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Ruthenium‑driven catalysis for sustainable water decontamination: 
a review

Shengqi Zhang1 · Kaiting Zhang1 · Yuwei Xie1 · Yao‑Yin Lou2 · Eric Lichtfouse3  · Mingbao Feng1 · 
Virender K. Sharma4 

Abstract
The worldwide demand for clean water is rising worldwide, yet wastewater decontamination is actually limited by the 
pres-ence of refractory organic and inorganic compounds, calling for more efficient treatment methods. Here we review 
the use of ruthenium-based catalysts for the removal or transformation of pollutants at a concentration range of 1.0–
100 mg/L under acid or neutral conditions. We focus on catalytic oxidation and reduction, and on the environmental 
impact of ruthenium catalysts. We discuss electrooxidation, photocatalytic oxidation, activation of inert oxidants, 
hydrogen-assisted reduction, electroreduction, and N–O bond activation.

Keywords Ruthenium · Catalytic redox reaction · Organic contaminants · Reaction mechanisms · Environmental catalysis

Introduction

Water contamination has increasingly become a critical issue 
threatening ecological safety and public health because of 
the continuous input of various synthetic organic compounds 
into global water (Kümmerer et al. 2018; Izzudin et al. 2021; 
Yang et al. 2022; Peng et al. 2023). The structural stability 

of organic pollutants with trace-level prevalence leads to 
degradation recalcitrance during conventional biological and 
chemical water treatments (Mutalib and Jaafar 2022). The 
discharge of the wastewater with those organic pollutants 
would degrade water quality. Thus, those wastewaters can-
not be directly used for potable water (via desalination) and 
industrial applications only if more advanced technologies 
were performed to complete elimination of those organic 
pollutants. Therefore, green and highly efficient treatment 
strategies for wastewater decontamination have attracted 
worldwide attention, including thermal, membrane-based, 
chemical, and electrochemical technologies (von Gunten 
2018; Hodges et al. 2018; Ying and Pumera 2019). As a 
multivalence transition metal ranging from 0 to VIII, ruthe-
nium (Ru) has exhibited outstanding catalytic performances 
in (bio)chemical reactions such as photocatalytic ammonia 
synthesis (Yin et al. 2022), photoredox catalysis (Angerani 
and Winssinger 2019), water splitting (Axet and Philippot 
2020), anodic hydrogen oxidation (Zhang et al. 2022), selec-
tive semi-hydrogenation of alkyne (Peil et al. 2022; Sanz-
Navarro et al. 2022), and chemo-phototherapy (Xu et al. 
2022), although all Ru compounds are regarded as toxic and 
as carcinogenic (Axet and Philippot 2020).

Regarding water treatment, studies have suggested that 
Ru-based materials could be employed as excellent cata-
lysts for the reductive/oxidative elimination of environmen-
tal contaminants in the low-strength wastewater, listed in 
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Table 1 (Silva et al. 2007). Recent reviews have focused on 
the applications of Ru-based composites in aerobic amine 
oxidation (Ray et al. 2018), photoredox catalysis in chemi-
cal biology (Angerani and Winssinger 2019), cyclization 
of heteroatom-functionalized alkynes (Chung et al. 2020), 
hydrogen evolution reactions (Bae et al. 2020), and super-
capacitors (Majumdar et al. 2019). Unfortunately, a detailed 
review of their applications in environmental catalysis for 
water decontamination has not yet been written. Therefore, 
the objectives of this minireview are to (1) summarize recent 
advances in Ru-based materials for environmental catalysis 
in the field of water purification, (2) provide a comprehen-
sive and integrated analysis of the reactive oxidizing species 
and catalytic mechanisms during reduction or oxidation pro-
cesses in Ru-driven treatment systems for pollutant removal, 
and (3) propose future perspectives on the development and 
application of Ru-based environmental catalysis for sustain-
able water treatment. Overall, this review has engineering 
implications for the chemical design and reactivity modula-
tion of Ru-driven catalysts for efficiently remediating pol-
luted environmental water.

Physical and chemical properties 
of ruthenium

Ruthenium as one of the platinum group metals does not 
tarnish at room temperatures but oxidizes in the air at about 
800 °C. Ruthenium dissolves in fused alkalis to give ruthen-
ates  (RuO4

2−). It is not attacked by acids (even aqua regia) 
but by halogens at high temperatures. The solubility limit 
of  RuO2 was 460 ppm by weight. In the range 0 < pH < 14, 
Ru(II), Ru(V), Ru(VI), and Ru(VII) exist as Ru(II),  Ru2O5 
(s),  RuO4

2−,  RuO4
−, respectively (Fig. 1).

Catalytic oxidation

Electrooxidation

Ruthenium-based composites have been widely investi-
gated as electrocatalysts for the electrochemical abatement 
of environmental pollutants in aquatic environments (León 
et al. 2021; Sun et al. 2022). Nitroaromatic compounds are 
used in industries and agriculture as explosives, pesticides, 
pharmaceuticals, polymers, synthesis of dyes, and other 
high-volume chemicals, which exhibit high toxicity and/or 
mutagenic activities in several living organisms and also 
widely present in many industrial wastewaters. Ruthenium 
was widely reported as a good electrocatalysts for elec-
trooxidation of those toxic organic pollutants in the waste-
water. For example, Kumar et al. (2015) and Chauhan 
et al. 

