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Abstract

Computational micromechanics appears of the utmost importance, especially in the current
context of digital twins in mechanics of materials. The objective here is to develop an efficient
solver for the simulation of geometrically complex composite microstructures involving numerous
inclusions connected with the matrix through various non-linear interface behaviors. To do so,
we resort to IsoGeometric Analysis, which provides increased per-degree-of-freedom accuracy, and
leverage the recently introduced immersed boundary-conformal method to retrieve conformal ma-
trix/inclusion interfaces through the construction of conformal layers from it. Then, the approach
is enhanced with the Large Time INcremental method that allows to separate the non-linear inter-
face equations from those related to the subdomains, the latter being all linear and subdomain-wise
independent. It results in an immersed hybrid mixed higher-order numerical scheme that is nat-
urally parallelizable between the different subdomains and that is flexible to treat any non-linear
interface behavior. The stabilization of the formulation occurs within the bulk equations where
Nitsche couplings are performed. The accuracy and efficiency of the developed algorithm are
demonstrated by solving a range of non-linear examples in 2D, including different numbers of in-
clusions in unilateral contact, frictional contact, and delamination with the matrix of the composite
microstructure.

Keywords : Splines, Non-conformal coupling, Robin conditions, Multiscale, Contact, Delamina-
tion

1 Introduction

With the advent of imaging tools on one side, and the desire for data assimilation and digital twins
on the other side, computational micromechanics, that seeks to perform numerical simulation at the
micro scale, definitely constitutes an emerging field nowadays in the mechanics of materials. Starting
from images built, computational micromechanics enables to perform numerical simulation using the
exact, imperfect geometry of the sample [48, 66, 68, 17]. Combining the methodology with in-situ
experimental tests also opens the door for data assimilation at the micro scale [32, 71], by comparing
measured fields coming, e.g., from digital image correlation [12, 62], and simulated fields obtained
from computational micromechanics. In other contexts, computational micromechanics offers the
opportunity to feed artificial intelligence to create homogenized constitutive laws [27, 51], or to perform
virtual material design [34], i.e. to optimize the material microstructure to achieve a desired behavior.
In line with this background, the purpose of this work is to develop an efficient and accurate numerical
method able to compute multiscale and geometrically complex composite microstructures involving
numerous inclusions connected with the matrix through various non-linear interface behaviors.

As a first step towards efficiency, the present work utilizes IsoGeometric Analysis (IGA). Introduced
in [39, 20], IGA proposes to use the higher-order and smooth spline bases encountered in Computer-
Aided Design (CAD), e.g. the Non-Uniform Rational B-Splines (NURBS) or simpler B-splines [18, 58],
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not only for the representation of the geometry but also for the approximation of solution fields in
numerical simulations (see, for instance, [8] for a recent review). While the original aim was to
streamline the time-consuming process of creating mechanical models from CAD programs, the use of
splines offers its own advantages from an analysis point of view. Indeed, spline functions can be C(p−1)

regular between elements for a polynomial degree p, while Lagrange polynomials, which are used in the
standard Finite Element Method (FEM), attain only a C0 regularity at these locations. As a result,
IGA can exhibit higher per-degree-of-freedom accuracy and robustness compared to the standard
FEM for mechanical simulations [25], which makes this approach often seen as a High-Performance
Computational (HPC) tool.

Nevertheless, modeling multiscale and geometrically complex objects, such as composite microstruc-
tures involving a great number of local inclusions, is challenging in IGA. Indeed, multivariate B-splines
and NURBS come with a rigid tensor-product structure, therefore precluding the simple modeling of
local behaviors. More advanced splines, such as locally refined splines [22], hierarchical splines [33, 23],
T-splines and hierarchical T-splines [65, 24], have emerged to offer local mesh refinement, but the
integration of arbitrary local models (e.g., inclusions) within spline patches (e.g., matrix) still remains
an issue [63, 10, 69, 68, 45]. From a general point of view, mainly two approaches can be followed.
Firstly, one can try to invoke spline re-parametrization procedures [52], thereby leading to the split-
ting of the new geometry into several patches with C0 regularity at the boundaries. This may entail
a considerable modeling and computational effort which is often as complex and time-consuming as
standard mesh generation and then, is opposed to the core idea of IGA. The second option consists
in developing advanced numerical methods that allow to relax the need for geometrically conformal
meshes. In this respect, it may appear appealing to resort to the family of immersed boundary methods
that have been subjected to intensive studies in IGA these last years (see [59, 64] for the origin with
the Finite-Cell Method (FCM), [66, 21] for trabecular bones, [61] for cellular materials, [37] for flow
problems in porous media, [68] for composite materials, [15] for fluid-structure interactions in vesicles,
and [57] for composite kirchhoff plates, to name a few). The idea is to simply use unfitted structured
meshes for the interpolation of the mechanical fields, while the cut or trimmed domains are accurately
captured by means of suitable quadrature rules [53, 43, 3, 47, 28]. In this work, we propose to follow
this second path to be completely free from the geometric complexity of the model.

The main task then lies in the formulation and implementation of a coupling scheme between the
background spline mesh (describing, e.g., the composite matrix) and the multiple foreground inclusions.
This appears far from trivial since the coupling interfaces are expected to be both non-conformal (the
latter may cut in any way the elements of the background grid) and non-linear (such as incorporating
contact or delamination). As a remedy, the first ingredient of our approach is to consider the recently
introduced Immersed Boundary-Conformal Method (IBCM) [69] that has proved to be accurate and
robust for perfect (linear) interfaces. It consists in a pragmatic strategy that transforms the initial
interface, through the construction of conformal layers from it, into three different interfaces: the
initial one between the matrix and the inclusion that becomes conformal, and two non-conformal ones
that now lie within the matrix and inclusion. Therefore, the strategy leverages the geometric flexibility
of the immersed methods with the advantages of conformal discretizations, which seems to us all the
more relevant in our context. Indeed, (i) the solution and especially the stress fields can be properly
described around the interfaces with controlled conformal discretizations, (ii) complex non-linear laws
can be enforced in standard manners through the conformal interfaces, and (iii) the non-conformal
aspect can be treated within the framework of linear elasticity, which is now well established in the
field, in particular using Nitsche-type methods [63, 9, 4, 68]. Moreover, let us note that the difficulty
of building conformal layers is generally mitigated when the method is applied to composite materials,
as the local inclusions may have rather simple geometries (for instance, they merely consist of circular
cylinders in case of fiber-reinforced composites).

As a result, the objective now is to extend the IBCM to account for multiple non-linear interfaces
and to perform HPC. The treatment of this type of problem does not seem to be covered by the HPC
methods developed in IGA, which are currently restricted mainly to the framework of linear partial
differential equations (see, e.g., [14, 49, 36] for fast operator assembly and [38, 35, 6, 70] for multigrid
and domain decomposition solvers). Conversely, numerous works may be reported in the field of
standard FEM to answer the issue, including the so-called Large Time INcremental (LaTIn) method
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introduced in [44]. Originally designed to consider material non-linearities such as plasticity and
damage in a non-incremental approach, the method has quickly been applied to domain decomposition
with non-linear interfaces, starting with unilateral and frictional contact [5, 7, 55, 54] and then going
to delamination [40, 67, 26]. More recently, the method has also been extended to the case of immersed
interfaces for multiple contacts in FEM [16, 17] by enhancing it with specific stabilization terms inspired
by the CutFEM methodology [13]. The principle of the LaTIn approach for domain decomposition is
to separate the non-linear interface equations from those related to the subdomains, the latter being
all linear and subdomain-wise independent. Therefore, the interest is that the subdomain equations
can be solved efficiently in parallel, and the non-linear interface ones can be written locally in an easy
fashion regardless of the treated non-linearity.

