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Abstract

This work provides a spatio-temporal statistical modeling for egg and adult Aedes
mosquitoes count data with consideration of environmental data in the context of
mosquito epidemiology. For a given spatio-temporal incomplete mosquito count data,
we derive predictions assuming that all of the spatio-temporal dependence can be
accounted by potential factors influencing the development of Aedes mosquitoes such as,
rainfall, temperature (including many delay) and waste data. In this paper, after a data
analysis with the entomological and environmental data, we apply a LASSO regression
to perform a variable selection strategy (we are in the presence of a large number of
explanatory variables). We highlight the relevant factors that explain the abundance of
our egg and adult mosquitoes count data. We define a spatio-temporal risk ratio which
is a probability of exceeding a given threshold value of mosquito abundance. We
propose two spatio-temporal modeling approaches for the Aedes mosquitoes’ count data.
The first is based on a spatio-temporal kernel smoother and the second on a generalized
additive model. The paper conclude with a detailed discussion that follows not only, the
spatio-temporal prediction and model performance measures, but also the obtained
spatio-temporal risk ratio in order to highlight potential space-time areas of threshold
exceedances of mosquitoes’ abundance where health services could apply vector
surveillance and control measures. We also discuss a forthcoming work concerning the
theoretical developments of a spatio-temporal model for simulation purposes and an R
Shiny application called May’Aedes, that aims to be a flexible and efficient tool to
predict spatio-temporal risk ratio.
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Introduction

In the island of Mayotte, mosquitoes can transmit serious diseases: chikungunya,
dengue fever and malaria [1]. Dengue is the world’s most prevalent mosquito-borne viral
disease that spreads mainly from Aedes (aegypti and albopictus) to people. It is
endemic in the island of Mayotte and also in many tropical and subtropical countries.
This represents a significant global health burden and, it’s dynamic is seasonal with
peaks during the wet-hot months. Note that, during the year 2020, more than 3533
confirmed cases of dengue fever have been reported on the island [2]. We show in Figure
2 the global spatio-temporal variation of the detected cases. Vector monitoring,
recommended by the World Health organisation, is a routine practice in many dengue
endemic countries to provide quantifiable measures of fluctuations in time and space.
The tropical climate in the island of Mayotte is particularly favorable to vector-borne
diseases [3]. The presence of various mosquitoes vectors represents a major health risk
for the population of Mayotte. This has encouraged reflection on the establishment of a
concerted effort for the monitoring and prevention of related vector of Aedes. The
increase in mosquito population following climate and environmental conditions caused
a major threat to humans because of mosquitoes’ ability to carry disease-causing
pathogens. The entire population is affected by vector control since approximately 80%
of mosquito breeding sites are created by humans around their homes. Among the
planned efforts are vector surveillance and control approaches. A practical strategy to
minimize dengue and other borne diseases transmission commonly relies on vector
control which aims to maintain Aedes mosquito density below a theoretical threshold.
One of the simple strategies is the monitoring of mosquitoes’ densities abundance and,
regular mosquito control operations. However, mosquito abundance modeling can help
to identify areas with higher risk assessment of disease transmission since one can lower
their risk of dengue by avoiding especially strong risk ratio of abundance in space
(villages or communes) and time (weeks). In general vector abundance data are limited
or restricted for most parts of the world due to the cost and effort required to collect
such data. We consider in this work, adult and egg Aedes mosquito population collected
in certain areas during a given period and in common spaces trough traps, by a
monitoring team (to be described in the sequel) in the island of Mayotte. This is a great
opportunity we took here to highlight power full of spatial data models as well as
spatial dynamics aspects with such available entomological data. We recall that, the life
cycle from an egg to an adult, for Aedes mosquitoes, typically takes up to two weeks,
but depending on conditions (water, temperature, food) and type of mosquito, it can
range from 4 days to as long as a month [4]. The adult mosquito emerges onto the
water’s surface and flies away, ready to begin its lifecycle. Different modeling studies of
their distribution and dynamics have been developed recently [5–7] in the neighbouring
islands of Reunion and Mauritius. However, on the island of Mayotte and up to our
knowledge, none of this previous research has been carried out. Moreover none of this
research adress directly the question of a spatio-temporal modeling with the models we
propose in this paper. Our objective in this study, is to analyse the egg and adult
mosquito count data in the island of Mayotte and to establish statistical methods to
highlight a number of potential predictors for the abundance of our egg and adult
mosquito count data, in order to produce spatio-temporal models for prediction. We
define a spatio-temporal risk ratio of abundance that can be seen as a probability of
exceeding a given threshold value of mosquitoes’ abundance. After that we propose two
spatio-temporal models that can take into account potential predictors (temperature,
rainfall, waste), [8–10]. The first model is a modified and adapted spatio-temporal
kernel smoother which reveals to be suitable for our eggs count data. The second model
is an application of the Generalized Additive Model (GAM) in a spatio-temporal setting
both for egg and adult count data. We discuss the performance measures of such data
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process models as well as some relevant spatio-temporal predictions that can be subject
of a control measure in the monitoring of the mosquito abundance and therefore the risk
of contracting dengue fever. The paper end by the announcement of future projects. For
instance, a forthcoming R Shiny application called May’Aedes, that aims to be a flexible
and efficient tool to produce an online spatio-temporal risk ratio for control measures.
Also a forthcoming theoretical developments of a spatio-temporal simulation model
based on a mechanistic Partial Differential Equation (PDE) model.

