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Abstract. In this paper, we propose a numerical strategy to compute a
turbulence model for compressible flows, including a dynamic estimation
of the jump in turbulent kinetic energy across shock waves. The model
is taken from [4] and the Finite Volume method applies to a specific
Riemann solver interface. The entire procedure requires the detection of
shock waves in unsteady flows.
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1 Introduction

Several compressible turbulence models have been proposed in the literature
during the last thirty years, most of them relying on Favre’s formalism. One
classical difficulty in that framework concerns the correct definition of shock
waves, due to the possible occurrence on first-order non-conservative terms in
the PDE formulation. Another one is linked with the correct prediction of the
turbulent kinetic energy when shock patterns occur in the flow. For that pur-
pose, a specific turbulence model has been proposed in 2006 ([4]), that aims
at predicting the turbulent entropy production through the discontinuity in a
dynamical way, still using the standard Euler set of equations grounded on mass
balance, momentum and energy balances.

Nonetheless, this model is indeed more complex than the simple one proposed
in [2], and has never been implemented in CFD codes up to the knowledge
of authors. We thus propose in this note a first numerical strategy based on
Riemann solvers and the Finite Volume method, in order to handle approximate
solutions of this turbulent compressible model. We will first briefly present the
model and its main properties. Next we will turn to the numerical procedure.
The latter requires defining a suitable shock detection, and it then makes use of
a specific interface approximate Riemann solver when some shock wave occurs.



2 Sergey Gavrilyuk et al.

Some numerical results will eventually be presented. More details can be found
in [3].

2 Governing equations

The system of PDEs governing the time-space evolution of the variables is:

∂t(ρ) + ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu2 + P +

2K

3

)
= 0

∂t(ρE) + ∂x

(
u

(
ρE + P +

2K

3

))
= 0

∂t(ρξ) + ∂x(ρuξ) = −M(x, t)δ(x−σt=0)

(1)

The quantities ρ, u, P, K, E and ξ respectively represent the mean density, the
mean velocity, the mean pressure, the turbulent kinetic energy, the mean total
energy and the turbulent entropy. We define the mean total energy, the modfied
pressure and the turbulent entropy, as follows:

ρE = ρe(P, ρ) +
ρu2

2
+K, P ∗ = P +

2

3
K and ξ = Kρ−5/3.

The turbulent speed of density waves c̃ is given by:

c̃2 = c2 +
10K

9ρ
= c2 +

10

9
ξρ2/3, where c2 = (

∂e

∂P |ρ
)−1{ P

ρ2
− ∂e

∂ρ|P
}.

The Dirac mass is δ(x−σt=0) located in x = σt, M(x, t) is the source term located
at the shock position given by formula introduced in [4] and detailed in [3], and
σ is the velocity of the shock wave. The properties of system (1) in a general
framework with respect to the EOS are as follows:

Proposition 1. The system is hyperbolic. It admits four real eigenvalues:

λ1(W ) = u− c̃, λ2,3(W ) = u, λ4(W ) = u+ c̃. (2)

Proposition 2. We introduce the entropy-entropy flux pair (η, fη) with:

η(w) = −ρs, and fη(w) = −ρus. (3)

Then the following inequality holds for smooth solutions:

∂tη + ∂xfη ≤ 0. (4)

Proposition 3. The Rankine-Hugoniot relations associated with model (1) are:

−σ[ρ] + [ρu] = 0,

−σ[ρu] +

[
ρu2 + P +

2K

3

]
= 0,

−σ[ρE] +

[
u

(
ρE + P +

2K

3

)]
= 0

−σ[ρξ] + [ρuξ] = −M

(5)
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By noting the jump:
[f ] = fR − fL,

between the left and right states on each side of a discontinuity travelling at speed
σ.

3 Numerical method

The method requires the definition of an interface hybrid solver to calculate
approximate solutions for the problem. This hybrid solver is made up of two
solvers: a classical approximate Riemann solver when no shock wave is detected,
and a specific interface solver dedicated to the interface where a shock wave
has been detected. We will refer to this as the Modified Approximate Riemann
Solver ”MARS”. For this we use a classical Finite Volume formulation and we
focus on an one-dimensional domain.

In the sequel, we define a pratical technique to detect shock waves, then the
modified solver ”MARS” ( the classical approximate Riemann solver is detailed
in [1]) and finally the numerical cell scheme.

a- Shock detector: For an interface ′i + 1
2

′
separating the two cells i and

i+ 1, we define the quantity gi,i+1 as follows:

gni,i+1 = −σi+1/2[η
n]i+1

i + [fn
η ]

i+1
i , (6)

where (η, fη) denotes the entropy-entropy flux pair, with η = −ρs and fη = uη.
The estimation of the shock velocity is made on the basis of the mass balance:

σi+1/2 = [(ρu)n]i+1
i /[ρn]i+1

i . (7)

For a discontinuity between cells ’i’ and ’i+1’ travelling at speed σi+ 1
2
, we have

the following inequality: gni,i+1 < 0. Though redundant, we also enforce the test:

[un]i+1
i < 0. Using the Lax inequalities (see [5]), we can deduce if it is a 1-shock

or a 3-shock.

