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Abstract This chapter presents an overview of the state of the art in natural
language processing, exploring one specific computational architecture, the
Transformer model, which plays a central role in a wide range of applications.
This architecture condenses many advances in neural learning methods and
can be exploited in many ways : to learn representations for linguistic entities ;
to generate coherent utterances and answer questions ; to perform utterance
transformations, an illustration being their automatic translation. These different
facets of the architecture will be successively presented, also allowing us to discuss
its limitations.
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Introduction
Language technologies are prominent among the applications of Artificial Intelli-
gence (AI) and are now reaching the general public. They are essential for an
effective access to textual information available on the Web or in large document
databases ; they enable for new forms of interaction with the machine, either by
voice or by means of writing aids ; they help to communicate with other humans,
for example through machine translation systems ; in a more underground way,
these algorithms structure, organize, filter, select, transform and make possible
the management of the myriads of texts and audio recordings that circulate
continuously on the Web or on social networks.

These technologies are gradually becoming more efficient for ever-increasing and
varied uses. Their progress is the result of a combination of several factors : on
the one hand, the development of sophisticated machine learning algorithms
capable of taking advantage of the high performance computing devices ; on
the other hand, the possibility to access vast amounts of textual data, whether
annotated or not, to feed the training process. Among the algorithms for text
processing, neural algorithms and, in particular, the Transformer architecture
are nowadays at the forefront. Transformers have become central to carry out
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three types of computations that, until then, required dedicated architectures :
first, text mining and information retrieval algorithms, which benefit from the
richness of the internal representations calculated by this model ; second,
linguistic analysis algorithms, which can take advantage of the Transformers’
ability to integrate and model very long-distance dependencies ; finally, text
generation algorithms, which use this model primarily for their predictive
ability. If we add that this same architecture is also suitable for the processing of
oral or even multimodal data, and that it allows efficient calculations on a very
large scale, we can better understand why this model has become the modern
workhorse of computational linguists.

Writing machines : language models
The simplest model
Let us consider starting a basic task of language processing : spam filtering. Its
probabilistic treatment involves three steps :

1. the collection of a representative set of emails, containing a set Dok of
acceptable emails (hams) and a set Dko of unwanted emails (spams) ;

2. the construction of a numerical representation for texts. A very simple
representation encodes each email d as a large binary vector h in {0, 1}|V |,
with V a predefined vocabulary. For each component, hw = 1 if word
w appears in the email, 0 otherwise. These representations (so-called
“bag-of-words”) are inherently sparse, since most of the components of
this vector are null ;

3. learning a probabilistic model P (OK|d) ∝ exp
∑

w θwhw, 1 which eva-
luates the likelihood that a mail is acceptable. The parameter vector θ
weights the contribution of each individual word to the final decision. The
estimation of θ is realized by maximizing the log-likelihood of the training
data, according to :

`(θ) =
∑

d∈Dok

logP (OK|d) +
∑

d∈Dko

log(1− P (OK|d)).

This “historical” model is ubiquitous in modern natural language processing :
multi-class routing and classification of documents, “sentiment” or opinion
analysis (classes correspond to the polarity of the text), textual entailment,
aimed at deciding whether a sentence logically implies another sentence, etc.
It already highlights three essential concepts of the statistical approach that
has become dominant since the 1990s to address NLP problems : (a) the
computation of numerical representations (here binary representations) to encode
linguistic entities and their properties ; (b) the use of these representations in

1. The notation P (u|x) ∝ exp f(θ, x) means that the conditional probability of event u
given x is proportional to the logit exp f(θ, x). P (u|x) is obtained by normalizing this term,
that is dividing by the summation over all possible outcomes

∑
u′ f(θ, x).
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probabilistic models evaluating discrete decisions (here : to classify an email in
one of the two possible classes) ; (c) the estimation of model parameters using
annotated data (here : correct and incorrect emails). As we will see, the most
recent developments in the field continue to rely on these concepts, using neural
networks to learn incomparably more sophisticated representations and models
than the one outlined above.

Word order
Filtering emails is a simple task : useful representations for this task can disregard
the order of word, and more broadly, the structure of the document. However,
these representations ignore one of the essential properties of texts, namely their
organization in a linear sequence of units. Language models are probabilistic
models designed to take into account this sequentiality. We use w = w1 . . . wT

to denote a discrete sequence including T units (words) denoted wt. In a n-gram
language model, the probability of this sequence is written as :

P (w1 . . . wT ) =
∏T

t=1 P (wt|w1 . . . wt−1)
=

∏T
t=1 P (wt|wt−n+1 . . . wt−1).

(1)

The first line breaks down the probability of the sequence as a product of
conditional distributions ; the second makes this decomposition tractable by
assuming locality of dependencies within the sequence. Formally, this means that
the probability of occurrence of unit wt is independent from the past units, given
the context composed of the previous n−1 words. The corresponding conditional
distributions are discrete probabilities that parameterize the model ; the bulk of
these parameters will be denoted θ. Assuming that the vocabulary V is finite
and known, these parameters are in finite numbers. Conceptually, this model is
identical to the previous one : it assigns each « document » (here reduced to the
few words preceding the current position) to a « class » (here, one word among
all possible words). Effective estimation procedures for the n-gram model are
based on counts of occurrences in large corpora, and the resulting parameters
estimates take the following form for a trigram model (n = 2) :

∀u, v, w ∈ V : P (w|uv) = n(uvw)∑
w′∈V n(uvw′) , (2)

where n(uvw) is the number of occurrences of the sequence uvw in a training
corpus.