(2016) applied a highly stable Ti/RuO2 electrode for the 
electrooxidation of nitrophenol and 4-chlorophenol (Kumar 
et al. 2015; Chauhan et al. 2016). The maximum removal 
of chemical oxygen demand and total organic carbon of 
nitrophenol solutions reached 99% and 82%, respectively 
(Table 1). Comparatively, the optimized chemical oxygen 
demand and 4-chlorophenol removal efficiencies were 96% 
and 97%, respectively (Table 1). Kinetic analysis suggested 
that the decomposition of nitrophenol and 4-chlorophenol 
follows a pseudo-first-order kinetic model. The electro-
chemical oxidation of nitrophenol yielded various prod-
ucts, including quinine, benzoquinone, and low-molecular-
weight organic acids (e.g., maleic acid, succinic acid, and 
oxalic acid). The reaction mechanisms for nitrophenol and 
4-chlorophenol were proposed, based on contributions of
anode surface-bound •OH-mediated direct oxidation and
chloride radical-triggered indirect oxidation. Additionally,
electrochemical treatment using the modified Ti/RuO2-IrO2-
stannum oxide anode also resulted in ~ 96% chemical oxygen
demand removal from pharmaceutical wastewater, with the
energy consumption was 58.09 kW h/kgCOD under cur-
rent density of 8 mA  cm−2, initial pH of 2, and air flow of
18 L  min−1 (Zhang et al. 2021).

Nitrate  (NO3
−) pollution in groundwater is primarily 

caused by agricultural runoff, and its presence in drinking 
water has been linked to adverse health outcomes, including 
thyroid cancer and methemoglobinemia in infants (Su et al. 
2021). Besides, over  NO3

− residue in the wastewater contrib-
utes to the eutrophication and the imbalance of global nitro-
gen cycle. Chauhan and Srivastava (2020) recently reported 
the electrochemical elimination of  NO3

− ions in wastewater 
using Ti/ruthenium oxide as the anode and iron as the cath-
ode. The  NO3

− ions were electro-reduced to  NO2
− and  NH4

+ 
ions on the iron cathode and then oxidized in situ into  N2 by 
•OH, which was generated on Ti/RuO2 as the anode. In the
case of wastewater containing  Cl− ions, the  NO2

− and  NH4
+

intermediates were also oxidized by  ClO• (reactions 1–7)
(Su et al. 2021). The  ClO• was formed from  Cl− oxidation
by •OH through a series of reactions (see reactions 8–15). In
this electroreduction-oxidation coupled system, a high total
nitrogen removal efficiency (51%) was obtained at pH 12.0
with the current density of 285.7 A  m−2, which also brought
in the advantage of a negligible amount of sludge produced
in comparison with conventional biological denitrification
processes.

(1)NH+

4
+ OCl− → NH2Cl + H2O

(2)NH+

4
+ ClO⋅

→ H2N
⋅

+ HClO + H+

(3)H2N
⋅

+ HClO → NHCl2 + H+
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(4)NHCl2 + H2O → NOH + 2H+
+ 2Cl−

(5)NH2Cl + NOH → N2 + H+
+ Cl− + H2O

(6)NHCl2 + NOH → N2 + 2H+
+ 2Cl−

(7)NH+

4
+ 3HO⋅

H2N−NH2

⟶

1

2
N2 + H+

+ 3H2O

(8)H2O → HO⋅(ads) + H+
+ e−

(9)HO⋅(ads) + Cl− → Cl⋅ + OH−

(10)Cl− → Cl⋅(ads) + e−

(11)Cl− + Cl⋅ → Cl2(aq) + e−

(12)Cl2 + H2O → HOCl + Cl− + H+

(13)HOCl ↔ H+
+ OCl−

(14)HO⋅

+ OCl− → ClO⋅

+ OH−

Photocatalytic oxidation

Ru-based nanocomposites have received considerable 
interest as photosensitizers and photocatalysts for water 
decontamination (Yin et al. 2019b; Akshatha et al. 2020; 
Osawa et al. 2020). Jiang et al. (2018) synthesized Ru-based 
complex@g-C3N4/TiO2 hybrid composites using a solvo-
thermal approach for the photocatalytic removal of methyl 
blue in water. Ru-modified g-C3N4/TiO2 exhibited a twofold 
higher degradation of methyl blue (0.0336  min−1) under vis-
ible light irradiation than bare g-C3N4/TiO2 (0.0176  min−1) 
(Table 1). Notably, the heterojunction in the hybrid compos-
ites enhances the separation performance of the photoexcited 
electrons and holes (Fig. 2). This was mainly attributed to 
the high visible light absorption and quantum efficiency of 
Ru-based complexes, which can be photosensitized to the 
 RuC2+* excited state. This species could efficiently transfer 
photogenerated electrons to the conduction band of g-C3N4, 
possibly promoting the conversion of dissolved oxygen to 
reactive oxidizing species.

