Donatien Legé 
  
Laurent Gergelé 
  
Marion Prud'homme 
  
Jean-Christophe Lapayre 
  
Yoann Launey 
  
Julien Henriet 
  
Uhse 
  
A Deep Learning-Based Automated Framework for Subpeaks Designation on Intracranial Pressure Signal

A T E X The intracranial pressure (ICP) signal, as monitored on patients in intensive care units, contains pulses of cardiac origin on which P1 and P2 sub-peaks can often be observed.

When calculable, the ratio of their relative amplitudes is an indicator of the patient's cerebral compliance. This information about the overall state of the cerebrospinal system is especially useful when it comes to adjusting sedation to the patient's needs.

We developed a recurrent neural network-based framework for P2/P1 ratio computation that only takes a raw PCI signal as an input. Two tasks are performed, namely pulses classification and subpeaks designation. Performances are evaluated on the basis of 10 labeled ICP recordings of one hour duration.

Pulses classification was achieved with an area under the curve of 0.90 on a 4344-pulse testing dataset, whereas peaks designation identified pulses with a P2/P1 ratio > 1 with a 97.92% accuracy.

ICP monitoring bedside devices can be improved with our real-time P2/P1 ratio calculation algorithm.

Introduction

Intracranial pressure (ICP) is classically monitored invasively in intensive care units (ICU) in the event of brain damage. One of the main objectives for the clinician is to limit the time spent by the patient above a threshold of cerebral hypertension, described by international guidelines [?].

However, the ICP signal is a combination of different periodic components, both affected by cardiac and respiratory frequencies. Thus, the only mean ICP cannot capture all the information provided by such a complex signal [?]. Especially, this single number does not describe the ability of the cerebrospinal system to compensate the changes in volume caused by blood and cerebrospinal fluid (CSF) displacements, so that the ICP is maintained into an acceptable range. This pressure-volume relationship, generally called "cerebral compliance", require the clinician specific manipulations to be measured punctually with CSF infusion tests [?] [?] [?]. That is why different characterizations of cerebral compliance, based on a mathematical analysis of ICP waveform, have been proposed in the literature [?] [?]. Notably, cardiac pulses morphology varies according to the cerebral compliance [?]. When the latter is at a normal state, three subpeaks of decreasing amplitudes are generally visible (see figure 1). Those peaks are called P1, P2 and P3, in accordance with their apparition order. While it is broadly admitted that P1 is due to the systolic pressure wave, the origin of P2 and P3 remain unclear [?]. MRI measurements tend to associate P2 with a maximum volume in the cerebral arteries [?] [?], whereas P3 could be linked to veinous outflow [?]. In any case, as cerebral compliance is degraded, P2 and P3 become increasingly higher compared to P1 [?]. At the same time, their appearance times get closer [?], until the pulse takes a triangular shape centered on P2. Therefore, the ratio of the relative amplitudes of P2 and P1 (designated as the P2/P1 ratio) has been used as an indicator of cerebral compliance [?]. This ratio is all the more relevant given that Kazimierska et al. [?] demonstrated its good correlation with cerebral compliance assessed by classical infusion tests.

However, P1 and P2 automated detection on ICP signal faces different issues due to the highly variable pulses morphology. Only a few automated frameworks allowing for P2 and P1 Under the constraint of only using ICP signal as an input, we developped a deep learning-based framework to detect the subpeaks P2 and P1, and compute the ratio of their relative amplitudes when possible. Its conception was performed by achieving a comparative study of proposed deep learning network architectures, enhanced with pre-and post-treatments and applied on our dataset provided by the ICU of the University Hospital of Saint-Etienne. Our framework is designed to perform two tasks sequentially. The first one is a classification task, aiming to eliminate all the pulses without the P1 and P2 subpeaks. The second one, only performed on the remaining pulses, aims to identify the subpeaks P1 and P2 to calculate the ratio of their relative amplitudes. As an output, our framework provides a discontinuous signal of P2/P1 ratio values, post-processed to make it as readable as possible for the clinician. In this article, we provide a description of the neural network (NN) architectures we compared for pulse selection (3.2) and for subpeaks designation (3.3). The performances obtained for each of the task are respectively reported in sections (4.1) and (4.2). We finally tested our completed automated framework on a dedicated testing dataset (section 4.3).