The two basic assumptions of the n-grams model (local dependencies, finite
vocabulary) are linguistically naive. On the one hand, there are many examples of
dependencies between distant words. These dependencies can be syntactic as in
"the decisions of my branch manager are effective", where the plural agreement is
between "decisions" and "are", separated by four words ; they can be semantic, as
in "the judges of the European Court of Justice have decided...", where "decided"
can be predicted as a typical action carried out by judges ; or even discursive,
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thematic or stylistic. There are, on the other hand, multiple arguments that
oppose the idea of a finite vocabulary : we return to this issue in section .

Despite their simplicity, language models are useful for a wide range of appli-
cations. First, they can be used as automatic text generators : it suffices to
repeatedly use equation (1), sampling at each step the next word conditioned
on the previously generated tokens. Second, these models make it possible to
compare several sequences in order to select the most plausible one, which often
will also be the most grammatically correct one. Such decisions are useful for a
spell checker, which must choose the best correction ; or for a machine translation
system, to select the most correct translation hypothesis, etc. Third, they are
useful for comparing languages : if a language model is trained with French texts
and another one with Italian texts, comparing the probabilities of a sentence for
these two models provides a way to decide the the most likely language of that
text. It can also be used for other types of linguistic sequences : sequences of
sounds, letters, or even sequences of utterance to model discourse dependencies.

Initially developped for speech processing applications [Jelinek and Mercer,
1980, Jelinek, 1997], language models have quickly became basic tools for the
statistical processing of languages and have given rise to countless developments,
notably including improvements in their estimation procedures. Pure count-base
estimators (equation (2))) are in fact not appropriate to model the probability of
very rare events. When using vocabularies of several tens of thousands of units, the
vast majority of three word sequences are never observed, and using counts yields
zero estimates for most parameters. Smoothing methods aim to improve these
estimates, for instance by using word clusters. A review of these developments
is in [Rosenfeld, 2000] ; generalizations of the n-gram based on Markov models
or stochastic grammars are in [Charniak, 1993] ; recent introductions to these
techniques can be found in various NLP textbooks [Manning and Schütze, 1999,
Jurafsky and Martin, 2000, Eisenstein, 2019].

Neural models : smoothing the context space
Feedforward language models

The next word prediction task implemented in language models is fundamentally
a classification task : [Bengio et al., 2003] propose to implement it using the
feedforward network) of Figure 1 (corresponding to a four-gram model, n=3).

The network computing P (w|tuv) inputs the three vectors t,u,v in {0, 1}|V |,
where words t,u, and v are replaced by binary vectors whose only non-zero
component is the word index in the vocabulary (one-hot-encoding). The following
computations are then performed :

i = [R; R; R], with R ∈ R3|V |×dmd

h = φ(Wihi + bih), with Wih ∈ R3dmd×dmd et bih ∈ Rdmd

o = Whoh + bho, with Who ∈ Rdmd×|V | and bho ∈ R|V |

P (w|tuv) = softmax(o)w, with softmax(x)t = exp(xt)∑
t′ exp(xt′ )

(3)
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Figure 1 – A multi-layer feedforward network implementing a s4-gram model

These four steps respectively correspond to :
1. the computation of dense numerical representations, via the matrix R,

which projects each input vector into a dmd dimensional space, with
dmd � |V | ;

2. the introduction of a « nonlinearity », via the function φ(), the hyperbolic
tangent function (tanh) in the original implementation ;

3. the calculation of non-normalized logits for each of the words that can
follow the context tuv, obtained by comparing the output of the hidden
layer h with the lexical output representations Who

4. the normalization of these scores via the softmax operator, which outputs
a probability vector.

Training such models requires to use numerical optimisation methods that adjust
parameters in θ = {R,Wih,bih,Who,bho} so as to make more likely the
associations between contexts and words observed in a large corpus. Formally,
for each sequence [t, u, v, w] in the training corpus, one wish that the quantity
logP (w|tuv) = ow − log

∑
w′ exp ow′ will be as large as possible. This leads to

maximizing (in θ) the following cross-entropy criterion :

`(θ) =
∑

[t,u,v,w]

logP (w|tuv) = ow − log
∑
w′

exp ow′ . (4)

This optimization is typically performed using stochastic gradient descent me-
thods, which update parameters based on gradient values. Note that training
again does not require any annotation and can be carried out on huge quantities
of texts, as long as they can be segmented into “words”.
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The shift from discrete models to continuous space representations is computa-
tionally intensive, because computing the softmax operator involves a sum over
a large vocabulary. Practical solutions are proposed and evaluated in [Schwenk,
2007, Le et al., 2011] ; we discuss them in Section . However, this shift has proven
decisive to improve the quality of applications such as speech recognition or
machine translation. This is because two quantities are learned simultaneously :

— a numerical representation h summarising the context made of several
previous words into a low-dimensional vector, from which the conditional
distribution of successor words is calculated. This ability to compute
numerical representations of the prediction context is assimilated to the
encoding function of the neural network.

— a lexical embedding of the vocabulary V into Rdmd through matrix R.
This embedding has remarkable properties ; in particular, words that
share many contexts, which are often semantically related words or words
of the same morphological family, tend to get close in the embedding
space. The use of these embeddings as generic lexical representations
[Collobert et al., 2011] has become widespread with the development of
rapid and effective methods for calculating them [Mikolov et al., 2013,
Bojanowski et al., 2016].

