Inter-corrélation par transformée de Fourier rapide sur microcontrôleur sous FreeRTOS, et les pointeurs de pointeurs J.-M Friedt, Université de Franche-Comté, Besançon, 8 août 2022 Nous proposons d'aborder la transformée de Fourier rapide dans le contexte de l'environnement exécutif multitâches FreeRTOS à destination de micro-contrôleurs ARM émulés dans QEMU. Ce faisant, nous découvrirons les plaisirs du partage de ressources et des queues pour échanger les données entre tâches, ainsi que quelques appels de fonctions cachées dans les bibliothèques dont l'utilisation s'avèrera quelque peu périlleuse.

La corrélation est probablement une des opérations mathématiques les plus courantes autour de nous à notre insu. Chaque trame de télévision numérique (DVB) ou de radio numérique (DAB, Fig. 1) doit être synchronisée en temps et en fréquence pour permettre sa démodulation, tout comme la réception des signaux de navigation GPS [1] : la recherche d'un motif m(t) dans un signal bruité s(t) dépendant du temps t -ou dans sa version discrétisée de l'indice n -s'obtient par corrélation xcorr entre m et s dépendante d'un écart de temps τ exprimée comme

xcorr(m, s)(τ ) = m(t) • s * (t + τ )dt = discret k m k • s * k+τ
avec * le complexe conjugué si s ∈ C, par exemple un flux IQ en sortie d'un récepteur de radio logicielle comme nous en avons déjà longuement discuté dans les applications de détections de cibles par RADAR [START_REF] Friedt | Analyse et réalisation d'un RADAR à bruit par radio logicielle (1/3) GNU/-Linux Magazine France[END_REF]. avec iT F la transformée de Fourier inverse. Ce résultat n'aurait que peu d'intérêt, la transformée de Fourier étant elle même un algorithme de complexité de l'ordre N 2 , si Gauss [START_REF] Heideman | Gauss and the history of the fast Fourier transform[END_REF] ne nous avait enseigné la transformée de Fourier rapide FFT de complexité N • log 2 (N ) et la gain phénoménal en temps de calcul associé.

Nombre de démonstrations de la FFT existent dans la littérature et recopier ici une de ces démonstrations n'amènerait aucune originalité à ce document. Ainsi, [START_REF] Press | Numerical Recipes in Pascal -the Art of Scientific Computing[END_REF] exploite récursivement les conditions de symétrie entre les termes pairs et impairs de l'exponentielle complexe pour construire un arbre binaire de profondeur seulement log 2 (N ) pour effectuer la transformée de Fourier sur N éléments, mettant en évidence que seuls des puissances de 2 de N seront considérées, quitte à compléter la séquence trop courte de zéros pour atteindre cette condition (zero-padding). Attirons toutefois l'attention sur la démonstration de [START_REF] Brigham | The Fast Fourier Transform : An Introduction to Its Theory and Application[END_REF] qui explicite l'expression matricielle de la transformée de Fourier, pour la décomposer et trouver des termes redondants. Cette expression matricielle est élégante car elle permet d'appréhender la transformée de Fourier X d'un signal temporel x selon un axe des fréquences qui ne soit pas régulier comme le supposerait l'expression

X(p) = -1 k=0 x(k) exp(j2πkp/N ) =       W 0 W 0 ... W 0 W 0 W 1 ... W p-1 W 0 W 2 ... W 2(p-1) ... ... ... ... W 0 W N -1 ... W (N -1)(p-1)             x 0 x 1 x 2 ... x N -1       en considérant W = exp(j2π/N ). En effet s r=s i n ( 2 * p i * [ 0 : 4 2 ] * 0 . 1 ) ;
% r e e l s c=exp(-j * 2 * p i * [ 0 : 4 2 ] * 0 . 1 ) ; % complexe N=256; W =exp ( j * 2 * p i /N) ; F= W. ˆ( [ 0 : N-1 ] ' * [ 0 : l e n g t h ( s c ) -1]) % m a t r i c e temps->f r e q u e n c e

p l o t ([ -N/ 2 :N/2 -1]/N, f f t s h i f t ( abs (F * sc ' ) ) ) ; h o l d on p l o t ([ -N/ 2 :N/2 -1]/N, f f t s h i f t ( abs (F * s r ' ) ) ) ;
assemble la matrice F des exposants du complexe W = exp(j2π/N ) afin d'effectuer par produit matriciel la transformée de Fourier des signaux signal, complexe ou réel pour bien montrer la cohérence avec le signal attendu puisque sin(x) ∝ exp(jx) -exp(-jx) Notre objectif est d'évaluer la capacité à séquence sur microcontrôleur ARM Cortex-M exécutant FreeRTOS la séquence de calculs de chaque transformée de Fourier rapide F F T (s) et F F T (m), d'effectuer le produit du premier terme avec le complexe conjugué du second, puis F F T inverse. Pour ce faire, nous essaierons de nous appuyer sur diverses bibliothèques pour en découvrir les écueils. Le lecteur qui ne s'intéresse par à la corrélation pourra toujours bénéficier de l'analyse spectrale, du filtrage par convolution, voir de la résolution d'équations aux dérivées partielles représentant un problème physique dans le formalisme des opérateurs de Green, qui sont fournis par l'exécution de la FFT sur microcontrôleur.