Fig 1. Dengue reported cases by week during the year 2020 in the island of Mayotte.

Fig 2. Total spatial mean variation of Dengue reported cases during the year 2020 in
the island of Mayotte.

Materials

The material of this work deals with eggs and adults Aedes (Albopictus and Aegypti)
mosquitoes count data between 2018 and 2021 captured per trap per day/week in areas
chosen to meet specific criteria including accessibility, and geographic isolation in the
island of Mayotte. The data analysis and processing is done in R programming
language.
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The Vector Control Team and Department in the island of
Mayotte

Vector surveillance is an integral component of an Integrated Vector Management (IVM)
program and is the primary tool for quantifying virus transmission and human risk.
This principal function of a mosquito-based surveillance program in the island of
Mayotte is set up by the Vector Control (LAV) Department of the french Regional
Health Agency (ARS) in the island of Mayotte carries out entomological surveillance
and research in order to anticipate the risk of vectors being transmitted to the human
population. LAV agents carry out surveillance of arboviroses and operations in areas
surrounding for example, reported cases of mosquito-borne viral disease (chikungunya,
dengue, malaria). To do this, they capture mosquitoes (through traps) and identify the
species involved in the transmission of the disease; eliminate or treat all situations
where mosquitoes proliferate (eggs and adults breeding grounds, pots, waste, stockpiles
of tyres, stagnant water as well as other spatial relevant environmental conditions).
This allows insecticide and impregnation treatments [11,12], to be put in place and
inform the local population about the potential space-time risk of transmission of
mosquitoes disease and how to protect themselves against mosquito bites. The
statistical analysis and modelling approaches proposed in this work are part of the
vector control actions against the Aedes mosquito. We hope to contribute to the
orientation or recommendation of LAV department actions.

Study area and entomological Data

The study area as mentioned above is located in the island of Mayotte, which is a french
department of 374 km2 composed of two islands (the largest and main island called
Grande-Terre) with a total of 17 communes and located in the Indian Ocean, East of
Africa, in the Mozambique Channel, separating Madagascar from Africa. Data
monitoring sites of adult and egg mosquito year are shown in Figures 3 and 4. The
laying of mosquito traps (eggs and adults) was carried out by a team from the Regional
Health Agency (ARS in French) of Mayotte, which confirm the presence of Aedes
mosquitoes. The monitoring of egg data were available only for years between 2019 and
2021, but for adult data, the available years are range from 2018 to the beginning of
2022.

2019 2020 2021

Fig 3. Spatial distribution of egg mosquito collection sites from 2019 to 2021.

The weekly distribution of the entomological Data is shown in S1 Fig and S2 Fig.
We can observe that some collection sites have more than one time of collection in a
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2021 2022

2018 2019 2020

Fig 4. Spatial distribution of adult mosquito collection sites available from
2018 to 2022.

week with missing observations (both temporally and spatially). Moreover, the Data is
not evenly distributed in all the communes, i.e. there was no data collected over some
period of time in some places. The yearly percentage of egg and adult data observations
for all represented communes is shown in S1 Table. The years 2020 and 2021 are
under-represented in the adult mosquito dataset because only 5 communes were
concerned with data collection. We see a big void in 2020 (which can be explained by
the lack of collection activities or stolen traps or Covid-19 constraints) from week 8 to
week 38 then from week 44 to the end of the year. The year 2020 will be issued due to a
lack of data. The more the years increase, the less we see the communes. The second
largest block of data in terms of percentage is concentrated in Koungou and
Bandraboua in 2021 (37%). The range of data from Koungou in 2021 is broader than
that of other communes in previous years. In 2022, there was no collection almost in the
first three weeks of the year except for weeks 13 and 15. Only two communes are
present even if more than a third of observations are concentrated there.

