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This paper deals with the control problem of the parabolic ill-posed Cauchy system. To do this, we use a notion of hierarchical control inspired by the control of Stackelberg. This approach makes it possible to characterize the optimal control-state pair via a singular optimality system. And this, without using any additional assumptions, such as that of non-vacuity of the interior of the sets of admissible controls, an assumption that many analyses have had to use.

Introduction

Let Ω ⊂ R n be a bounded and regular domain of class C 1 , with boundary Γ = Γ 0 ∪ Γ 1 , where Γ 0 and Γ 1 are disjointed, regular and with positive superficial measures. For T ∈ R * + , we denote

Q = Ω×]0, T [ and Σ = Γ×]0, T [, so Σ = Σ 0 ∪ Σ 1 , with Σ 0 = Γ 0 ×]0, T [ and Σ 1 = Γ 1 ×]0, T [ .
Then, let us consider in Q, the boundary value problem

                   ∂z ∂t -∆z = 0 in Q, z(x, 0) = 0 in Ω, z = v 0 , ∂z ∂ν = v 1 on Σ 0 , (1) 
where, for given v 0 , v 1 ∈ L 2 (Σ 0 ), z = z(v 0 , v 1 ) verifies [START_REF] Barry | Cauchy System for Parabolic Operator[END_REF].

Problem (1) is the Cauchy system for the heat equation; it is well known that this problem is ill-posed in Hadamard's sense. That is to say, for a given vector v = (v 0 , v 1 ) in (L 2 (Σ 0 )) 2 , the problem does not always admit a solution, and there may be instability of the solution when it exists. We return, a little later, to the question of the existence of a solution to the Cauchy problem, at least, in the context considered here.

We therefore consider a priori the pairs (v, z) = ((v 0 , v 1 ) ; z), such as

v = (v 0 , v 1 ) ∈ L 2 (Σ 0 ) 2 and z ∈ L 2 (Q) , (2) 
where z is solution of (1) for the Cauchy condition v = (v 0 , v 1 ). It is said that such pairs constitute the set of control-state pairs. To simplify notations, we will write (v 0 , v 1 , z) instead of ((v 0 , v 1 ) ; z).

Let U 0 ad and U 1 ad be two non-empty closed convex subsets of L 2 (Σ 0 ). We denote by A the subset of U 0 ad × U 1 ad × L 2 (Q) constituted by the control-state pairs whose satisfying the system (1). This means that

A = (v 0 , v 1 , z) ∈ U 0 ad × U 1 ad × L 2 (Q) ; (v 0 , v 1 , z) satisfying (1) . Lemma 1. The set A of admissible control-state pairs is closed convex subset of L 2 (Σ 0 ) × L 2 (Σ 0 ) × L 2 (Q).
Proof. Let us start by recalling that we have (v, z) ∈ A if and only if

v = (v 0 , v 1 ) ∈ U ad = U 0 ad × U 1 ad and z ∈ L 2 (Q) with                  P z = 0 in Q, z(x, 0) = 0 in Ω, z = v 0 , ∂z ∂ν = v 1 on Σ 0 , where P = ∂• ∂t -∆•.
1. Let (v, z) , (w, k) ∈ A and λ ∈ [0, 1]. Then, by convexity of the space L 2 (Q) and the subsets U 0 ad and U 1 ad , we have that

(λ(v, z) + (1 -λ)(w, k)) = (λv + (1 -λ)w , λz + (1 -λ)k) ∈ U ad × L 2 (Q) .
On the other hand, by linearity of the operator P , we have that

P z = 0 and P k = 0 in Q leads to P (λz + (1 -λ)k) = 0 in Q.
Analogeously, the trace operators

γ 0 : L 2 0, T ; H 1/2 (Ω) -→ L 2 (Σ) and γ 1 : L 2 0, T ; H 3/2 (Ω) -→ L 2 (Σ)
being linear, we have

z| Σ 0 = v 0 and k| Σ 0 = w 0 =⇒ (λz + (1 -λ)k)| Σ 0 = λv 0 + (1 -λ)w 0 and ∂z ∂ν Σ 0 = v 1 and ∂k ∂ν Σ 0 = w 1 =⇒ ∂ ∂ν (λz + (1 -λ)k) Σ 0 = λv 1 + (1 -λ)w 1 .
The initial condition being trivially satisfied, we have

                 P (λz + (1 -λ)k) = 0 in Q, (λz + (1 -λ)k)(x, 0) = 0 in Ω, λz + (1 -λ)k = λv 0 + (1 -λ)w 0 , ∂ ∂ν (λz + (1 -λ)k) = λv 1 + (1 -λ)w 1 on Σ 0 .
This allows us to conclude, as

(λv + (1 -λ)w) ∈ U ad and (λz + (1 -λ)k) ∈ L 2 (Q) , that (λ(v, z) + (1 -λ)(w, k)) ∈ A : A is convex. 2. Let H = z ∈ L 2 (Q) : P z ∈ L 2 (Q) .
We then note that, endowed with the norm

z 2 H = z 2 L 2 (Q) + P z 2 L 2 (Q) ,
H is an Hilbert space.