Photocatalytic mechanisms were proposed with the 
involvement of superoxide radicals  (O2

•−) and •OH, which 
could accomplish the efficient oxidation of methyl blue. 
Similar photocatalytic mechanisms have also been reported 
during the removal of caffeine and anticancer drugs, aro-
matic amines, and phenazopyridine over Ru-modified 
crystalline titanate nanowires (Osawa et al. 2019; Barrocas 
et al. 2019), g-C3N4/Fe3O4/porous Ru nanocatalyst (Sahoo 
and Patra 2020), and Ru-sensitized  TiO2 electrospun fib-
ers (Boyer et al. 2016), respectively. Additionally, Ru-based 
metal complexes (including tris-(2,2′-bipyridine) Ru(II) 
chloride and tris-(1,10-phenanthroline) Ru(II) chloride) can 
be effectively photosensitized under solar light illumination 
to produce 1O2 (Salazar-Rábago et al. 2016a). This reactive 
intermediate decomposed chlorotetracycline at a sevenfold 
reaction rate compared to direct photolysis. Notably, intro-
ducing humic acid inhibited the performance of Ru-based 
photosensitizers but facilitated the direct photolysis of the 
target antibiotic. The redox potentials of the Ru(IV)/Ru(III) 
(+ 0.77 V) and Ru(V)/Ru(IV) (1.22 V) pairs also contrib-
uted to the electron donor/acceptor-mediated surface charge 
transfer of the heterogeneous Ru-based photocatalysts. In 
a recent study, Yin et  al. (2019a) reported the superior 
photocatalytic reduction of toxic p-nitrophenol (PNP) to 
p-aminophenol using plasmonic Ru/hydrogen molybdenum
bronzes (Ru/HxMoO3-y) under visible light irradiation. The
catalytically active sites were identified as surface-doped Ru
nanoparticles, while  HxMoO3-y acted as the electron-donor
centers for N–O bond reduction. Furthermore, introducing
additional oxidants, e.g., persulfate, could greatly promote

(15)Cl⋅ + OCl− → Cl− + ClO⋅

Fig. 1  Potential—pH diagrams for ruthenium compounds in the 
system Ru–H2O, C0

Ru
 =  10–4  mol/L. The equilibria were analyzed 

between chemical species in the solution and solid phase, consider-
ing only the electrode potentials of redox couples. At low potential, 
ruthenium was stable and existed in metallic phase. With the poten-
tial increased, ruthenium was oxidized to III at acidic media and also 
could be oxidized to IV at neutral and basic media. With the increase 
in the total concentration of ruthenium: a the areas of stability of 
Ru(OH)2

+, Ru(OH)2
2+,  RuO4

2−,  RuO4
−  significantly narrow; b the 

thermodynamic stability areas of the solid phase Ru(OH)3∙H2O(S), 
 RuO2∙H2O(S), and  Ru2O5(S) increase



the decomposition of methyl orange and accomplish com-
plete bacterial inactivation in visible light-activated tris(2,2′-
bipbipyridyl(II) complex system (Subramanian et al. 2013).

Additionally, a combination of photocatalysis and elec-
trochemical oxidation has been proposed as an efficient 
approach for the aqueous removal of different organic 
micropollutants (Moraes et al. 2016; García-Ramírez et al. 
2021). Moraes et al. (2016) reported that the  RuO2-graphene 
electrode, in the absence of light and after 1 h, achieved 
a percentage of hormone degradation of 59.5%. However, 
the presence of light promoted a removal of 92.2% of 
17β-estradiol after 1 h of photoelectrocatalytic treatment 
under pseudo-first-order kinetics. In a recent investigation, 
Ru/Ti/TiO2 nanotubes were prepared and employed as a 
photoanode array for the photoelectrochemical removal of 
Terasil Blue dye under UV–vis light illumination (García-
Ramírez et al. 2021). The ruthenium-doped  TiO2 nanotube 
array photoanodes showed a peak photocurrent and a satu-
ration photocurrent upon their illumination with UV or 
visible light. In contrast, the undoped  TiO2 nanotubes only 
showed the saturation photocurrent, which was higher than 
that reached with the ruthenium-doped photoanodes using 
UV light. It was observed that Ru addition with 0.15 wt% 
significantly enhanced the dye removal to 98% and 55% in 
photoelectrochemical with UV and visible light, respec-
tively, than the undoped  TiO2 (82% and 28%) after 2.0 h of 
treatment. This study suggests that Ru-based photoanodes 
can efficiently decompose organic contaminants using solar 
light as the ultraviolet–visible source. The application of a 
rather small bias (i.e., anodic) potential to the illuminated 

photoanode, which favors the spatial separation of both 
charge carriers, since the electrons are immediately trans-
ported to the cell cathode. Therefore, the combination of 
photocatalysis and electrocatalysis could lead to a larger 
accumulation of hydroxyl radicals and holes under visible 
light as compared to photocatalysis alone, thereby upgrading 
the oxidation of the organic contaminants.