Environmental Data

The environmental data considered in this work concerns climate (for instance
temperature, rainfall) and waste data (waste containers such as poor housing, sewage
deposit, tire waste, waste drain). Such co-variate data are well known factors in the
proliferation of mosquitoes population in a given area [3, 13–17].
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Climate Data

The climate is tropical with two distinct seasons. A rainy season globally from
November to March (austral winter from Weeks 1 to 16 and 40 to 52 or 53). The
temperature is particularly high and the humidity is also high for this austral summer
and concentrates most of the annual precipitation. The dry season (austral summer)
lasts from April to October (weeks 17 to 39). The temperature and humidity are lower
than in the Austral summer, with less precipitation. There are not enough weather
stations in Mayotte and the meteorological french service
(https://publitheque.meteo.fr) provide the daily temperature (minimum and
maximum) and rainfall records from 2018 to 2021 at few available weather stations and
some of them are closed to surveillance areas where entomological data were collected.
Such areas of entomological data collection were defined before the start of this study.
For instance, rainfall data come from stations located in 6 communes, namely Bandrélé,
Dembeni, Mamoudzou, Mtsamboro, Ouangani and Pamandzi. Note that before 2018,
the Mtsamboro station did not yet exist, or we did not have data recorded for that
commune. Figure 5 shows the map of stations and missing data by station. In 2022, we
had data for rainfall from 5 stations (Mtsamboro, Mamoudzou, Ouangani, Pamandzi
and Bandrélé only). No data for Dembeni. Lastly, we have data for rainfall from 4
stations (Mtsamboro, Mamoudzou, Ouangani, Pamandzi, Dembeni and Bandrélé). No
data for Dembeni and Ouangani in 2022. In 2020, We had data for rainfall from 6
stations (Mtsamboro, Mamoudzou, Ouangani, Pamandzi, Dembeni and Bandrélé)
except the commune of Dembeni which has around 67% of missing records for
temperature. In 2018, we had complete data for rainfall from 5 stations (Mamoudzou,
Ouangani, Pamandzi, Dembeni, and Bandrélé) except the commune of Bandrélé which
has no data record for temperature. The following year, i.e 2019, we have data for
rainfall from 6 stations (Mtsamboro, Mamoudzou, Ouangani, Pamandzi, Dembeni and
Bandrélé) except the commune of Ouangani which has around 34% of missing records
for temperature (minimum and maximum temperature). As the remaining 11
communes did not have climate data recorded, we shall be concerned with data
imputation methods.

Waste Data

The following picture in Fig 6 shows the yearly spatial variation of the waste type.

Merged Data

The weather and waste data, identified in the literature as potentially influencing Aedes
mosquito abundance, were merged to the egg and adult count data for the modeling
process. The set of co-variables (see also [7] for meteorological variables) that will be
considered for our modeling purpose is given in Table 1. When dealing with adults
mosquitoes count data, we also include the eggs number as a probable explanatory
variable. In the following section, we shall describe the main purpose of this paper and
the methods we have developed.

Data Analysis and Imputation

In the presence of missing co-variate observations, there are suitable imputations
methods well known in the literature, ranging from the most rudimentary techniques
(median, mean) to those by statistical learning. This section part describes a classicql
imputation technique in order to have a complete co-variate data of meteorological data.
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Fig 5. Map of meteorological stations in Mayotte and mixing data
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k-Nearest Neighbors Algorithm

We deal firstly, with the imputation of meteorological Data. We consider the k-Nearest
Neighbors (k-NN) ( [18]) method, using coordinates to determine the proximity between
communes or village, in order to impute the above climate data is reused in the
following lines. This is also in line with Tobler’s First Law of Geography which says
that things that are closer tend to be much more alike than things that are far
away [19]. Thee k-NN method is a widely used machine learning algorithm that can be
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Table 1. Set of potential explanatory variables as potentially influencing Aedes
mosquito abundance

Variable Description
Z1,N = MTNN Daily minimum temperature (last N days)
Z2,N = MTXN Daily maximum temperature (last N days)
Z3,N = RRcumN Rain accumulation (last N days)
Z4,N = MRRN Maximum rainfall (last N days)
Z5,N = MNDwtRRN Maximum number of consecutive days

without rain (last N days)
Z6,N = MNDwRRN Maximum number of consecutive days

with rain (last N days) where the rainfall accumulation is greater
than a given threshold value as it’s percentile S ∈ [10, 20, . . . , 90]

Z7 = waste number Daily observed waste number
Week, Year Temporal variables
(X,Y ) Spatial coordinates
N Retroactive period that starts at the capture date: :

N ∈ {7, 14, 21, 28, 35, 42, 49, 56, 65}

used also for classification and regression tasks. It was first proposed by [20] in 1951 for
classification problems and later extended to regression problems by [18] in 1967. The
k-NN algorithm works by finding the k nearest neighbors to a query point based on a
chosen distance metric. This will allow the choice of the observed values of those
neighbors to make a prediction value for the query point. The choice of distance metric
and the choice of k can have a significant impact on the performance of the algorithm.
The k-NN algorithm is a non-parametric method, which means that it does not make
any assumptions about the underlying distribution of the data. It can work well in
high-dimensional spaces and can be adapted for use with different distance metrics.
However, it can be computationally expensive for large data sets. One popular distance
metric for the k-NN algorithm is the Euclidean distance. Another commonly used
distance metric is the Manhattan distance, which is calculated as the sum of the
absolute differences between corresponding elements of two vectors. The k-NN
algorithm requires the following steps:

Data: X, a set of n query coordinates points with unobserved values of rain or
temperature and R, a set of reference coordinates points with observed
values of rain or temperature.

