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Abstract

The well-known 1-2-3 Conjecture asks whether almost all graphs can have their edges
labelled with 1,2,3 so that any two adjacent vertices are distinguished w.r.t. the sums of
their incident labels. This conjecture has attracted increasing attention over the last years,
with many of its aspects of interest being investigated by several authors. Quite recently,
in early 2023, a full solution to the 1-2-3 Conjecture was proposed by Keusch.

Among other aspects of interest, several works introduced and studied ways of gener-
alising such distinguishing labellings and the 1-2-3 Conjecture to structures more general
than graphs, such as digraphs and hypergraphs. In the current work, we introduce two
new variants for 2-edge-coloured graphs (having negative and positive edges), in which,
through labellings, pairs of adjacent vertices are considered distinguished if and only if the
differences between their incident positive and negative sums are different. The difference
between the two variants we introduce is that, in one of them, this distinction must be met
even when considering the absolute value of these differences.

We investigate how these two variants connect, and how they relate to the original
problem. For each of the two variants, we also establish upper bounds on the minimum
number of consecutive labels that suffice to design a distinguishing labelling of almost any
2-edge-coloured graph. This leads us to raise some conjectures on this minimum, which, as
support, we prove for some families of 2-edge-coloured graphs. We also investigate weaker
versions of these conjectures, where one can choose the polarity of the edges.

Keywords: Proper labelling; 1-2-3 Conjecture; 2-edge-coloured graph; signed graph.

1. Introduction

In this work, we introduce and study generalisations of proper labellings and the
so-called 1-2-3 Conjecture to 2-edge-coloured graphs. Before entering further into
the details, let us thus start by recalling what some of these notions are about.

Let G be a graph1. A k-labelling ℓ of G is an assignment ℓ ∶ E(G) → {1, . . . , k} of
labels (from {1, . . . , k}) to the edges of G. For every vertex v of G, we then compute the
sum of labels assigned by ℓ to the edges incident to v, denoted by σ(v). In case we have
σ(u) ≠ σ(v) for every edge uv ∈ E(G), or, in other words, the resulting sums form a proper
vertex-colouring of G, we say ℓ is proper. If G admits proper labellings, then G is said
nice, in which case we are interested in determining χΣ(G), being the smallest k ≥ 1 such
that proper k-labellings of G exist. It is known, see e.g. [17], that G is nice if and only if
G does not contain K2, the complete graph on two vertices, as a connected component.

1Throughout this work, the term graph refers to a simple undirected graph.



These notions were first considered by Karoński, Łuczak, and Thomason [17], who
raised the following conjecture, known as the 1-2-3 Conjecture nowadays:

1-2-3 Conjecture. If G is a nice graph, then χΣ(G) ≤ 3.

Let us mention right away that a full solution to the 1-2-3 Conjecture was recently
proposed by Keusch in [18]. Prior to that, the 1-2-3 Conjecture had attracted the attention
of many researchers, resulting in several interesting results. For long, the best result we
had was that χΣ(G) ≤ 5 holds for every nice graph G, due to a clever algorithm introduced
in [15] by Kalkowski, Karoński, and Pfender. It is known that one cannot do better
than the 1-2-3 Conjecture in general, as there exist graphs G with χΣ(G) = 3. Actually,
determining whether χΣ(G) ≤ 2 holds for a given graph G is NP-complete [13]. The same
problem for bipartite graphs, however, can be solved in polynomial time, as proved by
Thomassen, Wu, and Zhang [20], which, for some time, was another main open problem
in this area. Quite a lot of other works have also been dedicated to variants of the 1-2-3
Conjecture. For instance, an early evidence that the 1-2-3 Conjecture might be true was its
confirmation when adjacent vertices are required to be distinguished w.r.t. their multisets
of incident labels [21] or their products of incident labels [7]. Proper labellings and the
1-2-3 Conjecture have also been generalised to structures more general than graphs. For
instance, several generalisations to digraphs have been considered in [2, 4, 6, 10, 14], while
a generalisation to hypergraphs was introduced in [16].

In the current work, we introduce generalisations of proper labellings and the 1-2-3
Conjecture to graphs in which edges are polarised, i.e., are either negative or positive. In
literature, such graphs are sometimes called 2-edge-coloured graphs, since their edges can
be regarded as being coloured with two colours. In our context, due to our upcoming
definitions and notions, for simplicity we prefer to refer to such graphs as signed graphs2.
Formally, given a graph G, by making each of its edges either negative or positive, we get
a signature H of G. For convenience, every parameter of G we would use is used the same
way in H: in particular, the notations V (H), E(H), ∆(H), and so on, have the same
meaning as the corresponding notations directly in G.

Let us now consider a signed graph G. By any labelling ℓ of G, note that every vertex
v can here be associated two sums, σ−(v) and σ+(v), which are the sum of labels assigned
to the negative edges incident to v and the sum of labels assigned to the positive edges
incident to v, respectively. From here, there are thus several options for considering that
any two adjacent vertices are distinguished by ℓ. In this work, we consider that ℓ is proper
as long as σ(u) ≠ σ(v) for every edge uv ∈ E(G), where, for a vertex w of G, we set
σ(w) = σ+(w) − σ−(w). In our opinion, this way of doing makes the most sense, as it
corresponds to taking into account incident sums in full, in the sense that negative edges
contribute negatively to sums while positive edges contribute positively. It can also be
observed easily that these definitions generalise those in graphs (see later Observation 2.3).
To finish off with the definitions, we say G is nice if it does not contain a signature of K2

as a connected component, and, in case G is nice, we define χΣ(G) as the smallest k ≥ 1
such that proper k-labellings of G exist.

As we will point out later on, it turns out that several results and proof techniques on
proper labellings from literature adapt quite naturally from graphs to signed graphs (as
defined above), and it is not obvious how to improve further on these. In part for these

2Be aware that, in literature, signed graphs often come up with a particular switching operation, allowing
to change the polarity of edges. In the current work, we do not allow to use that operation.
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Figure 1: Two signed graphs G1 (a) and G2 (b). Note that, in G1, assigning label 1 to all edges results in a
proper labelling but not in an abs-proper labelling (because of the two vertices incident to the middle edge).
Meanwhile, the depicted 2-labelling of G1 is abs-proper. Thus, 1 = χΣ(G1) < χ∣Σ∣(G1) = 2. Regarding G2,
it can be noted that assigning label 1 to all edges does not result in a proper labelling (because of the
left-most and right-most vertices being adjacent). Meanwhile, the depicted 2-labelling of G2 is abs-proper.
Thus, χΣ(G2) = χ∣Σ∣(G2) = 2. In each picture, positive and negative edges are represented as red and blue
edges. In each vertex is indicated the resulting absolute sum by the depicted labelling.

reasons, we will also investigate the following slightly different notions, which, as will be
pointed out, also encapsulate the unsigned ones. For a signed graph G and a labelling ℓ of
G, we say that ℓ is abs-proper if ∣σ(u)∣ ≠ ∣σ(v)∣ for every edge uv ∈ E(G), and, assuming
G is nice, we denote by χ∣Σ∣(G) the smallest k ≥ 1 such that abs-proper k-labellings of G
exist. All these notions and previous ones are illustrated in Figure 1.

This work is organised as follows. We start off, in Section 2, by raising general remarks
on all aforementioned new notions. In particular, we make more explicit the connections
and discrepancies between the two new variants we introduce, and with the original one
in graphs. In Section 3, we establish constant upper bounds on the parameters χΣ(G)
and χ∣Σ∣(G) for nice signed graphs G, which lead us to raise, in Section 4, some conjecture
on the maximum value they can reach, which conjecture we prove for some families of
signed graphs. In Section 5, we investigate the effects, regarding this conjecture, of being
allowed to choose the signature of a signed graph. We finish off in Section 6 by raising
open questions and problems for further work on this topic.

2. Early remarks, and connections between the variants

As usual when dealing with a new distinguishing labelling notion, it is important to
clarify out which are the graphs we are dealing with. In the present case, it is important
to identify which are those signed graphs G such that χΣ(G) and χ∣Σ∣(G) are properly
defined. Recall that, earlier on, we have introduced a notion of niceness for signed graphs;
we claim it is sufficient for both parameters.

Theorem 2.1. A signed graph G admits (abs-)proper labellings if and only if G is nice.

Proof. If G contains a signature of K2 as a connected component, then clearly G admits no
proper labellings. Assume now G is nice, i.e., does not contain such connected components.
We design an abs-proper labelling ℓ of G as follows. Set E(G) = {e1, . . . , em}. Now, for
every i ∈ {1, . . . ,m}, set ℓ(ei) = 2m+i+1 if ei is positive, and ℓ(ei) = 2i otherwise. As a
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result, note that, for every vertex v of G, we have ∣σ−(v)∣ < 2m+1, while, if v is incident to
a positive edge, then ∣σ+(v)∣ ≥ 2m+2. Now, for every two adjacent vertices u and v of G:

• If u is incident to a positive edge but v is not, then

∣σ(u)∣ = ∣σ+(u) − σ−(u)∣ > 2m+1 > ∣σ−(v)∣ = ∣σ(v)∣,

and thus u and v are not in conflict (i.e., u and v do not have the same absolute sums,
in the current case). Obviously we can derive a similar argument if v is incident to
a positive edge while u is not.

• If none of u and v is incident to a positive edge, then ∣σ(u)∣ = ∣σ−(u)∣ and ∣σ(v)∣ =
∣σ−(v)∣. Here, so that ∣σ(u)∣ = ∣σ(v)∣ it must be that the base-2 representation of
∣σ(u)∣ is the same as that of ∣σ(v)∣, which occurs, due to how labels have been as-
signed, when u and v are incident to the same edges. So we would here conclude that
u and v are part of a connected component being a signature of K2, a contradiction.

• If both u and v are incident to a positive edge, then either ∣σ+(u)∣ = ∣σ+(v)∣, in
which case, if there is a conflict between u and v, then we would have that u and
v are again incident to the same edges, which is impossible; or ∣σ+(u)∣ ≠ ∣σ+(v)∣,
in which case we have ∣σ+(u) − σ+(v)∣ ≥ 2m+2 and ∣σ−(u) − σ−(v)∣ < 2m+1, implying
(σ+(u) − σ+(v)) + (σ−(v) − σ−(u)) ≠ 0, and thus ∣σ(u)∣ ≠ ∣σ(v)∣.

This concludes the proof.

The next observation establishes formally that, out of the two labelling problems we
are introducing, the one involving absolute sums should be the hardest.

Observation 2.2. If G is a nice signed graph, then χΣ(G) ≤ χ∣Σ∣(G).

Proof. This is simply because if, by a labelling of some signed graph, we have ∣σ(u)∣ ≠ ∣σ(v)∣
for an edge uv, then we also have σ(u) ≠ σ(v).

We now establish that the two new problems we are considering are indeed generalisa-
tions of the original problem in graphs. Indeed, the following is a good evidence.

Observation 2.3. Let G be a nice graph. If H is any signature of G with all edges having
the same polarity, then χΣ(H) = χ∣Σ∣(H) = χΣ(G).

Proof. This is because if we consider any proper labelling ℓ of G directly in H, then, for
every vertex v, we have that σ(v) is the same in both G and H, and vice versa. Also, since
all edges of H have the same polarity, we also have σ(v) = ∣σ(v)∣. Then ℓ is abs-proper in
H.

Observation 2.3 has implications. For instance, it is known that deciding whether
χΣ(G) ≤ 2 holds for a given graph G is NP-complete [13], and this implies the following:

Corollary 2.4. Deciding whether χΣ(G) ≤ 2 (or similarly whether χ∣Σ∣(G) ≤ 2) holds for
a given signed graph G is an NP-complete problem.

A notable implication of Corollary 2.4 is that there exist signed graphs G satisfying
χΣ(G), χ∣Σ∣(G) ≥ 3. More generally speaking, Observation 2.3 will also appear useful later
on in this work, when discussing “bad” signed graphs w.r.t. our problems.
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For a signed graph G and a vertex v of G, we denote by d−(v) the negative degree of
v, being the number of negative edges incident to v, and by d+(v) the positive degree of v,
being the number of positive edges incident to v. The polarised degree d±(v) of v is then the
difference d+(v)−d−(v). Now, we say that G is locally irregular if no two adjacent vertices
of G have the same polarised degree, i.e., d±(u) ≠ d±(v) for every uv ∈ E(G). Likewise, we
say G is locally abs-irregular if ∣d±(u)∣ ≠ ∣d±(v)∣ for every uv ∈ E(G). As an example, note
that the signed graph in Figure 1 (a) is locally irregular but not locally abs-irregular.

We remark that these notions generalise the notion of locally irregular graphs; then, in
our context, we derive similar consequences as in the unsigned setting (see e.g. [3]):

Observation 2.5. For a signed graph G, we have χ∣Σ∣(G) = 1 if and only if G is locally
abs-irregular. Likewise, we have χΣ(G) = 1 if and only if G is locally irregular.

Proof. This follows directly from the fact that, when assigning label 1 to all edges of G,
we get σ−(v) = d−(v) and σ+(v) = d+(v) for every vertex v.

From Observation 2.5, we get that there are infinitely many signed graphs G with
χΣ(G) = 1 and even χ∣Σ∣(G) = 1. Obviously, due to Observation 2.3, actually when a
locally irregular graph is signed so that all its edges have the same polarity, then we get
a locally abs-irregular signed graph. But it is also possible to design locally irregular and
locally abs-irregular signed graphs having both positive and negative edges. For instance,
to design such signed graphs a useful idea is to attach pendant vertices carefully to make
the negative and positive degrees rise. In particular, if uv is e.g. a positive edge of some
signed graph where u has d±(u) = 1, then we cannot have d±(u) = d±(v) provided, omitting
uv, the number of negative edges incident to v is not the same as the number of positive
edges incident to v. A same remark can be raised when considering absolute polarised
degrees. Refer e.g. to Figure 1 (a) for an example that can be generalised easily.

This being said, turning a graph into a locally irregular or locally abs-irregular signed
graph is not easy in general. As will be exposed in later Section 5, this is actually an
NP-complete problem. Another way to state this is that, given a graph G, it is not easy
(unless P = NP) to say whether G is the support of an irregular signed graph.

Let us now add a few words regarding the possible discrepancies between the two signed
graph parameters χΣ and χ∣Σ∣. First off, it is easy to generalise the signed graph in Figure 1
(a) to infinitely many examples showing the next result is true:

Observation 2.6. There exist arbitrarily large connected signed graphs G that satisfy
χΣ(G) = 1 < 2 = χ∣Σ∣(G).

One might argue that Observation 2.6 depicts a very peculiar situation, which, by itself,
does not provide a good indication on how the two parameters χΣ and χ∣Σ∣ can differ in
general. As a better argument, we prove the following:

Theorem 2.7. There exist arbitrarily large connected signed graphs G that satisfy χΣ(G) =
2 < 3 ≤ χ∣Σ∣(G).

Proof. Consider the following construction (which generalises easily to arbitrarily large
signed graphs). We use a graph construction from [8] (denoted A′ there), which provides
a connected graph H with the following properties (see Claims 1 and 2 in [8]):

• H has arbitrarily many pendant edges u1v1, . . . , ukvk, where the ui’s have degree 1
and the vi’s are pairwise distinct;
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Figure 2: Illustration of the construction in the proof of Theorem 2.7, given together with a partial proper
2-labelling. Positive and negative edges are represented as red and blue edges.

• H is not locally irregular;

• there exist proper 2-labellings ℓ of H, and they all satisfy:

– ℓ(uivi) = 1 for every i ∈ {1, . . . , k};
– σ(vi) = 3 for every i ∈ {1, . . . , k}.

The construction, illustrated in Figure 2, now goes as follows. Start from two copies H−

and H+ of the graph H above, where H− has at least one pendant edge uv (where d(u) = 1),
H+ has at least three pendant edges x1y1, x2y2, x3y3 (where the xi’s have degree 1), and all
edges of H− are negative while all edges of H+ are positive. Now identify all of x1, x2, x3
to a single vertex x, and add the negative edge ux. The resulting signed graph is G.

We claim that χΣ(G) = 2 but χ∣Σ∣(G) > 2. Note first that since G contains copies (H−

and H+) of H with all edges having the same polarity, then G cannot be locally irregular
(and thus G cannot be locally abs-irregular as well). For the same reason, note that any
proper and abs-proper 2-labelling ℓ of G must satisfy that ℓ(uv) = 1 and ℓ(xy1) = ℓ(xy2) =
ℓ(xy3) = 1. Also we must have σ(v) = −3 (and thus ∣σ(v)∣ = 3), and σ(y1) = σ(y2) = σ(y3) =
3. Now, so that σ(u) ≠ σ(v), it must be that ℓ(ux) = 1, which yields σ(u) = −2 (and thus
∣σ(u)∣ = 2) and σ(x) = 2. In particular, note that x cannot be in conflict with y1, y2, y3.
When considering sums, note that we have totally identified what ℓ looks like, and there
is no conflict contradicting it is proper. Meanwhile, note that we get ∣σ(u)∣ = 2 = ∣σ(x)∣,
and thus ℓ cannot be abs-proper. Thus, we have χΣ(G) = 2 but χ∣Σ∣(G) > 2.

Previous Observation 2.6 and Theorem 2.7, in our opinion, expose that, although they
are very close in spirit, the sum version and the absolute sum version of our problem are
actually a bit distant, the latter one being more difficult than the former. Also, we believe
this justifies to consider both versions, and not just the strongest one.