Nous allons explorer deux implémentations de la FFT, implémentée par CMSIS (Common Microcontroller Software Interface Standard) dédié aux processeurs ARM Cortex-M, et par KISSFFT, une implémentation qui se veut le plus simple possible et que nous verrons finalement moins adaptée que nous aurions pu le croire aux microcontrôleurs. Nous séquencerons les tâches au moyen de FreeRTOS sur Cortex-M3 ou M4 (https://www.freertos.org/RTOS-Cortex-M3-M4.html), et en particulier en passant les paramètres par des queues bloquantes entre les diverses tâches, garantissant qu'une tâche ayant besoin de résultats antérieurs attend la fin des calculs dont dépendent ses résultats (Fig. 2). Dans la Fig. 2, message référe au signal bruité à analyser, tandis que code1 et code2 référent aux deux séquences pseudo-alátoires connues qui identifient par exemple deux interlocuteurs en multiplexage par code CDMA (Code Division Multiple Access) tel qu'utilisé par GPS. Le résultat sera deux vecteurs, l'un présentant un pic de corrélation significatif lorsque le code est identifié, et l'autre ne présentant pas de pic de corrélation en l'absence du motif dans le signal reçu. Les trois instances de la même tâche FFT sont reliées à la tâche de multiplication des vecteurs mul par trois queues de communication, et l'unique transformée de Fourier inverse est reliée à la tâche mul par une unique queue de communication qui transportera les deux vecteurs issus des multiplications terme à terme de la transformée de Fourier du message avec la transformée de Fourier de chaque code.

Queues de communication sous GNU/Linux

La communication entre processus -équivalent sur un système d'exploitation multi-tâches tel que GNU/Linux à la communication entre tâches sous FreeRTOS -peut prendre beaucoup de formes, que ce soient des pipes, un fichier partagé, une socket réseau mais ici nous choisissons le formalisme le plus proche de la queue de communication de FreeRTOS qu'est la queue de IPC (Inter-Process Communication). Dans l'exemple ci-dessous, N threads sont créés par un processus et chaque thread reçoit le calcul de son prédécesseur et renvoie le résultat de son calcul (ici un incrément d'une unité) au successeur. Afin de démontrer l'absence de dépendance du résultat avec l'ordre d'ordonnancement, nous avons choisi d'initier la chîne de transactions par le dernier thread (d'indice N -1) et conclure par le premier thread (d'indice 0). Les fonctions clés utilisées sont msgget() pour créér la queue de communication entre deux threads, msgrcv() pour recevoir et msgctl() pour envoyer un message contenu dans la structure de donnée qui doit contenir un entier positif identifiant la nature du message (ici arbitrairement égal à 1) et le message lui-même sous forme de tableau d'octets (ici 4-octets pour un entier). 

} } i n t main ( ) { i n t k ; i n t a r g [N ] ; p t h r e a d t i d [N ] ; f o r ( k =0;k<N; k++) { a r g [ k]=k ; p t h r e a d c r e a t e (& i d [ k ] , NULL, mythread ,(& a r g [ k ] ) ) ; } f o r ( k =0;k<N; k++) p t h r e a d j o i n ( i d [ k ] , NULL) ; }
Nous vérifions que quel que soit l'ordre de création des threads, le résultat est toujours le même et vaut 45 pour le thread recevant le résultat de la chîne de calcul (N -1 envoie 42 à N -2 qui incrémente de 1 pour envoyer 43 à N -3 qui incrémente ... et envoie 45 à 0 quand N = 5). On prendra soin en testant ce programme de s'assurer qu'aucune queue de communication IPC n'existe avant lancement par ipcs et de même en fin d'exécution qu'aucune queue n'a oublié d'être éliminée, qui résulterait sinon d'un comportement aléatoire d'une exécution à l'autre. Dans le cas contaire, on éliminera toutes les queues de communication en attente par ipcrm --all=msg.

CMSIS

La bibliothèque CMSIS (https://github.com/ARM-software/CMSIS_5) propose un ensemble d'outils de traitement numérique du signal, incluant la transformée de Fourier rapide. Elle est explicitement orientée vers les coeurs ARM, notamment Cortex-M, et donc appropriée pour les cibles que nous visons au travers de libopencm3 (https://github.com/libopencm3/libopencm3), notamment Texas Instruments Stellaris et ST Microelectronics STM32. Étant donné que nous désirons tester les codes sur émulateur qemu, notre choix du Stellaris est dirigé par la disponibilité du support des LM3S dans la version officielle de QEMU pour ARM (paquet qemu-system-arm sous Debian) tandis que l'émulation du STM32 se fera sur la version proposée par André Beckus à https://github.com/beckus/qemu_stm32. Toutes les compilations se font au moyen de gcc ciblant des processeurs ARM sans système d'exploitation installé au moyen du paquets gcc-arm-none-eabi de Debian (version 10.3.1 pour Debian/sid). FreeRTOS est la version de Décembre 2021 disponble à https://www.freertos.org/a00104.html que nous désarchivons au même niveau d'arborescence que le dépôt contenant les codes mis en oeuvre dans ce document, à savoir https://github.com/jmfriedt/tp_freertos/ et pour ce qui nous concernera ici, le sous-répertoire 8 xcorr fft. On prendra soin de cloner les dépendances externes du dépôt par git clone --recursive https://github.com/jmfriedt/tp freertos L'arborescence de CMSIS est relativement limpide avec tous les fichiers liés à la FFT dans CMSIS/DSP/Source/TransformFunctions qui font appel à arm const structs.c et arm common tables.c de CMSIS/DSP/Source/CommonTables. Le choix de l'implémentation de la FFT -sur une représentation des nombres en virgule flottante en simple précision sur 32 bits, en virgule fixe sur 16 bits ou sur 32 bits, s'effectue par un choix judicieux des fichiers sources compilés selon le bon suffixe (f32, q15 ou q31 respectivement).

