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Abstract—Noise estimation is a crucial part of any modern
supervised denoiser. Various statistical approaches are studied
to estimate the noise, but generally these depend on a manual
analysis of the images. To remove the manual dependency, it
is important to automate the noise estimation process. In this
paper, the initial phase of noise estimation, which is to identify
the types of noise distribution, is performed using machine
learning (ML) techniques. To make the images workable with
ML techniques, a feature extraction process was performed. Hu’s
moment invariants, Haralick’s texture, and color histogram are
extracted from the images and stacked horizontally by scaling
with MinMax scale the three features into one. Label encoder
is used for normalizing the labels. Multiple ML techniques are
trained and validated, and then tested with unknown images. The
result is that stacking multiple ML techniques can produce better
results with an accuracy above 90%. Stacking with the test set
produces the following scores for Precision, Recall, and F1-score:
0.98, 0.88, 0.93, and 0.89, 0.98, 0.93 for Gaussian and Poisson
respectively, with an average precision of 88%. These promising
results prove the capability of ML techniques for image noise
classification tasks where noise is artificially added. However,
in real case, i.e. when the images come from a Zeiss Auriga
FE SEM, which is the initial target, the classification is not as
efficient. Thus, it is not always possible to work in a real denoising
scenario if the model is trained with synthetic data.

Index Terms—Noise estimation, Machine Learning, Ensemble
Learning, Classification

I. INTRODUCTION

The identification of noise in visual data is of great interest
to the fields of image processing and computer vision. As a
result, several distinct denoising algorithms have been created,
and there is still a great deal of ongoing research on image
denoising. However, the automated task of identifying noise
types in images receives relatively little attention [1], [2]. A
few methods are known with notable performance in the well-
established research area of noise estimation and removal.
Prior to image denoising, identifying the noise information in
the image is a crucial step [3]. If the noisy image information
is correctly recognized, the denoising process will be effective.
There is not much academic work that addresses this issue, and
many papers only address denoising problems, but the prior
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information to make deep learning based denoisers or blind
denoisers still needs more attention.

In fact, a denoiser’s goal is to create a denoised replica Di

of an original clean image Oi from an observation Ob that is
thought to be noisy. A noise function N generates Ob with the
formula Ob = N(Oi). To represent N , there are a plethora
of noise models available [4] including Gaussian, Poisson,
Bernoulli, Speckle or Uniform noise and many more. Although
denoisers are improving in terms of noise elimination level
[6], the majority of published approaches are made for and
tested against a certain main noise distribution (i.e. respecting
a known distribution) [5]. Therefore, classification of noise
information can be performed in an automated and accurate
manner using machine learning methods, and it may also
be possible to improve denoising if the classifier model is
properly trained [3].

In [5], the authors mention several benefits of understanding
the different kinds of noise in an image. Namely, recognizing
the main noises and creating a standard denoiser library
to solve any noise removal problem by decomposing the
mixed denoising problem into its fundamental problems. In
summary, the distribution of the detected noise type can help in
creating a denoising pipeline. Moreover, noise type estimation
is crucial in our case, as we are working with scanning electron
microscopy images that have both Gaussian ( [7]) and Poisson
( [8]) noises. Thus, distinguishing the type of noise is an
important task to perform before denoising these images.

Additionally, relevant research demonstrates that the per-
formance of cutting-edge denoising algorithms can decrease
sharply when the noise parameters are wrong. Therefore, it is
essential for image processing/analysis algorithms to estimate
noise characteristics accurately [9].

In this study, we present an automated approach based on
machine learning to classify noise types, either Gaussian or
Poisson (as our target images may exhibit both types). This
study is a large-scale assessment of classical machine learning
approaches and ensemble techniques (including bootstrapping,
boosting and stacking).

The main contributions of this study are as follows:
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• ML techniques are vastly investigated in image classifi-
cation tasks.

• Multiple types of features are extracted and concatenated
to make image classification possible with ML tech-
niques.

• Stacked generalization, a multi-layer approach, is also
studied to reduce the error bias in the model.

• 10-fold cross validation has been considered during train-
ing of each model to ensure there is no overfitting.