Result: The set of query coordinates points X with complete observed values of
rain or temperature

for i = 1, ..., n do

Step 1 Compute the Euclidean distance d(Xi, R).

Step 2 Arrange the calculated n Euclidian distances in non-decreasing order.

Step 3 Count the number of k small distances

Step 4 Replace the missing value by the value computed from the k closest point.

end
Algorithm 1: k-Nearest Neighbors Algorithm

We apply the k-NN algorithm to impute the missing daily temperatures and rainfall
for each commune or village from the neighboring observation. As an example of the
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imputation result, Figure 7 show the partially observed rainfall data in Dembeni
(around 50%) for the year 2020 and completed by the observed data in the neighboring
commune (here Ouangani was almost chosen by the k-NN algorithm). The same was
also done and check for year 2021. In 2022, climate data of Mamoudzou were used by
the algorithm to fill the gaps in Dembeni (Dembeni is the southern commune near
Mamoudzou) and Ouangani (a central commune also close to Mamoudzou), confirmed
by the comparison with the others years where the data was available. This applies also
to the imputation of the minimum temperature in Figure 8. In our case, we choose k to
be 1 for the k-NN method. One can choose k ≥ 1 and the quantity of interest, say the
rainfall in millimeters, will be the average, min, max, median, etc. of the figure observed
in the k-neighboring communes.

2022
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Fig 7. Comparison of rainfall between closest communes, after data imputation

A Complete map of rainfall about the maximum number of consecutive days with
rain is shown in S5 Fig for year 2019. We observe that weeks 42 to 53 and week 1 to 18
record more maximum number of consecutive days with rain than the others. This
confirm the observed seasonal variation in the island of Mayotte. Temperatures are
pleasant all year round and the mean A temperatures range from 28 degrees (June) to
31 degrees (February).

This completeness of climatic data by the k-NN algorithm could be improved by
taking into account the relief, in particular the terrain attributes (slope, orientation),
terrain variability (roughness, curvature, convexity of the profile and also altitudes but
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Fig 8. Comparison of minimum temperature between closest communes, after data
imputation

no data available) in order to improve the climatic data by geographical proximity.

Outliers detection in entomological Data

We discussed the issue of outliers due to the high frequency of data collection in some
few communes. Therefore, a commune where data was not collected frequently may be
underrepresented spatially. The commonly used and popular method for outliers
detection is the boxplot method. It is a method for graphically depicting groups of
numerical data through quartiles (first (Q1), median, third (Q3), minimum and
maximum) to easily detect outliers and how the data is skewed. The difference between
the minimum and maximum tells us about the range of dataset. The difference between
Q3 and Q1 is called the Inter-Quartile Range (IQR). Not every outlier is a wrong value
and it is not acceptable to drop an observation just because it is an outlier. When we
shouldn’t drop an outlier, we can apply some transformation methods. For instance an
application of the IQR method with a boxplot tell us more or less about the distribution
of the data, [21]. Any data point less than the Lower Bound (Q1− 1.5× IQR) or more
than the Upper Bound (Q3 + 1.5× IQR) is considered as an outlier. Hence the number
1.5 (hereinafter scale) controls the sensitivity and the decision rule. This scale, depends
on the distribution followed by the data. But this scale depends on the distribution
followed by the data. For instance, we can calculate the IQR decision range in terms of
the standard deviation of a Gaussian Distribution. To deal with the issue of outliers, we
are going to perform some data transformations, thank to the Central Limit Theorem
which grants us the liberty to assume the gaussian distribution without any guilt.
Figure in S3 Fig and S4 Fig shows the outliers detected for egg and adult mosquito
count data, respectively. Note that for the last two years (2021 and 2022), data
collection was mostly performed in Koungou and we notice high figures as compared to
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the counts in the previous years. We have chosen to exclude the high number of adult
mosquitoes in the Koungou area in 2021 and 2022 because the other communes are not
represented. In the latter case, we use data from years 2018, 2019 and 2020.

Methodology

We adopted a spatio-temporal modeling approach to investigate the eggs and adults
Aedes vector abundance in Mayotte island. Spatio-temporal models are useful tools
applied in many research fields dealing with empirical data. They can connect spatially,
an outcome variable (eggs and adults mosquitoes’ values) to one or several variables
(co-variates) and quantify the strengh of association between them and the outcome
variable with given performance measures. First of all, we propose a novel and simple
spatio-temporal risk ratio in order to evaluate the predictions results of the proposed
models in the first part of this section. Next we turn into a variable selection method
through a suitable regression approach. Given that we are handling large sets of
relevant co-variates, we deemed necessary to consider the LASSO (Least Absolute
Shrinkage and Selection Operator [22]) to obtain a better selection of the potential
factors that mostly influence the abundance of our mosquito eggs and adults count
datasets. In the third part of this section, we investigate a non-parametric model that
may be appropriate for missing observations. More precisely, we improve a
spatio-temporal kernel smoother introduced in [23], by adapting it to take into account
the selected relevant variables obtained by the LASSO. We apply the obtained modified
model to the egg mosquito count data. In the fourth part of this section, we explore
Generalized Additive Models (GAM) [24] in order to take into account the non linearity
and obtain better predictions. We end by recalling spatio-temporal goodness measures
to evaluate the models’ performance.

