
Model-based Self-adaptive Management in a Smart
Grid Substation

Salim Chehida∗, Karim Fellah∗, Eric Rutten∗, Guillaume Giraud†, and Stéphane Mocanu∗

∗ Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG – Grenoble, France
{Salim.Chehida, Karim.Fellah, Eric.Rutten, Stephane.Mocanu}@inria.fr

† RTE – Paris, France – guillaume-np.giraud@rte-france.com

Abstract—The design of Cyber Physical Systems
(CPS) is becoming increasingly complex due to the
dynamic changes in their environments and infrastruc-
tures, requiring them to be self-adaptive. An important
class of CPS is Industrial Control Systems (ICS), where
a major trend is to upgrade from historically spe-
cific hardware and technologies towards more software-
defined, virtual approaches involving the Could-Fog-
Edge continuum. In this work, we propose a model-
based approach for the design of the self-adaptation
in ICS, inspired by, and applied to an industrial case
study in Smart Grids, more particularly an electrical
substation from RTE (the French Energy Transmission
company). The problem is to allocate and reallocate dy-
namically a set of control functions upon a distributed
computing infrastructure, with self-adaptation to vari-
ations and perturbations. We define and implement
the model-based autonomic management feedback loop
using constraint programming, to describe the space of
possible configurations, as well as the constraints and
objectives formalizing the operators strategies. This
model is used in simulation, calling the constraints
solver at each cycle of the loop.

Index Terms—Self-adaptive Systems, CPS, Electri-
cal Substation, Constraint Programming, Autonomic
Manager, Energy, Smart Grid.

I. Introduction

Industrial Control Systems (ICS) are a class of Cyber
Physical Systems (CPS) which is taking importance as
an application domain of distributed computing systems,
especially as there is a major trend w.r.t. its Informa-
tion Technology (IT) upgrading. Indeed, historically ICS
were relying on specific hardware and technologies like
Programmable Logic Controllers (PLC), field buses and
network protocols. Recently, in relation with the notion
of Industry4.0, more modern numeric technologies and
infrastructures are introduced in ICS, leveraging more
software-defined, virtual approaches and adopting the

This work was carried out within the CPS4EU project, which has
received funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 826276. The JU receives support from the
European Union’s Horizon 2020 research and innovation program
and France, Spain, Hungary, Italy, Germany. The proposed results
reflect only the authors’ view. The JU is not responsible for any use
that may be made of the information the present work contains.

Cloud-Fog-Edge continuum paradigm, of which it is a sig-
nificant instance. CPS systems are exposed to changes that
can occur in their environment (e.g., physical processes,
weather, users demands and behaviors), their applica-
tive function and requirements (e.g., nominal, emergency
or degraded modes) and their computing infrastructure
(variations in e.g., computing resources available, quality
of connection). These can happen at any time, affecting
the correct operation of the system and its Quality of
Service (QoS). Self-adaption approaches can handle this
challenge by introducing autonomic control loops that
allow the system to evolve and reconfigure itself at runtime
in response to environment and requirements changes.

In this work, we propose a model-based approach for the
design of the autonomic feedback loop manager of self-
adaptation in a class of Industrial Control Systems. We
consider an industrial case study in the domain of Smart
Grids, where the IT infrastructures are currently being
redefined. The particular target concerns a Virtualized
Electrical Substation Automation System from RTE1 (the
French Energy Transmission company). This use case is
used as an inspiration for our approach in modelling and
managing self-adaptations. This more general proposal is
then applied to the specific use case. In the substation,
several computing resources (servers) are available to run
protection and automation functions. We consider the
problem of allocating and reallocating dynamically the set
of functions, available in different versions (e.g. nominal,
back-up), upon a heterogeneous distributed computing
infrastructure. The compute servers based in a substation
are susceptible to undesirable events that can change their
operational states (e.g., loss of computing node: computer
shutting down, software errors and system bug, cyber-
attacks), and impact on the availability of running protec-
tion functions. Therefore, a self-adaptive control system
is needed to monitor the states of compute servers and
take into consideration the arrival of external incidents
(e.g., high temperature, flooding, cyber-attack) in order to
generate new configurations defined by the activation or
not of protection functions depending on the requirements

1https://www.services-rte.com/en/home.html?profil=32

of power system components to be protected and the
strategy adopted by the substation operator.