Regarding Observation 2.3, we would like to note also that signing the edges of a graph
can sometimes make the number of needed labels rise. While this follows from earlier
results on locally irregular (signed) graphs we have provided, in the next result we prove
it is also true in very simple structures such as trees.

Theorem 2.8. There are arbitrarily large trees T with a signature H such that 2 = χΣ(T ) <
χ∣Σ∣(H).
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Proof. Recall that for every nice tree T , we have χΣ(T ) ≤ 2 (see e.g. [12]). So it mainly
suffices to show that there exist signed trees H with χ∣Σ∣(H) > 2, where H is a signature
of a tree that is not locally irregular. To prove that arbitrarily large such H exist, and
get the claim, we mostly combine two main notions. In a signed graph G, we say a
pendant negative edge uv (where d(u) = 1) is α-forced if, in every abs-proper 2-labelling
ℓ of G omitting the possible conflict between u and v, we have ∣σ(v)∣ = 3 if ℓ(uv) = 1,
and ∣σ(v)∣ = 0 if ℓ(uv) = 2. Likewise, a pendant positive edge uv (where d(u) = 1) is said
β-forced if, in every abs-proper 2-labelling ℓ of G omitting the possible conflict between u
and v, we have ∣σ(v)∣ = 1 if ℓ(uv) = 1, and ∣σ(v)∣ = 2 if ℓ(uv) = 2. In the next three claims,
we show how to take advantage of α-forced and β-forced edges to create larger trees with
α-forced and β-forced edges, and signed trees with no abs-proper 2-labellings.

Claim 2.9. Let G be a signed tree with an α-forced or β-forced edge uv. Then, when
considering two copies G1 and G2 of G and merging the two copies of the edge uv (that is,
identifying the copy of u in G1 and the copy of v in G2, and vice versa), we get a signed
tree H with no abs-proper 2-labellings.

Proof of the claim. This is because, by the properties of G, in every abs-proper 2-labelling
ℓ of H, denoting by xy the merged edge we must have ∣σ(x)∣ = ∣σ(y)∣ = 3 if ℓ(xy) = 1, and
∣σ(x)∣ = ∣σ(y)∣ = 0 otherwise, assuming the original edge is α-forced. Either way, we have a
conflict between x and y. A same conclusion is reached if the original edge is β-forced. ◇

Claim 2.10. Let G be a signed tree with an α-forced edge uv, where d(u) = 1. Then, in
the signed tree H obtained from G by adding two pendant positive edges ux and uy incident
to u, the edge uy is β-forced.

Proof of the claim. Consider an abs-proper 2-labelling ℓ of H where the possible conflict
between u and y might be omitted.

• If ℓ(uv) = 1, then, by definition, we have ∣σ(v)∣ = 3. Now, so that we do not have a
conflict between u and x, we must have ℓ(uy) = 2, and, in turn, so that u and v are
not in conflict we must have ℓ(ux) = 1. As a result, we get ∣σ(u)∣ = 2 and ∣σ(x)∣ = 1.

• If ℓ(uv) = 2, then ∣σ(v)∣ = 0. So that we do not have a conflict between u and x we
must have ℓ(uy) = 1, and, now, so that we do not have a conflict between u and v
we must have ℓ(ux) = 2. Then, ∣σ(u)∣ = 1 and ∣σ(x)∣ = 2.

Thus, uy is β-forced. ◇

Claim 2.11. Let G be a signed tree with a β-forced edge uv, where d(u) = 1. Then, in the
signed tree H obtained from G by adding a pendant positive edge ux and a pendant negative
edge uy incident to u, the edge uy is α-forced.

Proof of the claim. The proof is similar to that of Claim 2.10. Consider an abs-proper
2-labelling ℓ of H, omitting possibly the conflict between u and y.

• If ℓ(uv) = 1, then, by definition, ∣σ(v)∣ = 1. So that there is no conflict between u
and x, we must have ℓ(uy) = 2, and, now, so that u and v are not in conflict we must
have ℓ(ux) = 1. As a result, we get ∣σ(u)∣ = 0 and ∣σ(x)∣ = 1.

• If ℓ(uv) = 2, then ∣σ(v)∣ = 2. So that there is no conflict between u and x we must
have ℓ(uy) = 1, and, next, so that we do not have a conflict between u and v we must
have ℓ(ux) = 2. Then, ∣σ(u)∣ = 3 and ∣σ(x)∣ = 2.
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Figure 3: First steps of the construction of arbitrarily large signed trees with no abs-proper 2-labellings,
described in the proof of Theorem 2.8. Any arrow joining two trees indicates which construction, from
Claims 2.9 to 2.11, is applied. Signed trees in purple and orange boxes are intermediate pieces, while signed
trees in red boxes have the desired property. Wiggly edges in purple boxes are α-forced edges, while those
in orange boxes are β-forced edges. Positive and negative edges are represented as red and blue edges.

Thus, uy is α-forced. ◇
We now employ Claims 2.9 to 2.11 to prove Theorem 2.8. As a starting piece, we

consider G, the claw with center u and leaves v1, v2, v3, signed so that uv1 and uv2 are
positive, while uv3 is negative. We claim uv3 is α-forced. Indeed, consider, omitting a
possible conflict between u and v3, an abs-proper 2-labelling ℓ of G.

• If ℓ(uv3) = 1, then note that none of uv1 and uv2 can be assigned label 1. Indeed, if,
say, we had ℓ(uv1) = 1, then it can be noted that we would get ∣σ(u)∣ = ∣σ(v2)∣. Thus,
we must have ℓ(uv1) = 2 and ℓ(uv2) = 2. Hence, ∣σ(v1)∣ = ∣σ(v2)∣ = 2, and ∣σ(u)∣ = 3.

• Likewise, if ℓ(uv3) = 2, then none of uv1 and uv2 can be assigned label 2. So ℓ(uv1) =
ℓ(uv2) = 1, and ∣σ(v1)∣ = ∣σ(v2)∣ = 1 while ∣σ(u)∣ = 0.

Thus, G indeed has an α-forced edge.
We now have two options. On the one hand, applying Claim 2.9, we get, from G, a

signed tree H1 with no abs-proper 2-labellings. On the other hand, applying Claim 2.10,
we get, from G, a signed tree H2 with a β-forced edge. Note that, actually, H1 = H2,
which is a peculiar phenomenon due to how small G is. From H2, we can now apply either
Claim 2.9 to create another signed tree with no abs-proper 2-labellings, or Claim 2.11 to get
a signed tree H with an α-forced edge. Here again, we have two options. First, applying
Claim 2.9 from H we get a signed tree I1 with no abs-proper 2-labellings. Second, applying
Claim 2.10 from H we get a signed tree I2 with a β-forced edge. Note that, here, I1 ≠ I2.
Now either we apply Claim 2.9 from I2 to get another signed tree with no abs-proper
2-labellings, or we apply Claim 2.11 from I2 we get a signed tree I with an α-forced edge,
and we again have two options. And so on.
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This process can be repeated ad libitum, and after each application of Claim 2.9 we get
a larger signed tree with no abs-proper 2-labellings (see Figure 3 for an illustration). The
claim thus holds true.

3. Constant upper bounds

In this section, we establish constant upper bounds on the parameters χΣ and χ∣Σ∣
for nice signed graphs. For that, we mainly exploit tools and approaches from previous
works on the 1-2-3 Conjecture, one of our goals being to investigate how they adapt to
our context. As will be apparent, many of these, in particular those relying on modulo
methods (where sums are considered modulo some value), fit well when not considering
absolute sums. For these, we have to tweak arguments, the price being to use more labels.

To be fully transparent, let us mention that the proof of upcoming Theorem 3.1 is
inspired by the proof of Kalkowski, Karoński, and Pfender of their 1-2-3-4-5 result [15].
Also, the proofs of upcoming Theorems 3.2, 3.3, and 3.4 are inspired by modulo methods,
as first used in this context by Karoński, Łuczak, and Thomason [17].

We focus first on proving a constant upper bound on χ∣Σ∣(G) for every nice signed
graph G (thereby also getting a constant upper bound on χΣ(G) by Observation 2.2). Our
main result, Theorem 3.6, is that χ∣Σ∣(G) ≤ 9 holds for every nice signed graph G. Prior
to getting to the proof of this result, we first need to make a few steps.

Theorem 3.1. If G is a nice connected signed graph with ∆(G) ≥ 4, then χ∣Σ∣(G) ≤ 9.
Proof. Let us denote by v1, . . . , vn the vertices of G, so that 1) every vertex vi with i < n
is incident to a forward edge (i.e., an edge vivj with i < j), and 2) vertex vn is incident to
∆(G) ≥ 4 backward edges (i.e., edges vivn with i < n). Such an ordering of the vertices of
G exists, essentially because G is connected; one can for instance be obtained by choosing
vn as any vertex of degree ∆(G), and ordering the other vertices by reversing the order in
which they are encountered during a Breadth-First Search algorithm performed from vn.

We will design an abs-proper 9-labelling ℓ of G in the following way. Starting from all
edges assigned label 5, we will process the vi’s one by one in order, without ever coming
back. Whenever considering a new vi with i ∈ {1, . . . , n − 1}, we will define a set Φ(vi)
of permitted sums for σ(vi), which, provided we indeed have ∣σ(vi)∣ ∈ Φ(vi), will ensure
it is impossible for vi to be involved in conflicts (w.r.t. absolute sums) with its backward
neighbours. This will be achieved through defining the Φ(vi)’s so that Φ(vj) ∩Φ(vi) = ∅
for every backward neighbour vj of vi, and guaranteeing that ∣σ(vi)∣ lies in Φ(vi) at all
times. The Φ(vi)’s will also be chosen so that they include several values, so that, whenever
considering a new vertex vi, for every of its incident backward edges vjvi it is possible to
alter ℓ(vjvi) while preserving ∣σ(vj)∣ ∈ Φ(vj) (which most of the time will be possible
because we started from all edges of G being assigned the middle label 5), thereby allowing
to alter σ(vi) through local modifications, and thus reaching more possibilities w.r.t. the
set Φ(vi) we need to define. Once all vi’s but vn will be processed that way, we will get to
the point where the only reason why ℓ is perhaps not abs-proper is because vn is involved
in conflicts. By performing last local modifications to the labelling, we will get rid of these
conflicts without introducing new ones, reaching a labelling of G as desired.

The formal details are as follows. Start from ℓ assigning label 5 to all edges of G.
Now consider every vertex vi of G in (v1, . . . , vn−1) in turn, following the ordering we have
defined. We denote by u1vi, . . . , ubvi the b ≥ 0 backward edges incident to vi, and by
viw1, . . . , viwf the f ≥ 1 forward edges incident to vi, where (w1, . . . ,wf) is a subsequence
of (v1, . . . , vn). Recall that indeed f ≥ 1 due to how we ordered the vertices of G. Also,
d(vi) = b + f ≥ 1.
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As mentioned earlier, we need to guarantee that ℓ has certain properties; more precisely,
we assume every vertex vj with j < i has been treated so that the following properties hold:

1. We have defined a positive value ϕ(vj) and a set Φ(vj) = (ϕ(vj), ϕ(vj) + 4), where
ϕ(vj)mod 8 lies in {0,1,2,3} (and, thus, ϕ(vj) + 4 mod 8 lies in {4,5,6,7}).

2. We have σ(vj) ∈ {−(ϕ(vj) + 4),−ϕ(vj), ϕ(vj), ϕ(vj) + 4}, and, thus, ∣σ(vj)∣ ∈ Φ(vj).

3. For every backward neighbour vk of vj , we have Φ(vk) ∩Φ(vj) = ∅.

4. For every forward edge vjvk incident to vj (including vjvi), we can, regardless of the
polarity of vjvk, alter ℓ(vjvk) by one of −4 or +4 while preserving Property 2.

5. When dealing with vj , the only label modifications we performed are around vj .
More precisely, we may have modified the labels assigned to incident backward edges
(while preserving Property 3 for the backward neighbours), and the label assigned to
the forward edge vjvk with minimum k > j (while preserving Property 2 for vj).

Properties 2 and 3 above guarantee that vj cannot be involved (w.r.t. absolute sums) in
a conflict with any of its backward neighbours. Properties 1 and 4 are essentially here
to guarantee that, later on, whenever dealing with a forward neighbour vi of vj , we can
alter ℓ locally to modify σ(vi) without introducing new conflicts, thereby getting more
possibilities for defining the desired ϕ(vi) and Φ(vi). In particular, when dealing with
vi, by Property 4 and how Φ(vj) was defined we can either decrease or increase ℓ(vjvi)
by 4 without introducing new conflicts, and keep that vj satisfies Property 2. We call
this performing a valid change onto vjvi. This valid change is either decreasing if it does
decrease σ(vi), or increasing otherwise. Finally, Property 5 above guarantees that, when
dealing with vi, every incident backward edge can indeed be subject to a valid change.

So, assume we are, in the process, now dealing with a new vi.

• If b = 0, then vi is only incident to forward edges. Assume ∣σ(vi)∣ = x. If xmod 8
lies in {0,1,2,3}, then we just set ϕ(vi) = x, which defines Φ(vi) as (x,x + 4), and
we are done with vi (Properties 1 to 5 are indeed fulfilled). Now, if xmod 8 lies in
{4,5,6,7}, then we set ϕ(vi) = x − 4, and we are also done. In particular, in both
cases, we still have ℓ(viwj) = 5 for every forward edge incident to vi, and we do have
σ(vi) ∈ {−(ϕ(vi) + 4),−ϕ(vi), ϕ(vi), ϕ(vi) + 4} (and, thus, ∣σ(vi)∣ ∈ Φ(vi)).

• Now assume b ≥ 1. For every backward edge ujvi recall that we can perform a valid
change, being either decreasing or increasing (from σ(vi)’s point of view). We start
by performing (decreasing) valid changes backwards so that σ(vi) is minimised. We
also change ℓ(viw1) to either 1 or 9 so that σ(vi) is minimised even further. Let
us denote by a the resulting value as σ(vi). Note that, through increasing ℓ(viw1)
to any value in {2,3,4} (if ℓ(viw1) = 1) or to any value in {6,7,8} (if ℓ(viw1) = 9),
performing at most b of the (all increasing) b valid changes backwards, and modifying
ℓ(viw1) with some value, we can get σ(vi) to take any value in {a, . . . , a + 4b + 8},
which set has cardinality 4b + 9. Now, note that the set

S = {−(ϕ(uj) + 4),−ϕ(uj), ϕ(uj), ϕ(uj) + 4 ∶ uj is a backward neighbour of vi}

has cardinality at most 4b, and its at most 4b values are forbidden for σ(vi) (and
thus as ϕ(vi) and ϕ(vi) + 4). Due to Properties 4 and 5 we need to preserve, note
also that we cannot define, as ϕ(vi) + 4, a value in {∣a∣, ∣a∣ + 1, ∣a∣ + 2, ∣a∣ + 3} if the
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corresponding value (a, a + 1, a + 2, or a + 3) modulo 8 lies in {4,5,6,7} (as, to
be reached as σ(vi), it requires to have ℓ(viw1) ∈ {1,2,3,4} (if viw1 is positive) or
ℓ(viw1) ∈ {6,7,8,9} (otherwise), making it impossible, when treating w1 later on, to
perform a valid (decreasing) change onto viw1). Likewise, we cannot define as ϕ(vi)
a value in {∣a∣+4b+5, ∣a∣+4b+6, ∣a∣+4b+7, ∣a∣+4b+8} if the correspond value lies in
{0,1,2,3} modulo 8. These facts forbid at most eight more values as ϕ(vi). There
is thus at least one value x in {a, . . . , a + 4b + 8} such that none of −(x + 4), −x,
x, and x + 4 lies in S, and that can be reached as σ(vi) through performing valid
(increasing) changes backwards, and possibly altering ℓ(viw1) in such a way that it
will be possible to perform a valid change onto viw1 later on, when treating w1. So
we set ϕ(vi) = ∣x∣ or ϕ(vi) + 4 = ∣x∣ (depending on the value of x modulo 8), define
Φ(vi) accordingly, and apply the corresponding label modifications around vi so that
∣σ(vi)∣ ∈ Φ(vi). Once this is performed, note that Properties 1 to 5 are fulfilled for vi
and all uj ’s. Also, note that we still have ℓ(uiwj) = 5 for every j ∈ {2, . . . , f}.

Once we have treated every vertex vi with i ∈ {1, . . . , n − 1} this way, then, since
Properties 2 and 3 have been preserved, for every edge vivj with i, j < n, we must have
∣σ(vi)∣ ≠ ∣σ(vj)∣. Thus, if vn is not involved into any conflict (w.r.t. absolute sums), then ℓ
is abs-proper and we are done. Otherwise, we get rid of these conflicts, without introducing
new ones, in the following way. Recall that, onto every backward edge uivn incident to
vn, a valid change can be performed. We start by considering every backward edge uivn
incident to vn, and, if ∣σ(ui)∣ = ϕ(ui) + 4, then we perform a valid change onto uivn. This
way, we can now assume we have ∣σ(ui)∣ = ϕ(ui), and thus σ(ui)mod 8 ∈ {0,1,2,3}, for
every i ∈ {1, . . . , b}. Again, if vn is not involved into conflicts, then we are done. So let us
assume this is not the case. In particular, this means ∣σ(vn)∣ modulo 8 lies in {0,1,2,3}.