Représentation des nombres en virgule fixe

Nous avions largement discuté des représentations des nombres dans [START_REF] Friedt | Arithmétique sur divers systèmes embarqués aux ressources contraintes : les nombres à virgule fixe[END_REF]. Pour rappel, une représentation en virgule flottante, avec sa représentation scientifique sous forme de mantisse et d'exposant, est peu favorable aux microcontrôleurs aux ressources réduites faute de périphérique matériel de gestion des opérations arithmétiques sur ce type de représentation. L'arithmétique sur des entiers est efficace mais en conservant tous les bits de poids faibles, elle risque d'aboutir à des dépassements de capacité et d'exploiter des décimales qui sont dans le bruit de mesure. La représentation en virgule fixe est intermédiaire, manipulant des entiers mais en supposant que la virgule entre la partie entière et décimale se trouve en position fixe selon la nomenclature Qm.n avec m bits assignés à la partie entière et n à la partie fractionnaire. En notant Q15 ou Q31, la représentation en virgule fixe est implicitement Q1.15 ou Q1.31 respectivement, avec un bit de signe et 15 ou 31 bits de partie fractionnaire. Les nombres compris entre -1 et 1 sont décalés de 15 ou 31 bits respectivement vers la gauche pour une représentation en virgule fixe, et on prendra soin de décaler d'autant vers la droite le résultat de la multiplication afin de maintenir la virgule en position fixe. L'addition quand à elle se fait comme sur des entiers.

CMSIS suppose que les données complexes sont représentées sous forme interlaçant la partie réelle et la partie imaginaire, donc un vecteur contenant l'alternance R 0 I 0 R 1 I 1 R 2 I 2 ... avec R et I la partie réelle et imaginaire respectivement de l'élément indexé.

Comme FreeRTOS ne fournit aucune abstraction, on se contentera donc d'ajouter ces fichiers à la liste des sources compilées en même temps que le coeur de FreeRTOS formé des cinq fichiers contenus dans FreeRTOS/Source. Nous devons par ailleurs ajouter le support du Cortex-M3 proposé par FreeRTOS dans /FreeRTOS/Source/portable/GCC/ARM CM3/port.c et le gestionnaire de mémoire selon les fonctionnalités attendues tel que décrit à https://www.freertos.org/a00111.html. Le consensus semble être que heap 2.c est le minimum pour permettre une allocation dynamique de mémoire telle que nous allons l'utiliser, mais que heap 4.c est désormais le choix le plus courant. Le Makefile résultant se retrouve à https: //github.com/jmfriedt/tp_freertos/blob/master/8_xcorr_fft/Makefile.stellaris qui fait en plus appel à quelques fonctions d'initialisation des périphériques et de communication qui reste à la charge du programmeur, toujours en l'absence d'abstraction du matériel par FreeRTOS.

Le cas pratique que nous nous proposons d'étudier, représentatif de toute communication CDMA, est de recherche lequel parmi deux interlocuteurs communique sur un signal bruité acquis : ces données sont proposées dans https://github.com/jmfriedt/tp freertos/blob/master/8 xcorr fft/src/data.h avec pattern les deux motifs orthogonaux tel qu'on pourra par exemple s'en convaincre avec l'intercorrélation dans GNU/Octave (plot(xcorr(pattern1-mean(pattern1),pattern2-mean(pattern2)))), et measurement le signal bruité sur lequel un des codes est superposé (Fig. 3).

Notre objectif est donc d'effectuer trois FFT, produit de la FFT de chaque code avec le complexe conjugué de la FFT du message, et FFT inverse de ces deux résultats pour rechercher par corrélation la présence ou l'absence de chaque message dans le signal transmis. Nous proposons de séparer le travail en trois tâches, une chargée d'implémenter la FFT, qui sera appelée trois fois par l'ordonnanceur en passant en argument les trois tableaux possibles (code 1, code 2 et message), une tâche chargée des multiplications de vecteurs, et finalement une dernière tâche chargée des deux transformées de Fourier inverse. Le séquencement se fait au travers des queues de communication, avec la multiplication en attente de trois résultats de transformées de Fourier, et la transformée de Fourier inverse en attente des multiplications. Nous devons donc échanger les informations entre les diverses tâches, et il serait bien entendu très inefficace de fournir les données elles mêmes quand un simple pointeur suffit à informer la tâche suivant de l'emplacement en mémoire des informations sans avoir à les duppliquer.