In our approach, we design an autonomic feedback loop
manager of the execution of the functions on compute
nodes with respect to resource and coherence constraints.
We build a decision model using the constraint program-
ming technique. The model implements a set of equations
and constraints specifying the system requirements and
the objectives of the RTE operators. Then, a constraint
solver is called at each cycle of the self-adaptive control
loop to compute the adequate configuration of protection
functions allocations on the compute servers. Our con-
tribution is to apply a rather classical model in a novel
framework by integrating it into a self-adaptation feedback
loop, and working on an industrial system use case.

We introduce our industrial case study and its require-
ments in Section II. We then present the self-adaptive
control model generalizing the substation problem, and
its formulation in constraint programming in Section III.
In Section IV, we define different optimization objectives
corresponding to applicative strategies, and give the ex-
perimentation results provided by our tool. In Section V,
we present related works. Finally, Section VI draws the
conclusion and the perspectives of this work.

II. Industrial use case and motivation
A substation automation system is a collection of hard-

ware and software components that are used to monitor
and control an electrical substation, both locally and
remotely. It is in charge of fast protection functions en-
suring the safety of equipment and people as well as
slower automation functions like automatic reclosing of the
circuit breaker after a fault or disturbance recording. Even
if most functions can be mutualized on the same processor,
protection functions, which are critical for safety as they
are in charge of electric fault elimination, are processed
by dedicated Intelligent Electronic Devices (IED). These
IED can collect and record information on many different
parameters of a system, process them based on complex
logic in a few dozen milliseconds and make decisions on
abnormal situations to send control commands to switches
and breakers to clear the fault.

RTE is currently working on an innovative approach to
virtualize the protection functions. This approach consists
in replacing the classical protection and automation re-
lays (i.e. IEDs) by a new distributed solution, where all
these functions are virtualized on several servers (one for
redundancy) for the whole substation (See Figure 1). This
minimizes the complexity of the field equipment of an elec-
trical substation, and relocates the treatments (”the intel-
ligence”) in servers at the Edge level (substation) instead
of being spread through the different feeders. Typically,
in an eight-feeders substation, the number of equipment
could fall from at least 16 IED to 5 servers. These compute
servers at the edge level receive the measurements and
the status information sent by field equipment (current

and voltage sensors, and circuit breaker position relays),
support virtual machines ensuring protection functions,
and send commands to actuate the field switch gear. As
shown in Figure 1, in addition to the 3 compute servers, 2
control/storage servers (one for redundancy) monitor the
status of compute servers, and store the context data. It is
worth mentioning that the failure of control servers cannot
affect compute servers’ treatments. The gateway commu-
nicates with the area network and acts as a processor only
in global network level (not substation level). The three
compute servers in the substation have different processing
power capacities, within which the protection functions
should run. Furthermore, the functions consume various
percentage of CPU (Central Processing Unit) and could
be migrated from one compute server to another.

The main challenge in our system is to build self-
adaptive mechanisms that allow for, (i) on the one hand,
providing a more efficient use of the computing resources
coupled with a more secure operation, and (ii) on the other
hand, reacting to abnormal situations in order to ensure
fast protection of the electric grid components, namely the
power lines that transmit electricity between substations
and the transformers that change the voltage level. As
with IED, the mission-critical protections functions are
doubled with a main and a back-up versions, whereas
auxiliary functions are not duplicated. Back-up functions
provide a minimal but sufficient protection whereas main
functions usually provide better performance but consume
more CPU.

From this concrete industrial use case, we will derive in
the next section a generalized formulation of the problem,
in terms of functions, resources and constraints.

III. Self-adaptation in a feedback control loop
The problem to be solved is to allocate and reallo-

cate dynamically a set of control functions upon a dis-
tributed computing infrastructure, with self-adaptation
to variations and perturbations, while following high-
level constraints and objectives. In Figure 2, we design
the feedback loop scheme that supports self-adaptation
of the virtualized electrical substation, characterized by
its capability to reconfigure the execution of protection
functions while respecting strategies which are specific
to the application domain, here defined by RTE. Those
reconfigurations make the substation control station more
robust w.r.t. changes in external system context such as
servers dropping off, or an impairment of computation
power due to increased temperatures or other external
incidents such as flooding.