Activation of inert oxidants for pollutant oxidation

Studies have increasingly suggested that Ru-based nano-
composites can be utilized as highly efficient activators of 
multiple oxidants (e.g., peracetic acid, oxone, and Mn(VII)) 
for catalytic pollutant removal (Sahoo and Patra 2018; 
Serra-Pérez et al. 2021; Zhang et al. 2015; Zhou et al. 2022). 
Detailed information on the catalytic performance in differ-
ent oxidation systems is provided in Table 1, and the reactive 
species generated are illustrated in Fig. 3a. Sharma and his 
colleagues compared removal efficiency of sulfamethoxa-
zole among several individual transition metals, i.e., Fe(II), 
Co(II), Mn(II), Cu(II), Ni(II), Fe(III), and Mn(III), and the 
results showed clearly that Ru(III) was the most effective 
peracetic acid activator to completely degrade sulfameth-
oxazole (Fig. 3b) (Li et al. 2021). Pan et al. (2021) found 
that  RuO2-rectorite exhibited complete Fenton-like oxida-
tion of sulfanilamide at pH 3.5 via the transformation of 
 H2O2–•OH. This composite also showed superior stability, 
high catalytic efficiency, and low Ru leaching during the 
recycling experiments (Fig. 4). Ru(III) was recently dem-
onstrated to significantly activate peracetic acid to oxidize 

Fig. 2  Tentative photocatalytic oxidation mechanisms for methyl blue 
degradation using RuC@g-C3N4/TiO2 hybrid. Reproduced with per-
mission from reference (Copyright 2018, Elsevier). Several reactive 
species would generate for RuC@g-C3N4/TiO2 hybrid through the 
reactions with the holes and electrons, which are considered involved 

in the actual oxidative and reductive reactions. The species are gener-
ally called reactive oxygen species including superoxide anion radical 
(•O2

−), hydrogen peroxide  (H2O2), singlet oxygen (1O2), and hydroxyl 
radical (•OH), which have enough strong reactivity to degrade almost 
all organic pollutants Jiang et al. (2018)



multiple organic micropollutants under neutral pH condi-
tions, which was much better than other metal ions-peracetic 
acid systems (Li et al. 2021). The coexisting water constitu-
ents, e.g., chloride and carbonate ions, had little effect on the 
oxidizing performance of the Ru-based catalysts (Fig. 5a) 
(Li et al. 2021). Mechanistic insights were obtained using 
electron paramagnetic resonance analysis and quenching 
tests, revealing the dominance of acetyl(per)oxyl radicals in 
accelerated pollutant elimination. Similar phenomena were 
also reported in a heterogeneous peracetic acid activation 
system using  RuO2-modified multi-well carbon nanotubes, 
in which surface-bound Ru(III)/Ru(IV)-mediated electron 
transfer played a critical role in tuning radical generation 
(Qian et al. 2022). Furthermore, Ru-based composites (e.g., 
Ru/molecular sieves, Ru/TiO2, and Ru/CeO2) can greatly 
enhance the Mn(VII) oxidation of organic micropollutants 
in different water matrices (Zhang et al. 2013, 2014, 2015). 
The catalytic performance depended on the solution pH and 
catalyst dose (Fig. 5b, c) (Li et al. 2021). In particular, the 
surface-deposited Ru(III) functioned as an electron shuttle 

to modulate the Mn(VII) reactivity to form  MnO2, while 
the resultant higher-valence Ru(VI) and Ru(VII) facilitated 
micropollutant oxidation as the co-oxidants. Notably, these 
Ru-based nanoparticles exhibited excellent stability during 
Mn(VII) oxidation.

In terms of oxone activation, various Ru-based catalysts 
(e.g.,  RuO2/Al2O3,  RuO2 nanosheets, Ru-doped  C3N4) have 
been reported for the highly effective decomposition of 
micropollutants (Lim et al. 2019; Yan et al. 2022; Zhou et al. 
2022). An initial attempt was made using activated carbon-
supported  RuO2 catalysts to activate Oxone to eliminate phe-
nol in water (Muhammad et al. 2012). Remarkably enhanced 
oxidation was obtained with 100% phenol abatement and 
60% total organic carbon removal, which were dependent 
on multiple reaction conditions, e.g., catalyst dosage, phe-
nol level, and oxone concentration. The mechanistic analy-
sis demonstrated the dominant role of  SO4

•− from oxone 
activation for sustainable water decontamination, and the 
activation energy was calculated to be 61.4 kJ/mol. A similar 
conclusion was obtained for oxone activation using highly 

Fig. 3  a Possible mechanisms for activation of oxidants by sup-
ported ruthenium nanoparticles. b Degradation of sulfamethoxa-
zole by peracetic acid activated by different metal  ions, including 
Ru(III), Co(II), Fe(II), Fe(III), Mn(II), Mn(III), Ni(II), and Cu(II). 