We need to analyse the effects of the at least four valid changes backwards we can
perform at vn. Note that any of these valid changes modifies σ(vn) by −4 or +4, which we
regard similarly as decrementing σ(vn) by 1 four times, or incrementing σ(vn) by 1 four
times. When performing these four decrements or increments, if σ(vn) gets closer to 0 at
some point, then the valid change is said tightening. Otherwise, it is said releasing. As
an example, note that if σ(vn) = 1 and, through performing a valid change onto uivn for
some i, we get σ(vn) = −3, then that valid change is considered tightening (although 3 is
more distant to 0 than 1 is; what matters is that we “went through” 0). Another way to
state this is that if a valid change decreases σ(vn) by 4, then it is considered tightening
if σ(vn) − 1 is closer to 0 than σ(vn) is. Otherwise, it is considered releasing. Things are
defined analogously when a valid change increases σ(vn) by 4.

We consider a few cases:

• For every backward neighbour ui of vn, we have ∣σ(ui)∣ = ∣σ(vn)∣ = x.

In that case, let k ≥ 0 be the number of releasing valid changes. If k ≥ 2, then assume
u1vn and u2vn are two edges onto which releasing valid changes can be applied, and
apply them. As a result, recall we still have ∣σ(u1)∣ ∈ Φ(u1) and ∣σ(u2)∣ ∈ Φ(u2),
and, actually, ∣σ(u1)∣ = ϕ(u1) + 4 and ∣σ(u2)∣ = ϕ(u2) + 4, which both values lie in
{4,5,6,7} modulo 8. Meanwhile, we still have ∣σ(ui)∣ = x for every i ≥ 3, while, now,
∣σ(vn)∣ = x+8, which lies in {0,1,2,3} modulo 8. Thus, the resulting ℓ is abs-proper.

Now assume k ≤ 1. Since d(vn) ≥ 4, we can thus assume u1vn, u2vn, and u3vn are
three edges onto which tightening valid changes can be performed.

– If x ≥ 4, then apply a valid change to u1vn. As a result, we now have ∣σ(u1)∣ =
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x+4, while we still have ∣σ(ui)∣ = x for every i ≥ 2. Meanwhile, by the definition
of a tightening change, now we have ∣σ(vn)∣ = x−4. Thus, there are no conflicts.

– If x = 3, then apply a valid change to u1vn. Here, we get ∣σ(u1)∣ = x+4 = 7 while
we still have ∣σ(ui)∣ = x = 3 for every i ≥ 2, but now ∣σ(vn)∣ = ∣x−4∣ = 1. So there
cannot be any conflict. Note that such arguments also apply when x = 1.

– If x = 2, then apply a valid change to all of u1vn, u2vn, and u3vn. As a result, we
get ∣σ(vn)∣ = x+8 = 10. Meanwhile, we have ∣σ(u1)∣ = ∣σ(u2)∣ = ∣σ(u3)∣ = x+4 = 6,
while we still have ∣σ(ui)∣ = x = 2 for every i ≥ 4. Thus, here as well there are
no conflicts remaining.

– If x = 0, then note that, actually, none of the valid changes backwards can be
tightening. So this case cannot occur.

• There is a backward neighbour ui of vn with ∣σ(ui)∣ ≠ ∣σ(vn)∣ = x.

We denote by S the set of ui’s with the same absolute sum as vn, and by D the
set of all other ui’s, i.e., with different absolute sum. So, here, D is not empty;
throughout, we assume w.l.o.g. that u1 ∈ D. Note that if the valid change we can
perform onto u1vn is releasing, then we are done when performing this valid change
(since, then, only u1 and vn have absolute sum in {4,5,6,7} modulo 8, while we know
∣σ(u1)∣ ≠ ∣σ(vn)∣). Thus, we can assume that, for every ui ∈ D, the valid change to
uivn is tightening. We now consider a few more cases. As before, note that we cannot
have x = 0 now that we have identified that the valid change of u1vn is tightening.

– If x ≥ 4, then applying the valid change to u1vn yields ∣σ(u1)∣ = x+4 and ∣σ(vn)∣ =
x−4, and these two absolute sums lie in {4,5,6,7} modulo 8. Meanwhile, recall
that all other ui’s have absolute sum in {0,1,2,3} modulo 8. Thus, we have
no conflict if, initially, prior to performing the valid change to u1vn, we had
ϕ(u1) ≠ x − 8. So, now, come back to the situation where ∣σ(ui)∣ = ϕ(ui) for
every i ∈ {1, . . . , b}. By the previous remarks, we can now assume that all ϕ(ui)’s
lie in {x,x−8} (either ∣σ(ui)∣ = ∣σ(vn)∣ = x, or ∣σ(ui)∣ = x−8). Since the current
labelling is not abs-proper, we can assume vn is in conflict with at least one of
the ui’s.

∗ If, say, ∣σ(u2)∣ = x and the valid change we can perform to u2vn is tighten-
ing, then we are done when performing that valid change, since this yields
∣σ(u2)∣ = x+4 and ∣σ(vn)∣ = x−4, which two values are different (since x ≠ 0),
while all other ui’s have absolute sums with a different value modulo 8.

∗ If, say, u2 is the only vertex ui with ∣σ(ui)∣ = x, then, since the previous case
does not apply, recall the valid change we can perform to u2vn is releasing.
In that case, we perform a valid change to both u1vn and u2vn. Recall
that, since the valid change to u1vn was tightening, we get ∣σ(vn)∣ = x.
Meanwhile, ∣σ(u1)∣ = x − 4 while ∣σ(u2)∣ = x + 4. Also, by hypothesis, no
other ui has ∣σ(ui)∣ = x. Thus, there are no conflicts remaining.

∗ The last case to consider is when, say, u2 and u3 satisfy ∣σ(u2)∣ = ∣σ(u3)∣ =
x. Recall that the valid changes to u2vn and u3vn are both releasing (as
otherwise a previous case would apply). In that case, we apply both valid
changes. This yields ∣σ(vn)∣ = x + 8, and ∣σ(u2)∣ = ∣σ(u3)∣ = x + 4, while all
other ui’s have absolute sum in {x,x−8}. Thus, the labelling is abs-proper.

– Assume now x ∈ {1,3}, and set ∣D∣ = k ≥ 1. Recall that, for every ui ∈ D, the
valid change to uivn is tightening.

12



∗ If k = 1, then apply the valid change to u1vn. As a result, ∣σ(u1)∣ = x+4 ≥ 4,
and, since x ∈ {1,3}, we get ∣σ(vn)∣ ∈ {1,3} ∖ {x}. Meanwhile, we have
∣σ(ui)∣ = x for all i ≥ 2.

∗ If k ≥ 3 and k is odd, then we perform every (tightening) valid change to
uivn for ui ∈D. As a result, note that ∣σ(vn)∣ changed (since k ≥ 3), and that
the resulting ∣σ(vn)∣ lies in {0,1,2,3} modulo 8. Actually, ∣σ(vn)∣ ≥ x + 6.
Meanwhile, for every ui ∈ D, we have ∣σ(ui)∣ = ϕ(ui) + 4, and ∣σ(ui)∣ lies in
{4,5,6,7} modulo 8. For every ui ∈ S, we still have ∣σ(ui)∣ = x.

∗ The last case is when k ≥ 2 and k is even. In that case, we perform a valid
change to every uivn such that ui ∈ D ∖ {u1}. So, just as in the previous
case, we perform an odd number of valid changes. As a result, the absolute
sum of vn lies in {0,1,2,3} modulo 8, and it is different from x (even if
k = 2, since x ∈ {1,3}). Since u1 is the only neighbour of ui with absolute
sum in {0,1,2,3} modulo 8 being not x, if there is a conflict then it must
be between u1 and vn. Note that we would have ended up with the same
conclusion if we had performed the previous valid changes to any k − 1
edges uivn where ∣σ(ui)∣ ≠ x, as otherwise we would be done. So, initially,
all ui ∈D can be assumed to have the same absolute sum, which is, actually,
∣x − 4∣ + 4(k − 2). Note that this is at least 4 if k > 2.

· If k > 2, then, from the initial situation, we perform a (tightening) valid
change to u1vn only. As a result, recall that ∣σ(vn)∣ ≠ x since x ∈ {1,3},
so vn is not in conflict with any ui ∈ S. Meanwhile, since ∣σ(vn)∣ ∈ {1,3},
we cannot have a conflict between vn and the other k ui’s, since their
absolute sums are at least 4.

· If k = 2, then, since b ≥ 4, then, say, u3 exists and ∣σ(u3)∣ = x. Assume
w.l.o.g. that ∣σ(u2)∣ ≠ x. Here, we perform valid changes to u1vn, u2vn,
and u3vn. As a result, we get ∣σ(vn)∣ ∈ {∣x−4∣, ∣x−4∣+8}, depending on
whether the valid change to u3vn was releasing or tightening. Regard-
less, note that ∣σ(vn)∣ lies in {0,1,2,3} modulo 8. Thus, vn cannot be
in conflict with any of u1, u2, and u3. Also, since x ∈ {1,3} modulo 8,
we have ∣σ(vn)∣ ≠ x, implying vn cannot be in conflict with any ui ∈ S.

– Assume last x = 2. If, say, u2 is another vertex ui ∈ D, then we perform both
(tightening) valid changes to u1vn and u2vn. As a result, we get ∣σ(vn)∣ =
x + 4 = 6, while ∣σ(u1)∣ and ∣σ(u2)∣ are not 6 (as otherwise vn would have been
in conflict with u1 and u2 initially), and all other ui’s have absolute sum in
{0,1,2,3} modulo 8. So, we may assume u1 is the only neighbour of vn with
distinct absolute sum.

∗ If ϕ(u1) ≠ 10, then, since b ≥ 4, vertices u2, u3, and u4 exist, and they have
absolute sum x. If, say, the valid changes to u2vn and u3vn are releasing,
then, by performing them, we get ∣σ(vn)∣ = x + 8 = 10, while ∣σ(u1)∣ ≠ 10,
∣σ(u2)∣ = ∣σ(u3)∣ = x + 4 = 6, and ∣σ(ui)∣ = x for every i ≥ 4. Otherwise, i.e.,
say, the valid changes to u2vn and u3vn are tightening, and by performing
the valid changes to u1vn, u2vn, and u3vn we get ∣σ(vn)∣ = x + 8 = 10, while
u1, u2, and u3 have absolute sum in {4,5,6,7} modulo 8, and ∣σ(ui)∣ = x
for every i ≥ 4.

∗ If ϕ(u1) = 10, then, again, we consider u2, u3, and u4. If, say, the valid
changes to u2vn, u3vn, and u4vn are releasing, then, by performing them,
we get ∣σ(vn)∣ = x+12 = 14, while u2, u3, and u4 have absolute sum x+4 = 6,
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vertex u1 has absolute sum 10, and ∣σ(ui)∣ = x for every i ≥ 5. Likewise, if,
say, the valid changes to u2vn and u3vn are tightening, then, by performing
valid changes to u1vn, u2vn, and u3vn, we get ∣σ(vn)∣ = 10, while ∣σ(u1)∣ =
14, ∣σ(u2)∣ = ∣σ(u3)∣ = x+ 4 = 6, and ∣σ(ui)∣ = x for every i ≥ 4. Now, if none
of the previous cases applied, then, since b ≥ 4, it must be that b = 4, and
that, say, the valid change to u2vn is tightening while the valid change to
u3vn and u4vn are releasing. In that case, we perform valid changes to u1vn,
u2vn, u3vn, and u4vn. As a result, we get ∣σ(vn)∣ = x = 2, while ∣σ(u1)∣ = 14,
and ∣σ(u2)∣ = ∣σ(u3)∣ = ∣σ(u4)∣ = x + 4 = 6.

Thus, in all cases, we can get rid of the conflicts involving vn without introducing new
ones, and end up with an abs-proper 9-labelling of G.

We now adapt modulo methods for classes of signed graphs that can have their vertex
set partitioned into a few number of independent sets. We consider bipartite signed graphs
first, before focusing on 3-chromatic ones.

Theorem 3.2. Let G be a connected bipartite signed graph with bipartition A,B. If ∣A∣ is
even, then χ∣Σ∣(G) ≤ 2.

Proof. This follows from the fact that this holds in unsigned graphs. Namely, it is known,
see e.g. [12], that, omitting the signature, there is a 2-labelling ℓ of G such that all vertices
in A have odd sum, while all vertices in B have even sum. Clearly, these properties are
preserved in the signed G, and when absolute sums are considered. In other words, ℓ also
stands as an abs-proper 2-labelling of the signed G.

Previous Theorem 3.2 allows to prove the following:

Theorem 3.3. If G is a nice connected bipartite signed graph, then χ∣Σ∣(G) ≤ 3.

Proof. Let A,B denote the bipartition of G. We can assume both ∣A∣ and ∣B∣ are odd, as
otherwise the result would follow from Theorem 3.2. Also, since G is nice, we may assume
∣B∣ ≥ 3. We get the result by designing a 3-labelling ℓ of G such that all vertices in A have
absolute sum congruent to 0 modulo 3, while all vertices in B have absolute sum congruent
to 1 or 2 modulo 3. Such a labelling is clearly abs-proper since G is bipartite.

We obtain ℓ through arguments that are fairly classical in the field (see e.g. [17]), which
consist, starting from an initial labelling, in repeatedly fixing pairs of vertices that do not
have the desired sums, without introducing new defecting vertices, until most vertices fulfil
the desired sum properties. One has to be careful, however, as, since we are dealing with
absolute sums, the fixing mechanisms are not as easy to deal with in our context.

Start from ℓ assigning label 3 to all edges of G. Then, for now, all vertices of G have
absolute sum congruent to 0 modulo 3, and, thus, in A all vertices fulfil the desired sum
property, while in B no vertex meets the desired property. We fix vertices of B in pairs,
repeating the following fixing procedure. Consider two vertices v1 and vp of B with absolute
sum congruent to 0 modulo 3 that are at minimum distance in G. Consider P = v1v2 . . . vp,
a path of G; note that every vi with i odd (including v1 and vp) lies in B while every
vi with i even lies in A. By the choice of v1 and vp, every vi ∈ {v3, . . . , vp−2} with odd i
currently has absolute sum congruent to 1 or 2 modulo 3. Our goal is to modify labels
assigned by ℓ along P so that we get ∣σ(v1)∣ and ∣σ(vp)∣ lying in {1,2} modulo 3, while, for
every vi ∈ {v2, . . . , vp−1}, the absolute sum of vi is a multiple of 3 if i is even, or is congruent
to 1 or 2 modulo 3 otherwise, if i is odd.
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Since ∣σ(v1)∣ is congruent to 0 modulo 3, by changing the label ℓ(v1v2) arbitrarily we
get that ∣σ(v1)∣ lies in {1,2} modulo 3, as desired. Note that this changes ∣σ(v2)∣ modulo 3,
which is not congruent to 0 any more. We claim we can modify ℓ(v2v3) in turn so that
∣σ(v2)∣ gets congruent to 0 modulo 3 again. Indeed, note that ∣σ(v2)∣ ≠ 0. If ℓ(v2v3) = 2,
then note that by either subtracting or adding 1 to ℓ(v2v3) it must be that ∣σ(v2)∣ gets
congruent to 0 modulo 3 for one of the two options. Otherwise, if, say, ℓ(v2v3) = 1 (the case
where ℓ(v2v3) = 3 can be treated analogously), then by adding 1 or 2 to ℓ(v2v3) it must be
again that ∣σ(v2)∣ gets congruent to 0 modulo 3 at some point. Indeed, when adding 1 to
ℓ(v2v3) twice, either ∣σ(v2)∣ decreases or increases by 1 twice, or we get ∣σ(v2)∣ = 0 when
adding 1 for the first time and ∣σ(v2)∣ is a multiple of 3, as desired.

If p = 3, then note that, since we necessarily changed ℓ(v2v3) when dealing with v2,
and v2v3 is the only edge of P incident to v3, necessarily the absolute sum of v3 changed,
and it is now congruent to 1 or 2 modulo 3, as desired. Otherwise, we had that ∣σ(v3)∣ was
not a multiple of 3 prior to altering ℓ(v2v3), while, now, it may have this property or not.
Regardless, we change ℓ(v3v4) to force ∣σ(v4)∣ to change modulo 3, which is an important
part for the process to end up correctly. We proceed as follows:

• If ∣σ(v3)∣ is a multiple of 3, then by changing ℓ(v3v4) to any value, we get that ∣σ(v3)∣
is congruent to 1 or 2 modulo 3. Also, ∣σ(v4)∣ is not a multiple of 3 any more.

• If ∣σ(v3)∣ is congruent to 1 modulo 3, then we go as follows. If ℓ(v3v4) = 2, then, since
∣σ(v3)∣ ≥ 1, through either subtracting or adding 1 to ℓ(v3v4) we can get ∣σ(v3)∣ to
be congruent to 2 modulo 3. Now, if ℓ(v3v4) = 1 (the case where ℓ(v3v4) = 3 can be
treated similarly), then by adding 1 or 2 to ℓ(v3v4), either we do not get ∣σ(v3)∣ = 0
at any point and thus ∣σ(v3)∣ gets congruent to 2 modulo 3 at some point, or we get
∣σ(v3)∣ = 0 when adding 1 to ℓ(v3v4), in which case when adding 1 to ℓ(v3v4) again
∣σ(v3)∣ gets back congruent to 1 modulo 3, but the situation is different here since
∣σ(v4)∣ changed and is no more a multiple of 3 (since σ(v4) was altered by 1 or 2).
Thus, in all cases, we get that both ∣σ(v3)∣ and ∣σ(v4)∣ lie in {1,2} modulo 3.

• If ∣σ(v3)∣ is congruent to 2 modulo 3, then we can proceed as in the previous case.