In this context, our idea is to develop an immersed boundary-conformal isogeometric LaTIn method
in order to accurately and efficiently compute composite microstructures involving multiple inclusions.
In our framework, the LaTIn method is therefore applied across conformal interfaces without any
difficulty, which results in the local formulation of the non-linear interface equations at each interface
Gauss point, and in the parallel solution of subdomain-wise Robin-type linear elastic problems. The
stabilization of the formulation is moved within the bulk equations related to the matrix and the in-
clusions, where Nitsche couplings with minimal stabilization are performed [4, 69]. The implemented
algorithm consists in an immersed, hybrid (bulk/interface), mixed (displacement/force,) higher-order,
and smoother numerical scheme that appears accurate and scalable to treat multiple inclusions in uni-
lateral contact, frictional contact, and delamination with the matrix of the composite microstructure.

The paper is organized as follows: after this introduction, the strong form of the reference multiscale
coupling problem, as well as its discretization in IGA, are discussed in Section 2. Then, in Section
3, the proposed approach for dealing with both non-linear and non-conformal interfaces is presented,
introducing the IBCM, stabilized Nitsche coupling, as well as the LaTIn approach. Next, a range of
numerical experiments are carried out in 2D to assess the performance of our method with respect to
accuracy and efficiency in Section 4, followed by conclusions and discussion in Section 5.

2 Reference mechanical coupling problem and discretization

This section establishes the context of the study and introduces the corresponding notations. The
reference mechanical coupling problem is presented, before some remarks are added to highlight the
difficulty of modeling multiple local behaviors within the IGA framework.

2.1 Governing equations

We undertake to solve a multi-domain problem characterized by a physical domain Ω ⊂ Rd, d = 2
or 3 being the topological dimension of the domain. More precisely, since our target applications are
composite materials such as fiber-reinforced ones, we consider the coupling of a global model (say
the matrix) with multiple local models (say the fibers) through non-linear interfaces. For the sake of
simplicity, let us take here only two subdomains. Ω is therefore divided into two disjoint, open and
bounded subsets Ωm and Ωf joining at interface Γ, i.e. such that Ω = Ωm ∪Ωf ∪Γ and Ωm ∩Ωf = ∅
(see Fig. 1 for illustration). Subscripts m and f may be viewed as referring to the matrix and fiber,
respectively. Linear elasticity is assumed for the two bodies while the interface is expected to exhibit
non-linear behavior, in particular unilateral or frictional contact, or even delamination.

Ωm and Ωf are subjected to body forces fg
m and fg

f , respectively. Furthermore, surface forces

F g
m and F g

f are applied to boundaries ΓFm
and ΓFf

, and displacements ug
m and ug

f are prescribed
on boundaries Γum and Γuf

, respectively (see Fig. 1 again). In each subdomain, the equilibrium
equations, constitutive relations, and boundary conditions have to be verified. Using subscript i to
denote a quantity that is valid over region Ωi, the corresponding governing equations read: ∀i ∈ {m, f},

div(σi) + fg
i = 0 in Ωi ;

σi = Ciε(ui) in Ωi ;

ui = ug
i on Γui

;

σini = F g
i on ΓFi

;

(1)
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Figure 1: Schematic representation of the reference problem: two domains, Ωm and Ωf , are coupled
through interface Γ.

where σi denotes the Cauchy stress tensor, ε(ui) the infinitesimal strain tensor, Ci the Hooke tensor
and ni the outward unit normal, all associated to Ωi. Finally, the interface conditions have to be added
to complete the formulation of the boundary value problem. From a general point of view, the latter
can be written as:

σmnm + σfnf = 0 on Γ ; (2a)

g(um, uf , σmnm, σfnf ) = 0 on Γ ; (2b)

where (2a) ensures the equilibrium of the two subdomains along Γ, and (2b) expresses the possible
non-linear law between the interface displacements and tractions through a given function g. In the
following (see Section 3.3.2), g will be detailed considering the case of contact (unilateral or frictional)
and delamination.

2.2 Spline discretization and challenges

We recall that the aim of this study is to make use of IGA at the discretization level. IGA being
now mature and relatively well-known in the scientific computing community, we do not enter into
the details of the technology here, but rather clarify the difficulty of solving multiscale problems
similar to (1)-(2) within this framework. For more information, the interested reader is referred to the
pioneering contributions [39, 20] and, e.g., [8] for a recent review.

Basically, in its common version, the principle of IGA is to use B-spline and NURBS functions
to build the approximation spaces when applying Galerkin’s method. As stated in the introduction,
although this can provide higher accuracy and robustness compared to the standard FEM, this also
unfortunately makes the local modeling of geometrically complex inclusions within a spline patch
highly challenging. This point actually seems to be closely related to what is called the analysis-
suitable model issue in the field. Indeed, standard IGA requires a boundary fitted discretization for
the analysis while in CAD programs, where the only matter is the rendering of the geometry, entities
are described as collections of their boundary surfaces.

As an illustration, let us take the simple example of Fig. 1. In CAD, this object may consist of:
(i) a one-patch B-spline surface for the whole plate (linear, 1 element) and (ii) a NURBS trimming
curve (quadratic, 2 elements) that forms the boundary between the global and local domains Ωm and
Ωf , respectively (see Fig. 2(a)). As a consequence, the underlying spline surface is unaffected by the
trimming object and preserves its topology. Conversely, using standard IGA for the analysis of such a
problem would require a delicate spline re-parametrization of the whole model to explicitly define the
two domains. In practice, this would inevitably lead to the splitting of the geometry into several (tensor-
product) patches with C0 continuity at the boundaries (see Fig. 2(b) for an example of a boundary fitted
NURBS parametrization of the considered problem). In the case of multiple inclusions, the situation
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is getting even trickier since the resulting geometry of the matrix strongly differs topologically from a
square. The new spline model of Fig. 2(b) is commonly referred to as an analysis-suitable model in the
sense that it can be easily enhanced using classic spline refinement [46, 19, 8] to compute the solution
of a corresponding mechanical problem.

This simple example underlines the difficulties of generating analysis-suitable models for multiscale
IGA. As mentioned in the introduction, one can perform as in Fig. 2(b); that is, one can strive to
remove all trimmed regions by invoking spline re-parametrization strategies, which generally appears
cumbersome in practice. Alternatively, one can implement specific numerical schemes adapted to the
models with the mentioned defects coming from the geometric modeling [50]. This work is heading
in this second direction with the development of a novel immersed-like method (see Fig. 2(c)). The
challenge then consists in formulating a proper coupling formulation that is adapted to a non-conformal
interface (see Fig. 2(c) again). In our context, it is thus requested to handle interfaces that are not
only non-conformal but also non-linear, which is the object of the next section.

3 Isogeometric immersed LaTIn method

As stated in the introduction, we propose to draw inspiration from the ICBM recently introduced
in [69]. The idea is to separate the difficulty by making appear two different types of interface (similar
mindset as in [30] for instance): non-conformal but perfect interfaces (i.e., that ensure the equilibrium
and the standard kinematic compatibility between the subdomains) and non-linear but conformal
ones (i.e., where the boundaries of the subdomains are aligned between each other). The method is
thoroughly described in this section, starting with the principle, and then focusing on the numerical
schemes to address the non-conformal (but perfect) interfaces and finally the non-linear (but conformal)
ones.

