevois | Augmented reality on lidar data: Going beyond vehicle-in-the-loop for automotive software validation[END_REF].

The work presented in this paper introduces an MR framework based on depth cameras (RGB-D) to simulate dangerous situations, such as a virtual pedestrian moving around. The particularity of this framework is the use of depth cameras. In comparison to LiDAR, RGB-D sensors are less expensive and more effective at tracking objects that are closer together and more numerous inside the sensing focus region. It allows the detection of small things on the road, such as tiny animals. Additionally, RGBD technology enables cameras to perceive objects considerably faster than humans do, even in complete darkness, and quickly detect and differentiate between items 1 . This paper outlines the augmentation strategy employed to combine virtual and real depth maps in the proposed framework taking into account occlusions and shadows. This MR framework is implemented and evaluated in a robotic context, using a miniature-scale vehicle rather than a full-sized one, which has a number of benefits. It allows the verification of the framework's performance and functionality while minimizing the risks and expenses related to testing on a bigger scale by conducting smaller-scale tests. Before switching to a larger vehicle, this method enables the improvement of the framework and the investigation of a wider range of potentially crucial scenarios. The evaluation of the augmentation approach is done by analyzing qualitative and qualitative experiment results.

II. RELATED WORK

Several approaches exist for testing autonomous driving task: (i) Simulation testing can be considered as traditional and safe way of testing algorithms before the deployment of autonomous vehicles. This implies running models in a virtual environment that reproduces real-world driving conditions. Many researchers have explored this topic and suggested various competitive simulators to replicate realworld conditions as accurately as possible, e.g., CARLA, GAZEBO, CARSIM, etc [START_REF] Kaur | A survey on simulators for testing self-driving cars[END_REF]. Unfortunately, it is challenging to consider all potential variables and scenarios in a simulation, as well as to reproduce all real-world variables even with the latest advancement. (ii) Real-world testing is another way of testing autonomous vehicles in realistic scenarios and collecting data on their performance. They can be tested in open environments such as real traffic situations, proving grounds, and testing centers [START_REF] Huang | Autonomous vehicles testing methods review[END_REF]. Despite the advantages of real-world testing, it presents substantial challenges in ensuring the safety of drivers and pedestrians during testing, e.g., the Uber self-driving car that killed a pedestrian in 2018 [START_REF] Wakabayashi | Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam[END_REF], the accident of a Tesla on autopilot where the driver died [START_REF] Ohnsman | Investigators Say Tesla Model 3 Driver Killed In Florida Crash Was Using Autopilot[END_REF].

Researchers' increasing interest in testing and verifying advanced automotive software has contributed to the development and advancement of testing methodologies based on virtual environments. A new testing approach has emerged in the past few years: X-in-the-loop testing [START_REF] Szalay | Next generation x-in-the-loop validation methodology for automated vehicle systems[END_REF], where "X" refers to different components of the system to be tested (hardware, software, vehicle, scenario). The idea behind XIL testing is to simulate the various components of a system in a controlled environment, allowing for thorough testing and validation before deploying the system in the real world. For instance, vehicle-in-the-loop involves testing the real vehicle in a fully virtual environment. Researchers proposed different frameworks where the tests are made on the real vehicle, yet, all the environment is virtual [START_REF] Funk Drechsler | Mixed reality environment for testing automated vehicle and pedestrian interaction[END_REF]- [START_REF] Solmaz | A vehicle-in-the-loop methodology for evaluating automated driving functions in virtual traffic[END_REF]. While this approach adds a level of realism for testing the vehicle and its sensors, it lacks all the complex systemic aspects of the real world as it is fully virtual. In order to overcome some of the limitations of fully virtual testing, mixed reality (MR) allows for real-world testing in a controlled environment. It has been introduced for the first time in [START_REF] Milgram | A taxonomy of mixed reality visual displays[END_REF] and has been defined as an environment where the real-world and virtual-world objects co-exist.