These arguments repeat along P ; namely, when modifying some ℓ(vi−1vi), then either

• vi ∈ A and we lost the fact that ∣σ(vi)∣ is a multiple of 3, but we can fix this through
modifying ℓ(vivi+1), or

• vi ∈ B∖{vp} and, regardless of whether ∣σ(vi)∣ is as desired modulo 3, we can modify
ℓ(vivi+1) so that ∣σ(vi)∣ is as desired and ∣σ(vi+1)∣ is no longer a multiple of 3, or

• vi = vp and we lost the fact that ∣σ(vi)∣ is a multiple of 3.

In particular, once the whole process ends, we get that all vertices of P satisfy the desired
absolute sum properties, as required.

By repeating the fixing process above with pairs of vertices of B, we can get to a
situation where, by ℓ, all vertices in A have absolute sum multiple of 3, all vertices in B
but some b have absolute sum congruent to 1 or 2 modulo 3, and ∣σ(b)∣ ≡ 0 mod 3. Recall
that ∣B∣ ≥ 3; let thus bab′ be a path of length 2 of G. Then, a ∈ A and b′ ∈ B, and so
∣σ(a)∣ is a multiple of 3, while ∣σ(b′)∣ is not. By similar arguments as earlier, note that
it is possible to change ℓ(b′a) so that ∣σ(b′)∣ remains congruent to 1 or 2 modulo 3, while
∣σ(a)∣ loses it is a multiple of 3. Then, through changing ℓ(ab), by similar arguments again
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we can make sure ∣σ(a)∣ gets multiple of 3 again, which changes ∣σ(b)∣ and guarantees it is
not a multiple of 3 any more. Then, by the resulting ℓ, all vertices of A and B satisfy the
desired properties, and ℓ is thus abs-proper.

We now consider 3-chromatic signed graphs. The next proof stands as a good illustra-
tion of why the modulo method cannot be used in a straight way when considering absolute
sums. The price here for this approach to work, is the introduction of two additional labels.

Theorem 3.4. If G is a connected 3-chromatic signed graph, then χ∣Σ∣(G) ≤ 5.

Proof. Let A,B,C denote the tripartition of G. We design a 5-labelling ℓ of G where all
vertices in A have absolute sum congruent to 0 modulo 5, all vertices in B have absolute
sum congruent to 2 or 3 modulo 5, while all vertices in C have absolute sum congruent to
1 or 4 modulo 5. Note that, for a vertex v in any labelled signed graph, if ∣σ(v)∣ modulo 5
lies in any S of the sets {0}, {2,3}, and {1,4}, then σ(v) also lies in S modulo 5 (to see
this is true, just consider any two x, y ∈ {0,1,2,3,4} and compare x−y and y−x). For this
reason, for the sake of simplicity we reason in terms of (non-absolute) sums.

We start by assigning label 5 to all edges of G, and denote by ℓ the resulting labelling.
As a result, all vertices in A have their sum fulfilling the desired property, while no vertex
in B ∪C does. Similarly as in the proof of Theorem 3.3, our goal is to modify ℓ iteratively
through several steps of a fixing procedure, so that, after each step, some vertices have
been fixed, without introducing new problems.

We first consider vertices of B. Let b ∈ B be any vertex such that σ(b) is not congruent
to any value in {2,3} modulo 5. Since G is not bipartite, there must be an odd-length
cycle Q. Then, from Q, since G is connected we deduce that there must be an odd-length
closed walk W = v0 . . . vk starting and ending at b (thus v0 = vk = b) in G. For instance, W
can be obtained by traversing any path P from b to any vertex of Q (note that P may be
empty), then going along Q once or twice, and then going back to b via P . Now we modify
the labels assigned by ℓ to the edges of W as follows. For every edge vivi+1 of W ,

• if i is even, then we modify ℓ(vivi+1) so that its contribution to σ(vi) and σ(vi+1)
increases by 1 modulo 5;

• otherwise, if i is odd, then we modify ℓ(vivi+1) so that its contribution to σ(vi) and
σ(vi+1) decreases by 1 modulo 5.

For every vertex v of G not in W , note that σ(v) was not altered by these label
modifications. For every vertex vi in W that is not b, note that σ(vi) has the same value
modulo 5 as before we performed the modifications, since σ(vi) was increased and decreased
by 1 modulo 5 the same number of times. Now, since W has odd length, note that σ(b)
was increased twice (modulo 5) by the modifications we performed. Thus, since initially
σ(b) was congruent to 0 modulo 5, now σ(b) is congruent to 2 modulo 5, as desired.

By repeating this process for every vertex b of B, we get to the point where, by the
resulting ℓ, all vertices in A∪C have sum congruent to 0 modulo 5, while all vertices in B
have sum congruent to 2 or 3 modulo 5. To now fix the vertices of C, we essentially repeat
the same process as for the vertices of B: for every vertex c ∈ C we need to fix, we consider
an odd-length closed walk W originating from c, and we again modify the labels assigned
to its edges, but so that their contribution to the two incident vertices is increased (for the
edges at even distance from c) or decreased (for the others) by 2 modulo 5. As a result,
σ(c) becomes congruent to 4 modulo 5, while, modulo 5, the sum of every other vertex of
G is not altered. By repeating this procedure for every faulty c ∈ C, eventually ℓ has the
desired properties, and we are done.
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Figure 4: Abs-proper 3-labellings of all canonical signatures of K4. In each picture, positive and negative
edges are represented as red and blue edges. In each vertex is indicated the resulting absolute sum by the
depicted labelling.

Before getting to the proof of Theorem 3.6, we need a last ingredient.

Theorem 3.5. If G is any signature of K4, then χ∣Σ∣(G) ≤ 3.

Proof. It suffices to provide an abs-proper 3-labelling for every signature of K4. Actually,
note that we only need to consider signatures that are pairwise non-isomorphic. Also, recall
that if we have an abs-proper 3-labelling of some signed graph, then we also have one of
the signed graph obtained when changing the polarity of every edge. It turns out that,
for K4, there are only six canonical signatures to consider, namely those in Figure 4. To
be convinced of this, note that, by the previous arguments, we may focus on signatures of
K4 having at least three positive edges. Then, when considering signatures of K4 having
x ∈ {3,4,5,6} positive edges, the canonical signatures are those for which the 6−x negative
edges induce signed graphs that are pairwise non-isomorphic. For x = 6, there is only
one possible signature. For x = 5, there is only one negative edge, and thus only one
canonical signature. For x = 4, the two negative edges are either independent or adjacent,
and thus there are two canonical signatures to consider. For x = 3, the three negative
edges form either a triangle or a path of length 3. Thus, as claimed, there are only six
canonical signatures of K4 to consider. For each of these, we have provided, in Figure 4,
an abs-proper 3-labelling.

We are now ready for our main result in this section.

Theorem 3.6. If G is a nice connected signed graph, then χ∣Σ∣(G) ≤ 9.

Proof. This follows from the previous results we proved. If ∆(G) ≥ 4, then we deduce the
result from Theorem 3.1. Otherwise, if G is subcubic, then either G is bipartite and we get
the result from Theorem 3.3, or G is either 3-chromatic or a signature of K4 (by Brooks’
Theorem [11]). In the former case, the result follows from Theorem 3.4, while, in the latter
one, it follows from Theorem 3.5.
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We end up this section by illustrating a fact we mentioned earlier, being that, for proper
labellings of signed graphs, certain graph labelling tools and techniques, in particular those
based on the modulo method, apply right away, without additional care. For instance:

Theorem 3.7. If G is a connected 3-chromatic signed graph, then χΣ(G) ≤ 3.

Proof. The proof is similar as that e.g. in [17]. Assume the tripartition of G is A,B,C. To
be done, it suffices to design a 3-labelling of G where all vertices in A have sum congruent
to 0 modulo 3, all vertices in B have sum congruent to 1 modulo 3, and all vertices in
C have sum congruent to 2 modulo 3. Start from all edges assigned label 3, so that all
vertices in A satisfy the desired property while none of those in B∪C does. Then, similarly
as in the proof of Theorem 3.4, we can consider the vertices of B and C one by one, and
modify labels along closed walks of odd length to fix their sums modulo 3 without altering
other sums modulo 3. Once all vertices of B ∪C are treated, the resulting 3-labelling of G
is then proper, and the result thus follows.

Likewise, the algorithm from [15] adapts in a straight way to proper labellings of signed
graphs, to get a similar result.

Theorem 3.8. If G is a nice signed graph, then χΣ(G) ≤ 5.

Proof. The main argument for the algorithm in [15] to work, is that every edge is initially
assigned a label, 3, in a set of labels, S = {1,2,3,4,5}, that can be decreased by 2 to another
label, 1, in S, and similarly be increased by 2 to another label, 5, in S. Also, label 3 can
be increased by 1 to another label, 4, in S, which itself can be decreased by 2 to another
label, 2, in S; and label 3 can be decreased by 1 to another label, 2, in S, which itself can
be increased by 2 to another label, 4, in S. From this, it is not too complicated to see that
the algorithm can be performed from start to end even when edges are polarised, since,
essentially, labels in {−5,−4,−3,−2,−1} share the same connections as those in S.

4. A conjecture and some results

At this point, recall that we have proved that (abs-)proper labellings of signed graphs
encapsulate proper labellings of graphs (Observation 2.3), and that, in signed graphs, the
parameters χ∣Σ∣ and χΣ are bounded above by constants (Theorems 3.6 and 3.8). For these
reasons, and because we were not able to construct signed graphs refuting it, we believe it
might make sense to raise the following generalisation of the 1-2-3 Conjecture:

Conjecture 4.1. For every nice signed graph G, we have χΣ(G) ≤ χ∣Σ∣(G) ≤ 3.

Recall that Conjecture 4.1, if true, would be best possible, both regarding abs-proper
labellings and proper labellings (by Observation 2.3 and the fact that graphs G with
χΣ(G) = 3 exist). Also, recall that some of the results from Section 3 already establish
that Conjecture 4.1 holds for certain classes of signed graphs. In particular, the conjecture
holds for bipartite signed graphs by Theorem 3.3.

In what follows, we provide a bit more support to Conjecture 4.1 by showing it holds for
two classes of signed graphs, namely signed graphs with low maximum degree and sparse
signed graphs. We start off with the former class.

Theorem 4.2. If G is a nice signed graph with ∆(G) ≤ 2, then χ∣Σ∣(G) ≤ 3.
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Proof. We can assume G is connected. Then G is either a signed path or cycle. If G is
bipartite, then the result follows from Theorem 3.3. Thus, it remains to consider when
G is a signed odd-length cycle. Assume the consecutive vertices of G are v1, . . . , vn, v1 for
some n ≥ 3 odd. If all edges of G have the same polarity, then, by Observation 2.3, we have
χ∣Σ∣(G) ≤ 3, since odd-length cycles admit proper 3-labellings (see e.g. [12]). Thus, we can
assume G has both positive and negative edges. Actually, since n ≥ 3, we even know that,
w.l.o.g., G contains a positive edge adjacent both to a positive edge and to a negative edge.
In what follows, we assume v1vn and vnvn−1 are positive while vn−1vn−2 is negative.

We consider two cases:

• n ≡ 3 mod 4.

If n = 3, then we know what the actual signature of G is; here, we get an abs-proper
3-labelling when assigning label 3 to v1v2, label 1 to v2v3, and label 2 to v3v1.

When n ≥ 7, consider the 2-labelling of G obtained by traversing the consecutive
edges vnv1, v1v2, v2v3, . . . , vn−1vn following that order, and, as going along, assigning
labels following the pattern 1,1,2,2,1,1,2,2, . . . . Then it can be checked that, for
every i ∈ {1, . . . , n−2}, there is no conflict between vi and vi+1. This is because every
such vi has absolute sum in {1,3} if i is even, and in {0,2,4} otherwise. Now, due to
the length of G and the polarity of the edges incident to vn, it can be checked that
vn−1vn, which is positive, is assigned label 2, while vnv1, which is positive, is assigned
label 1. Then ∣σ(vn)∣ = 3, while ∣σ(v1)∣ ∈ {0,2} and ∣σ(vn−1)∣ = 1 (recall vn−1vn−2 is
assumed negative). Thus the resulting 2-labelling of G is abs-proper.

• n ≡ 1 mod 4.

We proceed similarly as in the previous case, but 2-labelling edges following the
ordering vn−1vn, vnv1, v1v2, . . . , vn−2vn−1. For similar reasons, the resulting 2-labelling
of G is abs-proper. In particular, due to the length of G, it can be checked that
vn−2vn−1 and vn−1vn are both assigned label 1, and thus ∣σ(vn−1)∣ = 0. Meanwhile,
∣σ(vn)∣ = 2, while ∣σ(vn−2)∣ is odd. Thus, we are done again.

This concludes the proof.

We can go a bit beyond Theorem 4.2 by noting that there is an interesting way to
identify whether χ∣Σ∣(G) ≤ 2 holds for a signed cycle G. Recall that deciding whether
χ∣Σ∣(G) = 1 holds can be done easily, since it suffices to check whether G is locally abs-
irregular. Regarding 2-labellings of G, an interesting property is that, if vi−1, vi, vi+1, and
vi+2 are four consecutive vertices of G such that vi−1vi and vi+1vi+2 have distinct polarities,
then, regardless of the labels assigned to the three edges, we cannot get a conflict between
vi and vi+1. Meanwhile, if vi−1vi and vi+1vi+2 have the same polarity, then they must be
assigned distinct labels. So our 2-labelling problem can be modelled as a proper 2-vertex-
colouring problem. Indeed, from G, build the constraint graph H having a vertex ve for
each edge e of G, in which two vertices ve and vf are joined by an edge if and only if, in
G, edges e and f have the same polarity and are at distance 2. Then, by the arguments
above, it is easy to observe that G admits abs-proper 2-labellings if and only if H admits
proper 2-vertex-colourings, which can be determined easily since ∆(H) ≤ 2.

Recall that the average degree of a graph G is the quantity 2∣E(G)∣
∣V (G)∣ , while the maximum

average degree mad(G) of G is the maximum average degree over all subgraphs of G. We
now turn to approaching Conjecture 4.1 further for nice signed graphs that are somewhat
sparse, i.e., have maximum average degree less than 3. That is, although we do not prove
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Conjecture 4.1 in full for these signed graphs, still we improve upon Theorem 3.6 for them.
Actually, we note that previous Theorems 3.3 and 3.4 provide a bound that is actually
better than the one to be proved, since graphs with maximum average degree less than 3
are 2-degenerate and thus 3-colourable. We believe, however, that the proof arguments we
develop below are of interest, as they rely on other tools and techniques, such as algebraic
ones, which could be of interest for further study on the topic. Still, partly for these
reasons, we voluntarily move most of the proof in an appendix section.

Theorem 4.3. If G is a nice signed graph with mad(G) < 3, then χ∣Σ∣(G) ≤ 7.

Proof. We prove the result through the so-called discharging method. That is, assuming
the claim is wrong, we consider a nice signed graph G with mad(G) < 3 but χ∣Σ∣(G) > 7,
that is a minimal (in terms of ∣V (G)∣+ ∣E(G)∣) counterexample to the claim. Our main goal
is to prove that G cannot exist. For that, we proceed in two steps. First, we prove that, G
being a minimal counterexample, it cannot contain certain configurations, called reducible
configurations, being, essentially, subgraphs with vertices of certain small degrees adjacent
to each other in some fashion. The fact that G cannot contain such configurations is
essentially proved by showing that if G contained any of them, then we could remove some
structure from G, end up with a graph H satisfying mad(H) < 3, being smaller than G,
and thus admitting an abs-proper 7-labelling, which, due to the structure removed, could
be extended to one of G, a contradiction. Second, assuming G cannot contain a certain
set of reducible configurations, we then get to contradicting the fact that mad(G) < 3,
essentially because, the maximum average degree of G being small, it must contain sparse
configurations. This contradiction is obtained through leading a certain discharging process,
which we will define more thoroughly later on.

Assume thus that G is a minimal counterexample to the claim. In particular, we
can assume G is connected. We start off by proving G cannot contain certain reducible
configurations. In what follows, for any k ≥ 1, a k-vertex refers to a vertex with degree k,
a k−-vertex to a vertex with degree at most k, and a k+-vertex to a vertex with degree at
least k. If a vertex u is adjacent to a k-vertex, k−-vertex, or k+-vertex v, then v is called
a k-neighbour, k−-neighbour, or k+-neighbour, respectively, of u. A pendant triangle uvwu
incident to u is a triangle containing two 2-neighbours v and w of u joined by an edge.
A 3-vertex is said weak if it has a 1-neighbour. In particular, note that if u is a 1-vertex
adjacent to a 3-vertex v, then v is weak; we say these two vertices are associated.

Claim 4.4. G cannot contain any of the following configurations:

(C1) For any k ≥ 2, a k-vertex with k − 1 1-neighbours.

(C2) A 5−-vertex with a 1-neighbour and a 3−-neighbour.

(C3) A k-vertex incident to α pendant triangles, and having β weak 3-neighbours and one
2−-neighbour being not part of a pendant triangle, such that α+β ≥ 1 and k ≤ 2α+β+3.

(C4) A k-vertex incident to α pendant triangles, and having β weak 3-neighbours and γ
2−-neighbours being not part of a pendant triangle, such that γ ≥ 2 and k ≤ 2α+β+γ+2.

(C5) A k-vertex incident to α pendant triangles and having β weak 3-neighbours, such that
α + β ≥ 1 and k ≤ 2α + β + 2.

