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Abstract—To bring competitive advantage to industry through
a sound AI deployment, we need an end-to-end ”AI systems
engineering” process covering the overall lifecycle of an AI
system, both at component level and at system level, regardless
of whether the specifications come from regulation and reliability
concerns.

Index Terms—AI engineering, reliability, ODD

I. AI ENGINEERING CONCERNS

Artificial Intelligence (AI) can bring competitive advantage
to industry through decision support and the ability to offer
higher value-added products and services. Delivering the ex-
pected service safely (conformance to requirements), meeting
user expectations (fitness for use) and maintaining service
continuity will determine its adoption and its use in industry.
AI becomes critical for companies looking to extract value
from data and knowledge by automating and optimizing pro-
cesses, producing actionable insights, and making a proactive
decision under risks and uncertainties. Production efficiency,
product quality, and service level will be improved by AI [5]
by providing typical features such as machine learning (ML),
reasoning and decision support. However, concerns such as
ethics, accountability, liability, security, privacy and trust are
receiving increasing attention in many emerging areas such as
future industry. So far, AI systems are also expected to address
the risks associated with these concerns.

Fig. 1. AI system engineering is a multi-engineering process

A successful strategy to overcome these challenges requires
collective actions around the objectives of a common industrial
and reliable AI strategy to strengthen synergies and develop
engineering best practices. To achieve this goal, we need an
AI engineering workbench with a sound process, methods
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and tools to support the overall lifecycle of an AI system
[1], both at component level and at system level, regardless
of whether the specifications come from regulation, safety or
security, standardization etc. The objective of the Confiance.ai
program is to revisit ”conventional” engineering (data and
knowledge engineering, algorithm engineering, system and
software engineering, safety and cyber-security engineering,
and cognitive engineering) to ensure the system’s compliance
with requirements and constraints (fig. 1) and to guarantee
RAMS (Reliability, Availability, Maintainability and Safety)
properties. The challenge is to design an end-to-end ”AI
system engineering” process covering the entire value chain
to industrialize AI.

In the following, an AI system refers to a software-based
system that contains AI-based components alongside tradi-
tional software components. It is an artificial system that
acts in the physical or digital dimension through cognitive
capacities by handling its environment by collecting data,
interpreting the collected structured or unstructured data, in-
ferring the knowledge or processing the information derived
from this data, and deciding on the best activity(ies) to take in
order to achieve the given objective. AI covers a wide range of
technologies that can be divided into two broad categories: (1)
data-driven AI, which includes neural networks, deep learning
(DL), genetic algorithms etc.; and (2) knowledge-based AI,
also known as symbolic AI, which includes other non-ML
techniques and methods such as fuzzy logic, ontology and
rule-based systems. Hybrid AI encompasses any synergistic
combinations of various AI techniques such as extension or
optimization of data-driven AI with expert knowledge. ”An
AI system can either use symbolic rules or learn a numerical
model, and it can also adapt its behaviour by analysing how
the environment is affected by its previous actions” [3].

There are some characteristics that distinguish AI systems
from classical systems, which are scoped within a given set
of requirements (functional and non-functional), thus defining
a design domain. For example, non-determinism is a dis-
tinctive feature of AI systems which is particularly useful
during solution searching, especially for exploring complex
(n-dimensional, infinity, heterogeneous) problem spaces. How-
ever, non-determinism also raises questions regarding our
understanding on how and why AI algorithms find local or
global solutions (their explainability).

In the case of data-driven AI systems, ML/DL subsystems
or components are based upon parameters, which may require



to be set during design, implementation and validation phases.
For these subsystems and components, a ML phase should be
introduced whereas for other typical (non-ML-based) subsys-
tems and components, the ML phase does not exist. At the
minimum, an additional iteration phase is expected in order to
conduct such training and tuning.

II. AI SPECIFICS TO BE CONSIDERED

Reliability concerns the AI system itself, but also processes
(how the system was made), tools and infrastructure (what
with), people (by whom) and governance (who decides). Its
assessment also combines different approaches, such as risk
management and quality management. Its system lifecycle
processes (based on ISO/IEC/IEEE 15288) and standards
should help address new challenges posed by AI systems by
integrating existing AI-specific processes and methodologies.
These challenges affect all AI systems or components and
need to be addressed simultaneously. This end-to-end AI
engineering methodology allows to elaborate strategies for
development and IVVQ (Integration, Verification, Validation,
Qualification) activities by:

• Defining analysis perspectives, formalized by a meta-
model defining the concepts involved and their semantic
relations.

• Consolidating the methodological results by analyzing
their various aspects: technical context, constraints, ac-
tivities, data/knowledge, lifecycle, etc..