The proposed spatio-temporal risk ratio

To evaluate the predictions results of the models, we introduce a spatio-temporal relatif
risk ratio as follows. We aims to define a probability of the presence of mosquitoes in
the egg and adult stages by the proposed training and prediction models. In the sequel,
we will use Ŷ to denote either the Egg or Adult stage mosquito value estimated. Let
Ŷ (s, t) be the space-time sequence of predicted mosquitoes values at a spatial location s
and time t. To take care of out-of-range predictions, we defined a simple
spatio-temporal risk ratio function that includes a threshold x∗ such that all predictions
greater than or equal to x∗ will have 1 as ratio. For example, values of x∗ can be the
maximum observed value or other practical threshold value.

Ratio(s, t) =
Ŷ (s, t)−mins,t(Ŷ (s, t))

x∗ −mins,t(Ŷ (s, t))
I{Ŷ (s,t)<x∗} + I{Ŷ (s,t)≥x∗} (1)

with t measured on a weekly scale t ∈ {t1, . . . , tT } and s on a spatial grid
s ∈ {s1, . . . , sm} of size m.

The variable selection method

The variable selection procedure we adopt here is the Least Absolute Shrinkage and
Selection Operator (LASSO) which is mainly useful when dealing with large sets of
explanatory variables such that some of them are suspected of being less relevant. Hence,
we use this method to perform variable selection, since we are in the presence of a large
number of variables because of the delay combinations taken into account in the target
variables. Note that, the LASSO regression method is a regularization and popular
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technique for achieving regularized parameter estimates and reducing their variability
through a penalty term [25]. Consider a penalized regularization in which a penalty
term is added to the Residual Sum of Square (RSS, defined in 4) that effectively shrinks
the regression parameter estimates βj , j = 1, ...p towards zero (bickel2009simultaneous).
Specifically, consider estimates of the vector parameter β given by :

β̂L = argmin
(
RSS + λ

p∑
j=1

|βj |
)
,

where:

• λ
∑p

j=1 |βj | represents the penalty function

• λ represents the tuning parameter that determines the β̂ that shrunk towards 0.

If λ = 0, then there is no shrinkage at all, if λ < 0 ie huge, the function can be
minimized by shrinking all the parameters back towards zero. The shrinkage factor,
which may be calculated using bootstrapping, is essentially an estimate of the extent of
overfitting [26]. The cross-validation method is used to try out the different values of λ.
The LASSO regression can be defined as a shrinkage method that can actively select
from a broad and potentially multicollinear collection of covariables in the regression,
yielding a more relevant and interpretable set of predictors. The unique feature of
LASSO is that it penalizes the absolute value of a regression coefficient, hence
controlling the impact of a coefficient on the total regression. The stronger the
penalization, the smaller the coefficients get, with some approaching zero, removing
unnecessary influential factors automatically [22]. LASSO regression works like a
feature selector that picks out the most important coefficients, i.e. those that are most
predictive (and have the lowest p-values). The key drawback of this model is that if
there are two or more highly collinear variables then LASSO regression selects one of
them randomly which is not good for the interpretation of data also if the number of
predictors p is greater than the number of observations n, Lasso will pick at most n
predictors as non-zero, even if all predictors are relevant. In the caret package of R,
variable importance can be calculated using different methods depending on the type of
model being used.

The proposed spatio-temporal kernel smoother predictor

We introduce, in this section, the proposed spatio-temporal model to predict the
unobserved egg data. It is based on the so-called Inverse Distance Weighted (IDW)
model (see [23]). As the name suggests, it predicts the attribute value of a variable at
positions where no samples are available based on the spatial distance between that
position and other positions where samples have been collected. An advantage of the
IDW model is that it takes into account available observations to make the predictions
of mixing observations. Assume that we have m observed values of a mosquito
population value Y in a given stage at time tj : j = 1, . . . , T , and locations points
{si : i = 1, . . . ,m}. The spatio-temporal IDW predictor of the mosquitoes population
Ŷ on the unobserved location s0 and time t0, is given as follows:

Ŷ (s0; t0) =

T∑
j=1

m∑
i=1

Kij(s0; t0)Y (si, tj) with Kij(s0; t0) =
K̃ij(s0; t0)∑T

k=1

∑m
l=1 K̃lk(s0; t0)

,

where

K̃ij(s0, t0) =
1

d((si; tj), (s0; t0))θ
(2)
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and d is a well-chosen distance between the spatio-temporal location (sij ; tj) and the
forecast spatio-temporal location (s0, t0). The transition kernel function K depends on
the bandwidth parameter θ that specifies the redistribution of weights for the observed
process according to the above process. More precisely θ controls the amount of
smoothing. This spatio-temporal data process is a simple weighted average of the data
points, giving the closest locations more weight by requiring the weights to sum to one.
We can also took a look at other kernel, for instance the Gaussian kernel :

