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S U M M A R Y

Since the onset of the COVID-19 pandemic, mathematical models have been widely used to
inform public health recommendations regarding COVID-19 control in healthcare settings.
The objective of this study was to systematically review SARS-CoV-2 transmission models
in healthcare settings, and to summarize their contributions to understanding nosocomial
COVID-19. A systematic search and review of published articles indexed in PubMed was
carried out. Modelling studies describing dynamic inter-individual transmission of SARS-
CoV-2 in healthcare settings, published by mid-February 2022 were included. Models
have mostly focused on acute-care and long-term-care facilities in high-income countries.
Models have quantified outbreak risk, showing great variation across settings and pan-
demic periods. Regarding surveillance, routine testing rather than symptom-based was
highlighted as essential for COVID-19 prevention due to high rates of silent transmission.
Surveillance impacts depended critically on testing frequency, diagnostic sensitivity, and
turn-around time. Healthcare re-organization also proved to have large epidemiological
impacts: beyond obvious benefits of isolating cases and limiting inter-individual contact,
more complex strategies (staggered staff scheduling, immune-based cohorting) reduced
infection risk. Finally, vaccination impact, while highly effective for limiting COVID-19
burden, varied substantially depending on assumed mechanistic impacts on infection
acquisition, symptom onset and transmission. Modelling results form an extensive
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evidence base that may inform control strategies for future waves of SARS-CoV-2 and other
viral respiratory pathogens. We propose new avenues for future models of healthcare-
associated outbreaks, with the aim of enhancing their efficiency and contributions to
decision-making.

ª 2023 The Authors. Published by Elsevier Ltd
on behalf of The Healthcare Infection Society. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

SARS-CoV-2 transmission in healthcare settings has con-
tributed significantly to the global health-economic burden of
COVID-19. Healthcare settings are particularly vulnerable to
COVID-19, due to dense concentrations of frail patients, high
frequencies of at-risk medical procedures, and high rates of
inter-individual contact. Both patients and healthcare workers
(HCWs) have been at high risk of SARS-CoV-2 infection
throughout the pandemic, resulting in major nosocomial out-
breaks worldwide [1,2]. In England, for instance, an estimated
20% of patients hospitalized with COVID-19 before August 2020
acquired their infection in hospital [3], while 95,000e167,000
patients became infected during their hospital stay between
June 2020 and March 2021 [4]. Further, HCWs have experienced
an estimated 1.6- to 3.4-fold higher risk of infection relative to
the general population [5,6]. Long-term-care facilities (LTCFs)
have been most severely impacted, with one- to two-thirds of
COVID-related deaths in Europe by May 2020 estimated to have
occurred among LTCF residents [7].

Healthcare facilities have undergone extensive organiza-
tional changes to combat SARS-CoV-2 transmission, particularly
during local surges in COVID-19 cases. Many facilities have
adopted non-pharmaceutical infection prevention and control
(IPC) measures, including social distancing, reinforced contact
precautions and hand hygiene procedures, use of personal
protective equipment (PPE), banning of visitors, and system-
atic testetraceeisolate protocols. HCWs and residents of
LTCFs have also been among the first populations targeted for
vaccination. However, despite these interventions, nosocomial
COVID-19 risk has not been eliminated, as evidenced by ongo-
ing outbreaks in healthcare facilities worldwide. A key barrier
to effective COVID-19 prevention in healthcare settings is
imperfect understanding of transmission routes among patients
and HCWs, and of the relative impacts of different control
strategies, which depend on setting-specific organizational and
demographic characteristics, immunological histories of the
specific population concerned, and virological properties of
locally circulating variants.

Throughout the pandemic, mathematical models (Box 1)
have proven useful both to better understand the epidemio-
logical processes underlying SARS-CoV-2 outbreaks and to
support public health decision making. Modelling studies
focusing on nosocomial risk in particular, although less publi-
cized than those focusing on community risk, have addressed a
broad range of epidemiological questions [8] and aided public
health decision-making [9]. However, epidemiological insights
and public health recommendations from nosocomial SARS-
CoV-2 models have not previously been reviewed or synthe-
sized systematically. Here, we systematically search and
review mathematical models developed to investigate
SARS-CoV-2 transmission dynamics and control strategies in
healthcare settings over the critical phase of the pandemic,
present their main contributions, synthesize their conclusions,
and discuss their limits.