(C6) A 2-vertex with a 2-neighbour and a 3−-neighbour.

(C7) A 2-vertex with two 3-neighbours.
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Proving Claim 4.4 being a bit tedious and demanding, as it requires to introduce several
intermediate results and tools, for the sake of keeping the current proof legible, we refer
the reader to the appendix for a thorough proof.

Given that G cannot contain any of Configurations (C1) to (C7), we now prove it
cannot exist. This is done through a certain discharging process (see below for a thorough
explanation), making use of the following result:

Theorem 4.5 (see e.g. [9]). Let G be a graph, m be some value, and V1, V2 be any partition
of V (G). Let also ω be a charge function where ω(v) = d(v) −m for every v ∈ V (G). If
there is a discharging process resulting in a charge function ω∗ where

• ω∗(v) ≥ 0 for every v ∈ V1, and

• ω∗(v) ≥ ω(v) + dV1(v) for every v ∈ V2,

then mad(G) ≥m.

For every vertex v of G, we set ω(v) = d(v) − 3. So that Theorem 4.5 can be used, we
also define V1 as the set of all 2+-vertices of G, and V2 as the set of all 1-vertices. Our goal,
now, is to define discharging rules, i.e., a way to move charges from vertices to vertices,
such that eventually every vertex v has charge ω∗(v), so that:

• if v ∈ V1, then ω∗(v) ≥ 0; and

• if v ∈ V2 (thus d(v) = 1), then ω∗(v) ≥ −1.

In the second item above, recall that if v ∈ V2, then, since G is nice, its unique neighbour
cannot be a 1-vertex, so we have d(v) = 1 = dV1(v), and, thus, ω(v)+ dV1(v) = −1. Thus, if
ω∗ satisfies all conditions above, then Theorem 4.5 applies, and we get a contradiction to
the fact that G has maximum average degree less than 3.

The discharging process we run consists in applying the following two rules:

(R1) Every 4+-vertex sends 1 to every of its 2−-neighbours.

(R2) Every 4+-vertex sends 1 to every 1-vertex associated to one of its weak 3-neighbours.

After applying the two rules above from the initial charge function ω, every vertex v
gets a resulting charge ω′(v). We analyse the eventual charge function ω′, our goal being
to prove that ω′(v) ≥ ω∗(v) holds for every vertex v of G. In what follows, we consider
any vertex v, and apply arguments based on its degree d(v).

• d(v) = 1.
Recall that ω(v) = −2 and ω∗(v) = −1. Note that v did not send any charge through
Rules (R1) and (R2). Now, since G is nice and G does not contain Configuration
(C1), the unique neighbour u of v is a 3+-vertex.

– If u is a 4+-vertex, then u sent 1 to v by Rule (R1). Thus, in that case, we have
ω′(v) = ω(v) + 1 = −2 + 1 = −1 = ω∗(v).

– Otherwise, if u is a 3-vertex, then u is weak. Since G does not contain Config-
uration (C2), it must be that u neighbours a 4+-vertex w. Then w sent 1 to v
by Rule (R2), and we have ω′(v) ≥ ω(v) + 1 = −2 + 1 = −1 = ω∗(v).
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• d(v) = 2.
Recall that ω(v) = −1 and ω∗(v) = 0, and note, again, that v did not send any
charge through Rules (R1) and (R2). Since G does not contain Configuration (C1),
v cannot have a 1-neighbour. Actually, since G does not contain Configurations (C6)
and (C7), it must be that one neighbour of v is a 4+-vertex, which sent 1 to v by
Rule (R1). Thus, we here have ω′(v) ≥ ω(v) + 1 = −1 + 1 = 0 = ω∗(v).

• d(v) = 3.
Note that v neither sent nor received any charge through Rules (R1) and (R2). Thus,
we have ω′(v) = ω(v) = 0 = ω∗(v).

• d(v) ≥ 4.
Recall that ω(v) = d(v) − 3 and ω∗(v) = 0, and note that v did not receive any
charge through Rules (R1) and (R2). Note that if v is adjacent to a weak 3-vertex u,
then u has at most one 1-neighbour w, as otherwise G would contain Configuration
(C1); by Rule (R2), v sent 1 to w. More generally speaking, v thus sent 1 for each
of its weak 3-neighbours. By Rule (R1), v also sent 1 to each of its 2−-neighbours.
However, looking closely at the conditions on α, β, and γ in Configurations (C3) to
(C5), since G does not contain any of these configurations, at least three neighbours
of v must be neither 2−-vertices nor weak 3-vertices. In other words, there are
at least three neighbours for which v did not send any charge. Thus, we deduce
ω′(v) ≥ ω(v) − (d(v) − 3) = d(v) − 3 − (d(v) − 3) = 0 = ω∗(v).

Thus, we have ω′(v) ≥ ω∗(v) for every vertex v of G, and by earlier arguments we deduce
that G cannot exist. There is thus no counterexample to the claim, which holds.

5. Choosing graph signatures

Another way to progress towards Conjecture 4.1 could be to prove the weaker result
that any nice graph G admits a signature H with χΣ(H) ≤ χ∣Σ∣(H) ≤ 3. However, we can
already establish that this holds, given Observation 2.3 and the fact that Keusch proposed
a proof of the 1-2-3 Conjecture in [18]. So, to sum up, given any nice graph G, by making
all edges the same polarity, we get a signature H with χΣ(H) ≤ χ∣Σ∣(H) ≤ 3, as desired.

This being said, this solution is not too satisfying, given that it relies mainly on invoking
an existing result as is. Fortunately, there is an interesting way to go over this, by just
remarking that the number of canonical signatures of a graph is, in general, large, and thus
that it may be plausible that the following refined conjecture holds:

Conjecture 5.1. Every nice graph G has a signature H with χΣ(H) ≤ χ∣Σ∣(H) ≤ 2.

Due to Observation 2.3, recall that Conjecture 5.1 holds for all graphs G with χΣ(G) ≤
2, graphs which cannot be characterised easily (unless P = NP, see e.g. [13]).

In the rest of this section, we give further evidence that Conjecture 5.1 might hold true,
by proving it holds for a few classes of graphs. We also prove in later Theorem 5.6 that,
unless P = NP, there is no good characterisation of graphs G admitting a locally irregular
signature H, thus with χΣ(H) = 1. In other words, it is not easy to say when we can do
even better than what is conjectured in Conjecture 5.1. The other way round, there are
many graphs showing Conjecture 5.1, if true, would be best possible.

Before starting off, we show that, through playing again with ideas from [15], we can get
very close to Conjecture 5.1, without using the straight, unsatisfying arguments resulting
from Keusch’s solution of the 1-2-3 Conjecture.
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Theorem 5.2. Every nice graph G has a signature H with χΣ(H) ≤ 4.

Proof. This follows from straight modifications to the proof of the 1-2-3-4-5 result from [17],
which relies, recall, on an algorithm which goes along the lines of the derived one we
designed in the proof of Theorem 3.1. Recall that k-labelling a signed graph is sort of
similar to labelling the underlying graph with two sets of labels, {1, . . . , k} (corresponding
to labels assigned to positive edges) and {−1, . . . ,−k} (corresponding to labels assigned to
negative edges). Thus, k-labelling a signed graph in which we can alter the signature is
sort of equivalent to labelling the underlying graph with {−k, . . . ,−1,1, . . . , k}. So, to show
the statement, we can equivalently show that every nice graph admits a proper labelling
assigning labels in a subset of {−4,−3,−2,−1,1,2,3,4}.

Looking at the proof from [17], due to the arguments above on how the algorithm
works, it is not too hard to check that it also provides a proof that every nice graph admits
a proper labelling assigning labels in S = {−1,1,2,3,4}. Without entering too much into
the details, here are how the algorithm can be modified:

• Initially, all edges are now assigned label 1.

• Labels assigned to forward edges can be modified from 1 to either 2 or 4. Note that
modifying a label this way changes the parity of the sum of any incident vertex.

• Labels assigned to backward edges can be decreased or increased by 2, provided we
follow the restrictions imposed by valid changes. In particular, note that subtracting
or adding 2 to label 1 yields a label in S (−1 or 3). Regarding label 2, adding 2 to it
yields a label in S (4), while, regarding label 4, subtracting 2 yields a label in S (2).

• Then, when treating a vertex vi (with i < n), we can perform valid changes backwards
to modify σ(vi). Each of these combinations of valid changes does not alter the parity
of σ(vi). In case we need to open up more possibilities (so that Φ(vi) can be defined
properly), we can add either 1 or 3 to the label assigned to the shortest forward
edge, modifying the parity of σ(vi). All the options granted by these possibilities are
sufficient, w.r.t. the constraints we have due to the backward neighbours.

• The last vertex, vn, can be treated similarly as in the original algorithm. The impor-
tant point is indeed that each of its incident edges provides a valid change.

With all these arguments, it can be checked that the algorithm from [17] provides a
proper S-labelling of G, which yields a signature H and a proper 4-labelling of H.

We now prove Conjecture 5.1 for a few more classes of nice graphs, namely complete
graphs, bipartite graphs, and graphs with maximum degree 2.

Theorem 5.3. Every nice complete graph G has a signature H with χΣ(H) ≤ χ∣Σ∣(H) ≤ 2.

Proof. Denote by v1, . . . , vn the vertices of G. We consider a few cases, in each of which
we design both a signature and an abs-proper 2-labelling ℓ of it.

• n = 4k for some k ≥ 1.
For every 0 ≤ j < i ≤ k, we set viv2k−j positive and ℓ(viv2k−j) = 2. Likewise, we set
vk+ivk+j positive and ℓ(vk+ivk+j) = 2, and set ℓ(vk+iv3k+i) positive and ℓ(vk+iv3k+i) = 2
for every i ∈ {1, . . . , k}. Finally, for every 0 ≤ j < i ≤ k, we set v2k+iv3k+j negative and
ℓ(v2k+iv3k+j) = 1. All remaining edges are set positive and assigned label 1 by ℓ.

It can be checked that we have the following, for every i ∈ {1, . . . , k}:
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– vi is incident to i positive edges assigned label 2; thus, ∣σ(vi)∣ = n − 1 + i.
– vk+i is incident to k+i positive edges assigned label 2; thus, ∣σ(vk+i)∣ = n−1+i+k.

– v2k+i is incident to i negative edges assigned label 1 and one positive edge
assigned label 2; thus, ∣σ(v2k+i)∣ = n − 2i.

– v3k+i is incident to k − 1 + i negative edges assigned label 1; thus, ∣σ(v3k+i)∣ =
n − 2(k − i + 1) − 1.

Note that for all i, j ∈ {1, . . . , k}, ∣σ(v2k+i)∣ and ∣σ(v3k+j)∣ have different parity. Since
all these absolute sums are pairwise distinct, the resulting 2-labelling on the resulting
signature of G is abs-proper. In particular, the vi’s with index in {1, . . . ,2k} have
absolute sum in {n, . . . , n + 2k − 1}.

• n = 4k + 1 for some k ≥ 1.
It suffices to apply the same process as in the previous case for vertices v1, . . . , v4k,
and then to set all edges incident to v4k+1 positive and assign label 1 to them. The
resulting 2-labelling is then abs-proper, since we get ∣σ(v4k+1)∣ = n−1, while no other
vertex has this absolute sum. Meanwhile, all vertices other than v4k+1 got their
absolute sums increased by 1, so they cannot be in conflict.

• n = 4k + 2 for some k ≥ 1.
We proceed similarly as in the previous case for vertices v1, . . . , v4k+1, and, last, set
all edges incident to v4k+2 positive with label 2. As a result, all other vertices get
their absolute sum increased by 2. Meanwhile, we get ∣σ(v4k+2)∣ = 2n − 2, which is
the absolute sum of no other vertex. Thus, we get an abs-proper 2-labelling.

• n = 4k + 3 for some k ≥ 0.
If k = 0, then G is actually a cycle, in which case it is easily observed that the result
holds (see e.g. the proof of later Theorem 5.5 for formal arguments). When k ≥ 1,
apply the same process as in the previous case, for vertices v1, . . . , v4k+2. It can be
observed that, for every i ∈ {1, . . . ,2k} ∪ {4k + 1,4k + 2}, we have ∣σ(vi)∣ ≥ n, and
1 < ∣σ(vi)∣ < n for every i ∈ {2k + 1, . . . ,4k}. We here set positive with label 1 every
edge incident to v4k+3 going to any vi with i ∈ {1, . . . ,2k} ∪ {4k + 1}, while we set
negative with label 1 all other edges incident to v4k+3. As a result ∣σ(v4k+3)∣ = 0,
while no other vertex has this absolute sum. Meanwhile, we have increased by 1 the
absolute sum of every vi with “large” absolute sum, while we decreased by 1 the other
absolute sums. Thus, it can be checked there are no conflicts.

We have covered all possible cases, so the proof is complete.

Theorem 5.4. Every nice bipartite graph G has a signature H with χΣ(H) ≤ χ∣Σ∣(H) ≤ 2.

Proof. We can assume G is connected. If χΣ(G) ≤ 2, then, by Observation 2.3, we get a
desired signature of G when making all edges the same polarity. So assume now χΣ(G) = 3.
Then, according to [20], it must be that G is an odd multicactus, a graph that, in brief, is
obtained from an initial cycle by repeatedly attaching new cycles onto edges in a tree-like
fashion. For now, let us just insist on the fact that the two parts of the bipartition of G
must have odd cardinality (as otherwise Theorem 3.2 would apply anyway), and that G
necessarily contains six vertices u, v1, v2, v3, v4,w, where all vi’s have degree 2, and such
that uv1, v1v2, v2v3, v3v4, and v4w are edges. Also, d(u), d(w) ≥ 2, and G − {v2, v3} is
connected. See e.g. [5] for more details.
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Consider the graph G′ = G− {v2, v3}. Note that G′ is a (nice) bipartite graph in which
both parts of the bipartition, A′,B′, have even cardinality. Assume w.l.o.g. that v1 ∈ B′
and v4 ∈ A′. By Theorem 3.2, there is a (proper) 2-labelling of G′ through which all vertices
in A′ have odd sum while all vertices in B′ have even sum. By Observation 2.3, by setting
all edges of G′ positive and keeping the same labelling, we obtain a signature of G′ and
a labelling with the same properties. In particular, by that labelling ∣σ(v1)∣ = 2 (since v1
has degree 1 in G′ and v1 ∈ B′; this means uv1 is assigned label 2) and ∣σ(v4)∣ = 1 (since
v4 has degree 1 in G′ and v4 ∈ A′; this means wv4 is assigned label 1), while ∣σ(u)∣ is odd
and ∣σ(w)∣ is even.

We extend this signature and this labelling to the whole of G, by making v1v2 positive,
making v2v3 and v3v4 negative, and assigning label 2 to v1v2 and label 1 to both v2v3
and v3v4. As a result, we get ∣σ(v1)∣ = 4, which is still even (and thus there is no conflict
between u and v1). Similarly, we get ∣σ(v4)∣ = 0 while w is incident only to positive edges,
hence ∣σ(w)∣ ≥ 2 and v4 and w cannot be in conflict. Also, ∣σ(v2)∣ = 1 and ∣σ(v3)∣ = 2,
implying there cannot be any conflict between adjacent vi’s. Thus, we have reached a
signature of G and an abs-proper 2-labelling of it.

Theorem 5.5. Every nice graph G with ∆(G) ≤ 2 has a signature H with χΣ(H) ≤
χ∣Σ∣(H) ≤ 2.

Proof. We can assume G is connected. If G is bipartite, then the result follows from
Theorem 5.4. Otherwise, if G is an odd-length cycle, then we can consider any signature
of G having a positive edge adjacent to both a negative edge and a positive edge. In any
such signature of G we can then apply the arguments in the proof of Theorem 4.2 to get
an abs-proper 2-labelling.

For the rest of this section, we focus on graphs admitting locally irregular signatures.
Our goal is to prove that they cannot be characterised easily, unless P = NP.

Theorem 5.6. Deciding whether a graph admits locally irregular signatures is NP-complete.

Before getting to the proof of Theorem 5.6, we first need some preparation. Namely,
we need to introduce several constructions and gadgets to be used in the proof. These
constructions are illustrated in Figures 5 and 6.

Given a graph G and a vertex u of G, by attaching a triangle uvwu at u we mean
adding a 3-cycle uvwu at u, where v and w are new vertices. Then:

Observation 5.7. Let H be the graph obtained from a graph G by attaching a triangle
uvwu at some vertex u. Then, in every locally irregular signature of H, edges uv and
uw must have different polarities. Furthermore, {∣d±(v)∣, ∣d±(w)∣} = {0,2}. Also, omitting
conflicts involving vertices of G, there are locally irregular signatures of H.

Proof. In every locally irregular signature of H, note that if uv and uw have the same
polarity, then, regardless of the polarity of vw, necessarily d±(v) = d±(w), a contradiction.
Now, assuming, w.l.o.g., that uv is positive while uw is negative, if vw is positive then
d±(v) = 2 and d±(w) = 0, while if vw is negative then d±(v) = 0 and d±(w) = −2.

In what follows, a chair will refer to a graph obtained starting from a path uvw of
length 2 by attaching a triangle at v. This graph has the following properties:

Observation 5.8. Let G be a chair obtained from a path uvw by attaching a triangle vabv
at v. Then, in every locally irregular signature of G, edges uv and vw must have the same
polarity. Furthermore, d±(v) ∈ {−2,2}. Also, there are locally irregular signatures of G.
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(a) Triangle (b) Chair (c) Hourglass

(d) Fish (e) Extended fish

Figure 5: Constructions and gadgets used in the proof of Theorem 5.6, together with (part of) a possible
locally irregular signature. In attaching constructions, the structure is being attached at the white vertex,
the original graph being represented by the gray area. In each picture, positive and negative edges are
represented as red and blue edges.