K̃ij(s0, t0) = exp
(
− 1

θ
d((si; tj), (s0; t0))

2
)
,

where the bandwidth parameter θ is proportional to the variance parameter in a
Gaussian distribution. Many other kernels exist in the literature but in this work, we
focus on the two previous kernels. We aimed to improve the IDW model structure by
including the selected relevant variables by the Lasso regression, through the calculation
of the distance d. To this end, assume that, at locations points {si : i = 1, . . . ,m} we

consider the associated k features c
(1:k)
ij = (c

(1)
ij , ..., c

(k)
ij ) at time tj and spatial location

si corresponding to measurement values of k relevant explanatory variables that may
explain the abundance of the mosquitoes’ population. More precisely, we may write for
example

K̃1((si; tj), (s0; t0)) =
1

d((si, c
(1:k)
ij ; tj), (s0; c

(1:k)
0 , t0))θ

. (3)

This modified process can be seen as a weighted average of the data points, giving the
closest locations with the closest co-variates values. More specifically, these are the
observations, that are close to the unobserved point to be predicted not only spatially,
but also according to their associate features values, that receive a greater weight in the
prediction, while distant observations in space or in characteristics will have a relatively
weak influence on the prediction. At this stage, we have practical implications
considering the kernel in 2, because not only data may lead to very small values
approaching zero which causes problems in the above equation, but one needs also a
convenient choice of this distance to take into account the effects of features in time and
space. The mix-max scaling or normalization helps to solve the latter situation. After
that if values of 0 are present in the data, we derive the following generalization where
N is the number of observations:

Y ∗(s; t) =
Ỹ (s; t)(N − 1) + 1/C

N

and C the total number of co-variates. This compresses the data symmetrically around
.5 from a range of 1 to (N − 1)/N , so extreme values are affected more than values
lying close to 1/2. Additionally, we see that for N large enough the compression
vanishes, that is, larger data sets are less affected by this transformation.

Generalized Additive Model

This part illustrates how Generalized regression Models can be use for spatio-temporal
data. A Generalized Additive Model (GAM), [24, 27, 28], is a type of Generalized Linear
Model (GLM) where the linear predictor has a linear relationship with predictor
variables and smooth functions s(.) of predictor variables. Recall that, in a usual GLM,
prediction, assume that the dependence of the target variable can be accounted for, by
”trend” (i;e. co-variate) terms linearly through a specified monotonic link function g :

g(Y (s, t)) = β0 + β1X1(s, t) + · · ·+ βpXp(s, t)
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where β0 is the intercept and βk, k > 0, is a regression coefficient associated with the
j-th co-variate Xj(s, t) at spatial location s and time t. This regression model can be
fitted via ordinary least squares (OLS) in which case we find estimates of the
parameters β0, β1,...,βp that minimize the residual sum of squares (RSS):

RSS =

T∑
j=1

m∑
i=1

(
Y (si, tj)− Ŷ (si, tj)

)2

. (4)

A GAM is a generalized linear model with a linear predictor involving a sum of smooth
functions s of co-variates (predictor variables):

g(Y (s, t)) = β0 + f1(X1(s, t)) + ...+ fp(Xp(s, t))

where the functions fj are smooth functions with a specified form (polynomial basis
function, cubic spline basis, etc.). GAM prediction, thus require some smoothing terms
used for prediction. It is necessary to represent the smooth functions in some way and
to choose how smooth they should be. Natural cubic splines are proven to be the
smoothest interpolators, as shown in [24]. This approach defines the splines by s in
terms of their values at some knots k, which sets up the dimensionality of the
smoothing. Various smooth classes are available and smooth terms are specified in a
GAM formula using s, te, ti and t2 for different modelling tasks terms linked to in the
R mgcv package [29]. For spatio-temporal count data, one can examine the GAM with
the mean response g(Y (s, t)) related to some family distribution such as Poisson or
Negative Binomial.

Performance : spatio-temporal goodness of fit results

To evaluate the performance of our prediction models, to draw the best conclusion and
interpretation for the data, we’ll make use of the following performance metrics and
better selection issue. One of the most common scalar validation statistics for
continuous-valued spatio-temporal processes is the mean squared prediction error
(MSPE) given by

MSPE =
1

Tm

T∑
j=1

m∑
i=1

|Y (si; tj)− Ŷ (si; tj)|2.