Argument des queues de communication : un pointeur de pointeur

Le point qui nous a surpris -et est aussi bien entendu valable pour une échange de pointeur sur des structures complexes contenant une multitude de champs -est que pour passer l'adresse de l'emplacement des tableaux par la queue il faut échanger des pointeurs de pointeurs, donc l'emplacement en mémoire où se trouve l'adresse à laquelle se trouvent les données. Ceci est clairement défini sur la page de manuel de xQueueSend() à https://www.freertos.org/a00117.html qui démontre avec que l'argument de xQueueSend est le pointeur (&pxMessage) vers l'emplacement en mémoire où se trouve le pointeur (pxMessage = &xMessage) vers la structure de données. Ce formalisme quelque peu tordu -ou en tous cas que nous n'avions jamais rencontré jusqu'ici -met en évidence une différence de comportement entre déclaration statique et dynamique de tableaux par allocation de pointeur, dont nous avions toujours répété à qui voulait l'entendre qu'elles étaient strictement identiques (le principe de base de l'enseignement : affirmer avec conviction des demi-vérités si ce ne sont des erreurs, pour ne pas prêter à discussion ou mise en cause de l'affirmation). Le petit test suivant, sur architecture ARM car exploitant des adresses physiques plus faciles à interpréter que des adresses virtuelles générées par le gestionnaire de mémoire MMU des PCs, illustre la différence de comportement entre l'allocation dynamique de mémoire et le traitement des adresses résultantes par rapport à une allocation statique :

#i n c l u d e " stdint . h " #i n c l u d e " common . h " [START_REF] Heideman | Gauss and the history of the fast Fourier transform[END_REF] ; p=( i n t 1 6 t * ) m a l l o c ( 3 * s i z e o f ( i n t 1 6 t ) ) ; c h a r c [ 2 0 ] ; // w h i l e ( 1 ) { U s a r t 1 I n i t ( ) ; // i n i t s c l o c k as w e l l hex ( p , c ) ; u a r t p u t s ( c ) ; hex(&p , c ) ; u a r t p u t s ( c ) ; hex ( p+1 , c ) ; u a r t p u t s ( c ) ; ; hex(&p+1 , c ) ; u a r t p u t s ( c ) ; ; hex(&p [ 1 ] , c ) ; u a r t p u t s ( c ) ; ; hex ( q , c ) ; u a r t p u t s ( c ) ; ; hex(&q , c ) ; u a r t p u t s ( c ) ; ; hex ( q+1 , c ) ; u a r t p u t s ( c ) ; ; hex(&q+1 , c ) ; → → u a r t p u t s ( c ) ; ; hex(&q [ 1 ] , c ) ; u a r t p u t s ( c ) ; } que nous compilons par arm-none-eabi-gcc -I$(OPENCM3)/include -I../common -fno-common -ffunction-sections -fdata-sections -msoft-float -mfix-cortex-m3-ldrd -Os -mcpu=cortex-m3 -mthumb -g3 -DSTM32F1 Nous constatons donc que -toutes les zones mémoire se trouvent dans la RAM dont l'adresse commence en 0x20000000 et dont la longueur a été définie à 132 KB (0x21000) -un des intérêts de l'émulateur par rapport au matériel est de pouvoir définir une taille de RAM arbitraire pour se libérer, au moins en phase de déverminage, des contraintes de place du dispositif physique pour stocker les tableaux, -toutes les structures de données manipulées par FreeRTOS sont localisées dans le tas de mémoire qu'il s'alloue lors de dans FreeRTOSConfig.h avec la seule condition que cette taille mémoire tienne dans la mémoire physique, sans nécessairement l'englober totalement.

v o i d hex ( i n t i , c h a r * c ) { i n t j ; f o r ( j =0; j <8; j ++) { c [7 -j ]=( i >>( j * 4 ) )&0x 0 f ; i f ( c [7 -j ] <10) c [7 -j ]+='0 ' ; e l s e c [7 -j ]+=( 'A ' -10) ; } c [ 8 ] = '\ n ' ; c [ 9 ] = ' \0 ' ; } i n t main ( ) { i n t 1 6 t * p , q
-alors que p et q définissent tous deux des pointeurs vers des entiers codés sur 16 bits par allocation dynamique dans le premier cas et statique dans le second, le pointeur vers cette zone de stockage (pointeur de pointeur) diffère du pointeur initial dans le premier cas (&p!=p) mais est égal dans le second (&q==q) et donc l'arithmétique sur les pointeurs de pointeurs diffère elle aussi (&p+1!=&q+1). Dans tous les cas, le premier élément p[1] ou q[1]) se trouve bien à un offset d'une unité du pointeur original.

Alors que nous avions initialement identifié l'allocation statique comme incompatible avec le passage de paramètre par pointeur de pointeur comme argument des queues de communication, il n'en était rien. Comme souvent en C, notre erreur tenait dans la gestion des tailles de tableaux, puisque nous utiliserons un N + 1ème élément pour mémoriser la nature du contenu de chaque tableau lors de l'ordonnancement des opérations arithmétiques. FreeRTOS fournit nombre de fonctions très pratiques pour détecter la taille restante de mémoire sur la pile ou la corruption de celle-ci : l'affichage de la liste des tâches par la fonction vTaskList() permet de vérifier l'intégrité de la pile en donnant toutes les fonctions connues de l'ordonnanceur et l'espace restant sur chaque pile de la forme dans src/FreeRTOSConfig.h et en prenant soin de make clean pour recompiler les sources de FreeRTOS en activant ces options lors de make Par ailleurs, on pourra surveiller le dépassement de pile allouée à une tâche par ailleurs en activant cette fonction par { u a r t p u t s ( " \ r \ nStack : " ) ; u a r t p u t s ( pTaskName ) ; w h i l e ( 1 ) vTaskDelay ( 3 0 1 / portTICK RATE MS ) ; } qui affichera le nom de la fonction fautive.