3.1 Principle

More precisely, from interface Γ depicted in Figs. 1 and 2, the idea is to extrude it both in the matrix
and fiber directions to obtain two conformal layers. The situation is illustrated in Fig. 3. The process
results in a possibly non-linear interface Γ that becomes conformal, while the non-conformal aspect
is moved inside the subdomains. As for notations, we introduce the superscript j ∈ {l, b} to precise
whether we are in the layers (l) or in the bulks (b). Therefore, we denote Ωl

m (resp. Ωl
f ) the layer

within the matrix (resp. fiber) and Ωb
m (resp. Ωb

f ) the complementary matrix subdomain (resp. fiber
subdomain). Finally, the process makes appear two new interfaces, denoted Γm and Γf , that allows
to couple the layer and the bulk within the matrix and the fiber, respectively, in a non-conformal but
perfect manner. Eventually, given the conformal nature of Γ, the non-linear interface behavior can
be enforced in a standard manner. In this work, it will be formulated locally, especially pointwise
at each interface Gauss point, by means of the LaTIn method [7, 40, 55]. Regarding the perfect but
non-conformal couplings, a well-established Nitsche method will be used following [69].

Returning to the formulation, the subdomain-wise Eqs. (1) become (see again Fig. 3 for the nota-
tions): ∀i ∈ {m, f} and ∀j ∈ {l, b},

div(σj
i ) + fg

i = 0 in Ωj
i ;

σj
i = Ciε(u

j
i ) in Ωj

i ;

uj
i = ug

i on Γuj
i

;

σj
in

j
i = F g

i on ΓF j
i

;

(3)

with the following perfect interface conditions: ∀i ∈ {m, f},

σl
in

l
i + σb

in
b
i = 0 on Γi ; (4a)

ul
i − ub

i = 0 on Γi. (4b)
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Figure 2: Illustration of the analysis-suitable model issue when applying IGA to the reference multiscale
problem of Fig. 1. (a) Initial CAD parametrization; (b) Spline re-parametrization to obtain a boundary-
fitted analysis-suitable model; (c) Discretizations considered in the case of immersed methods. In Fig.
(c) the meshes are associated with the basis functions of the mechanical fields, while the gray areas
correspond to the integration domains.

6



Figure 3: Introducing conformal layers into the initial problem. Now, each subdomain consists of two,
Ωl

i and Ωb
i (i ∈ {m, f}) for the layer and the bulk, respectively. The possible non-linear coupling

between the two layers is performed through interface Γ (still in red) that becomes conformal. The
non-conformal aspect is moved inside the subdomains: for i ∈ {m, f}, non-conformal but perfect
interfaces Γi appear (depicted in green) to connect Ωl

i and Ωb
i . The LaTIn method will be applied

for the coupling at interface Γ, while a Nitsche coupling scheme will be used at interfaces Γi, thereby
arriving at a robust, simple, and efficient strategy.

And lastly, Eqs. (2) now concern only the layers, which yields:

σl
mnl

m + σl
fn

l
f = 0 on Γ ; (5a)

g(ul
m, ul

f , σ
l
mnl

m, σl
fn

l
f ) = 0 on Γ. (5b)

The object in what follows is to derive robust and efficient numerical schemes to solve problem (3)-
(4)-(5a)-(5b).

3.2 Non-conformal coupling with a Nitsche approach

Let us focus here on the enforcement of Eqs. (3)-(4), i.e. the formulation and discretization related
to the perfect and non-conformal couplings across Γi, ∀i ∈ {m, f}. As stated above, we consider a
Nitsche method for this purpose. Given its primal nature, variational consistency, positive definiteness,
symmetry, and good conditioning properties, the Nitsche approach seems to have established itself over
the years in the immersed boundary community for the perfect and non-conformal coupling of linear
subdomains (see [31, 63, 9, 16, 68] to name a few). More precisely, we follow here reference [69] that
relies on the minimal stabilization scheme [4].

3.2.1 Nitsche coupling formulation

Let us start by defining the functional spaces U j
i and Vj

i that contain the displacement solution and
test functions, respectively: ∀i ∈ {m, f} and ∀j ∈ {l, b},

U j
i = {uj

i ∈ [H1(Ωj
i )]

d, uj
i |Γu

j
i

= ug
i } ;

Vj
i = {vji ∈ [H1(Ωj

i )]
d, vji |Γu

j
i

= 0}.

To account for the coupling in the Nitsche approach, both the interface conditions (4a) and (4b)
are imposed weakly and a penalty-like stabilization term is added to ensure the ellipticity of the
boundary value problem. The corresponding weak formulation can be written as: ∀i ∈ {m, f}, find
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(ul
i, u

b
i ) ∈ U l

i × Ub
i such that,∑

j∈{l,b}

aji (u
j
i , v

j
i )−

∫
Γi

{Ciε(vi)} nl
i · [[ui]]dΓ−

∫
Γi

[[vi]] · {σi} nl
idΓ

+ζi

∫
Γi

[[vi]] · [[ui]]dΓ =
∑

j∈{l,b}

lji (vji ), ∀(vli, vbi ) ∈ V l
i × Vb

i ;

(6)

where standard bilinear form aji and linear form lji associated to subdomain Ωj
i read:

aji

(
uj
i , v

j
i

)
=

∫
Ωj

i

ε(vji ) : Ci ε(u
j
i )dΩ ;

lji (vji ) =

∫
Ωj

i

vji · f
g
i dΩ +

∫
Γ
F

j
i

vji · F
g
i dΓ.

In Eq. (6), [[ui]] = ul
i − ub

i and {σi} nl
i denote the displacement jump and the stress flux across Γi,

respectively, and ζi is a stabilization parameter that shall depend on the mesh discretizations and
material properties of the two subdomains to be coupled. Following [4, 69], we adopt the one-sided
flux, i.e. that we consider only the term for the conformal subdomain:

{σi}nl
i = σl

in
l
i = Ciε(u

l
i)n

l
i ;

and we take ζi as:

ζi = βi((h
l
i)

−1 + (hb
i )

−1) with βi = 6(pmax
i )

2 × 8(Emax
i /(1− 2νmax

i )) ;

where hj
i is the maximum element size in Ωj

i , and pmax
i , Emax

i and νmax
i are the maximum polynomial

degree, Young modulus, and Poisson ratio, respectively, of the subdomains (Ωj
i , ∀j ∈ {l, b}) to be

coupled. With such choices, the formulation is rather simple and has proved to be stable and accurate
(see again [4, 69]). Here, since the layer is of the same material as that of the corresponding bulk,
we obviously have Emax

i = El
i = Eb

i = Ei and νmax
i = νli = νbi = νi grouped in the Hooke tensor Ci,

∀i ∈ {m, f}.
Finally, let us condense formulation (6) by writing it as follows: ∀i ∈ {m, f}, find ui ∈ Ui such

that,
ai(ui, vi) = li(vi), ∀vi ∈ Vi, (7)

where Ui = U l
i × Ub

i , Vi = V l
i × Vb

i , and ai(ui, vi) and li(vi) are the left-hand side and right-hand side
of (6), respectively. We recall that Eq. (7) enforces (3)-(4). It thus remains to ensure (5), which is
the object of the next Section 3.3.