A. Decision model
As shown in Figure 2, we consider a set of compute

servers in the substation. The variable Nc represents the
number of computers and the variable k specifies the
compute server index. We define the state variable Act Ck
that represents the state of a computer Ck.

Fig. 1. RTE substation processing and storage infrastructure.

• Act Ck = 1 if the computer Ck is ON
• Act Ck = 0 if the computer Ck is OFF (by loss

of computing node: computer shutting down (HW),
software errors and system bug, cyber-attacks, etc.).

In our model, 3 types of protection functions are con-
sidered: main, back-up and auxiliary, as introduced in
Section II. For simplification purposes, we consider that
the number of main functions is equal to the number of
back-up functions. In practice, there could be cases where
some functions do not have a back-up version: then we
could adapt the equations quite simply. We define the
following variables:

• NM is the number of main or back-up functions
• NA is the number of auxiliary functions
• i represents the index of the corresponding main or

back-up protection function, spanning between 1 and
NM.

• z represents the index of the corresponding auxiliary
protection function, spanning between 1 and NA.

We define the following state variables:
• Act FMi,k that represents the activation state of the

main function i on computer Ck.
• Act FBi,k for the activation state of the back-up

function i on computer Ck.
• Act Az,k that represents the activation state of the

auxiliary function z on computer Ck.
These are the decision variables in our problem: we want

to decide upon which functions to activate where.
The system controller receives the states of the compute

servers (Act Ck) from the monitor and, depending on
the reconfiguration strategy (application-related, defined
by RTE) and external incidents, a new configuration will
be generated and applied to the system, representing the
new states of protection functions (active/non-active) on
compute servers (Act FMi,k, Act FBi,k, Act Az,k).
B. The system controller as constraint equations

We define and implement the decision model using
constraint programming, to describe the space of possible

Fig. 2. RTE substation self-adaptive control system.

configurations ensuring a set of constraints. The objectives
formalizing the operators strategies will be explained in
the next Section.

A configuration Config is specified by a Boolean vector
of size (Nc + (2 × NM) + NA) that represents the
states of the compute servers and protection functions
i.e., the global configuration generated by the self-adaptive
controller.

Config = (Act Ck; Act FMi,k; Act FBi,k; Act Az,k).

The first column represents the states of compute
servers, the other columns represent respectively the acti-
vation states of main, back-up and auxiliary functions on
three compute servers. In the following configuration, we
have example of 3 compute servers, 3 main functions, 3
back-up functions and 2 auxiliary functions:

(1.1.0 ; 1.0.0,0.1.0,0.1.0 ; 0.1.0,1.0.0,1.0.0 ; 1.0.0,0.1.0)
In our system, each protection function consumes a per-

centage of CPU capacity of the compute server (processor
load) which has to be between 0 and 1. Such processing
load for each function is different from one compute server
to another. The functions processing loads are represented
as following:

• FMi,k represents the processing load of the main
function i on compute server Ck.

• FBi,k represents the processing load of the back-up
function i on compute server Ck.

• Az,k represents the processing load of the auxiliary
function z on compute server Ck.

We define the variables PMk, PBk, PAk that represent
respectively the processing load of the main, back-up, and
auxiliary functions, on compute server Ck.

∀ k (k =1..Nc), PMk =
∑NM

i=1 (F Mi,k ∗ Act F M i,k).
∀ k (k =1..Nc), PBk =

∑NM

i=1 (F Bi,k ∗ Act F Bi,k).
∀ k (k =1..Nc), PAk =

∑NA

z=1 (Az,k ∗ Act Az,k).
The total sum of processor loads Pk of a compute server

Ck, is the sum of different processing loads related to
different version of protection functions allocated in this
server.

∀ k (k =1..Nc), Pk = PMk + PBk + PAk

We specify 5 constraints to build our controller. The
two first constraints C1 and C2 are classical capacity
constraints. More interestingly, and more specifically to
our self-adaptive system are the constraints C3, C4, and
C5.

