
HAL Id: hal-04223988
https://hal.science/hal-04223988

Submitted on 30 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spherical beampatterns with fractional orders
Thibaut Carpentier

To cite this version:
Thibaut Carpentier. Spherical beampatterns with fractional orders. Forum Acusticum, 10th Conven-
tion of the European Acoustics Association (EAA), Sep 2023, Torino, Italy. �hal-04223988�

https://hal.science/hal-04223988
https://hal.archives-ouvertes.fr


10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

SPHERICAL BEAMPATTERNS WITH FRACTIONAL ORDERS

Thibaut Carpentier
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ABSTRACT

Three-dimensional beampatterns can be flexibly and effi-
ciently designed in the spherical harmonics domain. This
has a number of useful applications such as beamforming
the signals received by spherical microphone arrays, or
controlling radiating sound beams produced by compact
spherical loudspeaker arrays. However, with the existing
design methods, the beampattern orders are restricted to
integer numbers. In this paper, we present an approach to
the design of axis-symmetric spherical beampatterns with
fractional orders. This is typically useful in audio appli-
cations where smooth user control is desirable.
First, we derive an analytical expression of the fractional-
order beamforming weights, so that the beampattern
matches a design objective such as a target directiv-
ity index. Then, we present an example of spherical
hyper-cardioid pattern (for which the analytical solution
is particularly concise) which effectively achieves contin-
uously adjustable directivity index. Our results are in line
with a similar study previously published by Huang et
al. (2018), yet our approach is both simpler and more
generic. As another novel contribution, we extend the
method to fractional-order cardioid, super-cardioid, and
max-rE beampatterns.

Keywords: spherical beamforming, directivity index, mi-
crophone arrays, maximum front-back ratio.

1. INTRODUCTION

Three-dimensional beampatterns can be conveniently ex-
pressed in the spherical harmonics domain, with typical
applications in the design of beamforming algorithms for
differential microphone arrays [1–4]. Given the hierarchi-
cal structure of the spherical harmonic functions, the pro-
duced directivity pattern depends on an integer order N ,
and its shape follows a N -th order trigonometric poly-
nomial in the angle of incidence. The coefficients of

this polynomial have to be determined according to some
(physically meaningful) objective criterion, such as di-
rectivity factor or front-back ratio; this has been exten-
sively studied in the literature [1–8]. Beamformers with
high order N can achieve a high directivity factor, how-
ever at the expense of robustness issues (higher sensibil-
ity to noise and uncertainties). There is therefore a need
for highly flexible design strategies. One generalized de-
sign framework was proposed [9, 10] in order to generate
beampatterns with a combination of criteria (a front-back
energy ratio and a smoothness term). Alternatively, beam-
formers with fractional order have been recently intro-
duced [11,12], in the context of beamforming with differ-
ential microphone arrays, typically to offer an improved
trade-off between directivity factor and white noise gain
criteria. More generally, fractional order designs can of-
fer a user-friendly way to continuously transition between
the omnidirectional pattern and the pattern corresponding
to the maximum order N . This has potential applications
in audio applications where smooth variation of the beam-
pattern characteristics is desired, for instance for artistic
control of radiation synthesis with spherical loudspeaker
arrays [13]. In this article, we extend an approach, pre-
viously proposed for 3D hyper-cardioid patterns [11] and
for planar beamformers [12], that consists in interpolating
between patterns of orders N and N − 1. We show how
to determine analytically the proper fractional order for a
given target beampattern. We examine several canonical
beampatterns, such as hyper-cardioid, super-cardioid, and
so-called in-phase and max-rE .

2. DESIGN OF BEAMPATTERNS WITH
FRACTIONAL ORDERS

Axis-symmetric spherical beampatterns can be efficiently
represented in the spherical harmonics domain [1, 3, 4]:
the (frequency-independent) beampattern, with finite or-
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der N , writes (Eqn. 5.24 in [4])

YN (Θ) =

N∑
n=0

dN,n
2n+ 1

4π
Pn (cosΘ) , (1)

where Θ is the angle between the observed and steered
directions, and Pn (·) is the Legendre polynomial of
order n. The array weighting factors dN,n are real coeffi-
cients which determine the shape of the directivity pattern.