(Experimental conditions: [sulfamethoxazole] = 10.0  μM, [peracetic 
acid] = 200.0 μM, [metal ions] = 100.0 μM, pH = 7.0 ± 0.1, 10.0 mM 
phosphate buffer, T = 25 ± 1 °C.)

Fig. 4  Ruthenium oxide-rec-
torite composites applied in a 
heterogeneous Fenton-like sys-
tem for efficient degradation of 
sulfanilamide. A high catalytic 
efficiency was observed on such 
composite and the degradation 
process conformed to pseudo-
first-order kinetic correla-
tion. The leaching amount of 
ruthenium was 0.30 μg/L in 5 h 
and ruthenium oxide-rectorite 
possessed excellent reusability 
as well



stable two-dimensional  RuO2 nanosheets for the aqueous 
abatement of aromatic and non-aromatic compounds (Lim 
et al. 2019).

In addition to the radical-dominated mechanisms, Yan 
et al. (2022) and Zhou et al. (2022) reported non-radical-
mediated diclofenac degradation and bacterial inactivation 
using Ru-C3N4 and Ru-layered double hydroxides, respec-
tively. In particular, complete abatement of diclofenac was 
achieved within 10 min at pH 3.0–9.0 in the Ru-C3N4/Oxone 
system, which was much better than that in the other metal-
C3N4/oxone systems. This nanocomposite also exhibited 
prominent catalytic stability with limited Ru leaching. The 
activation mechanisms were proposed to be initiated by 
electron defect transfer between Ru and pyridine nitrogen. 
This is followed by the formation of  O2

•−, which is rapidly 
converted to 1O2 for pollutant removal. Product analysis and 
in silico toxicity prediction confirmed that the aquatic toxic-
ity of the oxidized intermediates was lower than the parent 
compound. More recently, the homogeneous oxone activa-
tion by aqueous Ru(III) presented a high oxidation perfor-
mance for different micropollutants mediated by the high-
valent  RuV = O intermediate (Zong et al. 2021). This newly 
detected Ru-based species mainly attacked the electron-rich 
moiety of the organic compounds, giving a higher oxidative 
selectivity than the radical species. Taken together, multiple 
reactive oxidizing species were involved in the Ru-driven 
oxone oxidation system, including •OH,  SO4

•−, 1O2, and 
 RuV = O intermediates. More in-depth investigations are 
eagerly pursued to clarify the underlying mechanisms of the 
chemical generation and modulation of reactive species in 
different Ru-based oxidation systems.

Catalytic reduction

Hydrogen‑assisted reduction

Hydrogen  (H2)-assisted decontamination of oxyanion  (AOx
−) 

pollutants in wastewater on Ru-based catalysts has been widely 
reported, e.g.,  NO3

−,  ClO3
−,  BrO3

−, and  ClO4
− (Huo et al. 

2017). Those toxic oxyanions are ubiquitous drinking water 
contaminants originating from both anthropogenic and natu-
ral sources, or are generated during water treatment processes 
(e.g., chlorination, ozonation, desalination, and electrochemi-
cal treatment) (Chen et al. 2017). These ions target multiple 
organs and can have carcinogenic, mutagenic, and/or endo-
crine disrupting properties. Catalytic reduction by  H2 was a 
charming technology to convert oxyanions into less toxic or 
innocuous end products (e.g.,  Br−,  Cl− and  N2), contribut-
ing to more sustainable drinking water treatment processes. 
There are two main pathways of oxyanion reduction by  H2 
on the Ru-based catalyst, including direct interaction with the 
hydrogenated metal nanoparticles (reactions 16–19), and the 
reaction between  AOx

− and spilled over atomic hydrogen at 
catalyst support surface away from the hydrogenated metal 
nanoparticles (reactions 20 and 21) (Chen et al. 2017) (Fig. 6),

(16)H2 +
∗M → 2[H]ads −M

(17)AO−

x
+

∗M ↔ (AO−

x
)ads −M

(18)
(AO−

x
)ads −M + 2[H]ads −M → (AO−

x - 1
)ads −M + H2O

Fig. 5  a Effect of chloride  (Cl−) and bicarbonate  (HCO3
−) on the 

oxidation of sulfamethoxazole by peracetic acid − Ru(III). Experi-
mental conditions: [sulfamethoxazole] = 10.0  μM, [peracetic 
acid] = 200.0  μM, [Ru(III)] = 100.0  μM, pH = 7.0 ± 0.1, 10.0  mM 
phosphate buffer, T = 25 ± 1 °C,  [Cl−] = 1.0 mM,  [HCO3.−] = 1.0 mM. 
b Effect of Ru(III) concentration, and c effect of pH on the degra-

dation of sulfamethoxazole by the peracetic acid–Ru(III) oxidation 
process. Experimental conditions: [sulfamethoxazole] = 10.0  μM, 
[peracetic acid] = 25.0 − 200.0  μM, Ru(III) = 25.0 − 200.0  μM, 
pH = 7.0 ± 0.1 except (C), 10.0  mM phosphate buffer, and 
T = 25 ± 1 °C (Li et al. 2021)



where M is the metallic Ru surface and  [H]ads − M is the 
chemisorbed hydrogen.