CMSIS fournit donc bien les fonctionnalités attendues grâce à arm_cfft_q31(&arm_cfft_sR_q31_len32,(q31_t*)in,1,1); dont l'avant dernier argument est la direction de la transformée de Fourier (0 pour directe, 1 pour inverse) et &arm cfft sR q31 len32 est une structure de données imposée, dont la fin du nom indique la longueur du vecteur sur lequel s'effectue l'opération, nécessairement puissance de deux entre 16 et 4096 tel que l'indique arm const structs.c. Classiquement, un vecteur dont la longueur n'est pas une puissance de 2 sera complété de zéros (zeropadding) pour respecter cette contrainte. On notera que ce faisant nous n'introduisons aucune information et l'apparent lissage de la FFT en augmentant artificiellement le nombre de points subit un filtrage passebas qui ne saurait être interprété comme une super-résolution qu'introduirait une hypothèse additionnelle sur les données acquises.

Cependant, la présence de code assembleur ARM CMSIS/DSP/Source/TransformFunctions/arm bitreversal2.S interdit toute perspective de portabilité vers des plateformes non ARM, que ce soit pour une simulation sur PC basé sur un processeur Intel ou tout autre plateforme embarquée, et nous désirons donc nous affranchir de cette contrainte en explorant une bibliothèque alternative en C générique.

KISSFFT

KISSFFT (Keep It Simple and Stupid) se veut une implémentation minimaliste de la FFT pour rester aussi compact et lisible que possible. En pratique, la bibliothèque se réduit pour notre application à un unique fichier C et deux fichiers d'entête, une facilité de mise en oeuvre appréciable. Cependant, KISSFFT n'a pas été explicitement conçue pour une compilation sur système embarqué à faibles ressources et notamment n'exécutant pas de système d'exploitation : lors de la compilation de la bibliothèque, nous devrons prendre soin de désactiver l'appel à des bibliothèques complexes de test qui ne sont pas disponibles pour Cortex-M par la définition de CC="arm-none-eabi-gcc -mhard-float -mfloat-abi=hard -mfpu=fpv4-sp-d16" et surtout KISSFFT TOOLS=0 pour désactiver ces tests. Finalement, la bibliothèque statique dont nous aurons besoin (en contraste à la bibliothèque dynamique que nous ne saurons charger en l'absence de système d'exploitation) sera générée grâce à l'option KISSFFT STATIC=1. Pour conclure, nous compilons KISSFFT au moyen de KISSFFT TOOLS=0 KISSFFT STATIC=1 CC="arm-none-eabi-gcc -mthumb -mhard-float -mfloat-abi=hard -mfpu=fpv4-sp-d16 -mcpu=cortex-m4 -DLM4F" make pour un processeur compatible LM4F (Cortex M4 avec unité matérielle de calcul sur nombres en représentation à virgule flottante) par exemple. Le choix de la représentation des données s'obtient en incluant -DFIXED POINT=32 -DKISSFFT DATATYPE=int32 t pour préciser que les calculs se font sur des données au format Q31 dans la bibliothèque. Bien entendu nous devrons prendre soin de respecter nous-mêmes ce mode de représentation lors des opérations arithmétiques : alors que les additions se font comme sur des entiers, les produits doivent éliminer les décimales inutiles en replaçant la virgule au bon emplacement après un produit sur des entiers qui nécessite de caster sur une structure intermédiaire de grande dimension tel que nous l'expliciterons ci-dessous : i n t 6 4 t p r o d u i t ; p r o d u i t =( i n t 6 4 t ) v a l 1 * ( i n t 6 4 t ) v a l 2 ; p r o d u i t =( p r o d u i t >>31) ; Contrairement au format interlacé de CMSIS, KISSFFT propose une structure de données complexes kiss fft cpx contenant deux éléments que sont .r et .i pour représenter la partie réelle et imaginaire respectivement dans le mode de codage sélectionné au cours de la compilation parmi flottant, virgule fixe sur 16 bits ou sur 32 bits.

Initialement attirés par cette philosophie plus que louable de simplicité, nous nous sommes heurtés à deux écueils lors de son utilisation 1. alors que l'utilisation d'une représentation en virgule fixe (Q15 ou Q31) laisse présager des calculs sur des entiers exclusivement, le code cache deux appels à des nombres représentés en virgule flottante, à https://github.com/mborgerding/kissfft/blob/master/kiss_fft.c#L310 et https://github.com/mborgerding/kissfft/blob/master/kiss_fft.c#L359 2. une allocation dynamique de mémoire non protégée à https://github.com/mborgerding/kissfft/ blob/master/kiss_fft.c#L346 Le second point a été la cause de nombre de soucis, l'allocation de mémoire n'étant pas une opération atomique (lecture de l'état de la mémoire, allocation d'un segment et mémorisation du segment alloué) qui peut donc être préempté lors de son exécution et rendre le gestionnaire de mémoire incohérent. On s'en rend rapidement compte si on omet de protéger la fonction kiss fft alloc par un mutex qui garantit qu'une seul tâche peut allouer de la mémoire à un instant donné, et comme d'habitude en l'absence de mutex avec un comportement aléatoire selon le bon vouloir de l'ordonnanceur.