b- Modified Approximate Riemann Solver when a 4-shock occurs: The
wave configuration retained for the hybrid solver at the interface is depicted in
figure 1, when a 4-shock occurs. We calculate the modified solver in three steps
which are:

– use of the jump relation through 4-wave,
– exact connection throught the double contact wave λ2,3 = u,
– connection between state ’i’ and ’1’ through linearized 1-wave

Step 1: The jump relations associated with the 4-wave are as follows :
ρi+1(ui+1 − σ) = ρ2(u2 − σ) = m

m2[τ ]i+1
2 + [P ∗]i+1

2 = 0

[e+Kτ ]i+1
2 + P̄ ∗

i+1,2[τ ]
i+1
2 = 0

m[ξ]i+1
2 +M0 = 0

(8)
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t

x

Linearized 1− wave (u+ c̃)− shockDouble contact wave

ξi ξi+1

ξ1
ξ2

xi+1/2

ξi = ξ1

Fig. 1. Approximate solution of the Riemann problem in terms of ξ, when a 4-shock
occurs. Intermediate states are noted ’1’,’2’.

The shock speed σi+1/2 is known numerically on the interface thanks to the
detection stage (7). Using relation (8a), we have m = ρi+1(ui+1 − σi+1/2), with

M0 given by [3] and (8d), we find ξ2 = ξi+1 +
M0

m . We solve (8b)-(8c) to get τ2,

and thus P ∗
2 = P ∗

i+1 +m2[τ ]i+1
2 and u2 = m

ρ2
+ σi+1/2.

Step 2: Knowing that the Riemann invariants associated with the contact wave
are (u, P ∗), we set: u1 = u2 and P ∗

1 = P ∗
2 .

Step 3: u1 and P ∗
1 are now known, thus using VFRoe-ncv we obtain: ρ1 =

ρi +
[P∗]1i

2
¯̃

c2i,i+1

− ρ̄
[u]1i

2 ¯̃ci,i+1
.

Numerical cell scheme: The numerical scheme reads :

∆xi(Z
n+1
i − Zn

i ) +∆t(Fn
i+ 1

2
−Fn

i− 1
2
) +∆tBn

i = 0, (9)

with Z = (ρ, ρu, ρE, ρξ), Bn
i = (0, 0, 0,Mn

i ), and:

Fn
i+ 1

2
=


F lnd

i+ 1
2

= F (Z(W ∗
lnd(W

n
i ,W

n
i+1)) when no shock wave has been detected,

FMARS
i+ 1

2

= F (Z(W ∗
MARS(W

n
i ,W

n
i+1)) if a shock wave has been detected,

(10)
where:

F (Z) = (ρu, ρu2 + P ∗, u(ρE + P ∗), ρuξ). (11)

The solution W ∗
lnd(WL,WR) of the approximate Riemann problem, is found with

the linearized solver VFRoe-ncv (see [1, 2]) and the solution W ∗
MARS(WL,WR)

of the approximate Riemann problem, is found with the modified interface solver



An hybrid solver 5

’MARS’. Mn
i is a contribution in cell i to the global jump of turbulent entropy

M0. The calculation of Mi is done as follows:

We define: Mn
i = 0, except: Mn

i0
= 1

2M0,

Mn
i0+1 = 1

2M0.
(12)

where (i0+1/2) is the interface where the shock wave has been detected at time
tn.

4 Numerical results

We consider a single 4-shock wave. We assume that M0 ̸= 0 is given by the user
using [4]. We consider a perfect gas EOS: P=(γ−1)ρe where γ = 7/5. The exact
solution is shown in figure 2. The initial condition of the Riemann problem is

t

x

(u+ c̃)− shock

WL WR

x0

Fig. 2. The exact solution of the Riemann problem for the 4-shock wave.

given by:

σ = 580, and M0 = −50000,

(ρL, uL, PL, ξL) = (1.936, 280.451, 261265.856, 1000)

(ρR, uR, PR, ξR) = (1, 650, 105, 913.793)

where WR, σ, M0 are given, and WL calculated with (8). Figure 3 shows the
behavior of the density ρ, velocity u, modified pressure P ∗ and turbulent entropy
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ξ at a given time Tf = 3 × 10−3, on different meshes with 100 cells, 1000 cells
and 10000 cells. Figure 4 shows the convergence curve, for the set of variables
{ρ, u, P ∗,ξ}. The error varies as ≈ h1 for all variables (ρ, u, P ∗, ξ), hence the
convergence of all the variables.

Other schemes such as those detailed in [3] may lead to some consistency error
(see figure 5), in connection with the definition of the mass integration, which is
different from (12).

Fig. 3. Density (top left), velocity (top right), P ∗ (bottom left) and ξ (bottom right).
Profile of the approximate solution for different meshes =100 cells, 1000 cells, 10000
cells at t = 3× 10−3 s, CFL = 0.5.
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Fig. 4. Simple 4-shock wave test case 1, with modified scheme. Convergence curves:
logarithm of the relative L1-error versus the logarithm of the mesh size with uniform
meshes containing from 200 to 200000 cells. The error is plotted for variables, ρ, u, P,
P ∗ and ξ.

Fig. 5. Simple 4-shock wave test case 1, with another scheme (see [3]).