The kinetics of oxyanion reduction were highly dependent 
on the molecular structure of the components. Reduction of 
the four oxyanion contaminants with a broad range of chemical 
reactivity  (BrO3

− ≫  ClO3
− >  NO3

− ≫  ClO4
−) was observed 

(Chen et al. 2017). In addition,  ClO3
− and  NO3

− reduction on 
Ru nanoparticles under circumneutral pH conditions was inde-
pendent of pH (Chen et al. 2017), but pH-sensitive activity was 
observed for  BrO3

− reduction, and a significant decay of cata-
lytic activity was observed as the solution pH increased (Fan 
et al. 2019).  BrO3

− reduction on Ru was rather efficient if  H2 
gas was sufficient ( ∼ 100 mL  min−1), and the reaction followed 
pseudo-first-order kinetics, which revealed that the adsorption 
of  BrO3

− ions onto the Ru surface was the rate-determining 
step. The zeta potential of the Ru-based catalyst decreased 
with an increase in the solution pH. In the acidic medium, 
the functional groups on the surface of the Ru-based catalyst 
were protonated, causing an electrostatic attractive interaction 
between  BrO3

− and Ru-based catalysts, which was beneficial 
for promoting  BrO3

− reduction. In contrast, the Ru-based cata-
lyst was negatively charged at a higher pH, and the electrostatic 
repulsion between  BrO3

− and Ru-based catalysts suppressed 
the adsorption reduction of  BrO3

−. For the  ClO3
− and  NO3

−, 
their kinetic rates on Ru were so low that their activities were 
insensitive to the solution pH (Chen et al. 2017).

Electroreduction

The electrochemical reduction has emerged as a promis-
ing alternative with outstanding safety advantages that 

(19)(AO−

x - 1
)ads −M ↔ AO−

x - 1
+

∗M

(20)[H]ads −M +
∗Support → ∗M + [H]ads − Support

(21)
2[H]ads − Support + AO−

x
→ AO−

x - 1
+

∗Support + H2O

can avoid  H2 storage and transportation. In a recent study, 
Sun et al. (2022) reported the application of a Ru/carbon 
nanotube catalyst for the highly efficient electroreduction 
of N-nitrosodimethylamine, a common carcinogenic and 
genotoxic compound in water. This Ru-based composite 
presented a higher catalytic performance (793.3 μmol  L−1 
 gcat

−1  h−1) for N-nitrosodimethylamine reduction than the 
other metal-doped carbon nanotube did (i.e., Rh/carbon 
nanotube, 471.0  μmol   L−1   gcat

−1   h−1; Pd/carbon nano-
tube, 313.8  μmol   L−1   gcat

−1   h−1; Pt/carbon nanotube, 
152.3 μmol  L−1  gcat

−1  h−1) (Table 1). The combined quench-
ing tests and reactive species identification suggested that 
direct electron reduction on the electrode surface and indi-
rect atomic hydrogen  (H*)-triggered reduction were the two 
dominant reaction patterns for the conversion of nitrosodi-
methylamine to dimethylamine and ammonia (Fig. 7). This 
Ru-driven electrocatalytic system could also possess a supe-
rior reductive efficiency for different dialkyl N-nitroamines, 
suggesting its universality. Recycling experiments demon-
strated the excellent stability of the Ru/carbon nanotube 
electrocatalyst for N-nitrosodimethylamine reduction. Ru 
was proved to strongly adsorb hydrogen, which was further 
formed as an active  H* via the Volmer step (Xu et al. 2018). 
Electrochemical hydrogenation is the main mechanism 
occurring on Ru during the electroreduction of aquatic pol-
lutants (Chen et al. 2017; Zhu et al. 2021a). In the reaction 
system, electrochemical hydrogenation chemisorbed hydro-
gen is generated at the cathode surface through the reduction 
of water (Eq. 22).

It should be noted that during electrochemical hydrogen-
ation, the hydrogen evolution reaction, via the Heyrovsky 
or Tafel step (reactions 23 and 24), inevitably competes 
with the reduction of pollutants (Moya et al. 2020), if too 
many  H* are accumulated on the Ru surface. Hence, the 
rate of water reduction should be lower than the pollutants’ 

(22)2H2O + 2e− +M → 2[H]ads −M + 2OH−

Fig. 6  a The proposed reductive mechanisms of oxyanion substrates 
 (AOx

−) reduction requiring direct interaction with the Ru nanoparti-
cles; b the reaction between  AOx