Dataset overview

The studied ICP signals came from 10 adult patients suffering from traumatic brain injury, admitted to the ICU of the University Hospital of Saint-Etienne (France), between March 2022 and March 2023. For each of them, ICP was invasively monitored with an intraparenchymal sensor (Pressio, Sophysa, Orsay, France) for a duration of 8.3 ± 5 days (min = 3.8, max = 15) at a sampling frequency of 100Hz.

The dataset used in this study was constituted by randomly sampling 5 one-hour sections for each record. 4 of them were affected to the training dataset, whereas the last one was affected to the testing dataset. After the pulses were preprocessed and individualized as described in section 3.1, 1 of out 15 was selected to be part of the final datasets. Those pulses were labellized with the positions of P1 and P2 if both of them were visible, [0, 0] otherwise. The training dataset was finally composed of 13,127 pulses, including 12,308 with a calculable P2/P1 ratio.

Its testing counterpart was composed of 4,344 pulses, including with 3847 a calculable P2/P1 ratio. This proportions are in accordance with Rashidinejad et al. ( [?]) who estimated a missing subpeak probability at less than 10% based on their 700-hour dataset.

To assess the performances of the final dataset, an additional 10-minute segment was randomly sampled from each of the 10 patients. This second testing dataset, hence divided into 10 contiguous segments, was composed of 7,399 pulses, among which 6,815 had a calculable P2/P1 ratio.

Materials and Methods

Our data processing pipeline is divided into four parts. After preprocessing and a cardiac pulses detection step, a selection is performed to eliminate all the pulses without a calculable P2/P1 ratio. The subpeaks are then designated on the remaining pulses. Finally, a postprocessing step is performed to remove outliers and deal with missing values.

Data preprocessing

A fourth-order Butterworth bandpass filter between 0.3 Hz and 20 Hz is first applied to the raw signal. It is meant to isolate cardiac pulses from rapid oscillations of electronic origin, respiratory waves and baseline variations. The modified Scholkmann algorithm is then applied to the filtered signal in order to detect the pulses onsets [?]. The characteristic duration L is set to 500 ms, which offers a security margin compared to the quarter of a mean pulse duration recommanded as a minimum by the authors. The amplitude of each single pulse is normalized between 0 and 1, whereas the length is set to 180 points by a third degree polynomial interpolation. This preprocessing step is close to the one performed by Mataczynski et al.( [?]) for pulse shape index calculation. As an output, a 𝑁 × 180 matrix of 𝑁 pulses is provided to the selection algorithm.

Pulses selection

A major difficulty in monitoring the P2/P1 ratio is that not all subpeaks aret systematically visible on all pulses. Therefore, a selection step is needed so that the detection algorithm is only provided with pulses on which P1 and P2 are visible. This selection is performed by a neural network. Three architectures are compared for this task, namely a 1-dimensional CNN, a LSTM-based recurrent network and a Long Short-Term Memory Fully Convolutional Network (LSTM-FCN), wich is a combination of both. All the models are trained to perform the same binary classification task, by minimizing a Binary Cross-Entropy (BCE) loss. Before calculating it, a sigmoid function is applied to the neural networks outputs to obtain values between 0 and 1.

1-dimensional CNN architecture

These architectures extract relevant features by applying convolutional filters on the input tensor.

CNN have been successfully used for medical images segmentation, but it is also possible to adapt the layers dimensions to process 1-dimensional vectors the same way. Our CNN is constituted of 3 encoding blocks, each one composed of the sequence Convolutional Layer-Batch Normalization -ReLU activation, followed by a max pooling layer. The output is post-processed by two dense layers separated with a ReLU activation layer. To reduce overfitting, a dropout with a probability of 0.2 is applied at the end of the encoder and to the first dense layer. The dimensions of each layer appear on figure 2.