Constraint C1: it ensures that protection function can
be active only on an operational compute server. If the
compute server is OFF (Act Ck= 0), it cannot execute
or allocate any protection function.

∀ i (i =1..NM),∀ k (k =1..Nc), Act F M i,k ≤ Act Ck
∀ i (i =1..NM), ∀ k (k =1..Nc), Act F Bi,k ≤ Act Ck
∀ z (z =1..NA), ∀ k (k =1..Nc), Act Az,k ≤ Act Ck

Constraint C2: it guarantees that processor load Pk on a
compute server Ck has to be not more than the maximum
processor load capacity MPk of this server.

∀ k (k =1..Nc), Pk = PMk + PBk + PAk ≤ MPk

Constraint C3: It ensures that a main function should
not be executed with its corresponding back-up function
on the same compute server, in order to avoid a common
mode of failure.

∀ i (i =1..NM), ∀ k (k =1..Nc),
Act FMi,k + Act FBi,k ≤ 1

Constraint C4: It ensures that for all protection func-
tions, if a main or back-up function is active, each should
be executed in one compute server and only one.

∀ i (i =1..NM), 0 ≤
∑Nc

k=1 (Act F M i,k) ≤ 1
∀ i (i =1..NM), 0 ≤

∑Nc
k=1 (Act F Bi,k) ≤ 1

Constraint C5: It guarantees that for all functions, at
least a main protection function or its corresponding back-
up function should be executed somewhere on a compute
server.

∀ i (i =1..NM), 0 <
∑Nc

k=1(Act F M i,k +Act F Bi,k)
While the previous constraints filter out incorrect con-

figurations, and produce a set of potentially multiple
remaining possible solutions, we need additional strategies
to choose between them. They will define optimization

objectives, defining particular solutions which can be used
to drive actions on the system. We describe such strategies
in the next Section IV-A, because they correspond to
applicative strategies that are specific to the use case.

IV. Application to the industrial use case
The model from previous section is implemented using

OPL (Optimization Programming Language) language2,
and problems were solved by the IBM ILOG CPLEX
Optimization Studio version 12.8.03. The CPLEX tool
allows to create a model file that contains the model
to solve, a data file that contains data for a model, a
parameter file that allows you to configure the CPLEX
solver, and a runtime configuration file which defines the
model to be solved as well as the parameters and data
when the user requests the execution of the project. We
ran all the experiments on a Corei7 2.7GHz computer with
16Gb of RAM (Random Access Memory) under Windows
10 pro 64-bits.

To demonstrate the self-adaptive mechanism, we use an
example of the substation 225 kV/63 kV from RTE. The
substation has 21 functions structured in groups of lines
and transformers. Two 225 kV lines (L225), two 63 kV
lines (L63), two 225/63 kV transformers (T225) and two
63/20 kV transformers (T63). Table I shows the numerous
protection functions with their CPU cost. Each group is
composed of main and back-up functions and also a set of
auxiliary functions.

A. Reconfiguration strategies
The strategies are formalizing options available to the

Smart Grid operators, corresponding to different applica-
tive or technical criteria from the point of view of, in
the case of our case study, the management of electrical
networks. There can be several such strategies, which can
have various advantages and costs or drawbacks: one of
them is used at a given time, but it is envisageable to
switch between them according to applicative scenarios.
This would constitute an additional feedback loop deciding
upon the choice of strategy.

In the current work, after applying the 5 constraints,
we define two different criteria ST1 and ST2 to select
between multiple optimal configurations. To define them,
we consider the following variables related to lines and
transformers introduced in Section II:

• Nc for the number of compute servers
• NA for the number of auxiliary functions
• NL for the number of power lines
• NT for the number of transformers
• i represents the index of the corresponding line (span-

ning between 1 and NL) or transformer (spanning
between 1 and NT)

2https://www.ibm.com/docs/en/icos/12.8.0.0?topic=opl-
optimization-programming-language

3https://www.ibm.com/products/ilog-cplex-optimization-studio

Group Function Type Name CPU cost

Line 225 kV

225kV Li FM Main function FM Relay protection (PX) 0.083
225kV Li FB Back-up function FB Back-up protection (PS) 0.067
225kV Li A1 Auxiliary function 1 A Circuit breaker failure (ADD) 0.033
225kV Li A2 Auxiliary function 2 A Earth wattmetric protection (PW) 0.067
225kV Li A3 Auxiliary function 3 A Auto-recloser system (ARS) 0.042
225kV Li A4 Auxiliary function 4 A Disturbance recorder (EP) 0.017