The combination of physical and virtual components enables testing in true-to-life situations while upholding safety and control. This could act as a transitional stage between totally virtual and real-world testing, assisting in the validation of autonomous driving algorithms on mobile systems before testing on shared highways. Different approaches can be used to design an MR framework depending on the type of sensors used. Some researchers used telemetry and odometry data to reproduce the movement of the vehicle and combined the virtual and real data to sense the vehicle's surroundings [START_REF] Mitchell | Multi-vehicle mixed-reality reinforcement learning for autonomous multi-lane driving[END_REF], [START_REF] Chand | A mixed reality simulator for an autonomous delivery system using platooning[END_REF]. Other studies used Lidar data to develop the framework by fusing the cloud points received from the sensors from the simulation and the real-world [START_REF] Zofka | The sleepwalker framework: Verification and validation of autonomous vehicles by mixed reality lidar stimulation[END_REF], [START_REF] Genevois | Augmented reality on lidar data: Going beyond vehicle-in-the-loop for automotive software validation[END_REF]. While Lidar has shown excellent results in 3D perception, it has many challenges such as high cost, limiting its use in low-cost applications and lack of interpretation of roadway information. Alternatively, RGB-D cameras have been proven more effective in tracking several objects that are closely spaced. Additionally, they have the ability to identify tiny roadside objects that other sensors might not detect. By capturing landmarks, drivable paths, and other relevant data, depth cameras provide a comprehensive understanding of the environment and enable the vehicle to make informed decisions 2 . Moreover, the data generated by depth cameras can be used to create and update high-precision maps, which are essential for autonomous vehicles to operate safely and efficiently [START_REF] Wang | Research on comparison of LiDAR and camera in autonomous driving[END_REF]. The primary objective of this research is to introduce a MR framework that employs depth cameras. The framework involves a comparison of depth maps obtained from virtual and real sensors, followed by the creation of a mixed map that accurately displays the location of all objects while accounting for occlusions. This will facilitate the simulation of potentially dangerous situations to train the agent to respond effectively before facing real situations.

III. METHODOLOGY TO BUILDING THE MR FRAMEWORK

The goal of this paper is to introduce a vision-based mixed reality framework that integrates real and virtual depth maps (two-dimensional representation of the depth information in a scene) to create a comprehensive and accurate representation of the real-world environment. To achieve this goal, the paper proposes an augmentation strategy that uses virtual depth maps to improve the quality of real-world depth maps and a digital twining technique that simulates the robot's movement. This section outlines the proposed methodology approach, which includes depth maps, augmentation strategy, and digital twining steps.

A. Depth maps

Before comparing the two depth maps obtained respectively from the virtual and real sensors, it is important to address the discrepancies in characteristics and settings that may lead to different intensity distributions and variations in the range of gray levels. To ensure a fair and accurate comparison between virtual and real sensors data, it is necessary to perform preliminary operations on the virtual depth map, which allows us to achieve a more accurate and consistent representation of the environment in the virtual map and enables a more reliable comparison with the real sensor data, as follows:

1) Logarithmic compression: it is a technique used to reduce a wide range of values while preserving the relative differences between values. In our case, values in the virtual depth map were ranging between 0 and 2000 because of simulation constraints. Thus, this technique was applied to match the range of the real depth map that is [0, 255]. Equation 1 computes the logarithm of the virtual depth map (represented as D) by compressing the wide range of values in D. The range of values in the depth map is shifted by subtracting the minimum value, ensuring that the minimum value becomes zero. Then, Equation 2 normalizes the logarithmically transformed virtual depth map to the range [0, 255].

D log = log(D -D.min + 1) (1) 
D norm = D log -D log .min() D log .max() -D log .min() * 255 (2) 
2) Linear interpolation: to achieve a consistent scale between the virtual and real depth maps, distance values and their corresponding depth values were extracted from the real camera. A linear interpolation was then applied to the virtual depth map to calibrate it based on real data. This process allowed for the virtual depth map to be rescaled to match the scale of the real depth map, enabling a more reliable comparison between the two. 3) Thresholding: to add virtual elements to the real environment during augmentation, it is necessary to separate the objects of interest from the background.

As the virtual environment is fully controlled, simple yet effective image segmentation techniques such as Otsu thresholding [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] can be used. It automatically determines the optimal threshold value for differentiating between foreground and background in a bimodal histogram. 

B. Augmentation strategy

After the adjustments on the virtual depth map have been completed, the next step is to apply the augmentation strategy. The objective is to compare the depth values between the virtual and real depth maps and replace the real depth values with the corresponding greater values from the virtual depth map. Objects closer to the camera are depicted with a darker set of pixels, thus represented with higher values. This process enables the virtual objects to be added to the real depth map while taking occlusions into consideration . Let I 1 be the real depth image, and I 2 be the virtual depth image. The augmentation strategy can be expressed in Equation 3where the multiplication is pixel-wise.