LSTM-based recurrent network

Recurrent networks are designed to capture the underlying time dependencies of sequential data.

They are generally composed of one or more cells whose outputs are computed based on the current input state and on the outputs of previous states. Past predictions can be taken into account by different ways ; LSTM cells are specifically designed to track long-term dependencies [?]. The proposed recurrent network is a single bi-directional LSTM cell, followed by two dense layers separated by a ReLU activation. Hence, the input vector is processed in both reading directions by the LSTM cell, which produces two outputs that are concatenated and post-processed by the two dense layers. A dropout with a probablity of 0.2 was applied at the end of the LSTM cell and to the first dense layer. The dimensions of each layer appear on figure 2. 

LSTM-FCN network

The two above-mentioned architectures process the input data with different objectives. Whereas CNN focus on the neighborhood of each point, recurrent neural networks are meant to exploit the causalities inherent to sequential data. LSTM-FCN networks attempt to combine both strategies, and were specifically designed for time series classification [?]. Moreover, Mataczynski et al.

( [?]) obtained good results with such an architecture for pulse shape index calculation. The LSTM-FCN network we implemented contains a three-block encoder, put in parallel with an LSTM cell. Their respective dimensions are identical to those used for the CNN and for the LSTM-based recurrent network. Both the computations are performed in parallel. The outputs are then concatenated and processed by two dense layers. As above, a dropout with a probability of 0.2 was applied to to the first dense layer.

Subpeaks designation

Once the pulses with a calculable P2/P1 ratio are selected, subpeaks P1 and P2 can be designated.

To do so, we studied different ways of combining the output of a neural network with the pulse curvature, as used by the MOCAIP-based automated frameworks. The latter is defined as:

𝜅(𝑥) = 𝑥 ′′ (1 + 𝑥 ′2 ) 3/2
On the other side, neural networks learn a classification task. For a pulse 𝑥, the objective is a 180-point vector 𝑦 𝑥 , such that

∀𝑡 ∈ [[1, 180]], 𝑦 𝑥 (𝑡) = 𝑒 1 2 (𝑒 -( 𝑥 (𝑡 ) -𝑝 1 ( 𝑥) ) 2 2 + 𝑒 -( 𝑥 (𝑡 ) -𝑝 2 ( 𝑥) ) 2 2 
)

where 𝑝 1 (𝑥) and 𝑝 2 (𝑥) are the respective positions of P1 and P2. More formally, during the learning process, the neural networks seeks a function 𝑓 * such that

𝑓 * = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓 ∑︁ 𝑥 ∈𝐷 𝑀𝑆𝐸 ( 𝑓 (𝑥), 𝑦 𝑥 )
Where 𝑀𝑆𝐸 denotes the Mean Square Error loss function, and 𝐷 the training set.

The detection strategy consists in designating P1 and P2 from among a candidate subpeaks set.

To do this, two methods were compared. In both cases, the candidate subpeaks are identified by a search for local maxima, either on 𝜅 (method 1) or on 𝑓 (method 2). Having thus obtained a list 𝑐 of candidates, 𝑝 1 and 𝑝 2 are then designated as the two points of 𝑐 corresponding to the highest value of 𝑓 . Both strategies are summarized on figure 3. To perform the peaks designation task, two networks architectures were compared, namely a 1-dimensional U-Net and a LSTM-based recurrent network.

1-dimensional U-Net

U-Net is a particular architecture of CNN. Its three-level bottleneck structure is composed of two symmetric blocks. In addition to the linear information propagations, pairwise connections are set between components of same shapes. As it was originally conceived for images segmention, layers have been here modified to perform 1-dimensional convolutions. Layers dimension appear on figure 4. A dropout with a probability 0.2 was applied at each convolution block.

LSTM-based recurrent network

We used a bidirectional LSTM-based recurrent similar to the one trained for peaks selection (see section 3.2.2). Hence, the input 180-sample pulse was processed by a single LSTM cell followed by two consecutive dense layers. As hidden layer size of the LSTM cell was set to 180, the respective input and output dimensions of the latter were (360, 360) and (360, 180). A dropout with a probability 0.2 was applied to the first dense layer. 