Methods

We conducted a systematic search and review of mathe-
matical/mechanistic models of inter-individual SARS-CoV-2
transmission within healthcare settings published up to 14th

February 2022. Details on the search, inclusion and exclusion
criteria, screening process and data extraction are provided in
the Supplementary data, and results are reported according to
the PRISMA guidelines [10] (PRISMA checklist in Supplementary
data).

Results

Model characteristics

Overall, our search identified 1431 studies, of which 59 were
included after title, abstract and full-text screening
(Supplementary Figure S1, Supplementary Table S1). Most (43/
59) were posted in a publicly accessible pre-print server, with a
median delay of eight months (range: 1e24 months) between
initial preprint posting and publication.

The majority of models were stochastic (85%; 50/59), and
about half were agent-based or network models (53%; 31/59).
At early stages of the pandemic, when testing resources were
highly limited, most studies focused on surveillance and
healthcare organization (Figure 1a). By comparison, impacts of
PPE have been assessed less frequently, and vaccination
strategies only began to be explored towards the end of 2020,
as the first vaccines became available.

While models were mostly developed by teams from the
USA, the UK, and other European countries, these models
explored locations representing a wider range of countries
worldwide (Figure 1b). Acute-care facilities and long-term-
care facilities were the main types of healthcare facilities
considered, although this varied depending on the country of
study (Figure 1c) and the subject addressed (Figure 1d).

Insights on SARS-CoV-2 acquisition routes and
transmission risk

Few studies have attempted to estimate the reproduction
number of SARS-CoV-2 in healthcare settings, despite evidence
that nosocomial and community risk may differ widely [11].
Estimates of nosocomial R0 range from 0.45 (0.36e0.56) in
English acute-care hospitals using a relatively simple approach
[12] to 8.72 (5.14e16.32) in a French LTCF using a stochastic
dynamic model accounting for imperfect surveillance [13].

http://creativecommons.org/licenses/by-nc-nd/4.0/


Box 1

Mathematical models of SARS-CoV-2 transmission in healthcare settings.

Compartmental models are most frequent, but agent-based models (also known as individual-based models) are another common formalism, in

which each unique individual in the population is explicitly modelled. This enables more detailed integration of heterogeneity in contact

patterns, disease progression, transmission risk and other epidemiological processes. Models can further be categorized as either deterministic

or stochastic. In deterministic models, there is no randomness in epidemiological processes, and a particular set of initial conditions always

results in identical outbreaks. By contrast, in stochastic models, it is possible to account for randomness in the parameters or processes

included, resulting in different outbreak trajectories each time the model is run. Stochasticity is particularly relevant in models of healthcare

settings, where population sizes are small and randomness can have a strong impact on outbreak dynamics.

Models are used for a variety of purposes. They are widely used to simulate virus transmission in specific settings and populations, allowing for

the quantification of virus burden in particular epidemiological scenarios (e.g., after the introduction of a novel SARS-CoV-2 variant into a

hospital via newly admitted patients, short-stay visitors, or members of staff infected in the community). Models are also used to enable the in
silico assessment of public health interventions through the mechanistic implementation of interventions (e.g., testing, isolation, personal

protective equipment provisioning, contact restrictions, vaccine deployment). Intervention impact can then be evaluated by simulating

counterfactual outbreaks with and without the intervention in place. Finally, models are key to analysing reported data from real outbreaks (e.g.,

time series data, individual line lists of SARS-CoV-2 cases), accounting not only for unobserved processes (e.g., virus transmission) but also

incomplete infection data, whether due to the presence of asymptomatic infections, imperfect reporting, or limited surveillance capacity. This

allows for the retrospective assessment of true disease burden from a given outbreak (e.g., cumulative infection incidence) as well as

estimation of important epidemiological parameters such as R0, the basic reproduction number, which describes the average number of

secondary cases caused by an index case in an immunologically naïve population. R0 is particularly helpful to understand the epidemic

potential of an emerging pathogen, though its value may vary across distinct sub-populations and settings, such as particular groups of patients

and HCWs in particular healthcare facilities.

Mathematical models are theoretical constructs that mechanistically formalize the dynamic processes underlying SARS-CoV-2 transmission. A

typical model splits the individuals present in a healthcare facility into sub-populations, including one or more categories of patients (or

residents) and healthcare workers (HCW)s. Mathematical or statistical tools are used to describe the natural history of infection through the

definition of different infection states or “compartments”. For instance, in the specific case of SARS-CoV-2, which is characterized by an

incubation period subsequent to exposure and the acquisition of (partial) immunity after infection, the main compartments considered are:

Susceptible to infection (S), Exposed to infection or incubating (E), Infectious (I), and Recovered or immunized (R). As a large share of

infectious individuals may be asymptomatic, the I compartment is often subdivided into asymptomatic (IA) and symptomatic (IS) compartments.