Transformer
225/63 kV

225kV Ti FM Main function FM Transformer protection (PTP) 0.108
225kV Ti FB Back-up function FB Back-up transformer protection (PTP) 0.108
225kV Ti A1 Auxiliary function 1 A Circuit breaker failure (ADD) 0.033
225kV Ti A2 Auxiliary function 2 A Disturbance recorder (EP) 0.017

Line 63 kV

63kV Li FM Main function FM Relay protection (PX) 0.083
63kV Li FB Back-up function FB Back-up protection (PS) 0.067
63kV Li A1 Auxiliary function 1 A Circuit breaker failure (ADD) 0.033
63kV Li A2 Auxiliary function 2 A Earth wattmetric protection (PW) 0.067
63kV Li A3 Auxiliary function 3 A Auto-recloser system (ARS) 0.042
63kV Li A4 Auxiliary function 4 A Disturbance recorder (EP) 0.017

Transformer
63/20 kV

63kV Ti FM Main function FM Relay protection (PSPT) 0.117
63kV Ti FB Back-up function FB back-up protection (PX BARRE) 0.067
63kV Ti A1 Auxiliary function 1 A Circuit breaker failure (ADD) 0.033
63kV Ti A2 Auxiliary function 2 A Auto-recloser system (ARS) 0.042
63kV Ti A3 Auxiliary function 3 A Disturbance recorder (EP) 0.017

TABLE I
Protection functions.

• z represents the index of the corresponding auxiliary
protection function (spanning between 1 and NA)

• Act Li FMk represents the activation state of the
main function of line Li on the compute server Ck

• Act Ti FMk for the activation state of the main
function of transformer Ti on the compute server Ck

• Act Li FBk represents the activation state of the
back-up function of line Li on the compute server Ck

• Act Ti FBk for the activation state of the back-up
function of transformer Ti on the compute server Ck

• Act Li Az,k represents the activation state of the zth

auxiliary function of line Li on the compute server Ck
• Act Ti Az,k for the activation state of the zth aux-

iliary function of transformer Ti on compute server
Ck

1) Strategy ST1: complete groups of auxiliary functions:

We choose to have complete groups of auxiliary func-
tions running, i.e. groups with full functionalities, instead
of random auxiliary functions missing in different groups.
This strategy allows to maximize the number of totally
operational line or transformer automations.

The objective function is expressed as follows:
Max

{
∑Nc

k=1
(∏z=NA

z=1

∑NL
i=1 Act Li Az,k

+∏z=NA
z=1

∑NT
i=1 Act T i Az,k

)
}

The products of Act Li Az,k and Act Ti Az,k ensure
the activation or not of all the auxiliary functions in the

lines and the transformers. If the product is equal to 1,
this means that all the auxiliary functions are active. We
maximize then the number of lines and transformers with
complete auxiliary functions.

2) Strategy ST2: order preference of lines and trans-
formers:

We consider the following order of preference: lines then
transformers, in decreasing order of the value of their volt-
age level. Indeed, the lines are much more prone to faults,
so it is interesting to have all the auxiliary functions, e.g. to
automatically close the line after a fault has been cleared.
We also favour the higher voltage levels as their loss leads
to a higher risk of load shedding. It means that we need
to ensure the availability of protection functions for lines
in priority, then the availability of protection functions for
the transformers.