Proof. By Observation 5.7, in every locally irregular signature of G, edges va and vb
must have different polarities, and thus their contribution to d±(v) is 0. Also, we have
{∣d±(a)∣, ∣d±(b)∣} = {0,2}. Thus, so that v is not in conflict with any of a and b, it must be
that uv and vw have the same polarity, chosen so that d±(v) does not lie in {d±(a), d±(b)}.
Then d±(v) lies in {−2,2}. Last, note that d±(u), d±(w) ∈ {−1,1}.

Now, the hourglass is the graph obtained from the chair with pendant edges vu and
vw by adding the edges uw, ux, and wy, where x and y are two new (degree-1) vertices.

Observation 5.9. Let G be an hourglass obtained from a chair with pendant edges vu and
vw by adding edges uw, ux, and wy. Then, in every locally irregular signature of G, edges
ux and wy must have different polarities. Furthermore, d±(u) and d±(w) must both be odd.
Also, there are locally irregular signatures of G.

Proof. In every locally irregular signature of G, by Observation 5.8 we have, w.l.o.g., that
vu and vw are positive, and d±(v) = 2. Now, if ux and wy had the same polarity, then we
would have d±(u) = d±(w), a contradiction. So, say, ux is positive while wy is negative.
By now having uw positive, we get d±(u) = 3, d±(w) = 1, d±(x) = 1, and d±(y) = −1,
so no two adjacent vertices have the same polarised degree. Regarding d±(u) and d±(w),
note that both values must be odd anyway, since, in any signature of a graph, clearly any
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even-degree vertex must have even polarised degree, and similarly any odd-degree vertex
must have odd polarised degree. Thus, the claim holds.

Given a graph G and a vertex u of G, by attaching a fish uvwxyu at u we mean adding
the following structure to G. Add first an hourglass to the graph, with pendant edges wv
and xy, where we have that wx is an edge. Then add the edges vu and yu, and finally
attach both a triangle at v and a triangle at y.

Observation 5.10. Let H be the graph obtained from a graph G by attaching a fish uvwxyu
at some vertex u. Then, in every locally irregular signature of H, edges uv and uy must
have different polarities. Furthermore, {d±(v), d±(y)} = {−2,2}. Also, omitting conflicts
involving vertices of G, there are locally irregular signatures of H.

Proof. Consider a locally irregular signature of H. By Observation 5.9, by how H was
obtained from G through adding an hourglass, we must have, say, that wv is positive and
xy is negative. Now note that the structure around v forms a chair, and similarly for the
structure around y. By Observation 5.8, since wv is positive and xy is negative, it must be
that vu is positive while yu is negative. Also, d±(v) = 2 while d±(y) = −2. The last part of
the claim follows from Observations 5.8 and 5.9, which guarantee the chairs and hourglass
in H can be signed as desired. In particular, note that vertices of even degree and vertices
of odd degree in H cannot have the same polarised degree in a signature. In particular,
this implies v and w cannot be in conflict, and similarly for x and y.

Now, the extended fish is the graph obtained as follows. Start from a vertex u, and
attach both a triangle and a fish at u. Then add four edges uv, uw,ux, uy, where v,w, x, y
are new (degree-1) vertices.

Observation 5.11. Let G be an extended fish with pendant edges uv, uw,ux, uy. Then,
in every locally irregular signature of G, edges uv, uw,ux, uy must have the same polarity.
Furthermore, d±(u) ∈ {−4,4}. Also, there are locally irregular signatures of G.

Proof. Consider a locally irregular signature of G. By Observation 5.7, in the triangle
attached at u the two edges incident to u must have distinct polarities, and u, in that tri-
angle, is adjacent to a vertex with polarised degree 0 (while the other vertex can essentially
be of any polarised degree in {−2,2}). By Observation 5.10, for the fish attached at u the
two edges incident to u must have distinct polarities, and u is adjacent to a vertex with
polarised degree −2 and to one with polarised degree 2. At this point, note that the four
edges incident to u being part of the attached triangle and fish bring, in total, 0 to d±(u).
Since the degree of u in G is even, note that, in the signature, necessarily d±(u) is even.
Now, because we cannot have d±(u) ∈ {−2,0,2}, we get that all of uv, uw,ux, uy must have
the same polarity so that d±(u) ∈ {−4,4}.

For any k ≥ 1, the k-line is obtained as follows. Start from k copies of the extended
fish, where, for each ith copy, the four pendant edges are uivi, uiwi, uixi, uiyi. Now, for
every i ∈ {1, . . . , k − 1}, identify vertices yi and vi+1 to a single vertex zi,i+1, and attach a
triangle at zi,i+1. We prove the following:

Observation 5.12. Let G be a k-line for some k ≥ 1, with main path u1z1,2 . . . zk−1,kuk
such that ui is adjacent to two pendant vertices wi and xi for every i ∈ {1, . . . , k}, vertex
u1 is adjacent to another pendant vertex v1, and vertex uk is adjacent to another pendant
vertex yk. Then, in every locally irregular signature of G, all uivi’s, uiwi’s, uixi’s, uiyi’s,
uizi,i+1’s, and zi,i+1ui+1’s have the same polarity. Furthermore, for every i ∈ {1, . . . , k}, we
have d±(ui) ∈ {−4,4}. Also, there are locally irregular signatures of G.

27



(a) 3-line

(b) double 3-line

Figure 6: Gadgets used in the proof of Theorem 5.6, together with a locally irregular signature. In each
picture, positive and negative edges are represented as red and blue edges.

Proof. Consider a locally irregular signature of G. Recall that, by construction, for every
i ∈ {1, . . . , k}, vertex ui belongs to an extended fish. From Observation 5.11 we get that all
existing edges in {uivi, uiwi, uixi, uiyi, uizi,i+1, zi−1,iui} have the same polarity, and d±(ui) ∈
{−4,4}. Furthermore, by Observation 5.7, for every zi,i+1 the two incident edges from the
attached triangle bring 0 to d±(zi,i+1), while, in that triangle, zi,i+1 is adjacent to a vertex
with polarised degree 0. Now observe that if, for some i, we have, say, that uizi,i+1 is positive
while zi,i+1ui+1 is negative, then d±(zi,i+1) = 0, and we get a conflict (recall Observation
5.8, since the structure around zi,i+1 forms a chair). Meanwhile, if both edges have the
same polarity, then d±(zi,i+1) ∈ {−2,2}, implying zi,i+1 is in conflict with neither ui nor
ui+1. Also, the unique edge of the triangle attached at zi,i+1 not incident to zi,i+1 can be
polarised so that there is no inner conflict. Then the claim follows.

Last, for any k ≥ 1, the double k-line is obtained as follows. Start from an hourglass
with pendant edges ux and wy (where uw is an edge, and x and y are degree-1 vertices).
Now add a k-line to the graph, and, assuming one of its pendant edges is ab (where a has
degree 1 and b is incident to three pendant edges), identify the edges ux and ab, that is,
identify x and b and identify u and a. Similarly, add another k-line to the graph, and
identify one of its similar pendant edges and wy.
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Observation 5.13. Let G be a double k-line for some k ≥ 1, obtained as above from an
hourglass with pendant edges ux and wy, by merging ux and a pendant edge of a k-line
L1, and by merging wy and a pendant edge of a k-line L2. Then, in every locally irregular
signature of G, all pendant edges of L1 have the same polarity, all pendant edges of L2 have
the same polarity, and these two polarities are different. Furthermore, for every pendant
edge zz′ where z′ is the degree-1 vertex, we have d±(z) ∈ {−4,4}. Also, there are locally
irregular signatures of G.

Proof. Consider a locally irregular signature of G. By Observation 5.9, since ux and wy
are part of an hourglass, it must be, say, that ux is positive while wy is negative. Now,
since ux is part of a k-line and ux is positive, we get, by Observation 5.12, that all pendant
edges of L1 must be positive. Furthermore, we have d±(x) = 4, and so we have no conflict
between u and x. Likewise, for every pendant edge zz′ of L1 where z′ has degree 1, we
have d±(z) = 4. We derive the same conclusions regarding L2. In particular, since wy
is part of a k-line and wy is negative, all pendant edges of L2 must be negative, we have
d±(y) = −4, and thus there is no conflict between w and y. Also, for every pendant edge zz′

of L2 where z′ has degree 1, we have d±(z) = −4. Thus the claim holds. In particular, the
last, existential part follows from previous observations. Let us remind also that vertices of
even degree and vertices of odd degree in G cannot have the same polarised degree in any
signature. This guarantees, in particular, that u and w (which have degree 3 in G) cannot
be in conflict with their neighbours not in the hourglass (since they have degree 8).

We are finally ready for the proof of Theorem 5.6.

Proof of Theorem 5.6. Since the problem is clearly in NP, let us focus on proving its NP-
hardness. We do it by reduction from the Cubic Monotone 1-in-3 SAT problem, which
was indeed proved to be NP-hard [19]. An instance of this problem is a 3CNF formula F
over clauses C1, . . . ,Cm and variables x1, . . . , xn, where every clause contains exactly three
distinct (positive) variables and every variable appears in exactly three (distinct) clauses.
The question is whether F can be satisfied in a 1-in-3 way, that is, whether there is a truth
assignment to the variables such that every clause contains exactly one true variable.

From an instance F of Cubic Monotone 1-in-3 SAT, we construct, in polynomial
time, a graph G such that F is 1-in-3 satisfiable if and only if G admits a locally irregular
signature. The construction of G goes as follows:

• We start from the cubic bipartite graph modelling the structure of F . That is, we
add a clause vertex ci for every clause Ci in F , a variable vertex xi for every variable
xi in F , and a formula edge cjxi whenever, in F , variable xi appears in clause Cj .

• Then, we add to the graph a double 2m-line L. We denote by L− and L+ the two
k-lines that were used in the construction of L.

• To every clause vertex ci, we first attach a fish F (ci). We also pick two pendant
edges a(ci)a′(ci) and b(ci)b′(ci) of L+, where a(ci) and b(ci) have degree 1 and
a′(ci) ≠ b′(ci), and one pendant edge c(ci)c′(ci) of L−, where c(ci) has degree 1, and
identify ci and each of a(ci), b(ci), and c(ci). Since the pendant edges of L− and L+

are attached at 2m distinct vertices, this whole procedure can be performed properly.

• Last, to every variable vertex xi, we attach a pendant edge xix
′

i (where x′i is a new
vertex), a triangle, and a fish. Note that, together with the three formula edges
incident to xi, these structures actually form an extended fish.
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Clearly, the construction of G is achieved in polynomial time.
We claim that we have the desired equivalence between F and G. To see this is true,

let us analyse how a locally irregular signature of G should behave.

• By Observation 5.13, in L, all pendant edges in L−, including those attached to clause
vertices, must have the same polarity, say they are negative. Also, if zz′ is such an
edge where z′ has/had degree 1, then d±(z) = −4. Likewise, all pendant edges in L+

must be positive, and if zz′ is such an edge where z′ has/had degree 1 then d±(z) = 4.

• By Observation 5.10, the fish F (ci) attached to any clause vertex ci brings 0 to
d±(ci), and, in that fish, ci is adjacent both to a vertex with polarised degree −2 and
to a vertex with polarised degree 2. Furthermore, due to previous arguments, two
edges incident to ci going to L are positive, while one edge going to L is negative.

As a result, if we denote by α ∈ {0,1,2,3} the number of positive formula edges
incident to ci and by β ∈ {0,1,2,3} the number of negative ones (α + β = 3), then it
cannot be that:

– α = 3 and β = 0, as we would get d±(ci) = 4;
– α = 2 and β = 1, as we would get d±(ci) = 2; or

– α = 0 and β = 3, as we would get d±(ci) = −2.

Thus, the only possible option is to have α = 1 and β = 2, which yields d±(ci) = 0.

• As mentioned earlier, around every variable vertex xi there is actually an extended
fish. By Observation 5.11, the three formula edges and the pendant edge xix′i incident
to xi must thus have the same polarity. Furthermore, d±(xi) ∈ {−4,4}.

• Note, then, that a clause vertex and an adjacent variable vertex cannot be in conflict.

To see now that the equivalence holds, consider, by a locally irregular signature of
G, assuming the pendant edges of L+ are positive (while those of L− are negative), that
having a formula edge cjxi positive models, by a truth assignment to the variables of F ,
that variable xi brings truth value true to Cj , while it brings truth value false otherwise.
Then, as noticed above, it must be that every clause vertex is incident to exactly one
positive formula edge, which thus models that a clause is considered satisfied if and only if
it contains only one true variable. Meanwhile, all three formula edges incident to a variable
vertex must have the same polarity, which models that a variable brings the same truth
value to every clause that contains it.

From these arguments, a 1-in-3 truth assignment to the variables of F can be deduced
from a locally irregular signature of G, and vice versa. This concludes the proof.

Through the exact same reduction scheme as in the proof of Theorem 5.6, but with
slightly different gadgets and constructions, it is worth mentioning we could also prove
that it is NP-complete to determine whether a given graph admits a locally abs-irregular
signature. As this would be a bit overwhelming to the reader, we omit a proof.

6. Conclusion

In this work, we have introduced two generalisations of the 1-2-3 Conjecture to signed
graphs. As mentioned in Section 2, these two variants indeed encapsulate the original
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one, which we believe is of interest now that Keusch came up with a full proof of the 1-2-3
Conjecture [18]. We thus raised Conjecture 4.1 as a new main conjecture, supported by the
facts that we have not been able to come up with signed graphs G satisfying χ∣Σ∣(G) > 3,
and that the parameter χ∣Σ∣ is bounded above by a constant (recall Theorem 3.6).

Following our investigations, we believe many aspects of interest could be worth con-
sidering further; for instance:

• Our main bound in Theorem 3.6 was obtained by adapting the proof of the 1-2-3-4-5
result from [15], which is a bit outdated now that a 1-2-3 result was provided in [18].
It could be interesting to investigate whether the arguments and tools from that
latter work could be adapted to our context. More generally speaking, it would be
interesting to understand further to what extent other tools and techniques for proper
labellings adapt to our context. Recall, for instance, that it is far from clear regarding
modulo arguments and abs-proper labellings (refer e.g. to Section 3). Likewise, it
seems to us that our proof of Theorem 3.6 cannot be improved upon in general, so
it might be necessary to introduce new ideas to go further with the ideas from [15].

• Towards Conjecture 4.1, it could be interesting to consider other classes of signed
graphs. In particular, Theorem 4.3 could be improved through either decreasing the
bound or considering signed graphs with larger maximum average degree. One could
also wonder about signatures of other classical families of graphs, such as complete
graphs, or graphs with bounded maximum degree. Such concerns could also be
considered regarding Conjecture 5.1, which is another interesting problem.

• It could be interesting to investigate further the discrepancies between abs-proper
and proper labellings of signed graphs. Through Observation 2.6 and Theorem 2.7,
recall that we proved that the two associated parameters can differ by 1. Due to
Conjecture 4.1, we would be interested in knowing, for instance, whether there are
signed graphs G with χΣ(G) = 1 < 3 = χ∣Σ∣(G), or, in other words, whether the
difference between the two parameters can be 2.

• Recall that we have exhibited, in Theorem 2.8, examples of signed trees requiring all
of labels 1,2,3 in their abs-proper labellings, thereby showing that signing a nice tree
might make the number of needed labels by a proper labelling rise. As far as we can
tell, the family of signed trees with maximum degree 3 we have provided (which is
better visualised through Figure 3) might be the only one. We would be interested
in knowing if there are other such signed trees.

• Recall that, similarly as in the unsigned context, bipartite signed graphs can be
3-labelled properly (by Theorem 3.3), and that this is best possible (due to Observa-
tion 2.3). By a result from [20], there is a good characterisation of bipartite graphs G
with χΣ(G) = 3. We wonder whether it can be adapted to our context. In particular,
we were not able to design an NP-completeness proof in order to show that these
signed graphs cannot be characterised easily.

Many other directions for further work on the topic could also be worth investigating.
For instance, there are many variants of the 1-2-3 Conjecture, such as its list and total
variants, and one could investigate how these generalise to signed graphs. Also, as described
in the introductory section, there are actually plenty of ways to generalise proper labellings
to signed graphs. Thus, one could, as well, investigate other variations, to see whether
interesting problems and notions result.
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Appendix: Proof of Claim 4.4

We here provide a thorough proof of Claim 4.4. We prove that G cannot contain any of
Configurations (C1) to (C7) following that order. Thus, whenever proving that G cannot
contain some Configuration (Ci), it is assumed that G cannot contain the previous ones
(C1),. . . ,(Ci−1). We start by proving an easy lemma, and raising an obvious consequence.

Lemma 6.1. For any a, b ∈ Z with a ≠ b, there is at most one c ∈ Z such that ∣a+c∣ = ∣b+c∣.

Proof. If a+ c and b+ c have the same sign, then ∣a+ c∣− ∣b+ c∣ = a− b. Thus, ∣a+ c∣ = ∣b+ c∣
if and only if a = b, which violates one of our hypotheses on a and b. Now, if a+ c and b+ c
are of different signs, then ∣a + c∣ − ∣b + c∣ = ∣a + b + 2c∣. Thus, ∣a + c∣ = ∣b + c∣ if and only if
c = −(a+b)2 and we have −(a+b)2 ∈ Z.