3.2.2 Implementation care with immersed methods

The implementation of formulation (7) requires special care to (i) evaluate integrals over pieces of
d−variate elements (for subdomains Ωb

i ), (ii) evaluate integrals over (d − 1)-variate interfaces that
cut the meshes (for computing the Nitsche coupling operators over Γi), and (iii) manage the possible
ill-conditioning of the stiffness matrices over Ωb

i (i.e., the operators associated to bilinear forms abi ).
For point (i), for simplicity and robustness, we use the recursive, quad-tree based quadrature

approach employed in FCM [63, 64]. For sure, more geometrically faithful quadrature rules [53, 43, 3,
47, 28] could also have been considered since our approach is generic in terms of integration schemes.
Regarding point (ii), we pay attention to discretize interfaces Γi as the intersection of the two meshes on
both sides of it (see Fig. 4). This ensures that on each interface element, all the involved basis functions
from the two subdomains to couple are polynomials rather than piecewise polynomials. Finally, for
point (iii), we start by removing from the corresponding stiffness matrices all the degrees of freedom
associated with basis functions whose support does not intersect with the integration domain. Then,
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Figure 4: Interface discretization for coupling non-conformal meshes using the Nitsche approach:
to compute integrals over Γm, the interface discretization is chosen as the intersection of two non-
conformal meshes on both sides of it. Interface Γm is shown, Γf is of course discretized in a similar
manner.

we make use of a diagonal scaling preconditioner as in [3]. For a given (n × n) matrix K collecting
terms Ki,j for the ith line and jth column, the preconditioner is simply defined as:

D = diag
(

1/
√
K1,1, 1/

√
K2,2, . . . , 1/

√
Kn,n

)
,

and is applied on the left and on the right of the linear system of interest. With the latter, we never
encountered instabilities in our numerical experiments.

3.3 Enforcement of non-linear interface behaviors with the LaTIn method

Let us now move to the non-linear interface Γ. The object here is to add Eq. (5) to formulation (7). In
order to do so, we recall that we consider the LaTIn method [44] which has the interest of leading to
a naturally parallel algorithm in case of multiple local models. More precisely, the idea of the LaTIn
approach is to separate the equations in two groups: in our case, the first one concerns the subdomains
equations, which are all linear and subdomain-wise independent; and the second one gathers the
interface equations, the latter being non-linear and local (i.e. pointwise independent). We then
iterate between these two sets of equations by means of two search directions to obtain the solution
of the problem; that is, the one that satisfies all the equations. In the following, we first outline
the LaTIn numerical scheme from a general domain decomposition point of view and then briefly
specify the method depending on the interface non-linear behavior (unilateral or frictional contact,
and delamination). For further details, the interested reader is advised to consult, e.g., [7, 40, 55, 16]
and the other works cited hereafter.

3.3.1 General LaTIn numerical scheme

Separation of the equations To formulate the method, let us start by introducing the following
interface fields for subdomains Ωi: ∀i ∈ {m, f}, λi represents a surface force applied to Ωi through
boundary Γ, and wi is the trace of ul

i (or directly of ui) over Γ. With these new variables, we can
define the first partial solution spaces Ai that group the solutions of the linear equations set on the
subdomains: ∀i ∈ {m, f},

Ai : (λi,wi) such that


(7)

σl
in

l
i = λi on Γ

wi = ul
i on Γ

. (8)
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The spaces Ai are affine spaces often called spaces of admissible fields. We denote their union:

A =
⋃

i∈{m,f}

Ai.

Then, let us define additional force and displacement interface fields (λ̂i, ŵi)i∈{m,f} that belong to the
second partial solution space L, i.e. that verify the behavior of the interface:

L : (λ̂i, ŵi)i∈{m,f} such that

{
λ̂m + λ̂f = 0 on Γ

g(ŵm, ŵf , λ̂m, λ̂f ) = 0 on Γ
. (9)

L is a manifold referred to as the local space since it is defined by pointwise independent equations.
Finally, it is required to add the search directions k+ and k− to communicate between spaces A and
L and thus close the problem. This is performed in a mixed way as follows: ∀i ∈ {m, f},

k+ : λ̂i − λi − k+i (ŵi − wi) = 0 on Γ ; (10a)

k− : λ̂i − λi + k−i (ŵi − wi) = 0 on Γ ; (10b)

where k+i and k−i represent interface stiffnesses. In practice, we choose k+i = k−i = ki > 0 which is
the classical setting of the LaTIn algorithm [44]. Note at this stage that problem (8)-(9)-(10) does

correspond to our problem of interest (7)-(5) since Eqs (10a) and (10b) obviously lead to λ̂i = λi and
ŵi = wi, ∀i ∈ {m, f}.

Iterative algorithm With the above separation of equations in hand, we can then perform a fixed
point numerical scheme to solve the problem. More precisely, for the nth iteration, starting with initial

guesses S
(0)
i = (λ

(0)
i ,w

(0)
i ) ∈ Ai, ∀i ∈ {m, f}, we subsequently perform two steps:

1. Local (non-linear) stage:

∀i ∈ {m, f} , given S
(n−1)
i = (λ

(n−1)
i ,w

(n−1)
i ) ∈ Ai,

find Ŝ
(n−1)
i = (λ̂

(n−1)
i , ŵ

(n−1)
i ) ∈ L ∩ k+.

(11)

2. Global (linear) stage:

∀i ∈ {m, f} , given Ŝ
(n−1)
i = (λ̂

(n−1)
i , ŵ

(n−1)
i ) ∈ L,

find S
(n)
i = (λ

(n)
i ,w

(n)
i ) ∈ Ai ∩ k−.

(12)

To ensure the convergence of the algorithm, a relaxation step is also performed at the end of the linear
stage:

∀i ∈ {m, f} , S
(n)
i ← θS

(n)
i + (1− θ)S

(n−1)
i ,

where we choose θ = 0.5 following again [44]. The overall procedure is illustrated in Fig. 5. In
addition, the search direction ki should represent, as close as possible, the condensed stiffness on Γ of
the complementary part of the whole domain to minimize the number of iterations of the algorithm
(see, e.g., [55])). In 2D, we therefore take km =

Ef

Lf
and kf = Em

Lm
, where Ef (resp. Em) and Lf

(resp. Lm) are the Young modulus and characteristic length of subdomain Ωf (resp. Ωm). Finally, an
indicator of error is used to quantify the distance between A and L for two successive partial solutions.
It is written in an energy norm such that:

η =

∑
i∈{m,f}

∫
Γ

[
ki

(
w

(n)
i − ŵ

(n−1)
i

)2

+
1

ki

(
λ
(n)
i − λ̂

(n−1)
i

)2
]

dΓ

∑
i∈{m,f}

∫
Γ

[
ki

(
w

(n)
i

2
+
(

ŵ
(n−1)
i

)2
)

+
1

ki

(
λ
(n)
i

2
+
(
λ̂
(n−1)
i

)2
)]

dΓ

.
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Figure 5: Latin method: a schematic depiction of the iterative process (S̃(i) is an approximation before
relaxation).

Implementation Benefiting from the above LaTIn algorithm, it becomes clear that (i) the non-
linear stage (11) can be performed locally and (ii) the linear stage (12) can be performed in parallel
between the different subdomains. This is the interest of the method when considering multiple local
models connected through non-linear interfaces. We somehow naturally end up with a non-linear
parallel domain decomposition algorithm.

From a practical point of view, the local equations are solved at each integration point of the
conformal interface Γ. Section 3.3.2 will provide some details depending on the interface non-linear
behavior considered. Note that the computations can be performed in parallel between the different
integration points. The hat quantities (λ̂i, ŵi)i∈{m,f} are therefore ”heart” quantities in the sense that
they are only defined at the interface Gauss points and they are not directly discretized with some
basis functions. Obviously, to make it possible, the other interface fields (λi,wi)i∈{m,f} are evaluated
at the corresponding integration points prior to performing the local stage.