• Noisy SEM images generated by artificially adding noise.
• Prior experiments on noise type classification of SEM

images were performed for the first time.
• Training from synthetic noisy images may not yield the

same results as with real noisy SEM images.
• An initiative for automatic noise type classification of

SEM images.
The rest of the paper is organized as follows. Section II

describes the background and related works. The process we
performed during the analysis of the images is presented in
Section III. Section IV describes the comparative results and
findings in detail. Finally, Section V concludes the paper with
possible future work.

II. BACKGROUND AND RELATED WORKS

Various aspects of image capture, such as acquisition, quan-
tization, formatting, and compression, causes noise in the final
image. For example, the Scanning Electron Microscopy (SEM)
image capture process is divided into five stages and each stage
is assumed to be Poisson distributed [8]. However, we found
that it really depended on the setup and, more importantly, the
scan speed. In order to perform denoising on SEM images,
one must identify the types of noise and the level of noise.
The process of gathering image noise information is known
as noise estimation.

While noise estimates are rather uncommon, there is a vast
and broad body of work on image denoising. To estimate
noise, either a single image or a collection of photos can
be employed. Overestimation issues exist in noise estima-
tion from multiple photos [10]. The mean absolute deviation
(MAD) is the foundation of a popular estimation technique
[11]. The slope of the smooth or low-textured region is utilized
to calculate the signal-dependent noise level for each intensity
interval, according to [12]. Three methods were put forth by
the authors of [13] to estimate noise levels using training
samples and (Laplacian) statistics from actual image data.

Although overestimation problems in estimating noises from
multiple images have been noticed by [10], the articles by [5],
[14], [15] showed that it is possible to increase the denoising
performance by estimating noise types using machine learning
or deep learning classification techniques. Thus, we were
inspired to continue the experiment by focusing specifically
on noise type identification where these techniques focused
on denoising.

Machine learning approaches [29] like K-Nearest Neighbor
(KNN), Linear Discriminant Analysis (LDA), Classification
and Regression Trees (CART-Decision Tree), Naive Bayes

(NB), Support Vector Machine (SVM), Gradient Boosting
(GB), Hist Gradient Boosting (HisGB), Ada boosting (ADA),
eXtreme Gradient Boost (XGB), Extremely Randomized Tree
(ET), Random Forest (RF) and stacking [30] concept have
enough fame in classification tasks. Usually, those techniques
are widely used in tabular data classifications. However, it is
possible to extract relevant features from images and reshape
the features to apply above mentioned techniques to classify
the noise types from images.

Hu Moments [21], Haralick Texture [18]–[20] and Color
Histogram [22] are high level features of an image [16]. The
defect extraction algorithm frequently uses the moment feature
as a feature descriptor. Using the concept and properties of
invariant moments, we address the issue that the seven feature
components of Hu moments have large magnitude differences
and are scale-dependent [17]. In order to measure the spatial
relationship between adjacent pixels in an image, Haralick et
al. [21] suggested using a gray-level co-occurrence matrix
(GLCM). Due to their clarity and straightforward interpre-
tations, Haralick texture characteristics, calculated from the
GLCM, are frequently used and have been effectively applied
in various classification tasks. The color histogram technique
is the one that is most frequently used to derive an image’s
color characteristics. It depicts how an image’s color bins are
distributed in terms of frequency. Obviously, as we deal with
gray level images, the color histogram is in fact a grayscale
one (same value for the three color channels).

III. METHODOLOGY

The proposed and experimented methodology is depicted
in Figure 1. However, before discussing the methodology, it
is appropriate to explain the information about the dataset.
Although Gaussian and Poisson noise can be exist in SEM
images, we prepare a noisy dataset of scanning electron
microscopy images. Both types of noise artificially added to
the images from [23], denoted by D1, and few other noisy
images collected from [24], denoted by D2. The training,
validation, and test sets were then obtained by randomly
selecting images in D1 and D2 such that 3,245 Gaussian and
3,218 Poisson images were used for training, 456 Gaussian
and 457 Poisson images for validation, and 440 Gaussian and
442 Poisson images for testing. However, D2 has noisy images
itself but the SEM images in D1 were artificially made noisy
with different noise measurements. For Gaussian noise, the
standard deviation (σ) values 20, 25, 30, 35, 40, 45 and 50
[25] were applied respectively. On the other hand for Poisson
noise, the λ values 10, 20, 30, 40, 50, 35 and 45 [26] are used
respectively.

