Sergey Gavrilyuk 
email: sergey.gavrilyuk@univ-amu.fr
  
Jean-Marc Hérard 
email: jean-marc.herard@edf.fr
  
Olivier Hurisse 
email: olivier.hurisse@edf.fr
  
Ali Toufaili 
email: ali.toufaili@edf.fr
  
  
  
  
  
An hybrid solver to compute a turbulent compressible model
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In this paper, we propose a numerical strategy to compute a turbulence model for compressible flows, including a dynamic estimation of the jump in turbulent kinetic energy across shock waves. The model is taken from [4] and the Finite Volume method applies to a specific Riemann solver interface. The entire procedure requires the detection of shock waves in unsteady flows.

Introduction

Several compressible turbulence models have been proposed in the literature during the last thirty years, most of them relying on Favre's formalism. One classical difficulty in that framework concerns the correct definition of shock waves, due to the possible occurrence on first-order non-conservative terms in the PDE formulation. Another one is linked with the correct prediction of the turbulent kinetic energy when shock patterns occur in the flow. For that purpose, a specific turbulence model has been proposed in 2006 ( [START_REF] Gavrilyuk | Estimation of the turbulent energy production across a shock wave[END_REF]), that aims at predicting the turbulent entropy production through the discontinuity in a dynamical way, still using the standard Euler set of equations grounded on mass balance, momentum and energy balances.

Nonetheless, this model is indeed more complex than the simple one proposed in [START_REF] Gavrilyuk | Theoretical and numerical analysis of a simple model derived from compressible turbulence[END_REF], and has never been implemented in CFD codes up to the knowledge of authors. We thus propose in this note a first numerical strategy based on Riemann solvers and the Finite Volume method, in order to handle approximate solutions of this turbulent compressible model. We will first briefly present the model and its main properties. Next we will turn to the numerical procedure. The latter requires defining a suitable shock detection, and it then makes use of a specific interface approximate Riemann solver when some shock wave occurs. Some numerical results will eventually be presented. More details can be found in [START_REF] Gavrilyuk | An hybrid solver to compute a compressible model with dynamic estimation of the turbulent kinetic energy across shock waves[END_REF].

Governing equations

The system of PDEs governing the time-space evolution of the variables is:

                   ∂ t (ρ) + ∂ x (ρu) = 0 ∂ t (ρu) + ∂ x ρu 2 + P + 2K 3 = 0 ∂ t (ρE) + ∂ x u ρE + P + 2K 3 = 0 ∂ t (ρξ) + ∂ x (ρuξ) = -M (x, t)δ (x-σt=0) (1) 
The quantities ρ, u, P, K, E and ξ respectively represent the mean density, the mean velocity, the mean pressure, the turbulent kinetic energy, the mean total energy and the turbulent entropy. We define the mean total energy, the modfied pressure and the turbulent entropy, as follows:

ρE = ρe(P, ρ) + ρu 2 2 + K, P * = P + 2 3 K and ξ = Kρ -5/3 .
The turbulent speed of density waves c is given by:

c2 = c 2 + 10K 9ρ = c 2 + 10 9 ξρ 2/3 , where c 2 = ( ∂e ∂P | ρ ) -1 { P ρ 2 - ∂e ∂ρ| P }.
The Dirac mass is δ (x-σt=0) located in x = σt, M (x, t) is the source term located at the shock position given by formula introduced in [START_REF] Gavrilyuk | Estimation of the turbulent energy production across a shock wave[END_REF] and detailed in [START_REF] Gavrilyuk | An hybrid solver to compute a compressible model with dynamic estimation of the turbulent kinetic energy across shock waves[END_REF], and σ is the velocity of the shock wave. The properties of system (1) in a general framework with respect to the EOS are as follows:

Proposition 1. The system is hyperbolic. It admits four real eigenvalues:

λ 1 (W ) = u -c, λ 2,3 (W ) = u, λ 4 (W ) = u + c. (2) 
Proposition 2. We introduce the entropy-entropy flux pair (η, f η ) with:

η(w) = -ρs, and f η (w) = -ρus. (3) 
Then the following inequality holds for smooth solutions:

∂ t η + ∂ x f η ≤ 0. ( 4 
)
Proposition 3. The Rankine-Hugoniot relations associated with model (1) are:

                   -σ[ρ] + [ρu] = 0, -σ[ρu] + ρu 2 + P + 2K 3 = 0, -σ[ρE] + u ρE + P + 2K 3 = 0 -σ[ρξ] + [ρuξ] = -M (5) 
By noting the jump:

[f ] = f R -f L ,
between the left and right states on each side of a discontinuity travelling at speed σ.

Numerical method

The method requires the definition of an interface hybrid solver to calculate approximate solutions for the problem. This hybrid solver is made up of two solvers: a classical approximate Riemann solver when no shock wave is detected, and a specific interface solver dedicated to the interface where a shock wave has been detected. We will refer to this as the Modified Approximate Riemann Solver "MARS". For this we use a classical Finite Volume formulation and we focus on an one-dimensional domain.

In the sequel, we define a pratical technique to detect shock waves, then the modified solver "MARS" ( the classical approximate Riemann solver is detailed in [START_REF] Buffard | A sequel to a rough Godunov scheme: application to real gases[END_REF]) and finally the numerical cell scheme.

a-Shock detector: For an interface ′ i + 1 2 ′ separating the two cells i and i + 1, we define the quantity g i,i+1 as follows:

g n i,i+1 = -σ i+1/2 [η n ] i+1 i + [f n η ] i+1 i , (6) 
where (η, f η ) denotes the entropy-entropy flux pair, with η = -ρs and f η = uη.

The estimation of the shock velocity is made on the basis of the mass balance:

σ i+1/2 = [(ρu) n ] i+1 i /[ρ n ] i+1 i . (7) 
For a discontinuity between cells 'i' and 'i+1' travelling at speed σ i+ 1 2 , we have the following inequality: g n i,i+1 < 0. Though redundant, we also enforce the test: [u n ] i+1 i < 0. Using the Lax inequalities (see [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF]), we can deduce if it is a 1-shock or a 3-shock.

b-Modified Approximate Riemann Solver when a 4-shock occurs: The wave configuration retained for the hybrid solver at the interface is depicted in figure 1, when a 4-shock occurs. We calculate the modified solver in three steps which are:

use of the jump relation through 4-wave, exact connection throught the double contact wave λ 2,3 = u, connection between state 'i' and '1' through linearized 1-wave

Step 1: The jump relations associated with the 4-wave are as follows : The shock speed σ i+1/2 is known numerically on the interface thanks to the detection stage (7). Using relation (8a), we have m = ρ i+1 (u i+1 -σ i+1/2 ), with M 0 given by [START_REF] Gavrilyuk | An hybrid solver to compute a compressible model with dynamic estimation of the turbulent kinetic energy across shock waves[END_REF] and (8d), we find ξ 2 = ξ i+1 + M0 m . We solve (8b)-(8c) to get τ 2 , and thus

           ρ i+1 (u i+1 -σ) = ρ 2 (u 2 -σ) = m m 2 [τ ] i+1 2 + [P * ] i+1 2 = 0 [e + Kτ ] i+1 2 + P * i+1,2 [τ ] i+1 2 = 0 m[ξ] i+1 2 + M 0 = 0 (8) 
P * 2 = P * i+1 + m 2 [τ ] i+1 2 and u 2 = m ρ2 + σ i+1/2 .
Step 2: Knowing that the Riemann invariants associated with the contact wave are (u, P * ), we set: u 1 = u 2 and P * 1 = P * 2 .