Regarding the linear stage, the problems to be solved are actually subdomain-wise elastic problems
subjected to generalized Robin boundary conditions. Replacing λi in (8) by its expression from (10b),
and returning to ul

i or even ui by applying the trace over Γ, the linear problems reads at iteration n:

∀i ∈ {m, f}, find u
(n)
i ∈ Ui such that,

ai(u
(n)
i , vi) +

∫
Γ

kiu
(n)
i · vidΓ = li(vi) +

∫
Γ

(λ̂
(n−1)
i + kiŵ

(n−1)
i ) · vi dΓ, ∀vi ∈ Vi, (13)

where we reuse the notations of Section 3.2 for ai, li, Ui and Vi. In the discrete setting, since we
consider here a conformal interface Γ, problems (13) should be rather simple to solve and do not
require additional stabilization terms as in the case of non-conformal LaTIn interfaces (see, e.g., [16]).
The stabilization is actually moved to the Nitsche coupling in Section 3.2 in our approach. Here,
we simply take the existing (d − 1)-variate (boundary) basis functions associated to subdomain Ωi

that generate Γ to discretize wi. We, therefore, end up with an interface mass matrix for operator∫
Γ
ui · vidΓ. Then, for the discretization of right-and sides

∫
Γ
λ̂i · vidΓ and

∫
Γ

ŵi · vidΓ, we actually

only need the evaluation of λ̂i and ŵi at the interface Gauss points, which is the case at the end
of the local stage. Note that this corresponds to performing a L2-projection of the heart quantities
(λ̂i, ŵi)i∈{m,f} onto the continuous space used for wi. Finally, once we have ui in hand, we can obtain
wi by using the control variables of ui associated to the boundary control points generating Γ, and
subsequently evaluate wi at the interface Gauss points, and λi at the same locations using the descent
search direction (10b).

Remark 1. It may be noticed at this stage that interface Γ in the proposed LaTIn strategy actually
needs to be geometrically conformal but it can be non-matching. In other words, interface Γ needs
to be aligned with the boundary edges of the subdomains to be coupled but the discretizations of these
subdomains over Γ (mesh refinements and/or polynomial degrees) can differ (see, e.g., [11] for the
nomenclature). With a non-matching interface, only additional care is required to define the integration
points over Γ for the local equations: in this case, interface Γ is discretized as the intersection of the
two meshes on both sides of it and:

ngp = max
i∈{m,f}

(pi) + 1
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Gauss points are taken per (d − 1)-variate elements of the latter. That being said, let us underline
that taking different discretizations for the two layers may appear strange since there is no reason
to prioritize the accuracy of the interface fields of one of the subdomains to correctly represent the
non-linear interface behaviors of interest.

3.3.2 Treatment of the non-linearity in specific cases

Now that the general LaTIn algorithm has been presented, let us give a few more details regarding
the local stage (11). For simplicity, we omit in what follows the superscript (n). ∀i ∈ {m, f}, starting

with quantities (λi,wi), the aim is to find the hat quantities (λ̂i, ŵi), at each interface Gauss point,
such that Eqs. (9) and (10a) are satisfied. Once again, we consider contact (unilateral or frictional)
and delamination (using a cohesive interface) for the non-linear behaviors. The object of this part is,
therefore, to specify Eq. (9) (i.e., function g) in these cases, and to provide some insights regarding
the resolution. In order to do so, we actually need to introduce a pseudo-time to account for the load
history and then write the LaTIn method in a quasi-static framework. Consequently, the above LaTIn
algorithm is slightly modified as the search directions now link, at each time step t, the surface forces(
λ
(t)
i , λ̂

(t)
i

)
and the pseudo-velocities

(
ẇ

(t)
i , ˆ̇w

(t)
i

)
such that:

k+ : λ̂
(t)
i − λ

(t)
i − kvi( ˆ̇w

(t)
i − ẇ

(t)
i ) = 0 on Γ ; (14a)

k− : λ̂
(t)
i − λ

(t)
i + kvi( ˆ̇w

(t)
i − ẇ

(t)
i ) = 0 on Γ. (14b)

Next, a standard implicit scheme is used to express the velocities as a function of the displacements:

ẇ
(t)
i =

w
(t)
i − w

(t−1)
i

∆t
and ˆ̇w

(t)
i =

ŵ
(t)
i − ŵ

(t−1)
i

∆t
. (15)

Finally, contact and cohesive behaviors require the use of a local basis, at each interface Gauss point,
defined by the tangent and normal vectors associated with the interface. In the following, the subscript
τ (resp. n) refers to the tangential (resp. normal) component of a quantity expressed in this basis.
The normal vector is arbitrarily defined from the matrix to the fiber.

Remark 2. Note that kvi in Eqs. (14a) and (14b) does not strictly have the same dimension as ki in
Eqs. (10a) and (10b), due to the introduction of the time increment ∆t. However, let us emphasize
that we can take in practice ∆t = 1 since we are in the case of a quasi-static transformation ( i.e.,
without real dynamic effects). Therefore, we take for our numerical experiments the same values for
kvi as for ki, ∀i ∈ {m, f}.

Unilateral and frictional contact First, let us present the equations for a contact interface that
follows the Coulomb friction law. The case of unilateral contact (i.e., contact without friction) will
then be easily obtained by simplifying these equations, see remark 3. Denoting by jn and µ the possible
initial normal gap between the two subdomains and the friction coefficient, respectively, the interface
quantities need to satisfy in the case of friction contact the following equations at each interface Gauss
point and time step:

λ̂(t)
m + λ̂

(t)
f = 0, (Mechanical equilibrium)

ŵ(t)
mn
− ŵ

(t)
fn

+ jn ≥ 0, (Non interpenetration)

λ̂(t)
mn
− λ̂

(t)
fn
≥ 0, (Positive reaction forces)

(λ̂(t)
mn
− λ̂

(t)
fn

)(ŵ(t)
mn
− ŵ

(t)
fn

+ jn) = 0, (Signorini conditions)If ∥λ̂(t)
iτ
∥ < µ|λ̂(t)

in
| then ˆ̇w(t)

mτ
− ˆ̇w

(t)
fτ

= 0,

If ∥λ̂(t)
iτ
∥ = µ|λ̂(t)

in
| then ∃α > 0, ˆ̇w(t)

mτ
− ˆ̇w

(t)
fτ

= −α
(
λ̂(t)
mτ
− λ̂

(t)
fτ

)
.

(Sticking)

(Sliding)

(16)
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Remark 3. In case of unilateral contact, the last two equations are replaced by the following one:

λ̂(t)
mτ
− λ̂

(t)
fτ

= 0,

and, as the equilibrium of the surface forces is always verified, this leads to null tangent surface forces:

λ̂(t)
mτ

= λ̂
(t)
fτ

= 0.

As a consequence, the problem of the local stage consists here in solving Eqs. (16), (14a) and (15).

This can actually be easily performed by defining two indicators C
(t)
n and G

(t)
τ , which are explicitly

determined from known fields at time step t:

C(t)
n = ŵ(t−1)

mn
− ŵ

(t−1)
fn

+ jn + ∆t
(

ẇ(t)
mn
− ẇ(t)

mn

)
−∆t

(
kv

−1
m λ(t)

mn
− kv

−1
f λ

(t)
fn

)
,

and:

G(t)
τ = λ(t)

mτ
− kvmẇ(t)

m −
kvf

kvm + kvf

(
λ(t)
mτ

+ λ
(t)
fτ
− kvmẇ(t)

mτ
− kvf ẇ

(t)
fτ

)
.

C
(t)
n refers to the contact state of the corresponding interface Gauss point at time step t: it can be either

in contact (C
(t)
n ⩽ 0) or not (C

(t)
n > 0). In case of contact, the second indicator G

(t)
τ indicates whether

the solution is sticking or sliding. Then, the solution is explicit and can be determined without any
difficulty. For more details regarding the solution algorithm, we urge the interested reader to consult,
e.g., [5, 7, 55].