The objective function is given below:
Max
{

∑Nc
k=1

(∑NL
i=1

∑NA
z=1 (Act Li F Mk + Act Li F Bk

+Act Li Az,k); Obj1∑NT
i=1

∑NA
z=1 (Act T i F Mk + Act T i F Bk +

Act T i Az,k) Obj2
)

}
We consider that the lines Li and transformers Ti

are indexed by a decreasing order of the value of their
voltage level. In our use case, the lines L225 then L63,
the transformers T225 then T63. We use a multi-objective
optimization by sorting the objectives in decreasing prior-
ity. For each compute server Ck, the first objective Obj1

maximizes the number of functions activated in lines in
decreasing order of the value of their voltage level. The
second objective Obj2 maximizes the number of functions
activated in transformers in decreasing order of the value
of their voltage level.
B. Simulation scenarios

Referring to the constraints and strategies mentioned
above, in this section we illustrate how the self-adaptive
control system reacts to change in compute servers states
(one or more computers are not operational/shutting-
down). When exploiting the available computing resources
to execute a maximum number of protection functions,
an external factor such as temperature can impact on
processor capacity, which can be reduced to less than 1
(less than 100%), thus, the number of running protection
functions will also be limited. As the substation is suscep-
tible to several unexpected incidents, many scenarios can
happen in terms of compute servers’ states modification,
which can impact on the available computing resource and
the capacity of their CPU. Though the use case has 2
power lines and 2 transformers for each voltage level, the
simulations only include 1 element from each type for a
better readability of the results. The computing power of
each server is also set to 50%.

Figure 3 shows an example of reconfiguration scenario.
We consider that the loss of computer servers is due to
the arrival of external incidents such as floods and cyber-
attacks. We will explain the response of our adaptive
control mechanism when servers are lost or their capacity
is reduced.

Fig. 3. Reconfiguration scenarios of substation.

At state S1, all compute servers are active. At state
S2, we lose C3 and at state S3 the server C1 is lost. A
state S4, the server C3 is recovered and the server C2 is
subjected to thermal throttling which consists in adjusting
the clock speed of the CPU based on the amount of heat
it is currently generating to maintain safe core operating
temperatures (usually below 90°c). This reduction of clock
rate leads to reduction of the processor performance.
Fanless devices like the ones used in substations are more
likely to experience this phenomenon, especially during
hot weather. In our example, the external temperature
leads to a thermal throttling with a 50% reduction of clock
rate and so a 50% decrease of the performance of server C2.
This simplified taking into account of thermal throttling
opens perspectives of considering the composition, in a
multiple loops approach, of our autonomic manager with
another feedbak loop performing finer regulation of clock
rate [4].

Figure 4 presents the selected configurations when con-
sidering strategy ST2 (order of preference of groups). A
configuration represents respectively the activation states
of main (F1M), back-up (F1B) and auxiliary (A1, A2, A3
and A4) functions on three compute servers (sub-columns
represent respectively servers C1, C2 and C3). For each
configuration, we show the number of activated functions
(NB FCT) and also the number of complete groups (CMP
GR) where all functions of the group are activated. At
state S1 with all compute servers active, we can run all
protection functions and complete the 4 groups (L225,
L63, T225, T63). When losing server C3 at state S2, 4
functions cannot be executed and the group T63 cannot
be completed. When only server C2 is active at state S3,
we can only run 9 protection functions and none of the
groups can be completed. Finally, at state S4, 13 functions
can be run with one group completed (L225).

Figure 5 shows the selected configurations regarding
strategy ST1 (complete groups of auxiliary functions). The
”CMP GR” column in Figure 5 represents the number
of complete groups of auxiliary functions. When losing
server C3 in S2, we reach the same objective as for state
S1 when all servers are active with 4 complete groups of
auxiliary functions. When losing servers C3 and C1, the
best configuration can provide only 2 complete groups of
auxiliary functions. At S4 when recovering the server C3
and the server C2 is subjected to thermal throttling, 3
groups of auxiliary functions can be completed with 15
functions activated.

C. Evaluation

Following the behavior scenario shown Figure 3, the
transitions triggered by self-adaptation controller between
the different states can be explained as follows from the
applicative point of view of the use case:

State S0 to S1 - all servers are started. With order
of preference strategy (ST2) so all functions are available
as we are in the optimal configuration. Strategy ST1
(complete groups of auxiliary functions) leads to a different
situation where only one of main or backup functions is
active for each element, which is in line with the criteria
but less relevant from an operational point of view.

State S1 to S2 - server 3 is lost. With ST2, all
main and back-up functions are available, but we only
have 3 complete groups and 17 functions. ST1 allows to
have all (4) complete auxiliary function groups and 19
functions, but 225 line has only main protection and 63
transformer only back-up protection. In this situation it is
not straightforward to choose the best operational option.