Postprocessing

Postprocessing the P2/P1 ratio signal has to address three main issues:

• Spurious oscillations, mostly due to the intrinsic variability of the ICP signal. Even if they are not a result of the data processing pipeline itself, they tend to make the record less readable for the clinician.

• Missing values, since all the pulses that do not pass the selection cut are recorded as missing.

• Punctal outliers. If they are not caused by the ICP signal itself, they can be due to errors in the data processing pipeline. The latter can either occur at the classification step, when false positive pulses are provided to the detection algorithm, or at the detection step, when P1 and P2 are designated at wrong positions.

These different problems are alleviated at the post-processing phase, by retrospectively smoothing the ratio monitoring. To do so, a 95% normal confidence interval is estimated on a 100-pulse sliding window. A mean ratio is then calculated over the window if at least 50 values are non-missing ; otherwise, the value corresponding to this window is reported as missing. Finally, the output P2/P1 ratio signal can be displayed with a 100-pulse delay, which corresponds to about one minute.

Results

Experiments were performed separately on the pulse selection and on the peaks detection tasks, in order to select a single neural network for each of them. The same training and testing datasets of labelled pre-processed pulses were used for both tasks, with 10% of the training set used for validation. After having our framework completed with two trained neural networks, we entierly processed 10-minute labelled segments randomly sampled from each of the recordings.

To ensure the reproductibility of our experiments, each of the three steps were performed using a dedicated processing pipeline designed with Snakemake 7. The three ROC curves are displayed on figure 5. For the final framework, the optimal decision threshold was chosen to maximize the difference 𝑇 𝑃𝑅 -𝐹𝑃𝑅.

Our LSTM-based recurrent network architecture overperformed the convolution-based ones, with an area under the curve of 0.903. The confusion matrices corresponding to the respective optimal decision thresholds of each NN architecture are presented in table 1.

The amounts of false-positive pulses and false-negative pulses correspond to respectively 1.8% and 9.7% of the total testing data set when using the LSTM-based architecture for classification. In contrast, this percentages amount to respectively 2.3% and 42.9% when using the convolutive network.

Peaks designation

The experimental pipeline was designed to compare the four possible combinations between peak designation method (i.e., by using or not the curvature function) and neural network architecture (i.e., 1-d convolutional U-Net or LSTM-based recurrent network). In addition, a designation only using the first two local maxima of curvature was performed as a baseline. Both models were trained on 150 epochs with the Adam optimizer, an initial learning rate of 0.001 and a batch size of 256. Mean average time appearance error, exprimed in percentage of the whole pulse duration, and mean average ratio error were calculated. The results are reported in table 2. In addition, as it is the most interpretable information for the clinician, we assessed the ability of our models to detect pulses where P2 is higher than P1. To do so, we calculated a confusion matrix for classes "+": " P2/P1 ratio > 1" and "-": "P2/P1 ratio < 1" and the associated accuracy, defined as the proportion of correct predictions over the whole testing dataset.

As for the pulse selection task, the recurrent architecture overformed the convolutional one.

Without the curvature-based candidate peaks selection step, the LSTM-RE architecture performed the classification task with an accuracy 3% higher than our 1d-Unet. Moreover, it achieved the most accurate estimation of the P2/P1 ratio, with a mean average error of 0.03. Achieving the candidate peaks selection step with the means of the curvature function tends to improve the algorithm's ability to discriminate pulses with a P2/P1 ratio > 1, at the cost of a slightly less accurate ratio estimation.

Final automated framework

On the basis of previous experiments, we finally chose a LSTM-based recurrent both for pulses selection and for subpeaks designation. For the latter step, candidate subpeaks selection was performed using the pulse curvature. For each of the ten patients, the complete workflow was used to process a randomly chosen labelled 10-minute section. An example of such an output is presented figure 6.