Remark 4. Two frameworks can be used to take into account the quasi-static assumption. The first
one is the incremental approach, where the LaTIn method can be viewed as a non-linear solver used
to find the solution for one time step before determining the next time step. The second framework
is the non-incremental approach. The LaTIn method is seen as a more sophisticated solver since all
time steps are embedded in the LaTIn iterations. Indeed, in this variant, each local stage and linear
stage consists in finding an approximation of the solution for all the time steps. This non-incremental
approach is particularly adapted to multi-parametric studies [60] or time/space decomposition with
model order reduction [29], which is not our case here so we carry out the incremental approach.

Cohesive model Let us now specify the equations regarding the cohesive model for the interface
and how it is managed within the LaTIn method. Cohesive models are based on the idea that the
interface is defined by a stiffness that links the surface force to the normal displacement jump. Initially,
the cohesive interface is undamaged, but during loading, the interface can be progressively damaged
until it breaks completely. A fully damaged interface can be considered as a contact interface. In this
part, we assume that the interface is opening and the normal displacement jump is positive. The case
of a closed interface and a null displacement jump is considered as contact behavior in the normal
direction and is enforced as we described previously. Therefore, to avoid cumbersome notations, we
do not specify the positive part of the displacement jump in the following.

In general terms, the constitutive law can be written as follows:

λ̂
(t)
fn

= k
(

[[ŵ(t)
n ]]

)
[[ŵ(t)

n ]],

where k is the stiffness of the interface which depends on the normal displacement jump [[ŵ
(t)
n ]] =

ŵ
(t)
mn − ŵ

(t)
fn

. There are several laws that describe cohesive models. In our case, we consider a simple
bilinear law [1], as illustrated in Fig. 6. It begins with linear elastic behavior which initial stiffness
is denoted as k0. The displacement jumps δ0 and δc, corresponding to the initiation and completion
of damage are derived from the energy restitution rate Gc and the critical stress σc as δc = 2Gc

σc
and

δ0 = 0.1 · 2Gc

σc
, respectively. As the displacement jump increases, the critical stress σc is reached and

the interface starts to be damaged, the surface force decreases and in the case of unloading, the elastic
return follows a damaged stiffness k.
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Figure 6: Bilinear law considered for the cohesive interface to model delamination.

In this case, the complete problem to be solved at the local stage consists in finding a solution that
verifies the above constitutive law, the equilibrium of the interface, and the search direction equations,
which read:

λ̂
(t)
fn

= k
(

[[ŵ(t)
n ]]

)
[[ŵ(t)

n ]], (Constitutive law)

λ̂
(t)
fn

+ λ̂(t)
mn

= 0, (Equilibrium of surface forces)

λ̂(t)
m − λ(t)

m − kvm( ˆ̇w(t)
m − ẇ(t)

m ) = 0, (Search direction for the matrix)

λ̂
(t)
f − λ

(t)
f − kvf ( ˆ̇w

(t)
f − ẇ

(t)
f ) = 0. (Search direction for the fiber)

(17)

At this step, it is often convenient to change the search direction and consider an infinite one (i.e.,
choosing kvm → ∞ and kvf → ∞), which leads to simply replace the last two equations of (17) by

ŵ
(t)
m = w

(t)
m and ŵ

(t)
f = w

(t)
f . As a result, the computation of the surface forces are fully explicit and

there is no need for a non-linear solver. We advise the interested reader to consult [40, 67, 26] for more
details on this topic.

Remark 5. So far we have written the problem for the normal component of the interface quantities.
We can define the same kind of equation for the tangential ones. The main difference is that com-
pressive behavior does not make much sense for the tangential component, shear damage will occur in
any direction in the tangential plane. Therefore, the tangential displacement jump is considered as an
absolute value.

Linear stage under a quasi-static assumption Finally, let us underline that the linear stage (13)
is slightly modified to take into account the quasi-static assumption. To do so, we simply need to
repeat the procedure to obtain (13), but with (14) as search directions. Combining this with the time
integration scheme (15), the problem at the linear stage now reads: ∀i ∈ {m, f}, at time step t find

u
(t)
i ∈ Ui such that,

ai(u
(t)
i , vi) +

∫
Γ

1

∆t
kiu

(t)
i · vidΓ = l

(t)
i (vi) +

∫
Γ

(
λ̂
(t)
i + ki ˆ̇w

(t)
i +

1

∆t
kiw

(t−1)
i

)
· vi dΓ, ∀vi ∈ Vi.

4 Numerical results

To assess the performance of the developed isogeometric IBCM LaTIn scheme, we now present a series
of numerical experiments in 2D that covers different geometries, discretizations and non-linear interface
scenarios. More precisely, we investigate 4 test cases: (i) one inclusion in unilateral contact with the
matrix, (ii) several inclusions in unilateral contact with the matrix, (ii) a two-body assembly with
frictional contact inside, and (iv) one inclusion in delamination with the matrix.
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Figure 7: Matrix with a central inclusion in frictionless contact: description and data of the problem.

Figure 8: Model decomposition: each part (matrix and inclusion) is composed of two subparts, a
conformal layer, and a background mesh. The meshes used for the solution approximation in the
matrix are colored in black while the meshes used for the solution in the inclusion are colored in red.
The grey color corresponds to the integration area for stiffness operators.

4.1 Matrix with a central inclusion in frictionless contact

To start with, we considered a single circular inclusion in a rectangular matrix, as described in Fig-
ure 7. Both matrix and inclusion materials were linear elastic, and we assumed plane stress state and
small deformations. However, a large elastic contrast between the matrix and inclusion materials was
prescribed: in particular, the Young modulus was chosen 80 times larger for the inclusion than for
the matrix. Contact behavior without friction is considered on the matrix/inclusion interface. Due to
the symmetry of the problem, only one quarter of the area was actually modeled with corresponding
symmetrical boundary conditions (see again Figure 7).

We decomposed the model into two independent subdomains corresponding to the matrix and to
the inclusion. Then, following our approach, in each model we added two conformal layers on the
matrix/inclusion interface (see Figure 8). The thickness of each of the conformal layers was 0.2mm.
Thus, each subdomain consists of two subparts: a conformal layer and a regular background mesh.
Each layer was coupled by Nitsche method with its corresponding model (through a non-conformal but
perfect interface). The stiffness operators of these corresponding regular background meshes, following
FCM, were built by integrating solely in the physical domain which is colored in grey on Figure 8.
Together, the subdomains were connected by the developed LaTIn method through interface Γ (a non-
linear but conformal interface). We recall that this technique allows us to circumvent the difficulty of
dealing with a coupling interface both non-conformal and incorporating contact.
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Figure 9: Horizontal (left) and vertical (right) displacements plotted over the deformed geometry with
a scale factor of 10.

Figure 10: σxx stress (on the left) and σyy stress (on the right). Deformed geometry with a scale factor
of 10.

The following results were obtained for a rather fine mesh containing 32 × 32 NURBS quadratic
elements in each layer and 80 × 80 B-spline quadratic elements in the matrix background mesh. We
chose the same element size for the inclusion’s background mesh. The search directions for the LaTIn
method, due to the significant contrast between the properties of the materials, were chosen as the
Young modulus of the complement divided by its characteristic size (see Section 3.3). The LaTIn
iterations were stopped once indicator η reaches 10−5. All the shown results correspond to converged
LaTIn solutions. Figure 9 shows the obtained displacement on a deformed geometry with a scale factor
of 10. Figure 10 depicts stresses on the deformed geometry. We observe that since σyy is continuous
on the top of the inclusion, materials are in contact in this area, while there is no contact on the
right of the inclusion. In addition, Figure 11 (left) shows the status of the integration points which is

defined by the sign of the contact indicator C
(t)
n . Normal tractions on the interface Γ are depicted on

Figure 11 (right) where angle α is the angle between the position vector of a point and the positive
direction of x axis. The absence of oscillations in these results numerically accounts for the stability
of the numerical scheme.