State S2 to S3 - servers 1 is also lost (only
server 2 is available). With these scare resources, ST2
leads to all elements with only back-up protection. 225
line has all its auxiliary functions, 63 line has one and
other elements have none. ST1 leads to a quite similar
solution for protection functions (only 225 line is on main

Fig. 4. Reconfiguration by order of preference (ST2).

Fig. 5. Reconfiguration by complete groups of auxiliary functions (ST1).

protection), but both transformers have all their auxiliary
functions. ST1 seems to have a slight advantage here.

State S3 to S4 - server 3 gets back and server
2 experiences thermal throttling and reduction of
capacity by half. ST2 manages to have all functions
available from 225 line but only 13 functions and 1 com-
plete group. ST1 does better with 15 functions and 3
complete groups.

As a conclusion, both strategies get the expected results.
If the assumption that main and back-up protections
are equivalent and that only one is needed at the time,
strategy ST1 offers better results. Such scenario analysis
illustrates the potential of our model to offer assistance to
automation designers, to explore choices of formulations
in requirements and strategies.

V. Related work

Some related work features several papers such as [15]
and [9], which present the state-of-art approaches for self-
adaptation in CPS through feedback loops. According to
[9], the performance, flexibility, and reliability are the
main concerns and energy is the principal application
domain. Thus, different adaptation mechanisms have been
used as for example: MAPE-K (Monitor-Analyze-Plan-
Execute-Knowledge) [6]. Such self-adaptation is supported
by reconfiguration mechanisms at the level of the mid-
dleware, as for example in component-based approaches
[11]. Self-adaptation can be used to address and solve
problems of resource management e.g., load balancing [10],
or service placement [1], but it is done at runtime. It can
perform interventions at different levels of the software
stack, from HPC to IoT and in between in the Cloud-
Fog-Edge continuum [5]. The modelling and decision ap-

proaches involved in the design of the feedback loops are
various and can range from Machine Learning to Control
Theory [12]. Finally, it is to be noted that the notions
of co-existing multiple loops, managing different aspects
of complex systems, can be approached in a variety of
compositions and decentralization patterns [14].

Regarding the use of Constraint programming for the
modeling of heterogeneous distributed systems, there is
related work in solving of service placement problems in
Fog Computing [2], essentially at deployment time, rather
than such as in our approach dynamically at runtime
across the duration of the application. Other work in-
volving constraint programming integrated in autonomic
loop feature [8] where it is applied to the different domain
of Device Management in the IoT, and [3] where it is
used in different context of Cloud computing, to automate
the management of varying-demand services, while still
enforcing Service-Level Agreements (SLAs). The difference
with our approach is that we model a different kind of
system, and of constraints between functions, in our CPS
context. A closer work [13] also consider smart grid CPS,
but at a higher level in the architecture, whereas here we
concentrate on the substation level.

VI. Conclusion
In summary, our results are in:
• a model-based approach for the design of the automa-

tion of real-time self-adaptation in Industrial Control
Systems;

• the application to an industrial case study in Smart
Grids, more particularly an electrical substation;

• the definition and implementation of the decision
model using constraint programming, to describe
the space of possible configurations, as well as the
constraints and objectives formalizing the operators
strategies;

• the use of the model in simulation, calling the solver
at each cycle of the self-adaptation control loop,
offering design assistance and rapid prototyping to
automation designers, to explore choices of solutions
in requirements and strategies.

Amongst perspectives of this work, we can mention:
• the integration of the controller with the existing mid-

dleware infrastructures in the use case, for a concrete
implementation and experimentation;

• the model enhancement, e.g. to take into account
more of the dynamics of the environment, in relation
with Control Theory [7]: for example in case of heat
wave or flooding in order to react in one step while
taking into account the speed of rapid phenomena;

• the integration of this level of autonomic manage-
ment in a more global architecture, where it would
contribute one of the loops in a multiple loops sys-
tem, with a coordination to avoid interferences and
improve global management efficicency.

Finally, this industrial use case analysis lead to the pro-
posal of a model which is more generic that the particular
case, and shows potential of generalization to wider classes
of systems.