Then, we consider the set A in the Hilbert space

H = L 2 (Σ 0 ) × L 2 (Σ 0 ) × H with (v, z) 2 H = v 0 2 L 2 (Σ 0 ) + v 1 2 L 2 (Σ 0 ) + z 2 H (v, z) 2 H = v 0 2 L 2 (Σ 0 ) + v 1 2 L 2 (Σ 0 ) + z 2 L 2 (Q) + P z 2 L 2 (Q) .
So that, any sequence

(v n , z n ) n ⊂ A ⊂ H admits a limit (v, z) ∈ H i.e. (v n , z n ) -(v, z) 2 H -→ 0.
But, by definition of • H , we have

v 0n -v 0 2 L 2 (Σ 0 ) ≤ (v n , z n ) -(v, z) 2 H , v 1n -v 1 2 L 2 (Σ 0 ) ≤ (v n , z n ) -(v, z) 2 H , z n -z 2 L 2 (Q) ≤ (v n , z n ) -(v, z) 2 H , P z n -P z 2 L 2 (Q) ≤ (v n , z n ) -(v, z) 2 H ,
from which we deduce from

(v n , z n ) -(v, z) H -→ 0,
that the left members in the above inequalities also tend to 0; so that

v 0n -→ v 0 in L 2 (Σ 0 ) , v 1n -→ v 1 in L 2 (Σ 0 ) , z n -→ z in L 2 (Q) , P z n -→ P z in L 2 (Q) .
Then, U 0 ad and U 1 ad being closed subsets of L 2 (Σ 0 ), it follows that

v 0n -→ v 0 in L 2 (Σ 0 ) and (v 0n ) n ⊂ U 0 ad =⇒ v 0 ∈ U 0 ad and v 1n -→ v 1 in L 2 (Σ 0 ) and (v 1n ) n ⊂ U 1 ad =⇒ v 1 ∈ U 1 ad .
We also have

P z n -→ P z in L 2 (Q) and P z n = 0 in Q =⇒ P z = 0 in Q.
Now, let's take ϕ ∈ C ∞ Q ; we have:

P z n = 0 in Q =⇒ (P z n , ϕ) L 2 (Q) = 0, which is equivalent to Q ∂z n ∂t ϕ dxdt - Q ∆z n ϕ dxdt = 0. (3) 
Considering the first member of (3), we have

Q ∂z n ∂t ϕ dxdt = Ω T 0 ∂z n ∂t ϕ dtdx = Ω z n (T )ϕ(T ) -z n (0)ϕ(0) - T 0 z n ∂ϕ ∂t dx = Ω z n (T )ϕ(T ) dx - Q z n ∂ϕ ∂t dxdt , since z n (0) = 0 in Ω.
Then, for the second member of (3), we have with the Green's formulas,

Q ∆z n ϕ dxdt = Q z n ∆ϕ dxdt + Σ ∂z n ∂ν ϕ dΣ - Σ z n ∂ϕ ∂ν dΣ = Q z n ∆ϕ dxdt + Σ 0 v 1 ϕ dΣ 0 + Σ 1 ∂z n ∂ν dΣ 1 - Σ 0 v 0n ∂ϕ ∂ν dΣ 0 - Σ 1 z n ∂ϕ ∂ν . So that (3) is equivalent to Ω z n (T )ϕ(T ) dx - Q z n ∂ϕ ∂t dxdt - Q z n ∆ϕ dxdt - Σ 0 v 1n ϕ dΣ 0 - Σ 1 ∂z n ∂ν ϕ dΣ 1 + Σ 0 v 0n ∂ϕ ∂ν dΣ 0 + Σ 1 z n ∂ϕ ∂ν dΣ 1 = 0 i.e. Ω z n (T )ϕ(T ) dx + Q z n P * ϕ dxdt - Σ 0 v 1n ϕ dΣ 0 - Σ 1 ∂z n ∂ν ϕ dΣ 1 + Σ 0 v 0n ∂ϕ ∂ν dΣ 0 + Σ 1 z n ∂ϕ ∂ν dΣ 1 = 0, (4) 
where we denote by

P * = - ∂• ∂t -∆• the adjoint operator of P .
This last equality being valid for all ϕ ∈ C ∞ Q , we particularly have, for ϕ with

       ϕ(T ) = 0 in Ω, ϕ = 0 = ∂ϕ ∂ν on Σ 1 , that (4) becomes 
Q z n P * ϕ dxdt - Σ 0 v 1n ϕ dΣ 0 + Σ 1 v 0n ∂ϕ ∂ν dΣ 0 = 0.
Then, passing to the limit, strong convergence leading to weak convergence, it comes that

Q z P * ϕ dxdt - Σ 0 v 1 ϕ dΣ 0 + Σ 0 v 0 ∂ϕ ∂ν dΣ 0 = 0. (5) 
With [START_REF] Kernevez | Enzyme Mathematics[END_REF] and new integrations by parts, we obtain

Q z P * ϕ dxdt = - Q z ∂ϕ ∂t dxdt - Q z ∆ϕ dxdt = - Ω z(T )ϕ(T ) -z(0)ϕ(0) - Ω ∂z ∂t ϕ dt dx - Q ∆z ϕ dxdt - Σ z ∂ϕ ∂ν dΣ + Σ ∂z ∂ν ϕ dΣ = Ω z(0) ϕ(0) dx + Q P z ϕ dxdt - Σ 0 z ∂ϕ ∂ν dΣ 0 + Σ 0 ∂z ∂ν ϕ dΣ 0 = Ω z(0)ϕ(0) dx - Σ 0 z ∂ϕ ∂ν dΣ 0 + Σ 0 ∂z ∂ν ϕ dΣ 0 .
So that [START_REF] Kernevez | Enzyme Mathematics[END_REF] becomes

Ω z(0)ϕ(0) dx + Σ 0 ∂z ∂ν -v 1 ϕ dΣ 0 + Σ 0 (v 0 -z) ∂ϕ ∂ν dΣ 0 = 0.
This last equality being valid for any ϕ ∈ C ∞ Q with (4), we deduce that z satisfies

                 P z = 0 in Q, z(x, 0) = 0 in Ω, z = v 0 , ∂z ∂ν = v 1 on Σ 0 .
Which, with the first part of the proof allows to conclude that (v, z) ∈ A.