We wish to design a beampattern generalized for
arbitrary order ν ∈ R, i.e. not restricted to discrete
orders n ∈ N. Our aim is to derive the weights dν,n for
the fractional-order beampattern Yν (Θ). We propose
a simple model where, for (N − 1) ≤ ν ≤ N , we
interpolate between patterns of orders (N − 1) and N

Yν = αYN + (1− α)YN−1 , (2)

where 0 ≤ α ≤ 1 denotes the interpolation factor or “tun-
ing parameter”. This leads to the following weights

dν,n =

{
αdN,n + (1− α) dN−1,n if 0 ≤ n < N

αdN,n if n = N .
(3)

The aim of this work is to determine the appropriate value
of α, as a function of the desired fractional order ν. In
order to uniquely estimate α, a given constraint criterion
will be further imposed.

3. FRACTIONAL-ORDER BEAMPATTERNS
WITH A SPECIFIED DIRECTIVITY INDEX

3.1 Directivity index

The directivity factor quantifies the ratio between the mag-
nitude of the beam pattern in the look direction and the
magnitude averaged over all directions. For the axis-
symmetric beampattern in Eqn. (1), the directivity factor
writes (see Eqn. 5.30 in [4])

DFN =

∣∣∣∑N
n=0 dN,n

2n+1
4π

∣∣∣2
1
4π

∑N
n=0 |dN,n|2 2n+1

4π

,

and the directivity index is defined such as

DIN = 10 log10 DFN .

3.2 Derivation of the fractional order

In this section, we express the directivity factor of the
fractional-order beampattern DFν as a function of α. To

do so, we introduce two helper variables χν and ψν such
that DFν = |χν |2/ψν with{

χν =
∑N
n=0 dν,n

2n+1
4π ,

ψν = 1
4π

∑N
n=0 |dN,n|

2 2n+1
4π .

Let’s further expand these two helper variables, starting
with χν

χν =

N∑
n=0

dν,n
2n+ 1

4π
=

N−1∑
n=0

dν,n
2n+ 1

4π
+dν,N

2N + 1

4π
,

which, after inserting Eqn. (3), reduces to

χν = αχN + (1− α)χN−1 .

It follows that |χν |2 is a second order polynomial in α

|χν |2 = α2 χ2
N + (1− α)2 χ2

N−1 + 2α (1− α)χN χN−1

= α2R + αS + T ,

with 
R = χ2

N + χ2
N−1 − 2χN χN−1 ,

S = 2
(
χN χN−1 − χ2

N−1

)
,

T = χ2
N−1 .

The variables R, S, and T obviously depend on N , but
the subscript index is omitted for the sake of notational
simplicity.
Following a similar strategy with the helper variable ψν

ψν =
1

4π

N−1∑
n=0

|dN,n|2
2n+ 1

4π
+

1

4π
|dN,N |2 2N + 1

4π

= α2 ψN + (1− α)2 ψN−1 + α (1− α) ξN ,

with

ξN =
1

4π

N−1∑
n=0

2 dN,n dN−1,n
2n+ 1

4π
.

Again, ψν appears as a second order polynomial in α

ψν = α2 U + αV +W ,

where

U = ψN+ψN−1−ξN , V = ξN−2ψN−1 , W = ψN−1 .

We can now write the directivity factor as a function of α

DFν =
|χν |2

ψν
=

α2R+ αS + T

α2 U + αV +W
. (4)
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This second order equation is trivially solved with

α =
−B ±

√
B2 − 4AC

2A
,

where we noted

A = DFν U−R , B = DFν V−S , C = DFν W−T .

Assuming that the weights dN,n are known, and the di-
rectivity factor DFν is imposed to a (valid) value, we
can evaluate all the helper variables and analytically deter-
mine α, keeping only the solution that satisfies 0 ≤ α ≤ 1.
Observing Eqn. (4), it is trivial to verify that the boundary
conditions are consistent with the discrete-order caseα = 0 =⇒ DFν = T

W =
χ2
N−1

ψN−1
= DFN−1 ,

α = 1 =⇒ DFν = R+S+T
U+V+W =

χ2
N

ψN
= DFN .