− and spilled over atomic hydrogen 

at the catalyst support surface away from Ru nanoparticles. Modified 
with permission from Chen et al. (2017)  (Copyright 2017, Elsevier)



hydrogenation step. Otherwise, the evolved  H2 could form a 
layer covering the electrode surface and limit the mass trans-
fer of pollutants to the active sites. As a result, the hydrogen-
ation of pollutants was counteracted. Sun et al. (2022) found 
that an enhanced N-nitrosodimethylamine removal with 
potential increasing from − 0.7 to − 0.9 V versus saturated 
calomel electrode was obtained and attributed to the more 
effective generation of active  H* and provision of reductive 
electrons  (e−) at more negative potentials; however, further 
increasing potential from − 0.9 to − 1.1 V versus saturated 
calomel electrode did not bring in significant enhancement 
of nitrosodimethylamine reduction, since the  H2 evolution 
gradually prevails on the electrode via recombination of 
 H* to form  H2 by the Heyrovsky or Tafel routes at lower 
potentials. Remarkable  H2 evolution on the electrode leads 
to a decrease in the number of catalytically active sites and 
prohibits the migration of active electrons and pollutants at 
the electrode interface.

Other catalytic reductions

Pollutants could also be efficiently eliminated over Ru-based 
catalysts using  NaBH4 (Zhao et al. 2018; Zaoui et al. 2021) 
or  N2H4 (Rambabu et al. 2015; Zhao et al. 2017b) as reduct-
ants. Veerakumar et al. (2015) applied  NaBH4 as a hydrogen 
donor to reduce p-nitroaniline over Ru nanoparticle-modi-
fied 3D mesoporous carbon and obtained a high apparent 
kinetic rate of p-nitroaniline reduction around 0.19  s−1. Zhao 

(23)[H]ads −M + H2O +M + e− → H2 + OH−

(24)[H]ads −M + [H]ads −M ↔ H2

et al. (2017a) found that Ru nanoparticles showed superior 
size-dependent catalytic performance with the best kinetic 
rate constant of 1.52  min−1 during the catalytic reduction of 
nitroaromatic compounds and azo dyes. The apparent kinetic 
rate of Ru nanoparticles with a small size (2.6–8.2 nm) could 
far surpass the catalyst with a large size of 8.2–51.4 nm. 
 NaBH4, which features strong reducibility, provided the pos-
sibility of reducing nitroaromatic compounds to amines (Chu 
and Su 2014). However, this process is kinetically restricted 
in the absence of nanocatalysts and proceeds slowly. Here, 
the presence of Ru nanoparticles nanocatalysts lowered the 
activation energy and accelerated electron transfer from 
 NaBH4 to the probes. Electrons transferred from  BH4

− pro-
vided electrons and protons to the probes adsorbed on the 
surface of the Ru-based catalyst (Chauhan and Srivastava 
2020). The adsorption of the probes was driven by chemi-
cal interactions (chemisorption) between the particle surface 
and probes. Finally, the end product was formed, followed 
by the desorption of the product from the Ru surfaces and 
reactivation of the catalytic system. Ru nanoparticles also 
exhibited superior catalytic performances in comparison to 
Pt nanoparticles and Ir nanoparticles at ambient tempera-
tures. The kinetic rate constant of Ru nanoparticles was 
almost 64-fold and 12-fold higher than that of Ir nanoparti-
cles and Pt nanoparticles.

Environmental impact

The United Nations Sustainable Development Goals pro-
vide “a blueprint for peace and prosperity for people and the 
planet,” set out in the 2030 Agenda for Sustainable Devel-
opment and adopted by all UN member states in 2015. The 

Fig. 7  Mechanistic illustrations of highly effective electrocatalytic 
reduction of nitrosodimethylamine on Ru/carbon nanotube catalyst. 
The electrocatalytic reduction of nitrosodimethylamine is accom-
plished by both direct electron reduction and atomic H*-mediated 
indirect reduction pathways. Nitrosodimethylamine would be finally 

reduced to dimethylamine and ammonia. The reduction efficiency of 
nitrosodimethylamine strongly relies on cathode potential, initial con-
centration, and solution pH. Modified with permission from Sun et al. 
(2022)  (Copyright 2022, Elsevier)



Ru-driven environmental catalysis for water decontamina-
tion would substantially minimize illnesses from hazardous 
chemicals and air, water, and soil pollution and contamina-
tion, which would help achieve the goals of “Good Health 
and Well-Being.” On the other hand, the Ru-driven advanced 
oxidation and reduction technology could improve water 
quality by reducing pollution, eliminating dumping, mini-
mizing the release of hazardous chemicals and materials, 
halving the proportion of untreated wastewater, and sub-
stantially increasing recycling and safe reuse globally. These 
features promote the achievement of the goals of “Clean 
Water and Sanitation” by 2030. The land-based activities 
were closely related to the ocean ecological system. Efficient 
elimination of the refractory organic and inorganic com-
pounds prior to their entrance to the ocean would prevent 
and significantly reduce marine pollution.