Thus we show that

A is indeed closed in H ⊂ L 2 (Σ 0 ) × L 2 (Σ 0 ) × L 2 (Q).
A control-state pair will be said admissible if it belongs in A.

We assume that

A = ∅ ; (6) 
in particular, we want A not to be reduced to {0, 0, 0}. Here is an example in favor of this non-vacuity assumption.

Example 1. Let assume that      U 0 ad = L 2 (Σ 0 ) , U 1 ad is a non-empty convex closed subset of L 2 (Σ 0 ) .
Then the set of admissible control-state pairs is non-empty.

In fact, given a function v 1 ∈ U 1 ad , we build (see for instance [6, pp. 416

-417]) a solution ξ of                    ∂ξ ∂t -∆ξ = 0 in Q, ξ(x, 0) = 0 in Ω, ∂ξ ∂ν = v 1 on Σ 0 , ξ = 0 on Σ 1 .
What defines in an unique way (see. [10, p. 86] Theorem 15.2)

ξ ∈ H 1 2 , 1 4 (Q) = L 2 0, T ; H 1 2 (Ω) ∩ H 1 4 0, T ; L 2 (Ω) .
Therefore, the control-state pair ξ| Σ 0 , v 1 , ξ is admissible.

Let us introduce now the cost function

J(v, z) = 1 2 z -z d 2 L 2 (Q) + N 0 2 v 0 2 L 2 (Σ 0 ) + N 1 2 v 1 2 L 2 (Σ 0 ) , (7) 
where z d ∈ L 2 (Q) is the desired state and N 0 , N 1 ∈ R * + are economics parameters. We are then interested in the problem

inf {J(v, z) : (v, z) ∈ A} . ( 8 
)
The assumption [START_REF] Lions | Contrôle de systèmes distribués singuliers[END_REF] and the structure of J easily show that problem (8) admits a unique solution, the optimal control-state pair (u, y).

The cost function J being differentiable, the first order Euler-Lagrange conditions make it possible to establish that the optimal control-state pair of ( 1)-( 8) satisfies the optimality condition:

(y -z d , z -y) L 2 (Q) + N 0 (u 0 , v 0 -u 0 ) L 2 (Σ 0 ) + N 1 (u 1 , v 1 -u 1 ) L 2 (Σ 0 ) ≥ 0, ∀ (v, z) ∈ A. (9)
It remains to characterize the optimal pair (u, y) through a singular optimality system.

Before going any further, let us return for a moment to the ill-posed character of the Cauchy problem in the present framework.

Remark 1. As underlined above, it is well known that the Cauchy problem (1) is ill-posed, that is to say that the problem does not always admit a solution and that there can be instability of the solution when it exists.

Beyond that, it is also well known that, even when it exists, the solution of (1) is not global, but in general local, around the manifold where the Cauchy conditions are defined. The notion of control-state pair is precisely introduce to fill these defects, in our opinion! Still, to the best of our knowledge, all the works dealing with the control problem posed here, start from the non-vacuity assumption of the set of admissible control-state pairs! Despite what these works do not manage, except in particular cases (cf. Remark 3), to do without the Slater type assumption that the interior of the sets of admissible controls are non-empty!

We think it is clear, on reading it, that the present manuscript does not claim to finish addressing the problem! We are juste proposing a method which has the merit of dispending with the Slater assumption. With limits, of course! Moreover, it should be emphasized that within the framework of the problem analyzed here, some hypothesis are "naturally" implicit, without which the problem would not make sense! Professor Lions rightly points out this state of affairs in his analysis (cf. [6, p. 416])! With regard to, for example, the local character of the solution, the control problem would therefore not make sense! Unless to circumscribe it to the limits of the manifold where a possible solution would be defined! Remark 2. We also make the assumption that, when it exists, the solution to the ill-posed Cauchy problem is unique. Which assumption relies (cf. [START_REF] Hadamard | Lectures on Cauchy's Problem in Linear Partial Differential Equations[END_REF]) on a result of uniqueness, when it exists, of a holomorphic solution. Nevertheless, in general, the problem remains open. Indeed, to our knowledge, almost all of the work carried out concerns only specific cases of controls (v 0 , v 1 ), such as the following:

■ U 0 ad = U 1 ad = L 2 (Σ 0 ), the "unconstrained" case; ■ U 0 ad = U 1 ad = L 2 (Σ 1 ) + ,
■ or with the additional Slater type assumption that the interiors of U 0 ad and/or U 1 ad are non-empty in L 2 (Γ 0 ) . [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF] This paper aims to constitute an argument in favor of the conjecture of J.-L. Lions. Indeed, J.-L. Lions conjectures that one should be able to solve the problem only with the usual assumptions of non-vacuity, convexity and closure of the control sets U 0 ad and U 1 ad . We succeed here, through an hierarchical control idea.