Then, the convergence of our method with the mesh refinement was studied. For this purpose, four
meshes were considered, see Figure 12. In addition, NURBS of degrees 2 and 3 were used. Finer meshes
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Figure 11: Integration points on the interface: in contact (orange) and not in contact (grey) (left);
normal traction on the interface, α is the angle between the position vector of a point and the positive
direction of x axis (right).

were obtained from the initial one in a hierarchical manner by consequently doubling the number of
elements in each direction. As a reference solution, we took a very refined one following our approach
(320 × 320 cubic elements in background meshes and 128 × 128 cubic elements in the annuli). We
investigated the convergence rate in the energy norm, which is defined as:

Err =
∥uh − uref∥
∥uref∥

=

√∑
i∈{m,f}

∫
Ωi

ε(uh
i − uref

i ) : Ciε(uh
i − uref

i ) dΩ√∑
i∈{m,f}

∫
Ωi

ε(uref
i ) : Ciε(u

ref
i ) dΩ

,

where uh and uref denote the solution of interest and the reference solution, respectively. For the
evaluation of the error, the coarser solutions were interpolated at the integration points of the reference
solution. We show the convergence plots for 2- and 3-degree splines on Figure 13a with respect to
size indicator h. It can be observed that when evaluating the error over the whole domain the rate
of convergence for the quadratic solution is almost the one encountered in linear elasticity (h2). This
demonstrates the superior accuracy of our method with respect to the state-of-the-art of the LaTIn
technique that usually restricts to linear FEM. Nevertheless, it can also be noticed that going to cubic
splines does not improve much the convergence. This is expected due to the lack of regularity of
the contact problem [42]. For completeness on this point, we finally computed the error only in the
matrix background mesh. The associated convergence curves are given in Figure 13b. This time, we
did obtain the convergence rates usually reached in linear elasticity for both the quadratic and cubic
solutions. The solution in the matrix background mesh being quite distant from the contact interface
is actually less affected by the lack of regularity of the problem.

Remark 6. This mesh refinement study suggests that it might be worthwhile to discretize the layers
with splines of relatively low polynomial degrees (say 2) and to use splines of higher polynomial degrees
(say 3 or more) for the bulk. This would allow to correctly catch the non-linear behavior at the interface
while increasing the per-degree-of-freedom accuracy in the bulk. Note that this treatment is possible with
our method without any effort, since it relies on a stabilized Nitsche scheme that allows to couple spline
immersed subdomains of different degrees.
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Figure 12: Meshes considered for convergence study: matrix model (black) and inclusion model (red).

(a) Energy norm error for splines of sec-
ond and third degrees computed in the
whole domain.

(b) Energy norm error for splines of sec-
ond and third degrees computed only
in the matrix background mesh (matrix
without its conformal layer).

Figure 13: Convergence plots for 2- and 3-degree splines.
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Figure 14: Description of the matrix with multiple inclusions problem: 1, 2, 4, and 16 inclusions.
Black color corresponds to the matrix mesh, orange - to the inclusions meshes. Model parameters are
given at the bottom.

4.2 Matrix with multiple inclusions

We are now interested in the convergence of the LaTIn method for different number of inclusions. To
this end, we considered models consisting of an 8mm × 8mm square-shaped matrix with 1, 2, 4, or 16
(uniformly distributed) inclusions, see Figure 14. Each inclusion was of a 1mm diameter, each annulus
thickness was 0.1mm. We apply symmetry boundary conditions on the left and bottom edges of the
matrix and a horizontal displacement on the right edge. As in the previous case, both matrix and
inclusions materials were linear elastic and we assumed again plane stress state and small deformations.
We considered the same material for all inclusions. Material parameters were the same as in 4.1, so
that there was a significant contrast in the matrix and inclusions Young moduli. Furthermore, we
considered once again frictionless contact behavior on all matrix/inclusion interfaces.

For the numerical simulations, we took rather fine meshes. Matrix background mesh contained
32 × 32 elements, each of its conformal layers being composed of 16 × 4 elements. All inclusions had
identical meshes but, contrary to the previous test case, the inclusions’ background meshes were eight
times finer than the matrix one (see again Figure 14 for meshes representation).

Figure 15 shows stress distribution for the 4-inclusion problem on a deformed geometry with a scale
factor of 10. As can be seen from the continuity of stresses σyy the highest and the lowest parts of
inclusions are in contact with the matrix while some detachments appear on the left and right parts
of the inclusions. This seems consistent with the Poisson effect of the plate. For completeness on this
point, Figure 16 depicts the contact status of interface integration points for this case.
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Figure 15: σxx stress (on the left) and σyy stress (on the right) for the model with 4 inclusions.
Deformed geometry with a scale factor of 10.

Eventually, the convergence of the LaTIn method for 1, 2, 4, and 16 inclusions problems was studied.
Figure 17 shows the corresponding convergence curves. It can be observed that the convergence of the
developed algorithm is almost independent of the number of inclusions. More precisely, the algorithm
needs only about 30 iterations for different numbers of inclusions to attain an indicator η of 10−5.
Recalling that the different interface and subdomain computations during the local and global stages,
respectively, can be carried out in parallel, our approach can thus be used as an efficient non-linear
domain decomposition solver. The matrix actually plays the role of the coarse problem of parallel
domain decomposition approaches [35, 6, 70]. It allows to transmit directly the information all over
the inclusions, which makes the algorithm scalable.

4.3 Frictional contact problem

In the next step, we applied our method to a model with frictional contact at interfaces. To this end,
a model with two curvilinear interfaces was created (see Figure 18). This model was inspired by [7]
where interfaces were straight.

The model comprised two domains, Ω1 and Ω2, where Ω1, analogous to the matrix model in
the previous examples, was itself composed of 2 parts, physical and fictitious ones. Two conformal
layers were built on curvilinear non-linear interfaces 1 and 2 to treat the non-conformal aspect of
domain Ω1. Domain Ω2, in its turn, was a simple solely physical domain that had a conformal
interface discretization with interfaces 1 and 2. Frictional contact between Ω1 and Ω2 was modeled
by the Coulomb friction law with friction coefficients µ1 and µ2 on interfaces 1 and 2, respectively. In
addition, interface 3 imposed boundary conditions on the right boundary of Ω2. It was a frictionless
contact interface with initial gap j between the interface and domain Ω2. During the linear stage, the
displacement w corresponding to interface 3 was forced to be zero as if there were a rigid body. Then,
interface forces λ were calculated from w with the use of the search direction. Here, both materials
are linear elastic with equal properties. The discretization used to solve the problem involved 16× 48
quadratic B-spline elements for Ω1, 32 × 2 quadratic B-spline elements for the conformal layers, and
32× 32 quadratic B-spline elements for Ω2 (see again Figure 18).

The problem studied in this section is quasi-static, and it involved two load steps. In the first step,
at time t0, a vertical load F1 was applied on the top boundary of domain Ω1, causing interfaces 1 and
2 to come into contact and thus resulting in non-zero contact forces on the whole of these interfaces.
During this step, there was no external load on Ω2, so F2 = 0. In step two, at t = t1, load F2 = Fmax

2

was applied on domain Ω2 while F1 is being kept constant. The aim was to investigate the effect of
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Figure 16: Integration points on the interfaces: in contact (orange) and not in contact (grey). Model
with 4 inclusions.