Recurrent neural networks as language models

The previous model shares with the n-gram model the use of a context restricted
to neighbouring n − 1 words. The use of recurrent networks [Elman, 1990]
makes it possible to overcome this limitation and to compute terms such as
P (wt+1|w1 . . . wt) without resorting to locality assumptions. The strength of
this approach and its superiority over the feedforward model are highlighted in
[Mikolov et al., 2010], who present a network capable of taking into account an
unbounded context. It contains the same two components as before, namely : (a)
dense numerical representations for lexical units computed by the matrix R ; (b)
a context encoding function defined here recursively by φ(), which again denotes
a non-linear function :

ht = φ(Wh′hht−1 + Rwt + bh)
= φ(Wh′hφ(Wh′hht−2 + Rwt−1 + bh) + Rwt + bh). (5)

As before, the final step will project the internal representation ht to yield
the conditional output distribution associated with context w≤t = w1 . . . wt

according to P (w|w≤t) = P (w|ht) = softmax(Whoht + bo). Parameters of the
recurrent network {θ = R,Wh′h,Who,bh,bo} are trained by maximizing the
cross-entropy loss function.

Unfolding the recursion (second line of equation (5)) makes the functional
relationship between ht and words wt and wt−1, then, by recurrence, with all
previous words. This also highlights that the influence of words decreases with
their distance to the current position. It also highlights a computational difficulty
associated to the direct computation of the gradient (by the rules of derivation
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of compound functions), which gives rise to numerical instabilities that make
learning delicate. Remedies, which involve the use of more complex dependencies
between ht and ht−1 are proposed by Hochreiter and Schmidhuber [1997], Cho
et al. [2014b]. They realize the full potential of these networks, which are then
able to partly capture dependencies between distant words — such as the one
observed in English between verb and subject, which must agree in number and
person regardless of their distance in the sentence (see [Linzen et al., 2016] for a
study of such phenomena). Their expressiveness as a computational model is
analyzed in [Merrill et al., 2020].

In practice, however, the recursive formulation of the computation of latent
representations poses a major problem, as it requires each sequence to be
processed word by word from left to right in the order of their appearance. It is
impossible to build ht without having previously computed ht−1, which itself
requires ht−2 etc. ; such models are said to be auto-regressive. As a result, it is not
possible to parallelize the computation of the objective function (equation (4))),
which significantly slows down the training process.

Recurrent models as "pure" representations : ELMo

Among the many extensions of these models, the most remarkable is their use
as “pure” encoders. Let us first note again that learning such language models
does not require annotation and can therefore be carried out on very large
text corpora. Assuming that the parameters are known, a recurrent network
transforms a string of words w1 . . . wT into a sequence of vectors h1 . . .hT . The
same process can be performed by running the sequence backwards, from wT

down to w1, yielding another vector sequence h̃1 . . . h̃T. Concatenating the two
representations for word wt yields [ht; h̃t], which encodes wt in a bidirectional
context integrating both previous and subsequent words. It also turns out that
[h̃1; hT] is a very good way to represent the whole variable-length sentence
w1 . . . wT into a fixed-size vector. This vector can then be used to compare
sentences or to make predictions about their polarity or their meaning. It finally
appears that stacking bi-directional recurrent layers, where [ht; h̃t] are used as
the input of a new layer, will deliver deeper and better representations. These
principles are used to construct the ELMo model [Peters et al., 2018] model, one
of the first to highlight the richness of these deep contextual representations,
which can serve as a beneficial plug-and-play pre-processing module for any
application dealing with linguistic sequences.

Consider, for instance, the task of textual entailment, which consists
of deciding whether sentence wP logically entails sentence wC . For this
task, we need to predict a Yes/No answer given the two input sentences,
yielding a model P (Yes |wP , wC). A possible approach encodes each sen-
tence into a single vector (respectively ELMo(wP ) and ELMo(wC)) that
are then concatenated and used in a log-linear model according to :
P (Yes |wP , wC) ∝ exp(W[ELMo(wP ); ELMo(wC)] + b), where matrix W and
vector b are the model parameters. By pre-training the parameters of the ELMo
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model, then by fine-tuning those of the textual entailment model, it becomes
possible to achieve very good performance even when the train data of the
textual entailment model is limited.

Defining the vocabulary
We left open the question of the support of probability distributions represented
by equations (1) and (3). They presuppose the existence of a finite inventory
V of discrete units. To model sequences of letters, sounds or syllables, this
hypothesis is easy to defend. For sequences of words, it no longer makes sense,
as no corpus, however large, can exhaust the word formation processes, not to
mention borrowings from other languages, and extra-lexical (names, numbers,
acronyms) whose occurrences must also be modelled. This issue has long been a
source of difficulty for language models and has justified to take into account
very large vocabularies, despite the associated computational problems.

A better trade-off is achieved by abandoning the notion of word and segmenting
texts into sub-lexical units, by means of processes that are themselves optimized
over large corpora to take frequencies of occurrences into account. Frequent
words are thus preserved in their integrity, while the rarest words are split
into subwords, if necessary reduced to mere sequences of letters. This makes it
possible to manipulate medium-size vocabularies (containing tens of thousands
of units), while at the same time preserving the ability to compute the proba-
bility of arbitrary sequences (possibly including unknown words, made of the
concatenation of known subwords). The best known-algorithms for learning such
vocabularies are the Byte Pair Encoding (BPE) algorithm [Gage, 1994, Sennrich
et al., 2016] and the unigram algorithm [Deligne and Bimbot, 1995, Kudo, 2018].