The paper is organized as follows. In Section 2, we begin by introducing the proposed point of view, through the definition of the hierarchical control problem. After which, we end up establishing the optimality systems of the for the follower then for the leader. We then finish, with Section 3, by ensuring the equivalence between the initial control problem and the proposed point of view.

Hierarchical control

In this section, we propose to substitute to the initial control problem of the ill-posed system (1), those of two well-posed associate systems. We therefore appeal to a hierarchical control method, inspired by the Stackelberg control method (see. [START_REF] Lions | Hierarchic control[END_REF], [START_REF] Lions | Some remarks on Stackelberg's optimization[END_REF], [START_REF] Heinreich | Market Structure and Equilibrium[END_REF] and the bibliography of these works).

The Stackelberg duopoly theory consists of sequential vision of the game in which two companies compete on the market for the same product. One (the follower) acts first, integrating the reaction of the other one (the leader) in the choice it makes of the quantity it decides to put on the market.

The Stackelberg conjecture therefore defines a form of asymmetric competition in which one of the firms, the leader, consider as a data the quantity of product that the other has put on the market.

Inspired by the Stackelberg duopoly theory, the control method baptized by the same name is a multiple-objective optimization approach. It identifies the competing firms of Stackelberg to controls, (v 0 , v 1 ) for the leader and (w 1 , w 2 ) for the follower, thus leading to two interdependant control problems: that of the follower and that of the leader.

The approach presented here is not exactly the same as that of Stackelberg, but we draw inspiration from the latter, thereby borrowing the established vocabulary.

More precisely, we consider the following systems

                   ∂z 1 ∂t -∆z 1 = 0 in Q, z 1 (x, 0) = 0 in Ω, z 1 = v 0 on Σ 0 , ∂z 1 ∂ν = w 1 on Σ 1 (11) 
and

                   ∂z 2 ∂t -∆z 2 = 0 in Q, z 2 (x, 0) = 0 in Ω, ∂z 2 ∂ν = v 1 on Σ 0 , z 2 = w 2 on Σ 1 , (12) 
where v 0 , v 1 ∈ L 2 (Σ 0 ) and w 1 , w 2 ∈ L 2 (Σ 1 ).

So we can prove (with [10, p. 86], Theorem 15.2) that ( 11) and [START_REF] Nakoulima | Contrôle de systèmes mal posés de type elliptique[END_REF] defines in an unique way z 1 and z 2 in H 1/2,1/4 (Q).

From which we deduce that

z i ∈ L 2 0, T ; H 1 2 (Ω) , i = 1, 2, which means that z i (t) ∈ H 1 2 (Ω)
a.e. t ∈ (0, T ), from which it follows that, a.e. t ∈ (0, T ),

z i (t)| Γ ∈ L 2 (Γ) and ∂z i ∂ν (t) ∈ H -1 (Γ).
Thus we have, for i = 1, 2, that

z i | Σ ∈ L 2 (Σ) and ∂z i ∂ν ∈ L 2 0, T ; H -1 (Γ) ⊂ H -1 (Σ).
But, as

∂z 1 ∂ν = w 1 ∈ L 2 (Σ 1 ) and ∂z 2 ∂ν = v 1 ∈ L 2 (Σ 0 ) ,
we have, more precisely, that

∂z 1 ∂ν Σ 0 ∈ L 2 0, T ; H -1 (Γ 0 ) ⊂ H -1 (Σ 0 ) and ∂z 2 ∂ν Σ 1 ∈ L 2 0, T ; H -1 (Γ 1 ) ⊂ H -1 (Σ 1 ) .

Control of the follower

Now we introduce, for all w 1 , w 2 ∈ L 2 (Σ 1 ), the functional

J 2 (w 1 , w 2 ) = 1 2 v 0 -z 2 (w 2 ) 2 L 2 (Σ 0 ) + 1 2 ∂z 1 ∂ν (w 1 ) -v 1 2 H -1 (Σ 0 ) , (13) 
and we consider the minimization problem

min J 2 (w 1 , w 2 ) , w 1 , w 2 ∈ L 2 (Σ 1 ) . (14) 
In [START_REF] Heinreich | Market Structure and Equilibrium[END_REF], the norme on H -1 (Σ 0 ) is defined as follows (cf. [7, p. 213]): let -∆ Σ be the Laplace-Beltrami operator on Σ, so

-∆ Σ = -∆ Γ - ∂ 2 ∂t 2 ,
where -∆ Γ is the Laplace-Beltrami operator on Γ; then, for f, g ∈ H -1 (Σ 0 ), we take

(f , g) H -1 (Σ 0 ) = Σ 0 (-∆ Σ ) -1 f g dΣ 0 resp. Σ 0 f (-∆ Σ ) -1 g dΣ 0 , where ψ = (-∆ Σ ) -1 f resp. (-∆ Σ ) -1 g is solution, in H 1 0 (Σ 0 ), of (-∆ Σ ) ψ = f (resp. g), ψ = 0 on Σ 0 . Thus, f 2 H -1 (Σ 0 ) = (f , f ) H -1 (Σ 0 ) .
We check that Proposition 1. The minimization problem (14), said the follower control problem, admits an unique solution (w * 1 , w * 2 ) ∈ (L 2 (Σ 1 )) 2 : the optimal control of the follower.