• Formalizing the analyzed methods in a modeling tool,
according to the metamodels of the considered aspects.
Modeling will help ensure that all methods are compatible
with each other, providing a consistent end-to-end process
for designing reliable AI systems.

Fig. 2. Global view of the analysis framework [2]

The overall structure of the analysis framework [2] is
depicted on fig.2. The viewpoints for AI system development
are:

• Two generic viewpoints: (1) Engineering activities for
reliable AI: Define the tasks to perform so as to specify,
design, produce, deploy and operate an appropriate and
reliable solution to a well understood need, involving AI
techniques; and (2) AI-related data/knowledge life cycle:
Identify major data required/produced by AI engineering,

when they are produced/used, and how they evolve with
time.

• Two viewpoints dedicated to risk on trust (i.e., risk on
the capability of the system to deliver the expected
service is reduced or lost): (3) Risk on reliability due
to engineering: identify major sources of bias or errors
brought by other engineering activities to inputs and
outputs of AI engineering and data/knowledge; (4) Risk
on reliability due to system during operation: identify
the main sources of bias or corruption introduced by
other components of the system that interact with the AI
components in operation.

• Two viewpoints dedicated to trust development and sup-
port: (5) Reliability through system behavior: specify sys-
tem capabilities needed to ensure reliability in operation;
and (6) Reliability through Human/System collaboration:
specifying the expectations of human stakeholders, their
role and work share with the system & AI, in reliably
delivering the expected capacities.

Four transverse system viewpoints are identified (ring of fig.2):
• Integration of AI functions: characterize address specific

issues related to the integration of one or more AI
functions together in the target system context; provide
guidance on how to address each issue,

• Performance on reliability, safety, security: define main
needs, contributions and obstacles regarding reliability
applied to AI decision RAMS performance of the global
solution including AI,

• Engineering lifecycle management: define processes to
revisit engineering choices and decisions according to
evolution of context, environment and needs,

• Engineering environment capabilities: define the tooling
support required to make reliable AI systems engineering
feasible, scalable, efficient and secure.

Consistency of the content in all those viewpoints shall be
checked.

III. A NEW AI RELIABLE METAMODEL

To capture information and different interrelations needed to
assess AI reliability, Confiance.ai proposes a metamodel with
concepts at different levels of abstraction. (see fig. 3).

The red part describes the way the tree of attributes is
built. It highlights the abstract concepts central to reliability
assessment. An attribute which aggregates other attributes is
called a macro-attribute (e.g. robustness, explainability etc.).
It is assessed with an aggregation method. An atomic attribute
is assessed with a clear and actionable observable which can
take different forms (metric, ”expected proof”). The green part
of fig. 3 is the metamodel fragment with concrete concepts.
These concepts represent the different possible subjects and
relations between them. For example, the product is developed
following processes as technical processes (through which the
product must go: design definition, implementation, opera-
tion, etc.), agreement processes (with external organizations:
acquisition, supply), and management processes (supporting



the development of the product: quality management, risk
management etc.). Risk and quality management ensure the
compliance with the specification which includes the different
expected reliability attributes. Processes are applied with tools
by people respecting a certain governance. The blue part
summarizes key systems engineering concepts, part of the non-
functional specification: defining not what the system ”does”
or how it works, but what it ”is”. Because they often have
this suffix, attributes are often referred to as ”-ilities”. They
can also be called quality requirements. They are influenced
by stakeholders such as the user, the developer etc., whether
a specification is functional or non-functional.

Fig. 3. A new AI reliable metamodel [6]

In contrast to non-functional requirements, which define
what the system is, functional requirements define what the
system does: does it move? does it roll? does it roll fast? under
what conditions? From this point of view, the Operational
Design Domain (ODD), which characterizes the operating con-
ditions of the system/feature of interest, can be considered as
part of the functional specification in relation to the reliability
attributes in a number of ways: 1) the transparency of the ODD
makes it possible to understand the limitations of the system
(a requirement of the AI Act); 2) the ODD is the domain to be
considered for the different operational reliability attributes; 3)
the ODD has its own attributes (it should be complete, free of
inconsistencies, human readable, etc.).

At every stage of the system lifecycle (see fig 4), from
engineering and design to operation, RAMS relationships must
be established and maintained. According to the seven pillars
of reliability [3], Confiance.ai specifies AI reliability [6] by six
macro-attributes: data/information/knowledge quality, depend-
ability, operability, robustness, explainability/interpretability,
and human control.