Various other sources of heterogeneity may also be considered, including different levels of viral shedding among infectious individuals, or

different trajectories of care among symptomatic individuals (e.g., isolation, mechanical ventilation, admission to intensive care, death). Specific

contact patterns between individuals of different sub-populations and infection statuses can further be accounted for through the definition of

contact matrices.
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Figure 1. Characteristics of identified models of SARS-CoV-2 transmission within healthcare settings. (a) Cumulative number of modelling
studies made accessible per month since March 2020, stratified by primary focus(es) addressed. The date used is the date of first pub-
lication, either on a public archive or in a journal. Studies addressing several subjects are counted several times. (b) Geographical
distribution of countries on which the modelling is focused. (c) Distribution of modelled healthcare settings per studied country. (d)
Distribution of addressed subjects, depending on the type of healthcare setting. Studies addressing several subjects are counted several
times. HCW, healthcare worker.
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Interestingly, in the latter study, R0 was estimated to drop to
1.33 (0.68e2.04) after introduction of control measures.

Several models have quantified the relative burden of SARS-
CoV-2 infection and transmission among patients and HCWs
over the course of the pandemic. HCWs were identified as
being at high risk of occupational exposure to infection, either
from colleagues or patients [14e16]. During the first wave in
early 2020, they have been estimated to be the most important
source of onward nosocomial transmission, both to patients
and other HCWs [17,18]. However, other studies found that
patient infection could result primarily from transmission from
other patients [4,16,18].

Insights on SARS-CoV-2 infection control

Evaluating and optimizing surveillance strategies
Models have been widely used to assess and compare the

epidemiological impacts of SARS-CoV-2 testing strategies.
Because SARS-CoV-2 spreads extensively through pre-
symptomatic and asymptomatic transmission [19,20], the
identification of non-symptomatic infections is a key compo-
nent of nosocomial IPC. Several studies have highlighted diffi-
culty controlling outbreaks when targeting only symptomatic
individuals for testing [21e28]. Limited impact of only testing
patients upon their admission has also been identified, sug-
gesting that more thorough screening methods are required to
limit SARS-CoV-2 introductions from the community, visitors,
HCWs or ancillary staff [24,27,29,30].

Many studies have evaluated the impact of routine testing of
non-symptomatic individuals. The most universal finding is that
more frequent testing leads to greater reductions in nosoco-
mial transmission [12,14,21,23,24,30e40]. Similarly, increasing
daily testing capacity has been found to limit nosocomial
transmission [27,41]. In the context of limited test availability
early in the pandemic, effective strategies identified for opti-
mizing nosocomial outbreak detection include pooling samples



D.R.M. Smith et al. / Journal of Hospital Infection 141 (2023) 132e141136
via group testing [27] and distributing tests over several
batches instead of using them all at once [42].

Modelling results are less consistent concerning which sub-
populations to target for routine non-symptomatic testing.
Many conclude that targeting HCWs is most effective
[12,25,32,43], while others suggest targeting facility patients
or residents [22,27,39]. Divergence owes to underlying mod-
elling assumptions on how patients and HCWs differ, regarding
their infectiousness, susceptibility to infection, contact
behaviour, and degree of interaction with visitors and other
individuals in the community. For instance, testing staff proved
more effective in a model of English care homes where the
main source of SARS-CoV-2 introductions was staff members
infected in the community [25]. Conversely, testing patients
was more effective in models of a French rehabilitation hos-
pital in which high rates of contact among ambulatory patients
translated to high rates of patient-to-patient transmission
[27,39]. In nursing homes, patient testing likely becomes
increasingly important when visitors or other interactions with
the community are permitted [33].

Lastly, in addition to testing frequency, studies have quanti-
fied the critical impact of the sensitivity and turnaround time of
the test being used [24,28,30,32,33,37,38,44e47]. Several
studies have identified that gains in turnaround time tend to
outweigh gains in test sensitivity, explainingwhy rapid diagnostic
tests (e.g.,Ag-RDT)maybemoreeffective than laboratory-based
tests (e.g., RT-PCR) for routine non-symptomatic testing
[23,25,32,39]. Conversely, if same-day test results are achiev-
able, or if individuals effectively isolate while awaiting test
results, more sensitive laboratory tests likely outperform rapid
tests [33,34,44].