Given w 1 , w 2 ∈ L 2 (Σ 1 ) and λ ∈ R * ;

■ noting that φ 1 = z 1 (w 1 ) -z 1 (0) is given by                    ∂φ 1 ∂t -∆φ 1 = 0 in Q, φ 1 (x, 0) = 0 in Ω, φ 1 = 0 on Σ 0 , ∂φ 1 ∂ν = w 1 on Σ 1 , (15) 
we have:

J 2 (w * 1 + λw 1 , w * 2 ) = 1 2 v 0 -z * 2 2 L 2 (Σ 0 ) + 1 2 ∂z 1 ∂ν (w * 1 + λw 1 ) -v 1 2 H -1 (Σ 0 ) = 1 2 v 0 -z * 2 2 L 2 (Σ 0 ) + 1 2 ∂z * 1 ∂ν -v 1 2 H -1 (Σ 0 ) + λ 2 2 ∂φ 1 ∂ν 2 H -1 (Σ 0 ) + λ ∂z * 1 ∂ν -v 1 , ∂φ 1 ∂ν H -1 (Σ 0 )
from which we deduce that

d dλ J 2 (w * 1 + λw 1 , w * 2 ) λ=0 = ∂z * 1 ∂ν -v 1 , ∂φ 1 ∂ν H -1 (Σ 0 ) ; (16) 
■ in the other hand,

φ 2 = z 2 (w 2 ) -z 2 (0) given by                    ∂φ 2 ∂t -∆φ 2 = 0 in Q, φ 2 (x, 0) = 0 in Ω, ∂φ 2 ∂ν = 0 on Σ 0 , φ 2 = w 2 on Σ 1 , (17) 
we have:

J 2 (w * 1 , w * 2 + λw 2 ) = 1 2 v 0 -z 2 (w * 2 + λw 2 ) 2 L 2 (Σ 0 ) + 1 2 ∂z * 1 ∂ν -v 1 2 H -1 (Σ 0 ) = 1 2 v 0 -z * 2 2 L 2 (Σ 0 ) + 1 2 ∂z * 1 ∂ν -v 1 2 H -1 (Σ 0 ) + λ 2 2 φ 2 2 L 2 (Σ 0 ) + λ(z * 2 -v 0 , φ 2 ) L 2 (Σ 0 )
from which it comes that

d dλ J 2 (w * 1 , w * 2 + λw 2 ) λ=0 = (z * 2 -v 0 , φ 2 ) L 2 (Σ 0 ) . ( 18 
)
Then, using the Euler-Lagrange first conditions, we get that the optimal control (w * 1 , w * 2 ) for the follower is the unique element of (L 2 (Σ 1 ))

2 satisfying                    ∀ w 1 , w 2 ∈ L 2 (Σ 1 ) , ∂z * 1 ∂ν -v 1 , ∂φ 1 ∂ν H -1 (Σ 0 ) = 0, (z * 2 -v 0 , φ 2 ) L 2 (Σ 0 ) = 0. (19) 
Let's now introduce the adjoint states q * 1 and q * 2 , respectively defined, in

H 1 2 , 1 4 (Q), by                    - ∂q * 1 ∂t -∆q * 1 = 0 in Q, q * 1 (x, T ) = 0 in Ω, q * 1 = (-∆ Σ ) -1 ∂z * 1 ∂ν -v 1 on Σ 0 , ∂q * 1 ∂ν = 0 on Σ 1 , (20) 
and

                   - ∂q * 2 ∂t -∆q * 2 = 0 in Q, q * 2 (x, T ) = 0 in Ω, ∂q * 2 ∂ν = z * 2 -v 0 on Σ 0 , q * 2 = 0 on Σ 1 . ( 21 
)
It therefore comes, from (15), that

∂φ 1 ∂t -∆φ 1 = 0 in Q =⇒ ∂φ 1 ∂t , q * 1 L 2 (Q) -(∆φ 1 , q * 1 ) L 2 (Q) = 0 which is equivalent to v 1 - ∂z * 1 ∂ν , ∂φ 1 ∂ν H -1 (Σ 0 ) = (q * 1 , w 1 ) L 2 (Σ 1 ) ,
and so, the optimality condition (19) 1 becomes

(q * 1 , w 1 ) L 2 (Σ 1 ) = 0 ∀ w 1 ∈ L 2 (Σ 1 ) .
But this last equality is valid for any function w 1 ∈ L 2 (Σ 1 ), we therefore deduce that

q * 1 = 0 on Σ 1 ,
which, with (20), brings that q * 1 satisfying the Cauchy system

                   - ∂q * 1 ∂t -∆q * 1 = 0 in Q, q * 1 (x, T ) = 0 in Ω, q * 1 = 0, ∂q * 1 ∂ν = 0 on Σ 1 .
We deduce that q * 1 ≡ 0 and, consequently, that

q * 1 = 0 on Σ 0 i.e. ∂z * 1 ∂ν = v 1 on Σ 0 . ( 22 
)
In the other hand, we have from ( 17), that