Example segmentations realized by these algorithms are in Figure 2.

Figure 2 – Sub-lexical unit segmentation of the beginning of the French,
English and German versions of the Universal Declaration of Human Rights.
The vocabulary contains 10,000 units, character ’_’ identifies word-initial units.
With this segmentation model optimized on French texts, only rare words (such
as ‘dignité’, ‘fraternité’) are segmented. It is also used to segment, with the same
alphabet, texts written in other languages, here sentences in English and German.
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The Transformer model
Attention, a fundamental mechanism
Having established all the necessary basic concepts of LMs, we now turn to the
Transformer model, which relies on a more generic and powerful model to encode
the context of each decision.

Encoding the context

The main idea of the Transformer model of Vaswani et al. [2017] is to make
the representation of word wt depend on all preceding words according to
ht = φ(w1 . . .wt), while at the same time removing the recurrence of the com-
putation of φ() so as to be able to parallelize it. In the Transformer model,
this computation is achieved by stacking L layers. Each layer l recombines the
representations from the previous layer h(l−1)

1 . . .h(l−1)
t to construct outputs

h(l)
1 . . .h(l)

t through elementary operations : linear projections, linear combina-
tions, vector concatenation, plus feedforward networks. The recursion of the
recurrent model is thus replaced by a stack of layers, each having a global scope.
The result remains the same as for other language models : a numerical vector
representation of the context that summarises all the previous words, based on
which one can predicts the next word in the sequence. Figure 3 illustrates the
context encodings computed by these various architectures.

Figure 3 – The encodings of the left context computed by various language
models : n-gram feedforward models (FF LM) encode only a small context ;
Recurrent models (RNNs) assume that close words are more important than
remote words ; Transformer models (Tr LM) process all the context words on an
equal footing.
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Formally, each layer in a Transformer is parameterized by a set of K attention
heads and by a multi-layer feedforward model. Each attention head is para-
meterized by three projection matrices Q,K,V in Rdmd×dkv and performs the
following computations to derive h(l)

t from the outputs of the previous layer
{h(l−1)

s , s = 1 . . . t}. For the kth head in layer l :

(6.q) Query qt
(k,l) = Q(k,l)ht

(l−1) (∈ Rdkv)
(6.k) Keys ks

(k,l) = K(k,l)hs
(l−1),∀s ≤ t (∈ Rdkv)

(6.v) Values vs
(k,l) = V(k,l)hs

(l−1),∀s ≤ t (∈ Rdkv)
(6.a) Attention α

(k,l)
s = softmax( 1√

dkv
,ot)s,∀s ≤ t (∈ [0, 1])

avec ots = qt
(k,l)T ks

(k,l),∀s ≤ t
(6.o) Output gt

(k,l) =
∑

s≤t α
(k,l)
s vs

(k,l) (∈ Rdkv)

(6)

The first three steps compute dkv-dimensional projections of their input, respec-
tively called query, key and value. The dot product ots computes a similarity
between the query at position t and the keys at all positions before t (included).
These similarities are normalized by the softmax operator, which transforms
them into attention coefficients in [0, 1]. The last step linearly combines the
values to generate the output vector.

Each layer comprising several heads, it remains to aggregate their results. Two
elementary operations come into play. The first is a transform made by a multi-
layer perceptron according to :{

f (l)
t = φ(Wif

(l)g(l)
t + bif ) ∈ Rdff , with φ() a non-linear function.

h(l)
t = Wfof (l)

t + bfo ∈ Rdmd .
(7)

The input g(l)
t of this perceptron is the concatenation of the outputs of the K

heads, to which we add the output of the previous layer : g(l)
t = [g(1,l)

t ; . . . ; g(K,l)
t ]+

h(l−1)
t . Adding the output of the previous layer serves several purposes : (a) to

provide gradients with a direct path from the higher layers to the lower layers ;
(b) to ensure that ht

(l−1) and ht
(l) remain close, and that each word thus retains

its singularities, regardless of the influence of its context. One consequence is
that both terms must have the same dimensions, which implies K × dkv = dmd.
A typical implementation of this forward propagation step projects g(l)

t via
Wif

(l) into a dff-dimensional vector, with dff � dmd, for instance dff = 4dmd ;
the non-linearity of the hidden layer uses function φ() = ReLU (for Rectified
Linear Unit).

The second basic operation normalizes the outputs, so that input and output
vectors will remain commensurable throughout the layers. At a high level,
each layer simply recombines the current representation at position t so as to
incorporate the influence of the preceding words. Unlike the recurrent model,
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where the influence of the context words is computed in a left-to-right manner,
in this model no position is privileged, and each attention head, in each layer,
can select the positions that are the most significant for the current position,
via the attention coefficients α.

Limiting conditions : layers 0 and L

We still have to describe the inputs and outputs of this system. For the input
h(0)

1 , one can choose to use either one-hot representations (see Section ) or
non-contextual representations computed by the skip-gram model [Mikolov et al.,
2013]. However, lexical representations alone are not sufficient. In fact, equations
((6).[q-v]) do not distinguish between indices, whether close to or distant from
the current position t. This illustrates the potential of Transformers to take
into account non-local dependencies better than recurrent networks. However,
it is useful to introduce the notion of position in the sequence, for example by
encoding each index with s a dmd-dimensional vector ps, which is added to the
lexical embedding. This positional encoding is either learned or computed by a
deterministic function defined in [Vaswani et al., 2017] as :{

ps[2i] = sin(t/100002i/d)
ps[2i+ 1] = cos(t/100002i/d)

The output of the last layer h(L)
t is used to compute the probability of the next

word at position t+ 1 and involves the same steps as for the standard neuronal
model (equation (3)) : a linear transformation in a |V |-dimensional space to
obtain logits, that are then normalized into a probability distribution.