Therefore, application of Ru-driven environmental cataly-
sis for sustainable water decontamination is considered an 
effective and environmentally friendly process for degra-
dation of the toxic and bio-recalcitrant pollutants. Prior to 
scaling up this catalytic system for future practical applica-
tions, some obstacles need to be addressed. The complexity 
of the matrix of the wastewater is one of the challenges of 
implementing Ru-based catalysts in the treatment of real 
wastewater. The presence of various organic and inorganic 
compounds might severely poison the catalytic sites and in 
turn decrease the removal efficiency. For example, reduced 
sulfur compounds (RSCs), coming partly from microbial 
anaerobic reaction or contained in the natural organic mat-
ter, have shown a poisoning effect on the  catalytic ability 
by the adsorption of sulfur and the formation of Ru sulfide 
on the catalyst surface. In that case, the hydrogen adsorption 
on Ru is hindered, and the mobility of the hydrogen atoms 
located on the catalyst surface is reduced. On the other hand, 
the presence of organic suspended solids in the wastewa-
ter would inevitably limit the photocatalytic efficiency so 
some pretreatments should be implemented to remove the 
suspended matters. In addition, the low conductivity of real 
wastewater (compared to synthetic effluents) is often a major 
bottleneck for the development of electrochemical technolo-
gies for environmental remediation. Since all the Ru species 
are toxic, especially the  RuO2, the stability of catalysts is 
critical for the safety of treatment effluent. Finally, strides 
should be made on preparing catalysts, which should be 
cost-effective and environmentally friendly.

Conclusion

With increasingly serious water pollution, a simple, non-
hazardous, low energy input, and efficient treatment process 
is highly desirable for the degradation of micropollutants, 
pathogenic microorganisms, oxyanions, and nitrosamines 

in drinking water and wastewater treatment. Ru, as the 
cheapest noble metal as catalysts, has been proven to have 
high activity for the elimination of pollutants by oxidation 
processes carried out by oxone, •OH, 1O2 formation, and 
high-valence Ru, or by reduction processes via  H* attack. 
To promote further practical application of Ru-based mate-
rials in water treatment, three efforts may be made:

(1) Control of Ru leaching
Ru composites are toxic to many aquatic organisms

(Kruszyna et al. 1980; Mello-Andrade et al. 2018). Ru
nanocatalysts are suggested to be well deposited on
suitable substrates where Ru could be well anchored
so that less leakage of Ru species could be achieved.
Metal alloys are composed of different atoms, unlike
pure metals, where the atoms are all the same. This
makes it harder for atoms to move around in metal
alloys, leading to alloys that are typically much more
durable than pure metals. Hence, Ru-based alloys are
expected to achieve better durability during catalysis.

(2) Selective catalysis
Oxidation process: Ru-driven environmental cataly-

sis can generate multiple reactive oxidizing species
such as •OH,  SO4

•−, 1O2, and  RuV = O intermediates.
Among them, the less selective •OH and  SO4

•− species
could also react with the background water constituents
(e.g., nitrate, chloride, and dissolved organic matter),
causing unnecessary oxidant consumption and the pro-
duction of toxic byproducts. Comparatively, 1O2 and
 RuV = O species are recognized as selective oxidants
that preferentially attack the target micropollutants and
pathogenic bacteria for water decontamination. There-
fore, another research frontier would be tuning the gen-
eration of selective oxidizing species in Ru-catalyzed
chemical systems to achieve more environmentally
friendly and efficient water remediation.

Reduction process: hydrogenation is the main mecha-
nism of pollutant reduction over Ru-based catalysts.
It is highly important to avoid the hydrogen evolution
reaction (H* coupling process) to improve energy effi-
ciency. The hydrogenation activity was affected by the
complexity of the matrix of the wastewater effluent.
The presence of various organic and inorganic com-
pounds may severely hinder the reduction of the target
compound and, in turn, decrease the removal efficiency.
In addition, the low conductivity of real wastewater
compared to synthetic effluents is often a major bottle-
neck for the development of electrochemical reduction
technologies for environmental remediation.

(3) Reactivity modulation
The rational design of catalysts is of great impor-

tance for promoting the catalytic activity of Ru for
pollutant decontamination. Several strategies can be



used to improve the catalytic activities: (1) precisely 
tuning the catalysts’ crystalline facets. Numerous stud-
ies have reported that pollutant elimination is a facet-
dependent reaction (Chai et al. 2017; Jiang et al. 2020; 
Lou et al. 2022); (2) defect engineering. The defec-
tive sites are not only more likely to exhibit selective 
adsorption of target pollutants from complex matrix 
but also have a higher ability of radicals and  H* forma-
tion to attack the pollutants (Liu et al. 2018; Shen et al. 
2020), and (3) bimetallic surfaces and alloys (Koper 
2004). The enhanced catalytic activity of bimetallic 
surfaces in comparison to monometallic surfaces is 
usually ascribed to two effects: the bifunctional effect, 
in which the unique catalytic properties of each of the 
elements in the alloy combine in a synergetic fashion 
to yield a surface that is more active than each of the 
elements alone, and the ligand or electronic effect, in 
which one of the elements alters the electronic proper-
ties of the other to yield a more active catalytic surface; 
(4) other approaches such as tuning the nanoparticle or
nanocluster’ size (Nutt et al. 2005; Zhao et al. 2017a)
and selective suitable support to have a support effect
(Comotti et al. 2006).
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