The performances were assessed for each individual 10-minute segment. We used the same respective metrics as above for pulses selection and subpeaks designation. In addition, we calculated the percentage of pulses that have been assigned a ratio value, and the percentage of non-missing values in the final post-processed ratio signal. Table 3 contains value calculated over the total 110-min dataset, but 10-min segment individualized metrics are available table A??.

False positive rate and true positive rate are both about 7 points higher than their respective equivalents calculated when selecting the NN architecture. However, subpeaks designation performances are consistent with previous experiments. It is noticeable that the only 2nd segment sample contains 91% of the negatively labeled pulses.

In this segment, pulse selection algorithm performed with a 13.5% false positive rate (table ??).

False-positive pulses and false-negative pulses amount to respectively 1.14% and 7.49% of the total testing dataset. This proportions are consistent with those previously calculated on the 4344-pulse testing dataset.

Discussion

Our deep-learning based framework is designed to perform P1 and P2 detection and P2/P1 ratio computation directly on a bedside device. For convenience concerns, we designed it under the constraint of only using the ICP signal, which was made possible by a well-established efficient preprocessing step. Hence, we were able to focus our deep-learning based analysis When labeling the pulses, only using the ICP signal could sometimes cause difficulties for interpreting isolated single pulse waveform: Without other elements of context, pulses with only two visible subpeaks systematically fell into the "non-calculable P2/P1 ratio" category, since it was not possible to know which of P1, P2 or P3 was missing. In some of these cases, ABP or ECG signals may have helped to distinguish subpeaks, and thus to compute a P2/P1 ratio. In that sense, the training dataset was labelled in a quite restrictive way, to limit as much as possible the amount of pulses without a calculable P2/P1 ratio provided to the peak designation step. However, this decision has necessairly consequences on the amount of time during which a P2/P1 ratio can be displayed. In any case, recurrent architectures clearly overperformed the convolutional-based ones for pulse selection, even it is probably possible to reduce the observed gap by fine-tuning the proposed convolutional architecture. As the full succession of subpeaks is necessary to understand the pulse waveform, recurrent networks seem to be more appropriate than CNNs to perform such a classification task. In that sense, these results may contrast with similar studies performed on ECG signal, on which events such as QRS complexes have more recognizable shapes and thus make CNN more relevant for classication or detection tasks. Concerning the consequences of missclassified pulses, it is noticeable that false-negative pulses only cause spurious missing values at the end of the data processing workflow. In contrast, false-positive pulses are provided to a peak designation algorithm that systematically outputs the two positions of estimated P1 and P2. Therefore, the latter can do much more damage to the output P2/P1 ratio signal. While we simply chose an optimal threshold that minimizes the difference 𝑇 𝑃𝑅 -𝐹𝑃𝑅, it could be relevant to optimize the decision threshold to make to algorithm more restrictive.

Peak detection was performed by computing a density fonction by the means of neural networks, as it is often the case for image segmentation tasks. We chose to stick to the underlying philosphy of MOCAIP-based automated framework, which include a candidates selection step before subpeaks designation. It would have been possible to turn our algorithm into a regression task to directly output the estimated positons, as it is sometimes done for ECG peaks detection [?].

This simpler strategy lead to lighter computations. However, our method offers two advantages.

Firstly, it is more robust and explainable in itself, as a score is affected to each point of the input tensor. Secondly, it is easier to combine the output tensor with another function such as the pulse curvature. Designating two peaks from among a set of candidates selected with this simple and explainable criterion offers guarantees for the generalization abilities of the algorithm. This is all the more relevant given that we could only train our deep learning-based models on a relatively small set of patients, whereas there is a large inter-patient morphological variability in ICP waveform. In the case of our testing dataset, a preselection of candidate peaks with a search for local maxima of the curvature function improved the algorithm's ability to discriminate pulses with a P2/P1 ratio superior to 1. The observed improvements in accuracy amounted to respectively 1% for the recurrent network and to 3% for our U-Net.