The methodology starts with loading the dataset into the
model with the pre-structure format which is done during the
preparation and generation of the dataset. Then, image feature
extraction and data labeling are performed.

A. Features Extractions and Data Labeling

The images in both datasets D1 and D2 had multiple
dimensions. Thus, a resizing of all the images (600X400)
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Figure 1. Proposed methodology.

is performed, then the Hu invariant moments, Haralick tex-
ture and color histogram are extracted from the images and
concatenated horizontally (column by column). In parallel,
the sub-folders (Gaussian or Poisson) from which the images
come from are used as labels.

Few more information about the extracted features are
described as follows:

• Hu moments invariant: Due to their invariance properties
with respect to image translation, scaling, and rotation,
moment invariants have been widely used for image
pattern recognition in a number of applications [33].

• Haralick texture: Common texture descriptors used in
picture analysis are Haralick texture characteristics. The
gray levels of an image are reduced, a procedure known
as quantization, in order to calculate the Haralick features.

• Color histogram: A visual depiction of how colors are
distributed in an image. A histogram’s data is derived by
counting the instances of each color that could exist in
the image according to the chosen color model [34].

B. Normalization

We have now stacked features in an array that is normalized
by applying MinMax scaler and in the same time the unique
labels (Gaussian and Poisson in our case) are encoded using

label encoder. Finally, the normalized features and labeled are
stored in .h5 format to further use for training and test (because
the same process was followed to prepare the training and test
data sets).

C. Machine Learning (ML) Classifiers

Classical machine learning classifiers are widely studied, as
well as ensemble techniques such as bootstrapping, boosting
and stacking, in order to identify the most efficient ones in im-
age classification. Thus, Logistic Regression (LR), k-Nearest
Neighbor (KNN), Linear Discriminant Analysis (LDA), Clas-
sification and Regression Trees (CART-Decision Tree), Naive
Bayes (NB), Support Vector Machine (SVM), Gradient Boost-
ing (GB), Histogram-based Gradient Boosting (HisGB), Ada
boosting (ADA), eXtreme Gradient Boost (XGB), Extremely
Randomized Tree (ET), Random Forest (RF) and Stacking
of multiple meta learners are experimented in this study. We
used k-fold cross validation [35] to overcome the overfitting
problems in learning of classifiers.

Finally, the extracted and normalized features were used to
train the ML techniques and perform an evaluation with the
test set.

D. Performance Evaluation

The proposed methodology has been evaluated and val-
idated with Confusion matrix, Precision, Recall, F1-score,
Accuracy, ROC AUC, and Boxplots [30]. The most popular
and straightforward method for assessing performance with
two or more types of classes in any classification task is the
confusion matrix. The confusion matrix is just a table with two
dimensions—called real and predicted—that aid in making any
forecast. In the confusion matrix there are four terms: True
Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN).

All these performance indicators can be calculated using the
following formulas:

• Precision: TP/(TP+FP).
• Recall: TP/(TP+FN).
• F1-score: 2×(Precision×Recall)/(Precision+Recall).
• Accuracy: (TP+TN)/(TP+TN+FP+FN).
• ROC AUC: The Area Under the Curve (AUC), which

serves as a summary of the ROC curve [32], is a mea-
surement of a classifier’s capacity to discriminate between
classes. The performance of the model in differentiating
between the Gaussian and Poisson classes improves with
increasing AUC.

• Boxplots [31] are helpful for figuring out how data are
distributed, spotting outliers, and contrasting distribu-
tions. It is simpler to see differences between distributions
when the boxplot representation is slightly altered. They
summarize the data concisely, and the placement of the
box and whisker markers makes it simple to compare the
classification accuracy.

More information on the performance indicators can be
found in [27], [30].



IV. RESULTS AND DISCUSSION

The experimental results of our proposal are presented com-
paratively in Table I, showing the ability of different ML and
ensemble techniques to classify Gaussian and Poisson noises.
From the values in the table, it can be seen that ensemble tech-
niques perform better than classical ML techniques. Mostly,
boosting techniques have significant results in terms of ROC
AUC, Precision, Recall, F1-score and Accuracy. ADA, HisGB,
GB, XGB and Stacking provide 93% of accuracy where RF
and ET (ensemble techniques) provide 92% accuracy.