Evaluating impacts of PPE
Several studies have found that, when available, PPE use is

highly effective for reducing infection risk among both HCWs
and patients. Although predicted reductions in infection risk
naturally depend on assumptions underlying PPE’s impact on
viral transmissibility, which vary considerably across studies
and for which data are sorely lacking, several studies suggest
that widespread PPE use remains a key SARS-CoV-2 prevention
strategy, even when conferring comparatively low levels of
protection [15,29,37,48e50]. By preventing infection, PPE use
has also been shown to reduce HCW workplace absence [37]
and workday loss [22]. Very few studies have tackled the
question of who should be given priority to PPE access when in
limited supply, although PPE has been shown to be particularly
effective when accessible to all HCWs [48].

Regarding different types of PPE that may be used, Hüttel
et al. [15] found hand sanitizer to be an effective means of
reducing risk as a supplement to other strategies. Regarding
timing, earlier introduction of PPE was found to allow a much
more efficient response [22] and to enable prevention of large
outbreaks [25]. However, further analyses suggest that the
level of protection PPE confers can be occasionally over-
whelmed in the context of large numbers of infected people in
a room [51]. Finally, waning PPE adherence due to pandemic
fatigue could significantly impact the efficacy of PPE-based
interventions [52].

Evaluating and optimizing healthcare organization
Many modelling studies have assessed the epidemiological

impacts of healthcare facilities adapting their structures of
care and workplace organization. Larger facilities have been
found to be at greater risk of nosocomial SARS-CoV-2 outbreaks
[43], and splitting facilities into smaller independent units has
been shown to reduce the total number of infected individuals
[36,48], except when transmissibility is high [53]. Forbidding
visitors was identified as not having a significant effect on
outbreak probability [25], except when infection prevalence
among visitors’ contacts in the community is higher than that of
HCW community contacts [54].

Models have highlighted that rapid isolation of positive cases
is an effective strategy for infection prevention [36,55,56].
Interestingly, models suggest that intermixing recovered indi-
viduals with potentially susceptible individuals could reduce
outbreak size [32], and that sufficient spacing between patient
beds is needed to limit transmission risk [36]. Results are less
consistent regarding isolation upon admission. Models have
highlighted the efficacy of isolating all newly admitted patients
for a given duration [29] or while awaiting test results [12].
Conversely, others report no additional benefit of front-door
screening or quarantine upon admission when other strat-
egies are already in place [43,55].

Regarding staff organization, models have demonstrated
benefits of cancelling HCW gatherings [57,58] and of forcing
shorter and fewer patienteHCW interactions [51,58], although
surprisingly this latter result was not confirmed by others [22].
Reducing between-ward staff sharing also seems to reduce
both the number of wards with infected individuals [55] and the
global reproduction number [37]. More complex staffing strat-
egies have also shown potential benefits, such as splitting staff
into two teams that do not interact [59,60], synchronizing
rather than staggering staff rotations [61], or immunity-based
staffing [32,35], e.g., assigning recovered staff to infected
patients [35]. Finally, admitting all COVID-19 patients to spe-
cialized quarantine hospitals in which HCWs continuously
resided for one-to two-week-long shifts did not necessarily
increase occupational HCW risk [62].

Evaluating vaccination strategies
All models exploring vaccination found that it could help

reduce COVID-19 morbidity and mortality, especially in LTCFs
[23,28,31,33,52,63e67]. However, some studies also noted
that vaccination benefits could be hindered by high levels of
community SARS-CoV-2 circulation [31,65] or by reduced
adherence to contact precautions within facilities concomitant
with vaccine rollout, for instance due to pandemic fatigue or
risk compensation [52].

A major focus of these models has been evaluation of which
groups of individuals to target or prioritize for vaccination in a
context of limited vaccine availability, yielding sometimes
inconsistent results. Some found that LTCF residents should
be prioritized over staff, especially in LTCFs with low adher-
ence to IPC measures [33,52]. Conversely, staff vaccination
was shown to be particularly effective for decreasing the
overall attack rate, especially in the absence of a testing
protocol [64]. Targeting staff for vaccination may also be
preferable when the risk of virus importation from the com-
munity is high [31]. Finally, it has been shown that vaccine
rollout should first target staff members most exposed to
potential COVID-19 patients (e.g., staff from emergency
departments) [63].