The biggest limitation of our study is that only 10 patients recordings contributed to the pulses database. Because of this small number, we chose to include samples from each of the ten patients both in the training and in a testing datasets, in order to train our neural networks with as much diversity as possible. By doing this, we made the asumption that a single patient CP signal variability over 8 days (that is to say, the average monitoring duration) was enough to neglect the effects of a commune underlying distribution. However, generalization abilities of our automated framework still have to be improved by expanding our datasets with further inclusions. This is all the more important that we obtained quite different false positive rates during the model selection (8.52%) and during the final automated framework evaluation (14.6%).

While designing the data processing pipeline, we considered better taking into account the neighborhood of each single pulse. For instance, the pulse selection process could have integrated all the pulses occured over the last minute before the one to be classified, thus helping the interpretation of pulse waveform. However, it would have require a much more computationintensive training step, since the recurrent networks would have had to capture more long-term depencies. In addition, the database would have had to be composed of contiguous labelled samples, which would have had drawbacks on the diversity covered this way. We faced the exact same issue when sampling the final testing dataset, which was particularly disbalanced with 90% of its false-negative pulses occuring in the same segment.

The latter observation leads us to discuss the main drawbacks of monitoring the P2/P1 ratio. As mentioned earlier, this information is not always available, and depends on biological mechanisms still not fully understood [?]. A more complete picture of cerebral compliance could be obtained by combining P2/P1 ratio with other indicators such as mean ICP, pulse amplitude [?] or pulse shape index [?]. More generally, cerebral compliance has to be considered as part of a bundle of information available on patients. Characterizing it is especially helpful when ICP is close to the hypertension threshold, as a simple mean calculation is not informative enough on the current state of the cerebrospinal system. Cerebral compliance may also inform specific decicisons, for instance when it comes to adjusting or putting sedation to an end. 

  designation have been proposed in the literature [?] [?] [?]. Most of them rely on clustering algorithms to only analyze one characteristic pulse over a predefined period, as proposed by the authors of Morphological Clustering and Analysis of Continuous Intracranial Pressure (MOCAIP) algorithm [?]. MOCAIP-based automated frameworks are designed to compute a large amount of morphological features of the ICP pulses, including P2/P1 ratio. However, in addition to the raw ICP signal, their data processing workflows require both an eletrocardiogram (ECG) monitoring and an extensive reference library of non-artifact pulses, which can be difficult to implement into an on-board bedside device. To perform real-time P2/P1 ratio calculation, neural network-based algorithms seem to be the tools of choice to circumvent these prerequisites, due to their ability to directly integrate the information provided by previous examples into trained models. Especially, convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) recurrent networks have been successfully used for similar tasks, such as ECG beats detection and classification (respectively [?] [?] [?] and [?] [?]).

Fig. 1 .

 1 Fig. 1. Two pulses of cardiac origin on an ICP signal. The left one has a P2/P1 ratio > 1, whereas the right one has a P2/P1 ratio < 1 .

Fig. 2 .

 2 Fig. 2. CNN and LSTM-based recurrent network architectures used for pulses selection. In both cases, dropout was applied with a probability of 0.2. A sigmoid function was used to map the NN output into the interval [0, 1].

Fig. 3 .

 3 Fig. 3. Comparison of two methods of peaks designation algorithm. P1 and P2 are designated from among a set of candidates either based on the curvature analysis (method 1) or directly on the NN output (method 2).

Fig. 4 .

 4 Fig. 4. U-Net architecture proposed for subpeaks detection. The NN learns to reconstitue the sum of two gaussian curves respectively centered on 𝑝 1 and 𝑝 2 .

  25 [?]. All the associated scripts were coded in Python 3.11. Neural networks were implemented with Pytorch 2.0 [?]. All the experiments described below were performed on a Windows 10 machine powered by WSL2 Ubuntu 20.04.5, equipped with a 12th Gen Intel(R) Core(TM) i7-12850HX 2.10 GHz 16 CPU, a Nvidia RTX A3000 12GB Laptop GPU, and 16 GB of RAM. Pipelines used for comparing neural networks performances are available at the following address: _ 4.1. Pulse selectionThe three models (i.e. CNN, LSTM recurrent network and LSTM-FCN) were trained on 150 epochs with the Adam optimizer, an initial learning rate of 0.001 and a batch size of 256. For each of them, the area under the receiver operating characteristic curve (ROC) curve was calculated by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR), defined as:

Fig. 5 .