It is useful when one wishes to protect against the influence of outliers. The Root Mean
Squared Error (RMSE) is defined as the root of MSPE. The Adjusted Coefficient of
Determination (Adjusted R-squared) R2 [30], is another measure that provides
information about the goodness of fit of a model in the context of regression. The use of
a cross-validation principle will be necessary for a better selection (for instance the
bandwidth parameter θ for the spatio-temporal kernel predictor). In the case of
Leave-One-Out Cross-Validation (LOOCV), only a single observation is used for
validation and the remaining observations are used to make up the training set. In an
u-fold cross-validation, this method requires the model to be fitted u times because this
is repeated for all m observations. The LOOCV score is then evaluated as follows:

CV(u) =
1

u

u∑
i=1

MSPEi.

Results and Discussion

Predicting vector abundance is an essential part of modelling vector-borne disease
spread such as the dengue disease caused by Aedes vector. In the island of Mayotte, the
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above dengue outbreak in 2020 had make an urgent need for operational actions of the
vector control team. Following the data analysis, we present in this section the results of
the modeling methodology for the eggs and adults mosquitoes’ count data together with
a detailed discussion.

Variables and Models Selection

From a large set of potential factors described above, we obtained relevant variables by
the LASSO regression through and their importance is given in S3 Table and S4 Table
for egg and adult mosquito data count respectively. Our results reveals the importance
of environementalc conditions as in [7]. For example, the main factors identified as
influencing the abundance of adult mosquitoes are as mainly among others : cumulative
rainfall over the last 5 days, daily maximum rainfall over the last 35 days ; daily
minimum temperature, maximum number of days without rainfall, maximum daily
temperature over the last 35 days. In the case of eggs data, we retain among others, the
cumulative rainfall over the last 28 days, daily maximum rainfall over the last 6 days,
daily minimum (resp. maximum) temperature over the last 35 (resp. 28) days and,
mainly the maximum number of days without rainfall. This observed delay time period
could probably be explained by the biological cycle of the Aedes mosquito development.

In the sequel and for simplicity, we consider the selected important variables
obtained from the LASSO for the data models training, more precisely the GAM
models (for eggs and adults mosquitoes) and also the above proposed spatio-temporal
kernel smoother. We apply these two models described in the Methodology for
prediction and comparing they performance measure. Our results demonstrate that
such spatio-temporal modeling approach can provide consistent and efficient tools for
vector population dynamics surveillance both in space and time. The explicit formulae
of the selected GAM models (Model1, Model 2 and Model 3) selected as well as the
performance measures achieved by the models are given in S2 Table. Model 1 is for egg
mosquito data and trained with 2019-2020 eggs data (since they have the same range)
whereas Model 2 is trained with 2021 data. Model 3 is the best selected GAM models
for adult mosquito data.

The best Models 1 and 2 have in common the maximum rainfall over the last 7 and
14 days and the latitude as relevant variables. Notice that the first model which has the
least adjusted R2 has the least RMSE. In Figure 9, we display the important variables
and analyse their performance in each model. From this diagnostic plot, we see that
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Fig 9. Non-linearity check for important variables of Model 1 (a) and Model 2 (b)
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rainfall could be linear in the model according to its empirical distribution function. All
the other variables have a non-linear contribution to the predictions of the egg counts.
The plot of fitted egg counts data (Figure 10) and observed counts seems to be linear.
The normality test for residuals failed for Model 1 and 2. The residual of histogram
does not show symmetry, which also confirms the non-normality of the residuals. All
predictors variables for Model 2 have a non-linear relationship with respect to the
response variable (egg counts values). The goodness of fit and the non-linearity check
with Model 3 for adult mosquito data is given in Figure 11. The maximum number of
days with rain over the last two days seems to be linear.
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Fig 10. Goodness of fit plots for Model 1 (a) and Model 2 (b) with egg mosquito data.
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Fig 11. Goodness of fit plots and non-linearity check for important variables of Model 3

The predicted spatio-temporal risk ratio of egg abundance is given in Figures 12 and
13 for Model 1 (2019-2020 data) and in Figure 14 for Model 2 (2021 data). The
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prediction were correlated with the seasonal variations. For instance in 2021, it can be
observed that, the models predicts spatio-temporal threshold exceedances of egg
abundance with high probability, mainly at the beginning of the year, particularly in
weeks 1 to 22, and also towards the end of the year in weeks 41 to 52 or 53 in general.
Such period correspond to the austral winter in the island of Mayotte. The same trends
were confirmed in 2019 and 2020, but with spatio-temporal risk ratio less than the one
in 2021. We also remark a different variability in the climatic data during this period.
Thus, the year 2021 recorded more spatio-temporal threshold exceedances. More
precisely during the year 2021 the model predict higher risk ratio (whenever the
predicted GAM egg counts data is greater than the maximum predicted count eggs
values) for most of the communes in the north, south, center and west. On the other
hand, weeks 23 to 41/41 (austral summer) shows lower risk ratio trends. Similar results
are observed for for larvae and pupae mosquitoes count data in the neighbour island, La
Réunion [7].
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Fig 12. Spatio-temporal relatif eggs risk ratio based on GAM predictions for year 2019

Additionally, we apply the above propozed spatio-temporal kernel smoother (IDW)
model with the same selected explanatory variables to egg data count. We use a 5-fold
cross validation to perform the simulation. The spatio-temporal risk ratio prediction
Figures 15, 16, 17 match globally with the prediction with the GAM models (Model 1
and 2) but with a risk ratio less important. The prediction reveals important variability
in the last few weeks across the different models in the communes of Ouangani,
Mamoudzou and Brandrele. Overall, there seems almost no period with zero probability
of egg mosquitoes’ abundance, which is consistent with the LAV monitoring team
terrain observation.