Le problème du calcul flottant caché dans le code ne devrait a priori pas poser problème si une émulation logicielle est fournie par la bibliothèque mathématique libm.a puisque seules les initialisations requièrent ces fonctionnalités. Pour notre malheur, nous avions par erreur cru que le LM3S était un Cortex-M4 muni d'une unité matérielle de gestion des nombres à virgule flottante (FPU) et compilions le code en -mhard-float -mfloat-abi=hard. L'appel à la FPU lors de l'émulation par QEMU d'un processeur Cortex-M3 sans FPU se traduisait par une Hard Fault et l'opportunité de mettre en pratique gdb sur ARM émulé par QEMU. En effet, plusieurs gestionnaires d'erreurs fatales sont gérées par libopencm3 par l'appel à la boucle infinie : blocking handler(void) est appelée par hard fault handler, mem manage handler, ou bus fault handler. Nous n'avons finalement pas eu besoin d'aller aussi loin que proposé dans https://www.freertos.org/Debugging-Hard-Faults-On-Cortex-M-Microcontrollers.html puisque le problème a disparu lors du passage à la compilation en Cortex-M3 sans support matériel des nombres à virgule flottante mais une émulation logicielle par libm.

QEMU pour analyser du code issu de compilation croisée

Nous avons mis un temps certain à identifier l'instruction fautive de l'arrêt pur et simple de QEMU sans information quand à la cause du dysfonctionnement. Bien entendu dans ce cas, le GNU Debugger GDB devient indispensable. GDB permet maintenant de debugger un code cross-compilé sur l'architecture hôte grâce à gdb-multiarch. Lors de l'émulation du code cross-compilé à destination du Cortex-M4 avec support matériel d'une unité de calcul sur nombre à virgule flottante FPU, nous exécutons qemu-system-arm -cpu cortex-m4 -machine lm3s6965evb -nographic -vga none -net none -serial mon:stdio -kernel output/main.bin -s -S dont le -s -S en fin de commande indique que nous lançons un serveur gdb qui attend qu'un client s'y connecte pour exécuter le code par continue. Le client (paquet gdb-multiarch de Debian) se lance par gdb-multiarch output/main.elf que nous configurons par set architecture arm target remote localhost:1234 continue Les commandes classiques de GDB telles que l'affichage du code source autour du point courant d'exécution par list ou l'ajout d'un point d'arrêt par break do fft sont bien sur disponibles. Cependant, dans tous les cas l'exécution du code s'achève par la boucle infinie de libopencm3 qui gère l'erreur ingérable par (dans lib/cm3/vector.c) par #pragma weak hard_fault_handler = blocking_handler void blocking_handler(void) { while (1); } et ce n'est que l'analyse du code source de KISSFFT qui nous a permis de trouver l'appel à l'opération sur nombre à virgule flottante fautive.

Une fois tous ces déboires résolus, KISSFFT se résume à kiss fft cfg cfg=kiss fft alloc(N,1,NULL,NULL ); suivi de kiss fft(cfg,in,out); qui n'affranchit pas de lire kissfft/kiss fft.c. pour trouver i f ( lenmem==NULL ) { s t = ( k i s s f f t c f g )KISS FFT MALLOC( memneeded ) ; } e l s e { i f (mem != NULL && * lenmem >= memneeded ) s t = ( k i s s f f t c f g )mem; * lenmem = memneeded ; } signifiant qu'au lieu de fournir NULL en derniers arguments, nous aurions pu allouer nos propres structures de données et le fournir en argument pré-alloué, KISSFFT s'assurant que leur taille est suffisante pour ses opérations.

Multiplication des vecteurs

Une fois les valeurs des transformées de Fourier des coefficients et des mesures obtenues, il reste à multiplier les vecteurs afin de calculer F F T (m) • F F T * (s) pour obtenir un nouveau vecteur de même longueur. Peu de subtilité ici si ce n'est de ne pas se tromper dans le calcul du produit complexe (m r + jm i ) • (s r -js i ) = (m r s r + m i s i ) + j(m i s r -m r s i ) et effectuer le calcul intermédiaire sur les nombres représentés en virgule fixe sur B bits sur une variable de 2B bits avant de décaler pour éliminer les bits superflus.

Approche naïve

Ainsi en représentation Q31 nous aurons une boucle sur chaque élément de sortie de la forme i n t 6 4 t t1 , t 2 ; t 1 =( i n t 6 4 t ) c1 [ k ] * ( i n t 6 4 t ) meas

[ k ]+( i n t 6 4 t ) c1 [ k +1] * ( i n t 6 4 t ) meas [ k + 1 ] ; // x . * c o n j ( c1 ) t 2=-( i n t 6 4 t ) c1 [ k +1] * ( i n t 6 4 t ) meas [ k ]+( i n t 6 4 t ) c1 [ k ] * ( i n t 6 4 t ) meas [ k + 1 ] ; // x . * c o n j ( c1 ) c1 [ k ]=( t1 >>31) ; c1 [ k+1]=( t2 >>31) ;
en prenant bien soin du cast sur chaque terme pour ne pas laisser au hasard du compilateur la taille du codage de chaque élément du calcul.

Cependant, en l'absence de contrainte sur l'ordonnancement par FreeRTOS des FFT initiales, nous ne saurions prévoir quelle queue de données a reçu quel vecteur parmi les mesures bruitées, le premier code ou le seconde code. Afin d'identifier la fonction de chaque vecteur, nous ajoutons un N + 1ème élément (donc d'indice N en C) contenant un indice qui permet de retrouver quelle est la nature du vecteur transmis. Lors de la réception de la queue de données fournie par la FFT, cet indice nous informera s'il s'agit d'un des vecteurs de référence ou de la mesure. L'assignation du pointeur fourni par la queue vers la structure adéquate n'est que manipulation de pointeurs et ne prend donc que peu de place : i n t 3 2 t * in1 , * in2 , * in3 , * meas , * c1 , * c2 , k ; i f ( ! xQueueReceive ( qh1 , &i n1 , portMAX DELAY) ) u a r t p u t s ( " echec rx1 \ n \0 " ) ; s w i t c h ( i n 1 [ 2 * N ] ) { c a s e 1 : c1=i n 1 ; b r e a k ; c a s e 2 : c2=i n 1 ; b r e a k ; c a s e 3 : meas=i n 1 ; b r e a k ; d e f a u l t : u a r t p u t s ( " error \ n \0 " ) ; } qui se répète pour les trois queues recevant les pointeurs du résultat de calcul des trois tâches chargées de calculer les FFT.