References
[1] Farah Ait Salaht, Frédéric Desprez, and Adrien Lebre. An

overview of service placement problem in Fog and Edge Com-
puting. ACM Computing Surveys, 53(3), 2020.

[2] Farah Ait Salaht, Frédéric Desprez, Adrien Lebre, Charles
Prud’Homme, and Mohamed Abderrahim. Service Placement in
Fog Computing Using Constraint Programming. In SCC 2019
: IEEE International Conference on Services Computing, pages
19–27, Milan, Italy, July 2019. IEEE.

[3] Zakarea Al-Shara, Frederico Alvares, Hugo Bruneliere,
Jonathan Lejeune, Charles Prud’Homme, and Thomas Ledoux.
CoMe4ACloud: An End-to-End Framework for Autonomic
Cloud Systems. Future Generation Computer Systems, 86,
2018.

[4] Sophie Cerf, Raphaël Bleuse, Valentin Reis, Swann Perarnau,
and Eric Rutten. Sustaining Performance While Reducing
Energy Consumption: A Control Theory Approach. In EURO-
PAR 2021 - 27th International European Conference on Parallel
and Distributed Computing, volume 12820 of Euro-Par, pages
334–349, Lisbon, Portugal, August 2021. Springer.

[5] L. de Souza Cimino, J. E. E. de Resende, L. H. M. Silva,
S. Q. S. Rocha, M. de Oliveira Correia, G. S. Monteiro, G. N.
de Souza Fernandes, R. da Silva Moreira, J. G. de Silva, M. I. B.
Santos, and et al. A middleware solution for integrating and
exploring IoT and HPC capabilities. Software: Practice and
Experience, 49(4):584–616, 2019.

[6] Jeffrey O Kephart and David M Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[7] Marin Litoiu, Mary Shaw, Gabriel Tamura, Norha M. Villegas,
Hausi Müller, Holger Giese, Romain Rouvoy, and Eric Rutten.
What Can Control Theory Teach Us About Assurances in
Self-Adaptive Software Systems? In R. de Lemos, D. Garlan,
C. Ghezzi, and H. Giese, editors, Software Engineering for Self-
Adaptive Systems 3: Assurances, volume 9640 of LNCS. 2017.

[8] Ghada Moualla, Sébastien Bolle, Marc Douet, and Eric Rutten.
Self-adaptive Device Management for the IoT Using Constraint
Solving. In 17th Conference on Computer Science and Intelli-
gence System, Sofia, Bulgaria, September 2022.

[9] Henry Muccini, Mohammad Sharaf, and Danny Weyns. Self-
adaptation for cyber-physical systems: A systematic literature
review. In Proceedings of the 11th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems,
SEAMS ’16, page 75–81, New York, NY, USA, 2016.

[10] B. Pourghebleh and V. Hayyolalam. A comprehensive and
systematic review of the load balancing mechanisms in the
internet of things. Cluster Computing, 2019.

[11] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel
Romero, Valerio Schiavoni, and Jean-Bernard Stefani. A
Component-Based Middleware Platform for Reconfigurable
Service-Oriented Architectures. Software: Practice and Expe-
rience, 42(5):559–583, May 2012.

[12] Stepan Shevtsov, Mihaly Berekmeri, Danny Weyns, and Mar-
tina Maggio. Control-theoretical software adaptation: A sys-
tematic literature review. IEEE Transactions on Software
Engineering, 44(8):784–810, 2018.

[13] Mahyar Tourchi Moghaddam, Eric Rutten, and Guillaume Gi-
raud. Hierarchical Control for Self-adaptive IoT Systems A Con-
straint Programming-Based Adaptation Approach. In HICSS
2022 - Hawaii International Conference on System Sciences,
pages 1–10, Hawaii, United States, December 2022.

[14] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola,
C. Prehofer, J. Wuttke, J. Andersson, H. Giese, and K. M.
Göschka. On patterns for decentralized control in self-adaptive
systems. In Software Engineering for Self-Adaptive Systems II,
LNCS, page 76–107. Springer, 2013.

[15] Sherali Zeadally, Teodora Sanislav, and George Dan Mois. Self-
adaptation techniques in cyber-physical systems (cpss). IEEE
Access, 7:171126–171139, 2019.