Corollary 6.2. Let G be a signed graph, uv be an edge of G, and consider H = G − {uv}
and a labelling ℓ of H. If σ(u) ≠ σ(v) (by ℓ in H), then, when extending ℓ to G (thus
to uv), there is at most one label yielding ∣σ(u)∣ = ∣σ(v)∣ for the resulting labelling of G.
Furthermore, if by an extension of ℓ to G we do get ∣σ(u)∣ = ∣σ(v)∣, then, in H, we must
have σ(u) and σ(v) being of the same parity by ℓ.

In the proof of Claim 4.4, we often use the fact that if u and v are two adjacent vertices
in a signed graph, and we have a partial labelling such that all edges incident to v are
labelled and we have to extend the labelling to edges incident to u, then, to guarantee
∣σ(u)∣ ≠ ∣σ(v)∣, it suffices to assign labels so that σ(u) /∈ {−σ(v), σ(v)}.

We start by proving that G cannot contain Configurations (C1) and (C2).

Proof of Configuration (C1). Set k ≥ 2. Assume G contains a k-vertex v adjacent to k − 1
1-vertices u1, . . . , uk−1, and denote by w the last neighbour of v. We may assume that
d(w) ≥ 2, as otherwise G would be a signed star and we would get a contradiction from
e.g. Theorem 3.3. In particular, this implies that the graph H = G− {u1, . . . , uk−1} is nice.
Since mad(H) < 3 and H is smaller than G, there is an abs-proper 7-labelling ℓ of H, which
we wish to extend to G, to get a contradiction. W.l.o.g., we may assume vw is positive.

Assume first k = 2. By Corollary 6.2, we get that there is at most one label in {1, . . . ,7}
which, when assigned to vu1, yields ∣σ(v)∣ = ∣σ(u1)∣. Among the at least six other labels, we
must assign to vu1 one that does not yield ∣σ(v)∣ = ∣σ(w)∣. Since this is achieved through
guaranteeing σ(v) /∈ {−σ(w), σ(w)}, we have enough labels in hand to avoid this. Thus,
there is a proper extension of ℓ to G.

Assume second that k = 3. Assign any label to vu1 so that σ(v) ≠ 0. Again, by
Corollary 6.2, there is at most one label in {1, . . . ,7} which, when assigned to vu2, yields
∣σ(v)∣ = ∣σ(u2)∣. Through assigning the other at least six labels to vu2, note that we can
modify σ(v) in six possible ways. In particular, one of these ways must yield the resulting
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σ(v) does not lie in {−σ(u1), σ(u1),−σ(w), σ(w)}. This results in an abs-proper 7-labelling
of G.

Now assume k ≥ 4. Since we are assigning labels in {1, . . . ,7}, then, when extending ℓ
to the vui’s, the ui’s will get sums in {−7, . . . ,−1,1, . . . ,7}. Also, to make sure we do not
get a conflict between v and w, it suffices to guarantee σ(v) /∈ {−σ(w), σ(w)}. Meanwhile,
by labelling the vui’s we reach 6(k − 1) + 1 = 6k − 5 values as σ(v), while the number of
forbidden values is at most 14 + 2 = 16. Since k ≥ 4, we can thus 7-label the vui’s without
creating conflicts, and get an abs-proper 7-labelling of G.

Proof of Configuration (C2). Assume G contains a 5−-vertex v adjacent to a 1-vertex u
and to a 3−-vertex w. Set H = G − {vu, vw}. We claim H must be nice. Indeed, if H
contains a signed K2 containing v, then it must be that, in G, vertex v is a 3-vertex with
two 1-neighbours, and thus that G contains Configuration (C1). Otherwise, if H contains
a signed K2 containing w, then, in G, it must be that w is a 2-vertex with a 1-neighbour,
and, again, that G contains Configuration (C1). Thus, H can indeed be assumed to be
nice, and, by minimality of G, it admits an abs-proper 7-labelling ℓ which we wish to
extend to one of G to get a contradiction.

We start by assigning a label to vw without creating any conflict between w and
its neighbours different from v. To be safe, note that it suffices to label vw so that,
denoting the at most two other neighbours of w by x1 and x2, we eventually get σ(w) /∈
{−σ(x1), σ(x1),−σ(x2), σ(x2)}. Since, through assigning a label in {1, . . . ,7} to vw, we
can alter σ(w) in seven possible way, at least three values in {1, . . . ,7} can be assigned in
vw while avoiding these conflicts. We assign to vw any of these at least three values that
also guarantees we get σ(v) ≠ 0; clearly, such exists. Additionally, we can also guarantee
σ(v) /∈ {−4,4}, since {1, . . . ,7} is a set of cardinality 7 (while 4 − (−4) + 1 = 9).

It now remains to label uv. When labelling this edge, we must guarantee v does not
get in conflict with w, with its at most three neighbours in H, and with u. Regarding
the latter conflict, by Corollary 6.2 we know at least six values in {1, . . . ,7} can safely be
assigned to uv. If at least six of these values result, as σ(v), in at least six distinct values
with pairwise distinct absolute values (as a particular case, note that this is fulfilled if they
all have the same sign), then one of them can be assigned to uv. Indeed, in that case, w
and the other (at most three) neighbours of v in H each forbids one value as σ(v), and
thus they forbid at most four of these at least six values. Likewise, note that if, prior to
labelling uv, we have that σ(v) is odd, then, actually, by Corollary 6.2 no conflict can arise
between u and v when labelling uv. In that case, the previous arguments would also work
w.r.t. to v and its other neighbours if we only have a set of five labels we can assign to uv.

We now describe formally how uv can be labelled. If σ(v) and uv are both positive
(or both negative), then note that assigning any label in {1, . . . ,7} to uv results in σ(v)
being positive, and thus we can reach seven values as σ(v) all of which have the same sign,
in which case we can extend the labelling as explained above. So now assume, w.l.o.g.,
that uv is negative and σ(v) is strictly positive prior to labelling uv. Recall that we have
assumed σ(v) /∈ {−4,4}, which is why we do not have to consider the case where σ(v) = 4
in what follows.

• If σ(v) ≥ 6, then, when assigning labels in {1, . . . ,7} to uv we can alter the absolute
sum of v to any of σ(v) − 1, . . . , σ(v) − 6, which are six distinct values all of which
have the same sign. Thus, we can extend ℓ as previously.

• If σ(v) = 5, then we can alter the absolute sum of v to any of 4,3,2,1,0, thus to only
five distinct values with the same sign, which here is sufficient, by arguments above,
since σ(v) is odd.
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• If σ(v) = 3, then we can alter the absolute sum of v to any of 0,−1,−2,−3,−4, and
so we can be done as earlier. Again, five values suffice here, since σ(v) is odd.

• If σ(v) ∈ {1,2}, then we can alter the absolute sum of v to any of 0,−1,−2,−3,−4,−5,
thus to six possible values. Again, this is sufficient.

In all cases, we can thus reach an abs-proper 7-labelling of G, a contradiction.

Before proceeding with the rest of the proof, we need to introduce two lemmas first.
These deal with the fact that if some certain sparse structures are incident to some vertex,
then, when extending a partial labelling, there are several possibilities around that vertex.

Lemma 6.3. Let G be a signed graph containing a vertex v with two neighbours u and w,
where v is a 3-vertex, u is a 1-vertex, and vw is positive. Assume further H = G−{vu, vw}
admits an abs-proper 7-labelling ℓ. Then, we can extend ℓ to a 7-labelling of G where v is
not involved in conflicts, and there are six distinct labels that can be assigned to vw while
achieving this.

Proof. We first extend ℓ to vw so that the resulting σ(v) is not 0. Since we are assigning
labels in {1, . . . ,7}, there are at least six values we can assign to vw while achieving these
conditions, which is one of the requirements of the claim. Assuming now vw is labelled,
we need to prove that we can label vu so that v is not involved in any conflict. When
assigning a label in {1, . . . ,7} to vu, we need to guarantee that v does not get in conflict
with w, with its third neighbour x different from u and w, and with u. To guarantee the
former two conflicts are avoided, it is sufficient to guarantee the eventual sum of v does
not lies in {−σ(w), σ(w),−σ(x), σ(x)}, and this forbids at most four values in {1, . . . ,7}
as the label of uv. Likewise, there is at most one value in {1, . . . ,7} that can yield the
former conflict, by Corollary 6.2. Thus, at least two values in {1, . . . ,7} can be assigned
to uv, without creating any conflicts between v and its neighbours. The labelling can thus
be extended, and the claim holds.

Lemma 6.4. Let G be a signed graph containing a vertex u incident to a pendant triangle
uvwu. Assume further H = G − {v,w} admits an abs-proper 7-labelling ℓ. Then, we can
extend ℓ to a 7-labelling of G where v and w are not involved in conflicts, and this can be
achieved through altering σ(v) in at least eleven ways.

Proof. Recall that v and w have degree 2, by the definition of a pendant triangle. We
extend ℓ to G so that the label assigned to uv is different from that assigned to uw. Each
of uv and uw can be assigned any label in {1, . . . ,7}. If uv and uw have the same polarity,
then, through labelling uv and uw with distinct labels, we can alter σ(v) by any value in
{3, . . . ,13}, which set has cardinality 11. Now, if uv and uw have distinct polarities, then
we can alter σ(v) by any value in {−6, . . . ,−1,1, . . . ,6}, which set has cardinality 12. To
be done, it now remains to prove that, whatever of these pairs of labels we assign to uv
and uw, we can label vw so that v and w are not involved in conflicts. Assume thus uv
and uw have been labelled with distinct labels, and thus that σ(v) is fixed. Then, at this
point, we have σ(v) ≠ σ(w). By Corollary 6.2, there is thus at most one value in {1, . . . ,7}
which, when assigned to vw, yields a conflict between v and w. Now, so that we do not
get a conflict with u, it suffices to guarantee σ(v), σ(w) /∈ {−σ(u), σ(u)}, which forbids at
most four other values from {1, . . . ,7}. Thus, there are at least two values that can be
assigned to vw so that there is no conflict between u, and v and w.
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We now proceed with Configurations (C3), (C4), and (C5). Recall that, in these, it is
granted for the central k-vertex that most of its neighbourhood is part of the configuration.
Actually, at most two of its neighbours are not part of the configuration.

Proof of Configuration (C3). Assume G contains a k-vertex v being incident to α pendant
triangles vu1u

′

1v, . . . , vuαu
′

α, v, and being adjacent to β weak 3-vertices w1, . . . ,wβ and to
a 2−-vertex x being not part of the pendant triangles; where α + β ≥ 1 and k ≤ 2α + β + 3.
Recall that, because G cannot contain Configuration (C1), each wi is adjacent to exactly
one 1-vertex, which we denote by w′i. Let H be the signed graph obtained from G by
removing all ui’s, all u′i’s, the edge vx, as well as all uwi’s and wiw

′

i’s. Note that H is nice.
Indeed, in H any wi cannot be part of a signed K2: since wi’s is the sole 1-neighbour of
wi in G, this would mean wi would have to be adjacent to another wj or to x, in which
case we would deduce G contains Configuration (C2). For the same reasons, x cannot be
part of a signed K2. Last, v is either isolated in H, or it is adjacent to 3+-vertices. Thus
we can assume H is nice, and that there is, by minimality of G, an abs-proper 7-labelling
ℓ of H we wish to extend to one of G, thereby getting a contradiction.

We start by extending ℓ to the vui’s, vu′i’s, and vwi’s as follows.

• If β ≥ 1, then, for every i ∈ {1, . . . , α}, we assign label 1 to vui and label 2 to vu′i,
and, for every i ∈ {1, . . . , β − 1}, any label to vwi so that σ(wi) ≠ 0.

• Otherwise, if β = 0, then, for every i ∈ {1, . . . , α − 1}, we assign label 1 to vui and
label 2 to vu′i.

Now:

• If β ≥ 1, then vwβ has not been labelled. Here, we assign a label to vwβ so that
σ(v) and σ(x) have different parities, and so that σ(wβ) ≠ 0. This is possible, since
the latter constraint forbids at most one value in {1, . . . ,7} to be assigned, while the
former one forbids at most four (since we assign labels in {1, . . . ,7}).

• Otherwise, if β = 0, then vuα and vu′α have not been labelled. In this case, we assign
label 1 to vuα, and label either 2 or 3 to vu′α so that σ(v) and σ(x) have different
parities. Again, this is possible, since, depending on the polarities of vuα and vu′α,
assigning label 2 to vu′α, together with label 1 assigned to vuα, alters σ(v) by either
−3, −1, 1, or 3, while assigning label 3 to vu′α alters σ(v) by either −4, −2, 2, or 4.
Thus, the two options do not affect the parity of σ(v) the same way.

At this point, note that vx is the only edge incident to v that remains to be labelled.
Since α+β ≥ 1, note that, currently, σ(v) and σ(x) have different parities. By Corollary 6.2,
whatever label we assign to vx we cannot get a conflict between v and x. We assign a label
to vx so that x is not involved in any conflict. Since x is a 2−-vertex in G, there is at most
one neighbour x′ of x in H. Clearly, if x′ exists, then we can assign a label in {1, . . . ,7}
to vx so that σ(x) /∈ {−σ(x′), σ(x′)}. Otherwise, if x′ does not exist, then we assign any
label to vx. In both cases, x is not involved into any conflict. Thus, w.r.t. x, at least five
labels can be assigned to vx. Recall that v also has at most two neighbours in H; so that
we do not get a conflict between v and these, there might be up to four more values that
cannot be assigned to vx. Thus, in total, there is at least one value in {1, . . . ,7} we can
freely assign to vx without raising conflicts involving x or v.

It now remains to label all edges uiu
′

i and wiw
′

i. By Lemmas 6.3 and 6.4, this can be
done without introducing conflicts. So we get an abs-proper 7-labelling of G.
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For Configuration (C4), we need an algebraic tool.

Theorem 6.5 (Combinatorial Nullstellensatz [1]). Let F be an arbitrary field, and P =
P (X1, . . . ,Xp) be a polynomial in F[X1, . . . ,Xp]. Suppose that the coefficient of a monomial
Xk1

1 . . .X
kp
p , where every ki is a non-negative integer, is non-zero in P and the degree of

P equals ∑p
i=1 ki. If S1, . . . , Sp are subsets of F with ∣Si∣ > ki for every i ∈ {1, . . . , p}, then

there are z1 ∈ S1, . . . , zp ∈ Sp so that P (z1, . . . , zp) ≠ 0.

Proof of Configuration (C4). Assume G contains a k-vertex v being incident to α pendant
triangles vu1u

′

1v, . . . , vuαu
′

α, v, and adjacent to β weak 3-vertices w1, . . . ,wβ and to γ ≥ 2
2−-vertices x1, . . . , xγ being not part of pendant triangles. Similarly as in the proof of
Configuration (C3), we can assume every wi is adjacent to a unique 1-vertex w′i. Also, for
every i ∈ {1, . . . , γ}, we denote by x′i the neighbour of xi different from v (if it exists).

Here, we consider H, the signed subgraph obtained from G by removing all ui’s, u′i’s,
vwi’s, wiw

′

i’s, and vxi’s. As in the proof of Configuration (C3), H can be assumed nice;
by minimality of G, there is thus an abs-proper 7-labelling ℓ of H we aim to extend to G.

We start by extending ℓ by assigning label 1 to all vui’s, label 2 to all vu′i’s, and, for
every i ∈ {1, . . . , β}, any label to vwi so that σ(wi) ≠ 0. Our goal, now, is to show we can
label the vxi’s so that, in G, there is no conflict involving v and its at most two neighbours
in H and the xi’s, nor between any xi and x′i (if it exists). For that, we make use of the
Combinatorial Nullstellensatz; we thus need to model the situation as a polynomial P .

For every i ∈ {1, . . . , γ}, let Xi be a variable associated to the label to be assigned to
vxi. Also, if x′i exists, then we set li = ℓ(xix′i) if xix′i is positive, and we set li = −ℓ(xix′i)
otherwise; while, if x′i does not exist, then we set li = 0. Similarly, we set si = ∣σ(x′i)∣ if x′i
exists, and si = 0 otherwise. Recall that v also has at most two 3+-neighbours vδ and vϵ
in H; we denote by sδ and sϵ their absolute sums by ℓ (where these values are set as 0 in
case some neighbours do not exist). Last, denote by d the current value of σ(v).

Each of the labelling constraints is to be represented by factors in P . Namely:

• For every i ∈ {1, . . . , γ}, the constraint between xi and x′i is represented by two factors,
((Xi + li) − (si)) and ((Xi + li) + (si)).

• For every i ∈ {1, . . . , γ}, the constraint between v and xi is represented by two factors,
((d +X1 + ⋅ ⋅ ⋅ +Xγ) − (Xi + li)) and ((d +X1 + ⋅ ⋅ ⋅ +Xγ) + (Xi + li)).

• The constraint between v and vδ is represented by two factors, ((d+X1+⋅ ⋅ ⋅+Xγ)−(sδ))
and ((d +X1 + ⋅ ⋅ ⋅ +Xγ) + (sδ)).

• The constraint between v and vϵ is represented by two factors, ((d+X1+⋅ ⋅ ⋅+Xγ)−(sϵ))
and ((d +X1 + ⋅ ⋅ ⋅ +Xγ) + (sϵ)).