4. HYPER-CARDIOID PATTERN

4.1 Discrete-order hyper-cardioid pattern

The maximum directivity factor is achieved by a beampat-
tern referred to as hyper-cardioid [1, 3, 4, 7], and given by
the weights (Eqn. 6.10 in [4])

∀n ≤ N, dN,n =
4π

(N + 1)2
. (5)

It is easy to show that the corresponding directivity factor
obeys (Eqn. 6.11 in [4])

DFN = (N + 1)2 . (6)

The resulting directivity index DIN is presented in Fig. 1
for N ≤ 10.

4.2 Fractional-order hyper-cardioid pattern

Generalizing Eqn. (6) for the fractional-order beampattern
we impose the following constraint on the directivity fac-
tor (see solid curve in Fig. 1)

DFν = (ν + 1)2 . (7)

Substituting Eqn. (5) and Eqn. (7) into the expressions
from the previous section, we can straightforwardly eval-
uate all the necessary helper variables

χN = χN−1 = 1 , ψN =
1

(N + 1)2
, ξN =

2

(N + 1)2

W = ψN−1 =
1

N2
, U =

1

N2
− 1

(N + 1)2

R = S = 0 , T = 1 , V = −2U ,

Figure 1: Directivity index of the hyper-cardioid
beampattern. Circle markers denote integer orders
n; solid curve is for fractional-order ν.

and we derive the following analytic expression for α

α = 1− N

ν + 1

√
(N − ν) (N + ν + 2)

2N + 1
.

This is similar to the result obtained in [11], although with
slight differences in notations. The resulting beampattern
Yν (Θ) is presented in Fig. 2 for various values of ν.

5. SUPER-CARDIOID PATTERN

5.1 Discrete-order super-cardioid pattern

While hyper-cardioid patterns maximize the directivity
factor, super-cardioid patterns are designed so as to max-
imize the ratio between the front and back parts of the
beam pattern [2, 4]. For a N -th order beampattern,
the measure for the front-back ratio can be written as
(Eqn. 6.52 in [4])

FN =
dHN A dN
dHN B dN

,

where dN =
[
dN,0, dN,1, . . . dN,N

]T
is the vector of

beampattern weights, and A and B are real, symmetric
and positive definite matrices whose elements are related
to the coefficients of the Legendre polynomials, and ana-
lytically available in equations (6.50) and (6.53) in [4].

5.2 Fractional-order super-cardioid pattern

The front-back ratio FN is displayed in Fig. 3 for various
values of N . As this does not seem to follow a simple
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Figure 2: Fractional-order hyper-cardioid beampattern (the radial scale is logarithmic, with 6 dB/division).

closed-form expression, we chose to approximate it with
the following polynomial fit (see solid curve in Fig. 3)

10 log10 Fν ≈ −0.0215 ν3 + 0.473 ν2 + 11.412 ν ,

where Fν denotes the fractional-order front-back ratio

Fν =
dHν A dν
dHν B dν

=
FNUM
ν

FDEN
ν

,

that we try to express as a function of α. Let’s first develop
the product A dν , given by

∀n′ ∈
[
0 , N

]
,
[
Adν

]
n′ =

N∑
n=0

dν,nAn,n′ .

Splitting the sum from 0 to N as

[
Adν

]
n′ =

N−1∑
n=0

dν,nAn,n′ + dν,N AN,n′ ,

Figure 3: Front-back ratio of the super-cardioid
beampattern. Circle markers denote integer orders n;
solid curve is for fractional-order ν.
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it follows that[
Adν

]
n′ = α

N∑
n=0

dN,nAn,n′+(1−α)
N−1∑
n=0

dN−1,nAn,n′ .

Introducing this result into FNUM
ν , it becomes

FNUM
ν =

N∑
n′=0

dν,n′
[
Adν

]
n′

= α

N∑
n′=0

dN,n′
[
Adν

]
n′

+ (1− α)

N−1∑
n′=0

dN−1,n′
[
Adν

]
n′ ,

and after some basic developments, we show that

FNUM
ν = α2 (D1− 2D2+D3) + 2α (D2−D3) +D3 ,

with
D1 =

∑N
n=0

∑N
n′=0 dN,n dN,n′ An,n′ ,

D2 =
∑N−1
n=0

∑N
n′=0 dN−1,n dN,n′ An,n′ ,

D3 =
∑N−1
n=0

∑N−1
n′=0 dN−1,n dN−1,n′ An,n′ .