Causal Transformer as pure language models
The presentation above expresses the computation of h(l)

t as a sequential ope-
ration : h(l)

1 , l = 1 . . . L are first computed, then h(l)
2 , l = 1 . . . L in the context

of h(l)
1 , l = 1 . . . L, etc. This is the most natural and computationally effective

method for language models, since the representation of each word is computed
only once. This model is dubbed as self-attentional (since the context consists of
the previous words in the same sequence) and causal (the representation of each
word only depends on the previous words). It is used for instance in the GPT-*
architectures [Radford et al., 2019, Brown et al., 2020]. A non-causal variant
recomputes all representations at each time steps, i.e. first h(l)

1 , l = 1 . . . L, then
{h(l)

1 ,h(l)
2 , l = 1 . . . L} : this means, for instance, that the representation h(l)

1 will
change over time, integrating the context of words to its right as they are revealed.
This variant, sometimes called prefix language model, is more computationally
involved, but seems to yield better results [Raffel et al., 2020].

Like other LMs, these architectures generate texts from left to right, by sampling
at time step t the next word wt according to P (wt|ht−1). Trained on very large
corpora, they generate texts that are often grammatically correct, or even show
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a form of global consistency. This suggests that Transformers are able to model
dependencies between distant words in the same sentence or even in different
sentences (when the context is sufficiently large). It is also possible to begin a
text and let the model continue the generation. This form of text initialization is
dubbed « prompting », where the prompt denotes the user-selected prefix. It turns
out that with a proper choice of these “prompts”, a language model can perform
multiple tasks : when the prompt is composed of a text and comprehension
questions, the model generate the answers, when prompted with a sentence in
French, the model generates the translation into English, etc. It is possible, at
the cost of a short learning stage, or by prompting with a handful of examples,
to improve this behavior [Radford et al., 2019]. Owing to these remarkable
properties, some of which are still poorly understood, large language models
nowadays constitute a basic building block to address a large number of language
processing tasks.

Figure 4 – Prompting a language model. By varying the prompt, the same
model can be used to perform multiple tasks. From top to bottom, language
generation is used to write the continuation of a prompted text, to write a
summary, to answer a question, to check the implication between two sentences,
etc. Examples are from [Radford et al., 2019, Brown et al., 2020]

Transformers as representations : Bert and its clones
As with recurrent models, the use of Transformers as pure contextualized repre-
sentation extractors has proved to be extremely powerful and effective. Originally
proposed in [Devlin et al., 2019], the BERT model is mostly a non-sequential and
non-causal Transformer. This means that the update formulas of equation (6)
simultaneously apply to all positions in the input sequence via matrix calcula-
tions, and that the contextual representations of each word integrate both its left
and right contexts. Learning such model is typically performed by optimizing
the reconstruction of a noised input : in its basic form, noising simply randomly
hides (masks) some tokens wt, which the model then seeks to recover based on
the representation h(L)

t . By maximizing the log-probability of original text, it
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becomes possible to estimate model parameters (see Figure 5).

Figure 5 – Learning the BERT model with random masking. The model
parameters are trained to maximize the probability of recovering the hidden
tokens (bold on the figure).

As for other language models, this learning process does not require any an-
notation and can be performed on very large corpora. BERT thus provides
contextualised “pre-trained” lexical representations that can be used as input to
any automatic processing system [Devlin et al., 2019, Liu et al., 2019]. Other
methods for constructing denoising tasks have also been studied [Raffel et al.,
2020] : masking groups of words, parts of words, deleting and permuting words,
etc. Due to their performance, these models have quickly become central in
NLP [Smith, 2020] and were quickly adapted to multiple languages, such as
French [Martin et al., 2020, Le et al., 2020], German [Chan et al., 2020], Dutch
[de Vries et al., 2019], Spanish [Cañete et al., 2020], etc. Versions adapted to
specialized textual genres such as patents [Lee and Hsiang, 2020], scientific
texts [Beltagy et al., 2019], tweets [Barbieri et al., 2020] or even sub-domains
such as medicine [Lee et al., 2020] or nuclear physics [Jain and Ganesamoorty,
2020] have also developed. A rich literature also studies the empirical behaviour
of Transformers, trying in particular to analyze the internal representations
{hl

t, t = 1. . . T, l = 1. . . L} in relationship to linguistic concepts ; or use attention
matrices as a source of explanation of the system’s decisions. A recent biblio-
graphical survey of this “Bertological” literature has no less than 110 references
[Rogers et al., 2020].

Computational costs of Transformer-ing
As Transformer based models take a central role in natural language processing,
it becomes necessary to take a closer look at the computations performed
by these algorithms and to better assess their cost, in a context where the
carbon footprint of Artificial Intelligence algorithms is also becoming a concern
[Strubell et al., 2019, Henderson et al., 2020]. A first observation is that, unlike
recurring networks, the computations of Transformers are easy to parallelize. In
particular, computing the output representation of a word requires knowledge
of its neighboring words, but not of their deep output representations. These
output representations can then all be computed simultaneously by implementing
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equation (6) with operations. Table 1 provides indications regarding the size and
number of parameters for some recent models.