I 1 = I 1 × (I 1 > I 2 ) + I 2 × (I 2 > I 1 ) (3) 
Two cases are addressed in Equation 3, as described below:

• Case 1: The first term (I 1 × (I 1 > I 2 )) detects whether the objects in image 1 are closer than the objects in image 2. If this is the case, the pixels in image 1 keep their original values. • Case 2: The second term (I 2 × (I 2 > I 1 )) determines whether the objects in image 2 are closer than the objects in image 1. If this is true, the corresponding pixels in image 1 are replaced with those in image 2.

C. Digital twining

In the proposed framework, digital twinning is employed to replicate the movements of a real robot in a simulation environment. Digital twinning involves creating a virtual model of the physical robot, which can be used to simulate its behavior under different conditions. Kalman filtering is employed to accurately simulate the robot's movements by estimating its linear and angular velocities using odometry information. This data is then used to control the virtual robot's movements within the simulated world.

IV. EXPERIMENTATIONS AND RESULTS

This section describes the experimental results of the proposed vision-based mixed reality framework on mobile robots for navigation. To provide a comprehensive evaluation of the framework, the equipment and hardware used in the experiments are first described. Then, the following subsections showcase the framework's performance by demonstrating the output obtained from the real and virtual environments and through metric analysis. Finally, an indepth analysis of the experimental results and the framework's potential for future research are made in order to give a complete understanding of the capabilities and limitations of the proposed framework.

A. Hardware and setup

The proposed MR framework relies on different elements. First, the robot used is the Summit-XL 3 . It is a large, outdoor-capable robot that is commonly used in research and industrial settings. It has a 4-wheel drive and a sturdy suspension system, allowing it to navigate rough terrain with ease (see Figure 2). The robot is controlled using ROS (Robot Operating System) 4 , a popular robotics software framework. It has a wide range of sensors and capabilities, including GPS, IMU, wheel encoders, and a variety of cameras and LiDAR sensors. To test the augmentation strategy, a digital twin of the robot was implemented in the simulator Gazebo [START_REF] Koenig | Design and use paradigms for gazebo, an open-source multi-robot simulator[END_REF]. Gazebo is a versatile software platform that provides valuable support for autonomous vehicle (AV) applications by allowing for the simulation of diverse scenarios and the assessment of numerous perception and control algorithms. It is easily integrated with ROS. Furthermore, the integration of Multimaster FKIE5 makes it possible for the real robot and its digital twin in Gazebo to communicate with one another in both directions, allowing for the sharing of real-time data and the delivery of control commands. A reliable framework for communication called Multimaster FKIE allows for effective data synchronization and exchange inside a distributed network.

The Stereolabs ZED26 camera, used in this study, was engineered to offer high-resolution 3D perception to robotics and autonomous systems. This stereo system is equipped with two 4K resolution sensors that capture a broad 170degree field of view and can record video and depth data concurrently. Furthermore, the ZED2 has an integrated processor that can promptly recognize objects and compute depth.

B. Scenario Overview

To evaluate the performance of the proposed framework, several tests were conducted. Initially, the real robot was controlled to navigate in the physical environment, while the digital twin mirrored its movements in the simulation. Additionally, obstacles were introduced, consisting of both physical and virtual elements, to examine the framework's ability to perceive different obstacle types. To assess the accuracy of the framework, the Time to Collision (TTC) metric [START_REF] Van Der Horst | Time-to-collision and collision avoidance systems[END_REF] was selected as the primary evaluation criterion. TTC is a widely used metric in robotics and autonomous driving, quantifying the time required for a vehicle to collide with an obstacle based on its current speed and distance from the obstacle (c.f. Equation 4). This metric was chosen due to its capacity to provide a quantitative measure of the framework's safety and reliability in real-world scenarios.