So, P is the product of all these factors. If we can find z1, . . . , zγ such that ∣z1∣, . . . , ∣zγ ∣ ∈
{1, . . . ,7}, every zi is positive if and only if vxi is positive, and P (z1, . . . , zγ) ≠ 0, then we
deduce that, by assigning label ∣zi∣ to every vxi we get an extension of the labelling to G
where we have σ(xi) /∈ {−σ(x′i), σ(xi)} for every i ∈ {1, . . . , γ}, and, for every neighbour y of
v for which the constraint is modelled above, we have σ(v) /∈ {−σ(y), σ(y)}. In particular,
this means the xi’s and v cannot be in conflict with its neighbours in G (saved the ui’s,
the u′i’s, and the wi’s, which we will deal with eventually).

So that we can apply the Combinatorial Nullstellensatz, we need to consider a well-
chosen monomial of maximum degree from the expansion of P . Note that P contains
4γ+4 factors, and, in these, the variable coefficients are strictly positive, and every variable

37



exponent is 1. From this, we get that the degree of P is 4γ + 4, and that a monomial of
maximum degree in the expansion of P is obtained by picking one variable in each factor.
In particular, recall that d, the li’s, and the si’s are constant terms.

So, to label the remaining edges incident to v properly, by the Combinatorial Null-
stellensatz it suffices to show there is a monomial ∏γ

i=1X
ki
i where ∑γ

i=1 ki = 4γ + 4 and all
ki’s are at most 6. Since the variable coefficients are positive, it suffices to show that, by
picking one variable in each factor of P , we can obtain such a monomial where all ki’s are
at most 6. One way to proceed, for instance, is as follows.

• For every i ∈ {1, . . . , γ}, pick variable Xi in both ((Xi+li)−(si)) and ((Xi+li)+(si)).

• For every i ∈ {1, . . . , γ}, pick variable Xi+1 in ((d +X1 + ⋅ ⋅ ⋅ +Xγ) − (Xi + li)), where
X1 is regarded as Xγ+1, and pick variable Xi in ((d +X1 + ⋅ ⋅ ⋅ +Xγ) + (Xi + li)).

• Pick variable X1 in both ((d +X1 + ⋅ ⋅ ⋅ +Xγ) − (sδ)) and ((d +X1 + ⋅ ⋅ ⋅ +Xγ) + (sδ)).

• Pick variable X2 in both ((d +X1 + ⋅ ⋅ ⋅ +Xγ) − (sϵ)) and ((d +X1 + ⋅ ⋅ ⋅ +Xγ) + (sϵ)).

This way of picking variables in the factors of P results in monomial ∏γ
i=1X

ki
i , where

k1 = k2 = 6 while k3 = ⋅ ⋅ ⋅ = kγ = 4. Besides, this monomial is of maximum degree, 4γ+4, and,
as mentioned above, it is of non-zero coefficient. As explained earlier, by the Combinatorial
Nullstellensatz, we can assign values in {1, . . . ,7} to variables in {z1, . . . , zγ} representing
positive edges and values in {−7, . . . ,−1} to variables in {z1, . . . , zγ} representing negative
edges, such that P (z1, . . . , zγ) ≠ 0, and, due to how P models the constraints around v
and the xi’s, we deduce we can assign labels in {1, . . . ,7} to the vxi’s (essentially, we just
assign label zi to each edge vxi) so that the xi’s are not in conflict with their neighbours,
and, the ui’s, u′i’s, and wi’s apart, v also is not in conflict with its neighbours.

Now, for every i ∈ {1, . . . , α}, we can label the edge uiu
′

i so that ui and u′i are not
involved in conflicts, by Lemma 6.4. Similarly, for every i ∈ {1, . . . , β} we can label wiw

′

i

so that wi is not involved into any conflict, by Lemma 6.3. Eventually, this results in an
abs-proper 7-labelling of G.

Proof of Configuration (C5). The proof goes similarly as the previous ones for Configu-
rations (C3) and (C4). Assume G contains a k-vertex v incident to α pendant triangles
vu1u

′

1v, . . . , vuαu
′

α, v, and adjacent to β weak 3-vertices w1, . . . ,wβ , where each wi is ad-
jacent to a unique 1-vertex w′i (this neighbour is indeed unique, as, again, otherwise G
would contain Configuration (C1)). We consider H the signed graph obtained from G by
removing the ui’s and the u′i’s, as well as all vwi’s and wiw

′

i’s. By similar arguments as
earlier, H is nice and thus admits an abs-proper 7-labelling ℓ we wish to extend to G.

Since α + β ≥ 1, we suppose β > 0, as the case where β = 0 and α ≥ 1 can be treated
analogously. We start by assigning label 1 to every vui, label 2 to every vu′i, and any
labels to vw1, . . . , vwβ−1 so that σ(wi) ≠ 0 for every i. By Lemma 6.3, we get that we can
label vwβ is six different ways while preserving σ(wi) ≠ 0 for every i. We label vwβ so
that v is not in conflict with its at most two neighbours, say x and x′, that are neither
one of the ui’s, u′i’s, and wi’s. So we want σ(v) /∈ {−σ(x), σ(x),−σ(x′), σ(x′)}, which
can be achieved since there at least six ways to label vwβ , thus to alter σ(v), while still
guaranteeing σ(wβ) ≠ 0.

So, we get to the point where all edges incident to v are labelled, and, as before,
according to Lemmas 6.3 and 6.4 we can label the remaining edges so that no conflicts
arise. Eventually we thus get an abs-proper 7-labelling of G.
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Proof of Configuration (C6). Assume G contains a 2-vertex v adjacent to both a 2-vertex u
and a 3−-vertex w. Since G cannot contain Configuration (C1), we can assume w actually
has degree 2 or 3. In this case, we consider H = G − v. Note that H must be nice, as
otherwise either u would have a 1-neighbour in G, or w would be, in G, a 2-vertex with a
1-neighbour, and in both cases we would deduce that G contains Configuration (C1). By
minimality of G, there is thus an abs-proper 7-labelling ℓ of H, which, by the arguments
below, we extend to G to get a contradiction.

When labelling vw, we must guarantee that w does not get in conflict with its at
most two neighbours in H. For that, it suffices to guarantee that we do not get σ(w) ∈
{−σ(w1),−σ(w2), σ(w1), σ(w2)}, where w1 and w2 denote the at most two possible neigh-
bours of w in H. Thus, due to this constraint, at most four values in {1, . . . ,7} cannot be
assigned to vw. There are thus at least three values we can safely assigned to vw, and thus
there is at least one value we can assign that also guarantees we do not get σ(u) = σ(v),
for the resulting sums of u and v. We assign one such label to vw.

It now remains to label uv. By Corollary 6.2, since we currently have σ(u) ≠ σ(v), there
is at most one value in {1, . . . ,7} which, when assigned to uv, yields a conflict between
u and v. Also, at most two values in this set yield a conflict between u and its unique
neighbour in H, and, similarly, at most two values yield a conflict between v and w. Thus,
at most five values in {1, . . . ,7} cannot be assigned to uv, and there is thus a safe value we
can freely assign. As a result, we end up with an abs-proper 7-labelling of G. In particular,
note that these arguments apply even if uw is an edge of G (the main difference being that,
when labelling vw, technically we do not need to worry about a possible conflict between
u and w at this point, as this conflict is handled later on, when labelling uv).

We now deal with the last configuration.

Proof of Configuration (C7). Assume G contains a 2-vertex u with two 3-neighbours v and
w. Set H = G − u. Since v and w both have degree 2 in H, necessarily H is nice. There is
thus an abs-proper 7-labelling ℓ of H, which we extend to G to get a contradiction.

We first deal with the case where uv and uw have the same polarity. Similarly as
in the proof of Configuration (C6), there are at least three labels in {1, . . . ,7} that can
be assigned to uv so that v is not in conflict with any of its two neighbours in H. We
assign to uv one of these labels guaranteeing σ(u) ≠ σ(w). Now, since uv and uw have
the same polarity, then, whatever label we assign to uw, we will get the same sign as
σ(u). Thus, when labelling uw, there is only one label which, when assigned, would yield
σ(u) = σ(v). Regarding the two neighbours of w in H, to avoid any conflict the eventual
σ(w) should avoid at most four values. Last, by Corollary 6.2, since, at this point, we have
σ(u) ≠ σ(w), there is at most one label in {1, . . . ,7} which, when assigned to uw, would
result in σ(u) = σ(w). Thus, in total, at most six labels in {1, . . . ,7}, when assigned to
uw, would yield a conflict. So there is one label we can safely assign to uw to be done.
Similarly as in the proof of Configuration (C6), note that these arguments apply regardless
of whether v and w are adjacent or not.

From now on, we can thus assume uv and uw have distinct polarities. We start by
additionally assuming that vw is an edge of G, and for this subcase, we will consider
H = G− {u, vw}. W.l.o.g. we can assume vw is positive. In that particular case, note that
v and w both have only one neighbour in H, which we denote by v′ and w′, respectively.
Note that, through labelling vu and vw, we can alter σ(v) by any value in {2, . . . ,14},
which set has cardinality 13. To avoid any conflict between v and v′, at most two of these
alterations are forbidden, which leaves eleven alterations. Among these possible alterations,
at least one alters σ(v) by an even amount, and at least one modifies it by an odd amount.
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So that we alter σ(v) by an even amount, note that the labels assigned to vu and vw
must have the same parity, while they must have distinct parity to alter σ(v) by an odd
amount. This all implies we can label vu and vw so that v is not in conflict with v′, and
the resulting σ(u) and σ(w) have distinct parities. Then, by Corollary 6.2, whatever label
we assign to uw, we cannot get a conflict between u and w. So, when labelling uw, we only
need to make sure w does not get in conflict with w′, and v, which now has its sum fixed,
does not get in conflict with neither u nor w. So we need to guarantee that, eventually,
σ(w) /∈ {−σ(w′), σ(w′),−σ(v), σ(v)} and σ(u) /∈ {−σ(v), σ(v)}. So at most six values in
{1, . . . ,7} cannot be assigned to uw, and there is thus one value we can safely assign to
get an abs-proper 7-labelling of G.

It remains to consider when vw is not an edge of G. Assume w.l.o.g. uv is positive
and uw is negative. We denote by v1 and v2 the two neighbours of v in H, and by w1 and
w2 the two neighbours of w. Similarly as earlier, we can assign a label in {1, . . . ,7} to uv
so that v is in conflict with neither v1 nor v2, and σ(u) ≠ σ(w). Let us now analyse the
number of values in {1, . . . ,7} we cannot assign to uw. Because of the possible conflict
between u and v, up to two values might be forbidden. Likewise, up to four values might
be forbidden because of the possible conflicts between w, and w1 and w2. Furthermore,
since σ(u) ≠ σ(w), up to one value might be forbidden due to the possible conflict between
u and w. Thus, up to seven values in {1, . . . ,7} might be forbidden, and it might be that
all of them indeed are (but this occurs only when the seven possible conflicts forbid exactly
one value each).

Recall, however, that, through labelling uw with a label in {1, . . . ,7}, we can alter
σ(w) in seven possible ways (by any value in {−7, . . . ,−1}). We claim that, for w1 and w2

to bring exactly four constraints, we must have ∣σ(w1)∣, ∣σ(w2)∣ ∈ {1,2,3}. Indeed, if, say,
∣σ(w1)∣ = k for some k ≥ 1, then, for w1 to forbid exactly two labels as uw, there must be
i, j ∈ {−7, . . . ,−1} such that σ(w)+ i = k and σ(w)+ j = −k. So, i− j = 2k, where ∣i− j∣ ≤ 6,
implying k ≤ 3. Furthermore, so that w1 and w2 bring exactly four constraints, it must be
that ∣σ(w1)∣ ≠ ∣σ(w2)∣. By symmetry, by ℓ we can assume v satisfies the same relationship
with its two neighbours v1 and v2.

Let us start from ℓ again, that is, assume uv is not labelled. We claim that, due to all
information we have revealed, we must have σ(v) < 0 and σ(w) > 0. Indeed, if σ(v) ≥ 0,
then σ(v) + i > 0 for every i ≥ 1, and, because uv is positive, necessarily through labelling
uv the eventual sum of σ(v) remains positive, implying that v1 and v2 actually forbid only
one value each for labelling uv. Since uw is negative, a similar argument applies regarding
w. Thus, we can indeed assume σ(v) < 0 and σ(w) > 0.

We now analyse the possible absolute sums that the neighbours of v and w can have,
and come up with a way to label uv and uw in every case. Recall that we only need to
make sure v does not get in conflict with v1 and v2, vertex w does not get in conflict with
w1 and w2, and u gets in conflict with neither v nor w.

• Assume first {∣σ(v1)∣, ∣σ(v2)∣} = {2,3}. For v1 and v2 to forbid exactly four values
as the label of uv, by arguments above there must be i, j ∈ {1, . . . ,7} such that
σ(v) + i = 3 and σ(v) + j = −3. Thus, i − j = 6, implying i = 7, j = 1, and σ(v) = −4.
Then the labels in {1, . . . ,7} that can be assigned to uv without raising a conflict
between v, and v1 and v2 are 3,4,5. By assigning label 4 to uv, we thus get σ(v) = 0.
If this leads to σ(u) ≠ σ(w), then there is one label in {1, . . . ,7} we can safely assign
to uw, since the possible conflicts between w, and w1 and w2 forbid up to four values,
the possible conflict between u and v forbids at most one, and that between u and
w forbids at most one too by Corollary 6.2. If assigning label 4 to uv results in
σ(u) = σ(w), then σ(w) = 4. It can now be observed that there is always a way to
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Configuration Assigned labels Resulting sums

∣σ(w1)∣ ∣σ(w2)∣ ℓ(uv) ℓ(uw) ∣σ(v)∣ ∣σ(u)∣ ∣σ(w)∣

2 3 3 3 1 0 1

1 2 3 1 1 2 3

1 3 3 6 1 3 2

Table 1: Ways to extend the abs-proper 7-labelling in the proof of Configuration (C7), when
{∣σ(v1)∣, ∣σ(v2)∣} = {2,3}, σ(v) = −4, and σ(w) = 4. For values of ∣σ(w1)∣ and ∣σ(w2)∣, are given labels
ℓ(uv) and ℓ(uw) we can assign to uv and uw, as well as the resulting absolute sums of u, v, and w.

Configuration Assigned labels Resulting sums

∣σ(w1)∣ ∣σ(w2)∣ ℓ(uv) ℓ(uw) ∣σ(v)∣ ∣σ(u)∣ ∣σ(w)∣

1 3 2 2 2 0 2

1 2 2 1 2 1 3

Table 2: Ways to extend the abs-proper 7-labelling in the proof of Configuration (C7), when
{∣σ(v1)∣, ∣σ(v2)∣} = {1,3}, σ(v) = −4, and σ(w) = 4. For values of ∣σ(w1)∣ and ∣σ(w2)∣, are given labels
ℓ(uv) and ℓ(uw) we can assign to uv and uw, as well as the resulting absolute sums of u, v, and w.

Configuration Assigned labels Resulting sums

σ(v) ℓ(uv) ℓ(uw) ∣σ(v)∣ ∣σ(u)∣ ∣σ(w)∣

-3 6 6 3 0 3

-4 1 1 3 0 3

-5 1 1 4 0 4

Table 3: Ways to extend the abs-proper 7-labelling in the proof of Configuration (C7), when ∣σ(v1)∣ =
∣σ(w1)∣ = 1 and ∣σ(v2)∣ = ∣σ(w1)∣ = 2. For values of σ(v), are given labels ℓ(uv) and ℓ(uw) we can assign to
uv and uw, as well as the resulting absolute sums of u, v, and w.

extend the labelling properly. We gather, in Table 1, ways to do so, depending on
the faced configurations. In these, we assume ∣σ(w1)∣ < ∣σ(w2)∣. In each case, it can
be checked we indeed get an abs-proper 7-labelling of G.

• Assume now that the previous case does not apply, and that, similarly, we do not
have {∣σ(w1)∣, ∣σ(w2)∣} = {2,3}.

– Assume first {∣σ(v1)∣, ∣σ(v2)∣} = {1,3}. For the same reasons as earlier, we
can suppose σ(u) = −4. Then the labels in {1, . . . ,7} we can freely assign
to uv (w.r.t. the possible conflicts between v, and v1 and v2), are 2,4,6. If
σ(w) ≠ 4, then we are done as previously. Otherwise, i.e., σ(w) = 4, then,
again, depending on the situation there is always a way to extend the labelling.
We provide such ways in Table 2. Recall we do not have to consider situations
where {∣σ(w1)∣, ∣σ(w2)∣} = {2,3}.

– At this point, we can thus assume none of v1, v2, w1, and w2 has absolute sum
3. W.l.o.g., we may assume ∣σ(v1)∣ = ∣σ(w1)∣ = 1 and ∣σ(v2)∣ = ∣σ(w2)∣ = 2. So
that, upon labelling uv with labels from {1, . . . ,7}, the sum of v can reach both
−2 and 2, there are i, j ∈ {1, . . . ,7} such that σ(v) + i = −2 and σ(v) + j = 2.
Thus, j − i = 4, implying i ∈ {1,2,3}, and, thus, σ(v) ∈ {−3,−4,−5}. Now, as
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previously, for every possible resulting value of σ(v), if ∣σ(v)∣ ≠ ∣σ(w)∣, assigning
label ∣σ(v)∣ to uv yields σ(v) = 0 (and thus v is in conflict with neither v1 nor
v2) and σ(u) ≠ σ(w), and, again, counting arguments show there is a label we
can properly assign to uw. Thus, we can last assume σ(w) = −σ(v). By now
analysing all possible cases, we can extend the labelling properly to the whole
of G, see Table 3.

This concludes the proof.
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