Table 1 – Measuring the size of Transformer models. The number of parameters
used for lexical (L) and internal (I) representations are counted separately.
Notations k,m, b respectively denote thousands, millions and billions of units.

|V | T K L dmd dkv dff Params (L) Params (I)
32k 512 8 6 512 64 2048 32,8m 49,9m
32k 512 12 12 768 64 3072 49,2m 127m
32k 512 16 24 1024 64 4096 65,5m 342m
32k 512 32 24 1024 128 16384 65,5m 2,38b
32k 512 128 24 1024 128 65536 65,5m 28,7b

A last important dimension for complexity calculations is the sequences length
T , which determines the overall dimension at the input and output of each layer
(T × dmd). Sequences typically contains several hundreds of words or even more
(2048 for GPT-3). During training, it is necessary to keep the values of all layers
in memory, as they are needed to compute the gradient. To optimize calculations,
B blocks (batches) of sequences are processed simultaneously, yielding tensors
of dimension tensors B × T × dmd, whose manipulations are optimized on GPU
cards.

The computational complexity of the Transformer operations is dominated by
the evaluation of attention matrices in equation (6). This computation is linear
in dmd, but quadratic in T : for each of the T positions, the similarity with all the
other positions need to be computed, in order to derive the attentions weights α,
then the T output values vectors. To reduce this complexity, several directions
are considered in the literature. It is first possible to restrict the computation of
attention weight to a neighborhood N(t) of wt, by imposing words outside N(t)
to have null weights (αt(s) = 0,∀s 6∈ N(t)) ; note that these words still influence
wt indirectly by influencing its neighbours (or the neighbors of its neighbors)
across the multiple computations layers. By choosing neighborhoods N(t) of fixed
size S, with S much smaller than T , the attention computation becomes linear
in T . There are several other ways to define N(t), using syntactic dependencies,
or using random subsets of indices : what matters is that for almost every
word, |N(t)| is small and, that for a few positions, N(t) encompasses the whole
sequence. Other approaches to speed up these computations focus on effective
approximations of dot products (equation (6).a.). A recent survey of effective
implementations of the Transformer model is in [Tay et al., 2020] ; some methods
aimed to reduce the memory footprint are presented in [Rajbhandari et al., 2020].
Since the amount of training data continues to increase the performance for
many tasks [Kaplan et al., 2020], developing larger models is likely to remain
an active area of research [Fedus et al., 2021], posing formidable computational
challenges both for learning and inference.
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Conclusion
The language models implemented in Transformer architectures combine all the
advantages of neuronal architectures : they can learn both predictive models
capable of taking into account long-range dependencies and rich contextual
representations for atomic units, which can be pre-trained and then used for
multiple language processing tasks. They result in effective implementations
[Wolf et al., 2020], and have also been adapted for other types of structured
data : acoustic sequences for speech modelling [Baevski et al., 2020], images for
artificial vision [Qi et al., 2020], and even image sequences [Sun et al., 2019].
Like other neural language models, their behavior remains difficult to control :
while some regularities are almost perfectly learned, others are learned only
approximately, and it is difficult to predict or understand the reasons for these
failures.

Towards multilingualism
Neural machine translation : conditional text generation
A simple encoder-decoder model

The Transformer model presented above as a language model is initially intro-
duced for machine translation (MT) [Vaswani et al., 2017]. This application
formally corresponds to the generation (in a “target language”) of a sentence
e translating the input “source” sentence f . Viewed as a probabilistic decision,
this problem corresponds to finding :

e∗ = argmaxe P (e|f) = argmaxe

∏
t

P (et|f , e<t). (8)

This formalization again requires to define a probability distribution over a set
of sentences (see equation (1)), except that this distribution is conditioned by
the input sentence f . The Transformer model computes such a distribution by
extending the neural encoder-decoder architectures proposed for MT in [Cho
et al., 2014a, Bahdanau et al., 2015]. These architectures rely on two computation
steps :

(a) the computation of a numerical representation (encoding) for f taking
the form of a sequence of numerical vectors s1, . . . , sJ ;

(b) the iterative decoding of the translation, by choosing at each step the
most likely next word et given the source encoding [g(l)

1 , . . . ,g(l)
I ], l =

1 . . . L as well as the previous target words e<t, encoded as previously as
[h(l)

1 , . . . ,h(l)
t−1], l = 1 . . . L.

The first neural MT systems perform these two steps using recurrent networks
(section ). In a Transformer-based architecture, step (a) is performed by a
non-causal encoder (section ) and step (b) is performed by a causal decoder
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(section ). During this stage, it is necessary to integrate the double dependency
in f and e<t, since the prediction of the next target word is influenced by these
two sequences (see equation (8)). This is implemented by the addition of an
additional cross-attentional sublayer within the decoder. The corresponding
computations are similar to those of equation (6) , using h(l)

t . . .h(l)
t for the

query, and g(L)
1 , . . . ,g(L)

J for keys and values. In this way, the context vector of
each target word integrates not only the target prefix, but also all the words in
the source phrase, represented at the last layer (L) of the encoder. As before,
the last layer vector of the decoder is projected into a |V |—dimensional space,
then normalized through the softmax function to provide the desired output
distribution P (et|f , e<t).