Figure 17: Convergence of the LaTIn algorithm for the multiple inclusions problem: models with 1, 2,
4 and 16 inclusions.
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Figure 18: Model description for the frictional contact problem. Black colour corresponds to domain
Ω1, orange - to domain Ω2. Note that due to the geometric simplicity of domain Ω2, the latter is
directly made conformal to the frictional interfaces, so only one layer is built for Ω1 at each of these
interfaces.
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Parameters Values
E 210 GPa
ν 0.3
h 50 mm
e 10 mm
j 0.04 mm
d 5 mm

Fmax
1 30 MPa

Fmax
2 30 MPa

µ1, µ2 ∈ [0, 0.6]
∆t 1 s
η 10−7

Table 1: Model parameters for the frictional contact problem.

friction coefficients on the reaction forces at interface 3. We varied µ1 and µ2 from 0 to 0.6 with 20
values for each coefficient. The model parameters are listed in Table 1.

In this situation of frictional contact, we considered that the algorithm had converged when the
criterion η < 10−7 was achieved. The required number of iterations varies depending on the time step
and on the values of µ1 and µ2. However, it is of the order of a hundred iterations.

The contact zone at interface 3 can vary based on the chosen friction coefficients. It could be fully
in contact, partially in contact, or not in contact. We computed the resulting reaction force R3 on this
interface to quantify the contact status. Results are depicted in Figure 19, where we can see 2 main
zones. A zone for which the friction coefficients are too high and prevent contact. It results in a null
reaction force (see zone close to point (d) in Figure 19). In the second zone, a partial or full contact is
reached on interface 3: the size of the contact area depends on the friction coefficient, the smaller the
friction coefficients, the higher the reaction force (see zone close to point (a) in Figure 19).

Remark 7. It can be seen that contrary to the model with straight interfaces from [7], the reaction
force for µ1 = µ2 = 0 is bigger than the applied horizontal load F2. Indeed, when an interface is in
contact, it results in nonzero normal forces. For the curvilinear interfaces, these normal forces have a
nonzero horizontal component, which gives additional horizontal load on domain Ω2.

To give a closer look at the results, Figure 20 shows horizontal displacement on the deformed
configuration for four particular pairs of (µ1, µ2). It can be seen that interface 3 becomes completely
in contact if there is no friction on interfaces 1 and 2 (Figure 20a). Then, Figure 20b and Figure 20c
depict two cases where interface 3 is only partially in contact. Finally, for µ1 = µ2 = 0.6 (Figure 20d)
there is no contact on interface 3.

4.4 Matrix with one inclusion and delamination

Finally, we investigated the case of a cohesive inclusion/matrix interface with the last example. The
problem description is provided in Fig. 21(a), and we took the same material properties as in the first
example (see Section 4.1) for the matrix and inclusion. Regarding discretization, the matrix contained
32×16 NURBS elements in the conformal layer and 32×32 B-spline elements in the background mesh.
For the inclusion, we opted for a mesh two times finer than for the matrix, both in the bulk and in the
layer. Additionally, we employed different splines degrees: p = 2 for the inclusion and p = 4 for the
matrix (see Figure 21(b)). Therefore, in view of assessing the robustness of the developed approach
(and especially regarding the LaTIn strategy), we placed ourselves in the case of a geometrically
conformal but non-matching interface here (see remark 1).

Dirichlet boundary conditions were imposed on the top and bottom of the region. The simulation
involved 40 time steps with linear increments, resulting in a final displacement of ug = 0.2mm. To sim-
ulate the delamination of the matrix/fiber interface, we employed the standard bi-linear law described
in sec. 3.3.2. In our computations, we set Gc = 0.5 mm·MPa, and σc = 9 MPa.
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Figure 19: Reaction force (in N) on interface 3 for variation in friction coefficients µ1 and µ2.

Figure 20: Horizontal displacement at the end of the last time step. Deformed geometry with a
scale factor of 50. Four pairs of coefficients considered. Note that for the two central cases (pairs
(µ1 = 0, µ2 = 0.6) and (µ1 = 0.6, µ2 = 0)) the displacement varies throughout interface 3 (with the
maximum equal to gap j) which means that only a part of interface 3 is in contact.
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Figure 21: Delamination: (a) problem description and geometrical parameters; (b) spline discretiza-
tions with a zoom on the non-matching interface.

Figure 22: Reaction force versus applied displacement at each loading step.

The reaction force at the bottom of the domain is shown in Figure 22 at each time step. More
precisely, Figure 22 shows three configurations : (a) the case of an undamaged structure, for which the
behavior of the interface remains in the first linear part (see again Fig. 6); (b) the structure with the
cohesive interface starting from an undamaged one and (c) the structure with a fully damaged interface.
As expected, the behavior of the standard structure falls between the two extreme configurations. It
starts with an undamaged interface to reach the behavior of a fully damaged interface as the load
increases. In fact, damage to the interface progressively reduces the overall stiffness of the structure.

Finally, Figure 23 presents the damage parameter at the integration points of the interface at the
last time step. A parameter value of zero indicates an undamaged interface, while a value of one
corresponds to complete interface damage. As it can be seen, the interface is fully damaged on the top
and at the bottom, where jumps in normal displacement are maximum, while it stays intact on the left
and on the right, where these jumps are insignificant. This can also be seen in Figure 24, as the stress
at the top and bottom of the inclusion is zero. Since the interface is mostly broken, the inclusion is
hardly loaded in the y-direction.

5 Conclusions

In this work, we developed an efficient and accurate solver for the simulation of composite microstruc-
tures composed of multiple inclusions connected to the matrix with unilateral contact, frictional con-
tact, and delamination. To do so, three interconnected ingredients were employed: (i) IGA, which has
established itself as an HPC tool nowadays, was used for the geometric representation of the different
interfaces and for the problem discretization, (ii) the pragmatic immersed boundary-conformal method
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Figure 23: Damage parameter on the last time step on the interface integration points.

Figure 24: σyy stress in MPa for the last time step. Deformed geometry with a scale factor of 2.
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was considered to offer great geometric flexibility while retrieving conformal interfaces, and (iii) the
LaTIn technique was implemented in this context to obtain a parallel domain decomposition algorithm
capable of treating any non-linear interface behavior. In other words, the key point was to separate the
difficulty of treating interfaces both non-conformal and non-linear, so as to obtain a simple numerical
scheme which stability is ensured within the bulk equations through Nitsche coupling. The strategy
was applied to a range of numerical examples in 2D and proved to be accurate regardless of the geome-
try, discretization, and non-linear interface scenarios. Although the focus in terms of applications was
on composite microstructures, we underline that the proposed algorithm may also find success in other
contexts, such as for large assemblies of interacting solids [54], or for bio-medical applications [17].

The extension of the implementation to the 3D case would obviously constitute an interesting
prospect for this work. In this respect, the main issue may concern the surface integration over the
non-conformal interfaces for the Nitsche coupling, which would require computing the intersection of a
spline surface mesh with the interior of a spline volume mesh [2]. The extension of the formulation to
mixed-dimensional problems, for instance, to incorporate beam models within volume meshes [41], may
also appear desirable to cover a larger variety of structures, such as encountered in civil engineering.
Finally, starting from images, e.g. obtained with X-ray computed tomography, and making use of
specific image-based spline procedures [56], would be attractive to take into account the real inner
geometries of materials.
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