And similarly for the denominator

FDEN
ν = α2 (E1− 2E2 + E3) + 2α (E2− E3) + E3 ,

with
E1 =

∑N
n=0

∑N
n′=0 dN,n dN,n′ Bn,n′ ,

E2 =
∑N−1
n=0

∑N
n′=0 dN−1,n dN,n′ Bn,n′ ,

E3 =
∑N−1
n=0

∑N−1
n′=0 dN−1,n dN−1,n′ Bn,n′ .

Finally, this leads to the following rational function

Fν =
α2 (D1− 2D2 +D3) + α (2D2− 2D3) +D3

α2 (E1− 2E2 + E3) + α (2E2− 2E3) + E3
.

Again, this is a second order equation in α that is easily
solved, and only the solution satisfying 0 ≤ α ≤ 1 is
retained. The analytical solution for α is not reproduced
here for brevity, but the resulting beampattern Yν (Θ) is
presented in Fig. 4.

6. CARDIOID PATTERN

6.1 Discrete-order cardioid pattern

Cardioid patterns (also referred to as in-phase) are de-
signed so as to suppress the signal in the opposite direction
(Θ = ±180◦), while exhibiting a maximally flat response

in that direction. The cardioid pattern weights are given
by (Eqn. 3.91 in [14])

∀n ≤ N, dN,n = 4π
(N !)2

(N + n+ 1)! (N − n)!
,

and the corresponding beampattern response is written

YN (Θ) =

(
1 + cosΘ

2

)N
.

6.2 Fractional-order cardioid pattern

Recalling the interpolation equation Eqn. (2), ∀ν ∈ R ∩[
(N−1) , N

]
, Yν (Θ) = αYN (Θ)+(1−α)YN−1 (Θ) ,

it is trivial to see that

α =
Yν (Θ)− YN−1 (Θ)

YN (Θ)− YN−1 (Θ)
.

This relation should hold for any angle Θ. Considering for
instance Θ = π

2 , we straightforwardly find the solution

α = 2− 2N−ν .

Again, one can verify that such solution satisfies the
boundary conditions{

α = 0 ⇔ ν = N − 1 ,

α = 1 ⇔ ν = N .

The resulting beampattern Yν (Θ) is presented in Fig. 5
for various values of ν.

These results can further be extended to a more
general family of “cardioid-like” patterns in the form

YN (Θ) = (β + (1− β) cosΘ)
N
,

provided that β ∈
[
1
2 , 1

[
. This particular case is examined

in [13], and yields the following solution

α =
βν−N+1 − 1

β − 1
.

7. MAX-RE PATTERN

7.1 Discrete-order max-rE pattern

The max-rE beampattern is designed to optimize the norm
of the energy vector [14, 15]. Its properties are somewhat
similar to super-cardioids. The beampattern weights are
expressed by (Eqn. 3.89 in [14])

∀n ≤ N, dN,n = Pn (rE(N)) ,
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Figure 4: Fractional-order super-cardioid beampattern (the radial scale is logarithmic, with 6 dB/division).

where rE(N) is the largest root of PN+1 (·). According
to Eqn. 10 in [15] , this can be approximated by

rE(N) ≈ cos

(
137.9◦

N + 1.52

)
,

as displayed in Fig. 6.

7.2 Fractional-order max-rE pattern

Weights for the fractional-order max-rE beampattern are
trivially generalized to ∀ν ∈ R ∩

[
(N − 1) , N

]
∀n ≤ N, dν,n ≈ Pn

(
cos

(
137.9◦

ν + 1.52

))
,

and the resulting polar response is displayed in Fig. 7.

8. CONCLUSION

In this article, we have derived simple analytic expres-
sions for the design of spherical beampatterns with frac-

tional orders. We have examined the most traditional
beam shapes: hyper-cardioid, super-cardioid, cardioid,
and max-rE . In future work, we may extend the results
to other design objectives, such as the Dolph-Chebyshev
beampattern with constrained side lobe attenuation.
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