∂φ 2 ∂t -∆φ 2 = 0 in Q =⇒ ∂φ 2 ∂t , q * 2 L 2 (Q) -(∆φ 2 , q * 2 ) L 2 (Q) = 0 which is equivalent to φ 2 , ∂q * 2 ∂ν L 2 (Σ 1 ) = (v 0 -z * 2 , φ 2 ) L 2 (Σ 0 )
and so, the optimality condition (19) 2 becomes

∂q * 2 ∂ν , w 2 L 2 (Σ 1 ) = 0 ∀ w 2 ∈ L 2 (Σ 1 ) .
Again, this last equality being valid for any function w 2 ∈ L 2 (Σ 1 ), we deduce that

∂q * 2 ∂ν = 0 sur Σ 1 ,
which, with (21), brings that q * 2 satisfying the Cauchy system

                   - ∂q * 2 ∂t -∆q * 2 = 0 in Q, q * 2 (x, T ) = 0 in Ω, q * 2 = 0, ∂q * 2 ∂ν = 0 on Σ 1 .
We deduce that q * 2 ≡ 0 and, consequently, that ∂q *

2 ∂ν = 0 on Σ 0 i.e. z * 2 = v 0 on Σ 0 .
We have thus just shown that Proposition 2 (Optimality system of the follower). The control

(w * 1 , w * 2 ) ∈ (L 2 (Σ 1 )) 2 is optimal solution of the problem (14) if and only if it exists z * 1 , z * 2 ∈ H 1/2,1/4 (Q) such that the pair {(w * 1 , w * 2 ) , (z * 1 , z * 2 )
} is solution of the optimality system defined by

                   ∂z * 1 ∂t -∆z * 1 = 0 in Q, z * 1 (x, 0) = 0 in Ω, z * 1 = v 0 on Σ 0 , ∂z * 1 ∂ν = w * 1 on Σ 1 , (23) 
                   ∂z * 2 ∂t -∆z * 2 = 0 in Q, z * 2 (•, 0) = 0 in Ω, ∂z * 2 ∂ν = v 1 on Σ 0 , z * 2 = w * 2 on Σ 1 , (24) 
with ∂z * 1 ∂ν = v 1 and z * 2 = v 0 on Σ 0 . (25) 

Control of the leader

Let's remember that the solutions z 1 (v 0 , w 1 ) and z 2 (v 1 , w 2 ) to the problems [START_REF] Gisèle | Control of Cauchy System for an Elliptic Operator[END_REF] and ( 12) depend continuously on the data v 0 , v 1 , w 1 and w 2 . So that, optimizing against controls w 1 and w 2 (for the follower), which we did in the previous subsection, we obtained and characterized (cf. Proposition 2) the optimal control (w * 1 , w * 2 ) ∈ L 2 (Σ 1 ) 2 satisfying the minimization problem

J 2 (w * 1 , w * 2 ) ≤ J 2 (w 1 , w 2 ) , ∀ (w 1 , w 2 ) ∈ L 2 (Σ 1 ) 2 .
But, and as pointed out, the optimal states, for the follower, z 1 (v 0 , w * 1 ) and z 2 (v 1 , w * 2 ) still depends continuously on the controls v 0 and v 1 , of the leader. We can therefore dfurther optimize with respect to the controls v 0 and v 1 . This is what we are going to do now.

Let us start by recalling that the optimal states, for the follower, are given in

H 1/2,1/4 (Q) by                    ∂z * 1 ∂t -∆z * 1 = 0 in Q, z * 1 (x, 0) = 0 in Ω, z * 1 = v 0 on Σ 0 , ∂z * 1 ∂ν = w * 1 on Σ 1 , (26) 
and

                   ∂z * 2 ∂t -∆z * 2 = 0 in Q, z * 2 (x, 0) = 0 in Ω, ∂z * 2 ∂ν = v 1 on Σ 0 , z * 2 = w * 2 on Σ 1 . (27) 
So we introduce now the cost function

J 1 (v 0 , v 1 ) = θ 1 2 z * 1 -z d 2 L 2 (Q) + θ 2 2 z * 2 -z d 2 L 2 (Q) + N 0 2 v 0 2 L 2 (Σ 0 ) + N 1 2 v 1 2 L 2 (Σ 0 ) , (28) 
where N 0 , N 1 , z d are as defined in [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF], and

θ 1 , θ 2 ∈ R * + such as θ 1 + θ 2 = 1.
We are then interested in the control problem

inf{J 1 (v 0 , v 1 ) ; v = (v 0 , v 1 ) ∈ U ad } . ( 29 
)
The following result is then immediate.

Proposition 3. The control problem (29) admits an unique solution, ( v 0 , v 1 ), the optimal control of the leader.

Proof. U ad = U 0 ad × U 1 ad being a non-empty close convex subset of L 2 (Σ 0 ) and the functional J 1 being coercive, strictly convex and continuous, a fortiori, weakly semi-continuous, the result follows.