Difficulties of Machine Translation

Learning from parallel corpora

The learning of conditional models is similar to the learning of language models
and consists of optimizing the log-probability of the training sequences, which
decomposes into a sum of terms as in equation (4). This computation requires
both words from the source and the target sentences, which are aligned in large
parallel corpora matching sentences with their translation. Such resources are
now publicly available en masse from resource distribution agencies such as
ELDA or the Linguistic Data Consortium. A variety of parallel corpora can be
found specialized websites such as OPUS [Tiedemann, 2012].

Machine translation is difficult

Once training (which can take days, depending on the amount of available
parallel data) is complete, the Transformer is ready to translate. Translation
is performed incrementally, word by word, in a greedy manner and poses the
same difficult problems as the unconditional generation of texts. It appears, on
the one hand, that choosing at each time step the best next word is a risky
strategy, since each past error might yield incorrect or simply unusual internal
representations, which in turn can cause more errors. This problem is known
as the exposure bias problem [Bengio et al., 2015] and requires to use of more
sophisticated search strategies, such as beam search, to compute the argmax
(equation (8)). An alternative decoding strategy simultaneously predicts all the
target words in parallel, which dramatically speeds up decoding. However, global
constraints on the relative positions of words must apply to ensure that the
target sentence remains well-formed [Gu et al., 2018].

Two additional difficulties are directly related to the machine translation problem :
in MT, it is necessary to translate the entire source phase (each word only once),
without introducing any additional information. However, these two constraints
are not explicitly formulated in equation (8) : to ensure that the length of the
target sentence matches that of the source, and effectively translates all input
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words, the search algorithm must include additional heuristics : [Johnson et al.,
2017] presents the most commonly used ones.

Multilingual representations, multilingual translation
An additional benefits of numeric representations is that they represent words of
different languages in a unified manner. It is then possible, assuming a shared
units directory for all languages, to use the same encoders and decoders to
process multiple languages. The easiest way to proceed is to implement the
same learning procedure as for BERT (section ), inputting sentences in multiple
languages into the system : this approach is used for mBERT Devlin et al. [2019]
and XLM [Conneau and Lample, 2019].

Such approaches readily deliver multilingual contextual representations that bring
together, in the same vector space, units (words, sentences) that are mutual
translations. Learning multilingual representations thus makes parallel sentences
in multiple languages almost indistinguishable (for the neural network). This
enables to transfer processing models and applications from a resource-rich
language into languages for which resources do not exist. Let us take the example
of a sentiment analysis system, which aims to associate textual comments on
a merchant site with satisfaction scores, and assume that we have annotated
training examples for language A, but not for language B. Learning to predict
the numerical score from multilingual representations of texts in language A
makes us also able to predict the note of texts in language B without ever having
observed any training example associating a text in language B with its evaluation
(see Figure 6).

Learning multilingual representations is therefore a major challenge to broaden
the spectrum of languages covered by language technologies. Many approaches
have also been proposed to train non-contextual multilingual representations,
or to adapt existing representations to a specialized domain. A recent survey of
these methods is in [Søgaard et al., 2019].

Note finally, that the encoder-decoder architecture can also be used to compute
monolingual representations : this is again achieved by inputting noisy texts into
the encoder, that the decode will then have to recover. All that is needed is
the definition of the noising operations used to generate parallel artificial data :
masking one or several words, replacing a word with a similar word, changing
the order of words are typical noising operations. BART, introduced by Lewis
et al. [2020], has the benefits of a faster learning than BERT (more words are
noised in the encoder). With an additional fine fine-tuning stage, BART can
also be used as a generation model, as the decoder is non-causal : a possible
application there is automatic summarization. Finally, like BERT, BART can be
trained multilingually, simultaneously computing multilingual representations
and machine translation.
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Figure 6 – A multilingual architecture for spam filtering. The second step
uses multilingual pre-trained representations which enable to transfer knowledge
across across languages : French spam mails can then be identify even though
the classifier has never seen any French example.

One model to translate them all
Multilingual translation combines the approaches described in the previous
sections : the use of an encoder-decoder architecture, with conditional generation
of texts ; the use of sentence pairs combining input and output for multiple
language pairs. This idea, originally proposed in [Firat et al., 2016, Ha et al.,
2016] and recently used on a large scale in [Aharoni et al., 2019, Fan et al.,
2021] opens new perspectives : (a) operationally it means that we just need
one single system to handle all translations between N languages, where O(N2)
where previously required ; (b) it also enable to compute translations between
languages for which no data is observed (again through cross-lingual transfer,
which happens here both in the encoder and in the decoder).

This approach is not without difficulty, in particular from the point of view of
collecting and balancing parallel learning data, as well as supporting a variety
of linguistic systems, which may, for example, use different writing systems, or
manipulate divergent underlying structures at the levels of word or phrases. For
such multilingual models, a necessary pre-processing step is to learn a shared
tokenization (in word and subwords, see section ) using multilingual corpora, so
that all input-outputs in the system use the same vocabulary.

Machine Translation as a generic task
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Generalizing machine translation

The transition from the unconditional model (section ) to the the conditional
model (section ) outlines the flexibility of numerical representations manipulated
by neural networks : by adding a cross-attention mechanism between two Trans-
formers, it is possible to encode two word sequences in a single vector h, from
which the next word is generated. This technique enables to encode "generalized"
contexts, to model more complex tasks or scenarios. It is for instance possible
to handle multi-source translation scenarios, corresponding to the generation
of a target sentence from several two sentences f1 and f2. In such setting, the
distribution P (e|f1, f2) can be obtained by computing the cross-lingual based
on a concatenation of the two source encodings. Another illustration of this
flexibility is document-level translation, which aims to integrate long-distance
dependencies beyond the sentence level. This might be needed to handle prono-
minal references, as when computing the translation of « This bike is broken.
It needs a fix. » from English into French. For this example, the generation of
the correct subject pronoun for the second sentence (« il » ou « elle ») requires
knowledge of the translation of « bike » in the previous sentence : (« vélo » will
imply a masculine subject, « bicyclette » a feminine one). By encoding contexts
made of several previous sentences, such difficulties can be addressed [Maruf
et al., 2021].