It should be noted that the conclusions reached by these
models depend strongly on modelling assumptions underlying
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vaccine action. Across models, assumed mechanisms related to
vaccination effectiveness included one or several of the fol-
lowing: a reduction in acquisition risk, a reduction in symptom
risk, and a reduction in the infectiousness of infected vacci-
nated individuals. For instance, it was shown that if a vaccine
only reduces symptom risk, then increasing vaccination among
nursing home staff leads to an increase in the proportion of
asymptomatic infections among staff, which subsequently
leads to increased infection risk for residents [23]. Addition-
ally, no model considered vaccine impact over the long term,
which is particularly relevant in the context of waning
immunity and the emergence of novel variants with vaccine-
escape properties.

Discussion

Mathematical models have become ubiquitous tools to help
understand the dynamics of infectious disease outbreaks and to
support public health decision-making. Here, we have
reviewed how models have helped to inform COVID-19 risk
management in healthcare settings, in particular by providing a
better understanding of nosocomial transmission dynamics and
control strategy effectiveness.

The generation of in silico evidence to inform infection
control strategies has been the leading motivation for noso-
comial SARS-CoV-2 transmission modelling. Although real-
world evidence collected during randomized controlled trials
is the gold standard, such data are extremely difficult to gen-
erate in the context of a rapidly evolving epidemic. Beyond the
obvious costs and time involved, great heterogeneity in pop-
ulation characteristics and exposure risk across different
healthcare settings means that a large number of centres must
be enrolled to achieve sufficient cluster randomization. Sev-
eral high-impact randomized controlled trials have none the
less been successfully conducted in healthcare settings despite
these challenges, in particular to evaluate COVID-19 vaccines,
therapies and pre- or post-exposure prophylactic agents
[68e71]. However, trials evaluating impacts of common IPC
interventions, including surveillance testing, PPE and health-
care reorganization, are scarce [72,73].

In this context, mathematical modelling approaches have
been particularly helpful to investigate critical IPC questions in
(near) real time, because they allow for the simulation of
diverse scenarios at relatively high speed and low cost, while
accounting for all available knowledge and uncertainty at a
given place and time. Model-based evaluations also allow for
levels of granularity in intervention arms that may be unfea-
sible in real trial designs. Our review highlights the range of
modelling studies published before the end of 2020, at a time
when the scientific and medical communities were in partic-
ularly great need of evidence to inform optimal allocation of
limited infection prevention resources, including reverse
transcription-polymerase chain reaction (RT-PCR) tests, face
masks and, later, vaccines.

However, two common means of SARS-CoV-2 transmission
prevention with important implications for the field have been
notably under-addressed. First, modelling studies on the rela-
tive impact of different types of face masks (e.g., surgical
masks, N95 respirators) are scarce [74], tied to a lack of precise
data on how they impact viral transmissibility, as well as
their potential indirect roles as transmission vectors. Second,
although ubiquitous in practice at various stages of the
pandemic, explicit social distancing interventions have rarely
been assessed [22,39]. This is probably because accurate mod-
elling of social distancing requires fine-scaled simulation of
inter-individual contact networks, typically using an agent-
based approach, which is beyond the scope of most models.
When faced with both epistemic uncertainty and a need for
relative computational simplicity, modellers may be reluctant to
include and formalize specific interventions that require arbi-
trary, highly sophisticated and/or potentially wrongheaded
assumptions about their mechanistic impacts on SARS-CoV-2
transmission. Instead, a common modelling strategy has been
to include generic non-pharmaceutical interventions that simply
reduce the viral transmission rate, and which are assumed to
represent any combination of basic infection prevention inter-
ventions, including face masks, gloves, gowns, face shields,
hand hygiene or social distancing.

Relative to the evaluation of infection control strategies,
modelling studies have more rarely focused on the estimation
of epidemiological parameters using statistical inference. In
particular, in the event of the sudden emergence of a novel
infectious disease, R0 estimation is essential for epidemic
forecasting and emergency response planning, and relies
largely on mathematical modelling approaches. Although
estimates of R0 quickly became available for SARS-CoV-2 across
various community settings in early 2020 [75], estimates spe-
cific to healthcare settings remain scarce. Yet there is a great
need for robust estimates across diverse settings, as underlying
levels of epidemic risk vary substantially across facilities due to
their intrinsic heterogeneity (e.g., types of care provided,
population sizes, contact behaviour of these populations). For
instance, assuming R0 ¼ 3.5 in the community, Temime et al.
[11] estimated that nosocomial R0 could range from 0.7 to 11.7,
depending on the type of ward and the density of contacts
among and between patients and HCWs. This heterogeneity in
nosocomial R0 is consistent with the range of estimates derived
from models described in this review [12,13], and has critical
implications, informing which facilities and populations are
most at risk for explosive outbreaks and thus most in need of
urgent infection control measures.