Table I
COMPARISON OF THE RESULTS OF DIFFERENT ML

AND ENSEMBLE TECHNIQUES

ML ROC AUC Precision Recall F1-score Accuracy
LR 0.98 0.93 0.89 0.91 0.91

LDA 0.98 0.95 0.87 0.91 0.91
KNN 0.97 0.88 0.91 0.90 0.90

CART-DT 0.90 0.90 0.90 0.90 0.90
NB 0.81 0.73 0.99 0.84 0.81

SVM 0.97 0.94 0.85 0.90 0.90
RF 0.98 0.91 0.93 0.92 0.92
ET 0.98 0.91 0.92 0.92 0.92
GB 0.99 0.93 0.94 0.93 0.93

ADA 0.98 0.93 0.93 0.93 0.93
HisGB 0.99 0.92 0.94 0.93 0.93
XGB 0.98 0.92 0.93 0.93 0.93

Stacking 0.99 0.93 0.94 0.93 0.93

Stacked generalization (stacking) is known as a super
learner and has the particularity of minimizing error bias.
We can in particular observe that it produces 94% for recall
(or sensitivity), 93% for precision and F1-score. Because of
its overall performance, we chose stacking as the winning
technique among all others to solve noise type classification
problems from SEM images.

Several observations can be made from the the boxplots
shown in Figure 2. First, it can be seen that RF has a
symmetric distribution of accuracy achieved from 10-fold
cross validation, with two outliers. Second, LR and LDA
provide very stable results exhibiting a symmetric distribution
of accuracy, with an average rate of 91%. Third, stacking and
GB provide the best performance for the validation set in terms
of all matrices, including the AUC ROC. Thus, the concept of
stacking or GB may be useful for other experiments in the test
set. However, GB is already employed within the Stacking as
one of the meta-learners thus we count Stacking as winner in
noise classification apart from other classifiers.

The number of correctly classified and misclassified test
data samples using Stacking are shown in confusion matrix
displayed in Figure 3. Hence, Stacking was able to distinguish
Gaussian and Poisson images with 88% and 98% of accu-
racy respectfully. Overall, the proposed approach with Stack-
ing provides 0.98, 0.88, 0.93 (Precision, Recall, F1-score)
and 0.89, 0.98, 0.93 (Precision, Recall, F1-score) scores for
Gaussian and Poisson noises respectively, where the average
accuracy is around 93% (+/- 1).

LR LDA KNN CART RF NB SVM GB HisGB AB xGB ET ST
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RF, CART-DT and GB are used as meta learners in the stack
while XGB is used as the final classifier. A few other com-
binations have been tried, but this combination of classifiers
provided the best performance.

The provided results show that artificially added noise
or synthetic noisy images can be distinguishable using the
proposed model. However, we tested it with the real noisy
images collected from the Zeiss Auriga FE SEM of our
lab (FEMTO-ST). Unfortunately, with real noisy images, the
performance of the model with Gaussian noise was poor, since
the model classified the images mainly as having Poisson
noise. Therefore, it is crucial to create a real noisy dataset with
manual noise labeling to improve model training. In addition,
learning noise from more smoother pixels may improve the
classification accuracy of real noisy images. This is because
smoother pixels can provide more meaningful information
about noise types than the whole images.

V. CONCLUSION AND FUTURE WORK

Machine learning techniques are widely used and have
shown better results in the field of classification, mainly on
tabular data. In this study, these techniques are used and
evaluated in image classification tasks. Specifically, the goal is
to classify the types of noise existing in the images by targeting



the automation of noise estimation using ML techniques. We
found that the ensemble ML techniques, especially boosting
and stacking techniques, outperformed in image classification.
Noisy images (mixed SEM and optical) obtained by artifi-
cially adding noise were used to train and test the proposed
approach. As a result, boosting and stacking provided the
highest performance with 93% (+/- 1) of accuracy. However,
our proposal is not properly able to distinguish the real noisy
SEM images. Thus, a message to future researchers is not
to use ML techniques for classification of real noisy images,
as it may not work, especially for SEM images. However,
deep learning (DL) techniques can be further investigated to
see if DL can successfully distinguish the type of noise in
images. Subsequently, other image features can be evaluated
to make a more concrete decision about using ML in noise
type classification.
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