T T C =

Distance to Obstacle Relative Velocity (

A total of 30 experiments were conducted, covering three distinct scenarios, with each scenario consisting of 10 experiments. The first scenario involves operating the real robot within a physical environment alongside an actual obstacle. The second scenario focuses on the virtual robot operating within a virtual environment, interacting with a virtual obstacle. Finally, the third scenario combines both the real robot and its digital twin operating within a mixedreality environment, with a virtual obstacle (represented as a virtual pedestrian) present in the physical environment. Throughout all experiments, the robots maintained a consistent velocity of 0.2 m/s, and their initial positions were precisely set at a distance of 2.54 meters from the object of interest. In each scenario, Time to Collision (TTC) between the robot and the object was measured for both real and virtual obstacles, enabling a comprehensive comparative analysis of the results. 

C. Results and discussion

Firstly, the fusion of the two images (real and virtual) is analyzed to assess the quality of the resulting image. The fusion of the images is achieved by overlaying the virtual image on the real image using the depth information, resulting in a single image that combines the information from both images as a result of the augmentation strategy presented in section III-B.

The resulting images are firstly evaluated qualitatively by visually comparing the fused image with the individual real and virtual images. The degree of visual coherence, realism, and accuracy of the fused image is assessed. The fusion of the two images is found to be robust to occlusions and partial visibility of objects, providing a more accurate representation of the scene even in challenging conditions as represented in Figure 4.

Before starting the experiments on TTC, a first overview of the performance of digital twining was necessary. Figure 5 illustrates the linear and angular positions of the real robot (Robot B) and its digital twin (Robot A). The amplitude of the linear and angular positions of the robot and its digital twin remain consistent, despite a slight offset. However, there is still a noticeable temporal delay that needs to be addressed. During the online experiments, data on Time to Collision (TTC) and corresponding distances between the robot and the object in its path were collected. These measurements were employed to construct boxplots, providing a visual representation of the TTC distribution across various distance intervals. The boxplots illustrate the results of measurements for real, simulation, and MR environments, each comprising 10 experiments. The y-axis represents the TTC values, while the x-axis represents the corresponding distances between the robot and the obstacles.

As expected, the analysis of the boxplots reveals a greater variability in Time to Collision (TTC) values as the distance between the robot and the object increases. This observation holds particularly true in real-world conditions (Figure 7). Additionally, the boxplots indicate that the mixed reality scenario (Figure 8) exhibits a slightly less precise alignment between the real robot and its digital twin compared to the simulated environment (Figure 6), but is closer to the realworld experiments. Comparatively to the simulated tests, the Moreover, the virtual map that is employed in the simulation is frequently missing the noise and errors that are present in actual situations. Real maps, on the other hand, include a variety of noise, errors, and sensor constraints that may affect the distance readings. These elements help to increase the variability shown in the mixed reality and real-world tests, bringing them closer to the actual circumstances the robot would encounter.

Additionally, average values of Time to Collision (TTC) over distance were computed and plotted for each of the three scenarios. The average behavior of TTC over experiences is shown in Figure 9 on the y-axis and distances in meters on the x-axis. By examining these plots, a noticeable gap between the average TTC values in the simulation scenario and those in the real-world and MR scenarios can be observed. However, the variations in TTC in real-world and MR world can be attributed to velocity noise and imperfect distances generated by the real depth camera which are absent in simulation scenarios. Moreover, this figure illustrates the reality gap present between the real-world testing and simulation, and that mixed-reality testing may be a solution that addresses this gap by being closer to real-world than simulation. The presented figure not only illustrates the reality gap that exists between real-world testing and simulation, but also suggests that MR testing may provide a more effective solution that bridges the gap by being closer to the real-world than simulations. The results demonstrate the potential of this approach for addressing challenges associated with AVs, with a focus on reducing the reality gap. A promising approach to increase the safety and efficiency of testing has been demonstrated by integrating virtual objects into the real environment while considering occlusions. The use of a digital twin within the MR framework enables real-time synchronization between the real robot and its virtual twin. Through online experiments, the effectiveness of the MR framework in reproducing and evaluating the robot's movements and interactions with virtual objects has been shown. The depth camera accurately captures the physical surroundings, allowing for precise occlusion of virtual objects by real-world obstacles. This integration provides valuable insights into the robot's perception and response capabilities in complex environments. However, this work also highlights the need for further refinement and improvement in the MR framework. Challenges such as minimizing latency and optimizing the integration of virtual objects remain areas of focus for future research. Additionally, ensuring the accuracy and reliability of the depth camera's perception in various lighting conditions and dynamic environments will be essential for its widespread adoption.
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