 5 Fig. 5. Areas under the ROC curve (AUC) of the three neural network architectures used for pulses selection. Positive class corresponds to pulses with a calculable P2/P1 ratio.

Fig. 6 .

 6 Fig. 6. Example output for a 10-minute ICP signal segment processed with the final automated framework.

Table 1 .

 1 Confusion matrices of the 3 NN architectures compared for pulses selection. Positive class corresponds to pulses with a calculable P2/P1 ratio.

	NN architecture	CNN		LSTM	LSTM-FCN
	Prediction	-	+	-	+	-	+
	True -	399	98	421	76	397	100
	True +	1865 1982 847 3000 1005 2842
	True Positive Rate (%)	51.5		78.0	11.2
	False Positive Rate (%)	19.7		8.52	26.1

Table 4

 4 

corresponds to the overall confusion matrix calculated for pulses selection. As above, individualized confusion matrices are available table ??.

Table 2 .

 2 Performances of five methods for P1 and P2 detection. P1 and P2 are designated as the two candidate subpeaks corresponding to the two highest NN output value. Local maxima of either curvature or NN output are selected as candidate subpeaks. As a baseline, the algorithm "Curvature" corresponds to the designation of the two first local maxima of pulse curvature as P1 and P2. Mean absolute errors (MAE) on the apperance time of P1 and P2 are expressed in percentage of the total pulse duration.. [m]2*1d-Unet NN output 1.2±0.1 2.1±0.2 0.08±0.03 93.2 Curvature 0.6±0.05 2.2±0.2 0.05 ±0.02 96.6 [m]2*LSTM NN output 0.70 ±0.05 1.3±0.07 0.03±0.003 96.9 Curvature 0.70±0.06 1.3±0.2 0.05±0.02 97.9 [m]1*Curvature -2.4±0.2 4.0±0.2 0.1±0.01 89.3

-0cm CCCCCC Algorithm Candidate peaks selection P1 MAE (%) P2 MAE (%) Ratio MAE Accuracy(%)

Table 3 .

 3 Performances of the final automated P2/P1 ratio computation framework. Metrics associated with P2/P1 ratio values (i.e., P2/P1 ratio MAE and Accuracy on ratio > 1 detection) are calculated pulses with a labellized P2/P1 ratio value that passed the selection step. Significatively higher than the same metric calculated on the testing set during NN selection (p-value < 0.05) on short time series corresponding to single pulses of cardiac origin, which beneficiated to not excessively deep networks architectures. Moreover, working at the cardiac cycle scale allowed us to alleviate another real-life difficulty: At bedside monitoring, ICP signals are very often contaminated with artifacts either due to patient movements (coughing, reactions to drug administration, nursing manipulations...), or to electronic perturbations. Therefore, it can be complicated, at a macroscopic scale, to determine whether an accute rise in ICP corresponds to a real physiological measurement or to an artifactured zone. By only focusing on modified Scholkmann algorithm-extracted candidates pulses, we were able to perform this artifact removal step on the only basis of the local waveform, at the pulse selection step. In addition, as changes in cerebral compliance generally occur in a progressive way, a continuous pulse-wise compliance score is a tool of choice to describe as faithfully as possible the current patient state.

	-0cm CCCCCC True positive rate (%) False positive rate (%) P2/P1 Ratio MAE Accuracy
	on ratio > 1 detection(%) Ratio-associated pulses (%) Displayed-ratio time(%)
	87.3 * 14.6 * 0.044 ± 0.002 99.7 * 85.8 88.3

*

Table 4 .

 4 Confusion matrix obtained for the final pulses selection step. Positive class corresponds to pulses with a calculable P2/P1 ratio.

	CCC Predicted -Predicted +
	True -499 85
	True + 554 6261