This lack of evidence probably stems from both data limi-
tations and remaining uncertainty about the relative impor-
tance of precise paths of transmission (e.g., through direct
person-to-person contact; transient viral carriage on hands,
garments or shared medical devices; stagnant air in poorly
ventilated spaces). In particular, early in the pandemic, noso-
comial COVID-19 data came primarily from contexts of emer-
gency outbreak management rather than routine data
collection through stable surveillance systems. For future
waves of SARS-CoV-2 and other infectious diseases, the esti-
mation of epidemiological parameters may be made easier by
harnessing large databases that systematically gather patient
and HCW test results, administrative data and healthcare
exposures across diverse healthcare facilities over time.

Researchers have faced significant challenges when devel-
oping SARS-CoV-2 transmission models. First, data limitations,
particularly early in the pandemic, forced many modellers to
make assumptions that oversimplify healthcare facility struc-
ture, population behaviour and SARS-CoV-2 transmission
dynamics, limiting the applicability of some results to real-
world settings. Second, the shifting epidemiological land-
scape e characterized not only by the rapid spread of SARS-
CoV-2, but also rapid change in population behaviours,
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sudden resource shortages, consecutive changes in public
health recommendations, rapid approval of novel diagnostics,
therapies and vaccines, and the successive emergence of dis-
tinct variants of concern e required researchers to continually
adapt their models in order to remain useful, with relevant
data required to parameterize these updates often lagging
behind.

Greater interdisciplinarity will be required to maximize the
utility of mathematical modelling in the future. More direct
lines of contact between modellers, hospital infection control
teams, clinicians and decision-makers should guide modellers
in their research. First, this may help to steer studies towards
the questions that are most clinically relevant, as informed by
the needs and issues faced in real clinical settings. Second, this
may help modellers to evaluate strategies that are feasible in
practice, considering logistical constraints such as workforce or
equipment availability and hospital structure. Third, these
discussions may inspire modellers to account for outcomes
beyond transmission risk and infection burden, such as cost-
effectiveness or mental health. Indeed, interventions such as
visitor restrictions or staff re-organization can have a great
impact on the social isolation of patients or workload of HCWs,
which is difficult to take into account explicitly in mathemat-
ical models. Cost-effectiveness is increasingly considered in
modelling studies; for instance, several studies have quantified
the health-economic efficiency of frequent non-symptomatic
testing [12,24,38,39,45]. However, more frequent estimation
of health-economic outcomes may increase their usefulness for
decision-makers, who must balance the competing priorities of
maximizing population health and minimizing monetary cost.
Finally, increased communication across disciplines may facil-
itate more timely sharing of modelling results to those whomay
benefit from them most, including infection control teams and
hospital administrators. The use of social media and the surge
in posting of articles on pre-print repositories during the
COVID-19 pandemic have helped to facilitate the timely sharing
of results, but there remains an onus on academic publishers to
ensure a timely peer review process such that modelling results
are shared quickly enough to maximize their impact.

This review has several limitations. First, we chose to
exclude all statistical, mathematical, or computational models
not including inter-individual SARS-CoV-2 transmission. Con-
sequently, other types of models such as physical or bio-
mechanical models of airborne transmission were excluded
[76e78]. Second, we excluded articles posted on public
archives such as arXiv, medrXiv or biorXiv [79], which are not
subject to peer review and can be difficult to track. Although
we did include some preprints in our review, we were unable to
systematically explore these archives. Third, we may have
missed articles published in journals not referenced in PubMed
(e.g., computer science or mathematical journals). However,
because our focus was on epidemiological insights and public
health recommendations, we do not believe that this sig-
nificantly impacted our main findings.

Often developed in the face of great epidemiological
uncertainty, mathematical models have come to form a rich
evidence base describing how SARS-CoV-2 spreads in health-
care settings and informing which nosocomial COVID-19 control
strategies are optimal, in particular with regard to healthcare
reorganization and the allocation of limited supplies of PPE,
diagnostic testing and vaccines. Into the future, epidemio-
logical models may continue to inform control strategies for
outbreaks of SARS-CoV-2 and other viral respiratory pathogens,
but increased collaboration should be sought between mod-
ellers, hospital infection control teams, clinicians, and public
health decision-makers to help maximize their utility.
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[31] Gómez Vázquez JP, Garcı́a YE, Schmidt AJ, Martı́nez-López B,
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