For adult mosquito count data, we have included the egg count number as a
potential explanatory variable. Unfortunately, this did not appear to be relevant. The
predicted spatio-temporal risk ratio of adults mosquitoes abundance (Model 3) is given
in Figures 18, 19, 20. In the year 2019, the model predict spatio-temporal threshold
exceedances and hence a strong risk ratio of adult mosquito abundance in weeks 4 to 13
(middle of the austral winter season) and in weeks 40 to 50-52 (austral winter season).
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Fig 13. Spatio-temporal relatif eggs risk ratio based on GAM predictions for year 2020
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Fig 14. Spatio-temporal relatif eggs risk ratio based on GAM predictions for year 2021

Such period is characterised by strong record rainwater and low temperature. The risk
ratio was not strong in weeks 17 to 23. We observe that there was a delay at the start of
the year comparing to the eggs emergence in the same period, which can be explainded
by the development cycle between egg and adult stages and also environmental
conditions. In 2020, adult mosquitoes risk ratio prediction show that they emerge
globally, in week 28 but, early at week 24 (austral summer) in some communes in the
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Fig 15. IDW predictions for year 2019
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Fig 16. IDW predictions for year 2020

north and the center of the island. Like in 2020, the year 2021 record fairly high risk
ratio of adult mosquito abundance in weeks 29 to 52. The above mentioned Figures still
show medium relative risk ratio of mosquitoes during the austral summer over all years.

It should be noted that the models predict non-zero relative risk ratio as well as
adult and egg mosquito abundance at all times in the island of Mayotte. These different
predictive observations results will be used for ground truths during a forthcoming data
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Fig 17. IDW predictions for year 2021

Fig 18. Spatio-temporal relatif adult risk ratio based on GAM predictions for year 2019

collection campaign; since the incomplete nature of our data and special observation
patterns are clearly a limitation aspect of this work. This will enable us to improve our
proposed spatio-temporal modeling approach, in order to built a robust simulation
model available online in order to optimise monitoring activities of the LAV team as
concerned the areas to be carried out according to abundance risk ratio periods.
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Fig 19. Spatio-temporal relatif adult risk ratio based on GAM predictions for year 2020

Fig 20. Spatio-temporal relatif adult risk ratio based on GAM predictions for year 2021

Conclusion and perspectives

In this study, several statistical analysis and spatio-temporal modeling tools have been
proposed to analyse and model eggs and adults mosquitoes count data in the island of
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Mayotte. Using the Lasso regression we highlight a number of explanatory variables
(potential predictors) for the abundance of our egg and adult mosquito count data. We
propose two spatio-temporal models that can take into account such potential predictors.
The first model is a modified and adapted spatio-temporal kernel smoother which
reveals to be suitable for our eggs count data. The second model is an application of the
Generalized Additive Model in a spatio-temporal setting. We discuss the performance
measures of such data process models and introduce a novel spatio-temporal relatif risk
of abundance that can be seen as a probability of abundance of mosquitoes. We discuss
some relevant spatio-temporal predictive observations that can be subject of vector
control teams to focus on suitable control measures in the monitoring of the mosquito
abundance and therefore the risk of contracting dengue fever. We also discuss about a
future R Shiny application called May’Aedes, that aims to be a flexible and efficient tool
to produce predictive risk rate ratio for control measures according to a given thereshold
observation. In terms of forthcoming study, we are currently interested in theoretical
development of a spatio-temporal simulation model based on a mechanistic PDE model.

Supporting information

S1 Fig. Weekly frequency of egg data collection by site. This picture shows
how many times data were collected in each of the 17 communes of Mayotte.

S2 Fig. Weekly frequency of egg data collection by site. This picture shows
how many times data were collected in each of the 17 communes of Mayotte.

S3 Fig. Outlier detection for mosquito egg data. This picture discuss the issue
of outliers in eggs data due to the high frequency of data collection in a few communes.

S4 Fig. Outlier detection for adult mosquito count data. This picture discuss
the issue of outliers in adult mosquito count data due to the high frequency of data
collection in a few communes.

S5 Fig. Maximum number of consecutive days with rain after imputation.
This picture show the observed days with rain in the island of Mayotte.

S1 Table. Yearly percentage of egg and adult data observations for all
represented communes.

S2 Table. Selected relevant variable and their description for eggs count
data.

S3 Table. Selected relevant variable and their description for adults count
data.

S4 Table. Explicit GAM models formulas and their performance measures.
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