Parallélisons (ou pas)

Le produit de deux vecteurs est l'archétype de la fonction qui se parallélise parfaitement, chaque coordonnée de chaque vecteur étant indépendante de ses voisins et pourtant sujette aux mêmes opérations arithmétiques qui bénéficient donc des instructions Single Instruction, Multiple Data SIMD. Yann Guidon a largement abordé dans [START_REF] Guidon | La logique du Jeu de la Vie : exercices amusants de pensée latérale[END_REF] les bénéfices de ces instructions dans le cas du jeu de la vie de Conway, mais en se limitant au bestiaire des processeurs issus de Intel. La situation n'est pas beaucoup plus simple chez ARM, entre l'extension NEON qui équipe leurs plus gros coeurs et dont l'utilisation bénéficie largement aux performances de GNU Radio par l'utilisation de la bibliothèque VOLK [START_REF] Goavec-Merou | On ne compile jamais sur la cible embarquée" : Buildroot propose GNU Radio sur Raspberry Pi (et autres)[END_REF], mais qu'en est-il sur petit microcontrôleur ? La situation est simple sur le Cortex-M3 qui nous a intéressé jusqu'ici (e.g. STM32F103) : le jeu d'instruction ARMv7-M n'a aucune instruction arithmétique parallélisable [START_REF]-M3, with additional instructions target at Digital Signal Processing (DSP) tasks, such as Single Instruction Multiple Data (SIMD) and faster single cycle MAC operations[END_REF], donc pas d'accélération possible. Le Cortex-M4 et son jeu d'instructions ARMv7E-M est un peu plus intéressant tel que nous le constatons en lisant les sources de CMSIS 5/CMSIS/DSP/Source/BasicMathFunctions/arm mult q15.c qui montre comment en l'absence de la définition de la constante ARM MATH MVEI la bibliothèque CMSIS se contente de concaténér deux opération sur 16 bits (entiers signés en virgule fixe au format Q15) pour effectuer une multiplication sur 32 bits. Le réel bénéfice de l'instruction SIMD apparaît en présence du M-Vector Extension Instructions (MVEI, aussi connu sous le nom d'"Helium") où les registres adéquats sont remplis pour effectuer 8 multiplications en une instruction vst1q(pDst, vqdmulhq(vecA, vecB));, mais ceci uniquement sur coeur M33 ou M35. Ces optimisations restent encore loin de ce qu'amène NEON tel qu'en atteste la même fonction fournie dans VOLK à https://github.com/gnuradio/volk/blob/main/kernels/volk/volk 16ic x2 multiply 16ic.h Finalement, une fois le produit achevé, la transformée de Fourier inverse est obtenu par l'appel de la fonction adéquate dans chaque bibliothèque, le calcul étant strictement identique à un signe près puisque exp(-jωt) devient exp(jωt) selon que la transformée de Fourier soit directe ou inverse.

Résultats

La dernière subtilité lors du déverminage de ces codes, et notamment de l'affichage des grands tableaux contenant les données initiales, leurs FFT, les produits des FFT et les FFT inverses, est que la tâche en cours d'affichage se fait préempter compte tenu de la lenteur de la communication, et tous les tableaux sont mélangés. Nous prendrons donc soin de protéger l'affichage de chaque tableau par un unique mutex représentant l'unique ressource commune de communication qu'est par exemple un port de communication asynchrone compatible RS232 Le lecteur désireux de comparer les temps de calcul par l'approche spectrale par rapport à l'algorithme de complexité N 2 dans le domaine temporel pourra s'inspirer de la fonction suivante pour calculer la corrélation entre x et y, tableaux de n valeurs, en déroulant les deux boucles imbriquées, celle sur ko pour balayer les indices du retard de la corrélation et ki la boucle intérieure pour accumuler les valeurs de l'intégrale : mais surtout se convaincra ainsi de l'exactitude de la dérivation du calcul dans le domaine spectral.

Conclusion

Nous avons mis en oeuvre une bibliothèque complexe, la transformée de Fourier rapide, dans un environnement multitâches qu'est FreeRTOS. Ce faisant, nous nous sommes heurtés aux problèmes classiques d'accès concurrent aux ressources (allocation dynamique de mémoire), d'ordonnancement des tâches et de synchronisation par échanges de données au travers des queues. La plus grande difficulté rencontrée a été la cohérence des options de compilation lors de l'exécution dans QEMU : nous avions par erreur cru que les plateformes lm3s* de qemu-system-arm étaient des Cortex-M4 avec support matériel de l'unité de calcul flottante (option -mhard-float -mfloat-abi=hard qui se traduisait par une instruction erronée lors de l'exécution d'un appel caché dans la bibliothèque KISSFFT aux calculs à virgule flottante.