Step 3: u 1 and P * 1 are now known, thus using VFRoe-ncv we obtain:

ρ 1 = ρ i + [P * ] 1 i 2 c2 i,i+1 - ρ [u] 1 i 2 ci,i+1 .
Numerical cell scheme: The numerical scheme reads :

∆x i (Z n+1 i -Z n i ) + ∆t(F n i+ 1 2 -F n i-1 2 ) + ∆tB n i = 0, (9) 
with Z = (ρ, ρu, ρE, ρξ), B n i = (0, 0, 0, M n i ), and:

F n i+ 1 2 =      F lnd i+ 1 2 = F (Z(W * lnd (W n i , W n i+1
)) when no shock wave has been detected,

F M ARS i+ 1 2 = F (Z(W * M ARS (W n i , W n i+1
)) if a shock wave has been detected, (10) where:

F (Z) = (ρu, ρu 2 + P * , u(ρE + P * ), ρuξ). (11) 
The solution W * lnd (W L , W R ) of the approximate Riemann problem, is found with the linearized solver VFRoe-ncv (see [START_REF] Buffard | A sequel to a rough Godunov scheme: application to real gases[END_REF][START_REF] Gavrilyuk | Theoretical and numerical analysis of a simple model derived from compressible turbulence[END_REF]) and the solution W * M ARS (W L , W R ) of the approximate Riemann problem, is found with the modified interface solver 'MARS'. M n i is a contribution in cell i to the global jump of turbulent entropy M 0 . The calculation of M i is done as follows:

We define:

M n i = 0, except:    M n i0 = 1 2 M 0 , M n i0+1 = 1 2 M 0 . (12) 
where (i 0 + 1/2) is the interface where the shock wave has been detected at time t n .

Numerical results

We consider a single 4-shock wave. We assume that M 0 ̸ = 0 is given by the user using [START_REF] Gavrilyuk | Estimation of the turbulent energy production across a shock wave[END_REF]. We consider a perfect gas EOS: P=(γ -1)ρe where γ = 7/5. The exact solution is shown in figure 2. The initial condition of the Riemann problem is given by: σ = 580, and M 0 = -50000, (ρ L , u L , P L , ξ L ) = (1.936, 280.451, 261265.856, 1000) (ρ R , u R , P R , ξ R ) = (1, 650, 10 5 , 913.793) where W R , σ, M 0 are given, and W L calculated with (8). Figure 3 shows the behavior of the density ρ, velocity u, modified pressure P * and turbulent entropy ξ at a given time T f = 3 × 10 -3 , on different meshes with 100 cells, 1000 cells and 10000 cells. Figure 4 shows the convergence curve, for the set of variables {ρ, u, P * ,ξ}. The error varies as ≈ h 1 for all variables (ρ, u, P * , ξ), hence the convergence of all the variables.

Other schemes such as those detailed in [START_REF] Gavrilyuk | An hybrid solver to compute a compressible model with dynamic estimation of the turbulent kinetic energy across shock waves[END_REF] may lead to some consistency error (see figure 5), in connection with the definition of the mass integration, which is different from (12). 
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 1 Fig. 1. Approximate solution of the Riemann problem in terms of ξ, when a 4-shock occurs. Intermediate states are noted '1','2'.
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 2 Fig. 2. The exact solution of the Riemann problem for the 4-shock wave.

Fig. 3 .

 3 Fig. 3. Density (top left), velocity (top right), P * (bottom left) and ξ (bottom right). Profile of the approximate solution for different meshes =100 cells, 1000 cells, 10000 cells at t = 3 × 10 -3 s, CF L = 0.5.

Fig. 4 .

 4 Fig. 4. Simple 4-shock wave test case 1, with modified scheme. Convergence curves: logarithm of the relative L1-error versus the logarithm of the mesh size with uniform meshes containing from 200 to 200000 cells. The error is plotted for variables, ρ, u, P, P * and ξ.
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 5 Fig.5. Simple 4-shock wave test case 1, with another scheme (see[START_REF] Gavrilyuk | An hybrid solver to compute a compressible model with dynamic estimation of the turbulent kinetic energy across shock waves[END_REF]).