A. AI features specifications through the ODD analysis

All along the methodological steps, a risks/opportunities-
driven approach has to be applied to ensure that the engineer-
ing orientations, decisions and technological choices, specific

to the involvement of AI, are identified, analyzed and mitigated
as early as possible (e.g. datasets evolution, occurrence of
unwanted emerging behaviors . . . ). Potential opportunities,
typically enabled by some technologies, must be considered,
analyzed and valorized. This risks/opportunities-driven ap-
proach may require additional iterations of the qualification
and certifications phases. This process aims at defining the
subset of a target operational domain where systems/features
of interest can be automated with an acceptable level of
confidence. These systems/features have to be considered
as functional chains, potentially involving several AI-based
and non-AI-based components. This process relies on the
reliability assessment process that aims at identifying and
characterizing expectations on trust. To achieve this objective,
the ODD analysis process (see fig. 4) hearafter from an initial
legacy system/feature, to be identified from business domains
and/or technological domains. This legacy system/feature is
considered as a reference.

From this reference, system/feature automation objectives,
expected level of automation and design intentions can be
defined (for instance, human activities or behaviors that could
be automated at a particular level, with regard to their op-
erational environments, conditions and trust expectations).
Based on the trust characteristics analyzed by the reliability
Assessment Process, the ODD analysis process defines the
observable/measurable conditions and properties that need
to be supervised and monitored. It also defines nominal
and edge/corner cases scenarios. All this characterizes and
describes the ODD of the AI systems/features, related to
the automation objectives, their associated level and design
intentions and the target operational environment.

B. The reliability assessment process

This process aims at analyzing and characterizing the trust
expectations related to the targeted automation objectives [6].
It contributes, along with the ODD analysis process, to define
the observable/measurable conditions and properties. Based
on a set of trust assessment categories, this process con-
tributes to analyze the automation objectives, their operational
environment and to define the characteristics and properties
to be observed, monitored and measured to guarantee the
trustful operation of the target system/feature. It defines a
multi-viewpoint value analysis approach, enabling to consider
the concerns and expectations of involved stakeholders, and
a trade-off approach to find the best compromise among
trust attributes and expectations. The ODD analysis process
and the reliability assessment process contribute, with other
traditional System Engineering processes, to state automation
requirements and tests definitions.

C. The Algorithm Engineering Process

As already mentioned, beyond the impact on Systems
Engineering and consequently on the DDQ (Design, Develop
and Quality) processes, AI engineering strongly impacts the
algorithm and software engineering approach. Indeed, AI



Fig. 4. The “W” AI/ML Engineering approach

system engineering has to be considered as a true software en-
gineering discipline that stage at algorithm level. Algorithmic
engineering [7] has often been overlooked in the last decades.
Today, engineers cannot avoid this discipline when considering
AI applications (especially for ML) since it has many impacts
at software level in terms of accuracy, performance, robustness
etc. Fig. 4 summarizes, in a W cycle, a proposed AI software
Engineering approach. This approach focuses on the AI/ML
technological paradigm, because this kind of AI paradigm is
explored by Confiance.ai.

In order to better understand the gap between “conven-
tional“ Software Engineering and AI/ML Engineering, fig. 4
emphasizes additional activities: most importantly, this W
cycle that shows that the ML model has to be evaluated (to
provide some levels of reliability at algorithm level) before its
implementation (at software level).

D. The Assurance Case Process

This process aims at supporting the AI-based sys-
tems/features V&V (validation & verification) strategy by
characterizing and defining evidence-based justifications of the
reliability [4]. It provides a top-down approach that should be
applied to decompose high-level properties, and a bottom-up
approach that can be used to exploit the available evidences.
Both approaches have to be combined to reach the best
possible provable level of reliability.

IV. CONCLUSION

Adopting AI in our industry poses many technical and
non-technical challenges, and significant efforts are currently
underway to address these challenges and facilitate early
industrial adoption of AI cost effectively and safely. In the
context of the Confiance.ai program, the most critical of these
challenges have been identified. They cover two main aspects:
Realizability to provide the ability to have justified confidence

in the system’s ability to deliver the expected service, and
Industrial Efficiency to ensure that dependability is achieved
in a cost-effective manner.

Confiance.ai addresses most dimensions of this problem,
from providing new AI/ML algorithms and techniques that
address different dimensions of trust, including reliability,
accountability, fairness, time determinism, and so on. But
the engineering practices themselves must also be updated to
account for the specificity of AI. Towards that goal, we pro-
pose an ”AI/ML Engineering Framework” to build a system
development and V&V workflow which explicitly integrates
the different dimensions of reliability. The framework relies on
a model-based approach involving a series of ten viewpoints
capturing the many aspects of system development including
those related to data engineering, risk analysis, etc.
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