Cette introduction à CMSIS dans FreeRTOS ouvre de nombreuses perspectives de développement supportant une multitude d'architectures, et en particulier l'utilisation de FreeRTOS dans un environnement POSIX (https://github.com/ARM-software/CMSIS-FreeRTOS/tree/develop/Demo/Posix_GCC) afin d'avoir accès aux outils de profilage fournis sur PC.
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 1 Figure1-Le décodage de la modulation OFDM qui porte nombre de signaux, incluant le DAB+ des nouvelles transmissions musicales en vue de remplacer la bande FM, nécessite une synchronisation grossière en temps, puis un ajustement de fréquence, pour enfin trouver les préambules de chaque trame. Cette dernière étape se fait par corrélation après correction numérique de l'écart de l'oscillateur local du récepteur par rapport à la fréquence de l'émetteur et correction de la fréquence d'échantillonnage. Sur la figure, en bleu la corrélation avant correction de fréquence, les flèches rouges indiquant l'annulation du signal pour une synchronisation grossière, et en orange la corrélation après correction de fréquence, permettant d'accumuler de l'énergie chaque fois que le motif de phase connu est identifié dans le flux continu de coefficients IQ, indiquant un début de trame.

  frequency (no unit) exp(-j*2*pi*[0:42]*0.1) sin(2*pi*[0:42]*0.1)
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 2 Figure 2 -Architecture du programme tirant parti de la capacité de FreeRTOS à séquencer des opérations grâce aux queues de communication entre tâches.
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  l u d e <s t d i o . h> #i n c l u d e <p t h r e a d . h> // g c c -o e x e c s r c . c -l p t h r e a d #i n c l u d e <s y s /msg . h> //#i n c l u d e <s y s / i p c . h> #d e f i n e N 5 // number o

  ( msgid , &b u f f e r , s i z e o f ( b u f f e r ) , 1 , 0 ) ; m s g c t l ( msgid , IPC RMID , NULL) ; // d e l e t e queue ( * ( i n t * ) b u f f e r . mtext ) ++; p r i n t f ( " idx =% d recv =% d \ n " , * index , * ( i n t * ) b u f f e r . mtext ) ; f f l u s h ( s t d o u t ) ; } e l s e * ( i n t * ) b u f f e r . mtext =42; // i n i t i a l v a l u e i f ( * index >0) // do n o t send i f l a s t r e c e i v e r { key = * i n d e x ; // f t o k ( " . " , ( * i n d e x ) ) ; msgid=msgget ( key , 0 6 6 6 |IPC CREAT) ; msgsnd ( msgid , &b u f f e r , s i z e o f ( b u f f e r ) , 0 ) ;
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 3 Figure3-Résultat de la corrélation (partie réelle) par FFT sous GNU/Octave entre le signal bruité et chaque motif, avec en insert un zoom sur la région autour du retard nul illustrant qu'un code (1) est clairement présent dans le signal reçu (corrélation importante) et l'autre (2) est absent. Comme dans tout calcul de corrélation, on aura pris soin de retirer la valeur moyenne de chaque séquence temporelle pour s'affranchir des artéfacts sur le niveau de base. Ici le code est introduit dans le signal avec un retard nul : une répétition du code dans le signal se traduirait par une multitude de pics de corrélation aux abscisses correspondantes aux retards successifs.

#d e f

  i n e configTOTAL HEAP SIZE ( ( s i z e t ) ( 20000 ) )

#

  d e f i n e configCHECK FOR STACK OVERFLOW 2 dans FreeRTOSConfig.h et en ajoutant dans le code source la fonction v o i d v A p p l i c a t i o n S t a c k O v e r f l o w H o o k ( T a s k H a n d l e t xTask , c h a r * pTaskName )
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 4 Figure 4 -Corrélation du signal bruité avec chaque code sur microcontrôleur, démontrant clairement que le code B (orange) est celui transmis par son pic de corrélation au retard 0, alors que le code A (bleu) reste dans le bruit quelque-soit le retard introduit. Noter par rapport à la Fig. 3 quelques différences attribuées au calcul sur des entiers en virgule fixe par rapport aux calculs sur les nombres représentés en virgule flottante dans le premier cas.

  le signal bruité et chaque motif, avec en insert un zoom sur la région autour du retard nul illustrant qu'un code (1) est clairement présent dans le signal reçu (corrélation importante) et l'autre (2) est absent. Comme dans tout calcul de corrélation, on aura pris soin de retirer la valeur moyenne de chaque séquence temporelle pour s'affranchir des artéfacts sur le niveau de base. Ici le code est introduit dans le signal avec un retard nul : une répétition du code dans le signal se traduirait par une multitude de pics de corrélation aux abscisses correspondantes aux retards successifs.

s t r u c t AMessage * pxMessage ; pxMessage = & xMessage ; xQueueSend ( xQueue2 , ( v o i d * ) &pxMessage , ( T ic kTy pe t ) 0 ) ;

  v o i d x c o r r ( i n t 3 2 t * x , i n t 3 2 t * y , i n t n ) { i n t k i , ko ; i n t 3 2 t * xc ; i n t 6 4 t sum ; xc=( i n t 3 2 t * ) m a l l o c ( n * s i z e o f ( i n t 3 2 t ) ) ;

	f o r ( ko =0; ko<n ; ko++)
	{sum=0;
	f o r ( k i =0; k i <n ; k i ++)
	{sum+=( i n t 6 4 t ) x [ k i ] * ( i n t 6 4 t ) y [ ( k i+ko )%n ] ; }
	xc [ ko ]=(sum>>31) ;
	}
	f o r ( ko =0; ko<n ; ko++) x [ ko ]= xc [ ko ] ;
	}
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