Monolingual and Multimodal Machine Translation

Machine translation is an extreme example of a sequence transduction task,
corresponding to a language change, while preserving the global meaning. Similar
problems appear in a large number of monolingual tasks : for example, grammar
correction can be viewed as a « translation » between a noisy sentence and its
correction, a framework that also includes spelling normalization (to turn short
texts into standard English). Simplification, paraphrase generation, style transfer
(e.g from a formal style to more relaxed style), automatic summarization [Liu
et al., 2018] are other instances of these monolingual translations : assuming the
availability of pairs (input, output) to learn the parameters, it will be possible
to use Transformer architectures.

The encoder-decoder architecture is also generalized in other ways. By considering
pairs associating voice recordings with their transcription, it is possible to apply
the same techniques for automatic speech recognition [Dong et al., 2018, Karita
et al., 2019, Gulati et al., 2020] ; or even, when recordings and transcripts are
in different languages, to directly translate the speech into foreign text [Bérard
et al., 2016]. Similar approaches consider the recognition of patterns in images
[Dosovitskiy et al., 2021] or the generation of descriptions from images [Lu et al.,
2019]. The application of the Transformers to these other modalities is only
starting and is expected to develop, both to learn generation models and to train
multimodal representations. An introduction to these exciting developments is
presented in this volume in M. Evrard’s chapter on Transformer in Automatic
Speech Recognition and C. Guinaudeau’s chapter on Vision and Multi-modal
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Transformers.

Summary
The Transformer architecture readily generalize to the conditional generation
framework, with an interdependent encoder and decoder, an approach that has
quickly become the de facto standard for neural machine translation. When
fed with inputs and outputs in multiple languages, this architecture learns
multilingual representations that can be used for cross-lingual transfer in many
applications. By analogy with the translation task, the same approach model
can be used for many monolingual tasks as well as for tasks involving other
modalities (speech, image, video).

Conclusion
The Transformer architecture, both in its unconditional (section ) and in its
conditional (section ) versions has quickly emerged as a critical component of
all language processing tools and has often led to considerable improvements
of the performance of these systems. This architecture generates contextual
representations from vast amounts of raw data ; these representations are useful
for a wide range of applications, and also enable to transfer learned knowledge
between tasks, domains and languages. This provides an operational response
to the lack of annotated data that would be necessary to carry out supervised
learning in many contexts. It is also used to learn word generation models capable
of producing coherent texts, and, at the cost of elementary reformulations, to
handle a large number of related tasks : sentiment analysis, textual implication,
question answering, summarization, translation, etc. Multilingual and multi-
modal extensions of these architectures make it possible to build models from
heterogeneous data, further opening the range of possible applications. Finally,
Transformers define a shared conceptual framework for many communities of
researchers and developers, facilitating interdisciplinary exchanges and accele-
rating the dissemination of effective implementations and sharing of models
[Bommasani et al., 2021].

Have Transformer « solved natural language processing » ? Several limitations
of these models are highlighted in recent papers, suggesting many avenues for
future research. A first limitation is that these models do not incorporate any
linguistic knowledge (regarding the structure of words and phrases), which makes
them unsuitable for reproducing the systematic behaviour that is expected when
dealing with regular phenomena, such as grammatical agreement, or co-reference
phenomena. Although possible, the integration of linguistic knowledge runs
against the increase in training data and in the number of languages taken into
account, and is not very actively researched. Similarly, the world knowledge
injected into Transformers is restricted to whatever occurs in the training texts.
Although these models are capable of memorizing and restoring many of these
factual knowledge, they remain incomplete and their learning is uncertain and
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non-systematic [Petroni et al., 2019] : it thus seems inappropriate to think that
they help us progress towards deep language understanding [Bender and Koller,
2020]. For this, the combination of statistical models with knowledge graphs
seems to be a promising research direction [Peters et al., 2019, Bosselut et al.,
2019].

Another limitation of these architectures is that their « black box » behaviour,
which creates multiple problems when these systems are run on a very large
scale. In particular, it is extremely hard to explain the decisions made, as they
ultimately result from the particular dynamics of model training, and from the
nature of the training data. As shown on many occasions [Bender et al., 2021],
these models in particular tend to amplify the biases present in the data, and
may, for example, generate uncontrolled statements of a sexist or racist nature.
The apparent consistency of automatically generated texts is also misleading, and
may fool users into endowing these systems with a form of understanding they
do not actually possess. These weaknesses are shared with all purely probabilistic
models, which are limited in their performance by the limitations of the training
data, which are often too rare, incomplete, or biased, and result in systems that
may be incomplete and inconsistent.

Notations
Notations

Notation Description
x, w Un scalar, a word
w1 . . . wT A word sequence of length T
h A vector in Rd

hi The ith component of vector h
wt One-hot-encoding of wt into R|V |
[h; h′] The concatenation of h in Rd and h′ in Rd′

hT h′ The dot product of h and h′
h1 . . .hT A sequence of vectors
W A matrix Rd×d′

WT The transpose of W in Rd′×d
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