Let denote by z 1 = z 1 ( v 0 ) and z 2 = z 2 ( v 1 ) the optimal states of the leader. So we have

                   ∂ z 1 ∂t -∆ z 1 = 0 in Q, z 1 (x, 0) = 0 in Ω, z 1 = v 0 on Σ 0 , ∂ z 1 ∂ν = w * 1 on Σ 1 , (30) 
and

                   ∂ z 2 ∂t -∆ z 2 = 0 in Q, z 2 (x, 0) = 0 in Ω, ∂ z 2 ∂ν = v 1 on Σ 0 , z 2 = w * 2 on Σ 1 . (31) 
Noting that the mapping

v 0 -→ ψ 1 = z * 1 (v 0 ) -z * 1 (0) and v 1 -→ ψ 2 = z * 2 (v 1 ) -z * 2 (0) are linear continuous on L 2 (Σ 0 ), with                    ∂ψ 1 ∂t -∆ψ 1 = 0 in Q, ψ 1 (x, 0) = 0 in Ω, ψ 1 = v 0 on Σ 0 , ∂ψ 1 ∂ν = 0 on Σ 1 , and                    ∂ψ 2 ∂t -∆ψ 2 = 0 in Q, ψ 2 (x, 0) = 0 in Ω, ∂ψ 2 ∂ν = v 1 on Σ 0 , ψ 2 = 0 on Σ 1 ,
we have, v = (v 0 , v 1 ) ∈ U ad and λ ∈ R * , that

J 1 ( v 0 + λ (v 0 -v 0 ) , v 1 ) = θ 1 2 z 1 ( v 0 + λ (v 0 -v 0 )) -z d 2 L 2 (Q) + θ 2 2 z 2 -z d 2 L 2 (Q) N 0 2 v 0 + λ (v 0 -v 0 ) 2 L 2 (Σ 0 ) + N 1 2 v 1 2 L 2 (Σ 0 ) = J 1 ( v 0 , v 1 ) + λ 2 θ 1 2 ψ 1 2 L 2 (Q) + λ 2 N 0 2 v 0 -v 0 2 L 2 (Σ 0 ) + λθ 1 z 1 -z d , ψ 1 L 2 (Q) + λN 0 ( v 0 , v 0 -v 0 ) L 2 (Σ 0 ) ;
from which we conclude that the mapping v 0 -→ J 1 (v 0 , v 1 ) is differentiable, with

d dλ J 1 ( v 0 + λ (v 0 -v 0 ) , v 1 ) λ=0 = θ 1 z 1 -z d , ψ 1 L 2 (Q) + N 0 ( v 0 , v 0 -v 0 ) L 2 (Σ 0 ) (32) 
and

                     ∂ ψ 1 ∂t -∆ ψ 1 = 0 in Q, ψ 1 (x, 0) = 0 in Ω, ψ 1 = v 0 -v 0 on Σ 0 , ∂ ψ 1 ∂ν = 0 on Σ 1 . (33) 
Similarly, we also obtain that v

1 -→ J 1 (v 0 , v 1 ) is differentiable, with d dλ J 1 ( v 0 , v 1 + λ (v 1 -v 1 )) λ=0 = θ 2 z 2 -z d , ψ 2 L 2 (Q) + N 1 ( v 1 , v 1 -v 1 ) L 2 (Σ 0 ) (34) 
and

                     ∂ ψ 2 ∂t -∆ ψ 2 = 0 in Q, ψ 2 (x, 0) = 0 in Ω, ∂ ψ 2 ∂ν = v 1 -v 1 on Σ 0 , ψ 2 = 0 on Σ 1 . (35) 
It follows, according to the first order Euler-Lagrange conditions, that the optimal control ( v 0 , v 1 ) is the unique element of U ad satisfying the variational inequalities system

                   ∀ v = (v 0 , v 1 ) ∈ U ad , θ 1 z 1 -z d , ψ 1 L 2 (Q) + N 0 ( v 0 , v 0 -v 0 ) L 2 (Σ 0 ) ≥ 0, θ 2 z 2 -z d , ψ 2 L 2 (Q) + N 1 ( v 1 , v 1 -v 1 ) L 2 (Σ 0 ) ≥ 0. (36) 
Introducing then the adjoint states p 1 and p 2 respectively defined by

                   - ∂ p 1 ∂t -∆ p 1 = θ 1 ( z 1 -z d ) in Q, p 1 (x, T ) = 0 in Ω, p 1 = 0 on Σ 0 , ∂ p 1 ∂ν = 0 on Σ 1 (37) 
and

                   - ∂ p 2 ∂t -∆ p 2 = θ 2 ( z 2 -z d ) in Q, p 2 (x, T ) = 0 in Ω, ∂ p 2 ∂ν = 0 on Σ 0 , p 2 = 0 on Σ 1 , (38) 
it follows, using in the one hand (33) and (37), that

θ 1 z 1 -z d , ψ 1 L 2 (Q) = L * p 1 , ψ 1 L 2 (Q) , where L * • = - ∂• ∂t -∆•, = p 1 , L ψ 1 L 2 (Q) + p 1 , ∂ ψ 1 ∂ν L 2 (Σ) - ∂ p 1 ∂ν , ψ 1 L 2 (Σ) = - ∂ p 1 ∂ν , v 0 -v 0 L 2 (Σ 0 )
, and in the other hand, with (35) and (38), that

θ 2 z 2 -z d , ψ 2 L 2 (Q) = L * p 2 , ψ 2 L 2 (Q) = p 2 , L ψ 2 L 2 (Q) + p 2 , ∂ ψ 2 ∂ν L 2 (Σ) - ∂ p 2 ∂ν , ψ 2 L 2 (Σ) = ( p 2 , v 1 -v 1 ) L 2 (Σ 0 ) .
Thus, the optimality condition (36) is rewritten

                   ∀ v = (v 0 , v 1 ) ∈ U ad , N 0 v 0 - ∂ p 1 ∂ν , v 0 -v 0 L 2 (Σ 0 ) ≥ 0, (N 1 v 1 + p 2 , v 1 -v 1 ) L 2 (Σ 0 ) ≥ 0, (39) 
and we have just proved the following result.

Proposition 4. The control v = ( v 0 , v 1 ) is unique solution to (29) if and only if there exists z 1 , z 2 ∈ H 1/2,1/4 (Q) and p 1 , p 2 ∈ H 1/2,1/4 (Q) such as the triplet {( v 0 , v 1 ) , ( z 1 , z 2 ) , ( p 1 , p 2 )} is solution of the optimality system defined by

                   ∂ z 1 ∂t -∆ z 1 = 0 in Q, z 1 (x, 0) = 0 in Ω, z 1 = v 0 on Σ 0 , ∂ z 1 ∂ν = w * 1 on Σ 1 , (40) 
                   ∂ z 2 ∂t -∆ z 2 = 0 in Q, z 2 (x, 0) = 0 in Ω, ∂ z 2 ∂ν = v 1 on Σ 0 , z 2 = w * 2 on Σ 1 , (41) 
                   - ∂ p 1 ∂t -∆ p 1 = θ 1 ( z 1 -z d ) in Q, p 1 (x, T ) = 0 in Ω, p 1 = 0 on Σ 0 , ∂ p 1 ∂ν = 0 on Σ 1 , (42) 
                   - ∂ p 2 ∂t -∆ p 2 = θ 2 ( z 2 -z d ) in Q, p 2 (x, T ) = 0 in Ω, ∂ p 2 ∂ν = 0 on Σ 0 , p 2 = 0 on Σ 1 , (43) 
and

                   ∀ v = (v 0 , v 1 ) ∈ U ad , N 0 v 0 - ∂ p 1 ∂ν , v 0 -v 0 L 2 (Σ 0 ) ≥ 0, (N 1 v 1 + p 2 , v 1 -v 1 ) L 2 (Σ 0 ) ≥ 0. ( 44 
)
3 Equivalence with the initial control problem

Let us begin by pointing out the following consequence of Proposition 2.

Corollary 1. Considering a control-state pair (v, z) for the Cauchy system (1), we have, at the optimum, for the follower, that

z * 1 = z = z * 2 . (45) 
Indeed, we have, from (23) and (25) that z * 1 is solution to (1), then, from (24) and (25) that z * 2 is still solution of (1). Whence, by uniqueness, when it exists, of the solution to the Cauchy system, we have that, (v, z) being a control-state pair,

z * 1 = z = z * 2 .
Thus, starting, with the non-vacuity assumption of the set of admissible control-state pairs, by an admissible control-state pair (v, z), we clearly have, at the optimum for the follower, that

z * 1 = z = z * 2 ,
whence it easily follows that J 1 (v 0 , v 1 ) = J(v, z). So in particular J 1 ( v 0 , v 1 ) = J( v, z) .

But then

■ we have, because of the optimality of (u, y) for ( 8) and the admissibility of ( v, z), that J(u, y) = J 1 (u 0 , u 1 ) ≤ J( v, z) = J 1 ( v 0 , v 1 ) ,

Remark 3 .

 3 Many authors have studied the control of the ill-posed Cauchy problem. Examples include, among others, ■ in the elliptic case, J.-L. Lions in [6], O. Nakoulima in [12], G. Mophou and O. Nakoulima in [11] and A. Berhail and A. Omrane in [3]; ■ in the parabolic and hyperbolic case, M. Barry, G.B. Ndiaye and O. Nakoulima in [1], J.P. Kernevez in [5], and M. Barry and G.B. Ndiaye in [2].

■ in the other hand, because of the optimality of ( v 0 , v 1 ) for (29) and the admissibility of u, we also haveJ 1 ( v 0 , v 1 ) = J( v, z) ≤ J 1 (u 0 , u 1 ) = J(u, y).(47)

Thus, (46) and (47) give that J(u, y) ≤ J( v, z) ≤ J(u, y), so that J(u, y) = J( v, z) .

(48)

Whence it follows, by uniqueness of the optimal control-state pair (u, y), that

We thus succeed in establishing the equivalence of the control problem [START_REF] Lions | Hierarchic control[END_REF] with the hierarchical control carried out in the previous section. This allows us to conclude that, following the control of the follower defined in Subsection 2.1, Proposition 4 indeed gives a characterization of the optimal pair (u, y), solution of [START_REF] Lions | Hierarchic control[END_REF]. Which characterization does well without the Slater type assumption the interiors of U 0 ad and/or U 1 ad are non-empty in L 2 (Σ 0 ) .

Conclusion

In this paper, we succeed in proposing a characterization of the optimal control-state pair for the control problem of the Cauchy system for the heat equation. The proposed point of view, inspired by the notion of hierarchical control, consists in interpreting the initial problem as a system of two interdependent control problems, introducing for this purpose a couple of controls ("fictitious", the control of the follower). After having succeeded in characterizing the solutions of these two problems, we show that the resolution of the hierarchical problem then introduced is equivalent to that of the initial problem, starting from the assumption of uniqueness, when it exists, of the solution to the Cauchy problem. We thus manage, through this point of view, to do without the Slater type assumption of non-vacuity of the interior of the set of admissible controls, an assumption that many analyses have had to resort.