
HAL Id: hal-04223860
https://hal.science/hal-04223860

Submitted on 30 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cognitive digital twins for freight parking management
in last mile delivery under smart cities paradigm

Yu Liu, Shenle Pan, Pauline Folz, Fano Ramparany, Sébastien Bolle, Eric
Ballot, Thierry Coupaye

To cite this version:
Yu Liu, Shenle Pan, Pauline Folz, Fano Ramparany, Sébastien Bolle, et al.. Cognitive digital twins for
freight parking management in last mile delivery under smart cities paradigm. Computers in Industry,
2023, 153, pp.104022. �10.1016/j.compind.2023.104022�. �hal-04223860�

https://hal.science/hal-04223860
https://hal.archives-ouvertes.fr


Liu, Y., Pan, S., Folz, P., Ramparany, F., Bolle, S., Ballot, E., Coupaye, T., 2023. Cognitive digital 
twins for freight parking management in last mile delivery under smart cities paradigm. 

Computers in Industry 153, 104022. https://doi.org/10.1016/j.compind.2023.104022 

 
Cognitive Digital Twins for Freight Parking Management  

in Last Mile Delivery under Smart Cities Paradigm 
 

Abstract 
This paper examines the Freight Parking Management Problem (FPMP) of last-mile delivery 
within the context of Smart Cities where objects are managed by Digital Twins. Specifically, we 
investigate how Cognitive Digital Twins - Digital Twins with augmented semantic capabilities - 
can enhance real-time knowledge of parking connectivity to optimize logistics operations planning 
and urban resource allocation. We present a four-layer architectural framework to integrate 
individual logistics objects and systems into Smart Cities at a semantic level, with underlying 
enabling technologies and standards including Property Graph, Web Ontology Language (OWL), 
and Web of Things. Next, we conduct a case study of parcel delivery in Paris using a real-life 
Digital Twins platform called Thing in the future (Thing’in) by Orange France, coupled with an 
agent-based simulation model on AnyLogic, to demonstrate a real-world application of our 
approach. The results suggest that semantics-enabled Digital Twins connectivity can increase the 
comprehensive understanding of the delivery environment and enhance cooperation between 
heterogeneous systems, ultimately resulting in improved logistics efficiency, reduced negative 
externalities, and better utilization of resources. Furthermore, this work showcases potential new 
business services for logistics service providers and provides managerial insights for city planners 
and municipal policymakers. An actual mobile application prototype is presented to showcase the 
applicability of the work. 
 
Keywords: Last Mile Delivery, Freight Parking Management, Sustainability, Smart Cities, 
Cognitive Digital Twins, Ontology and Semantics. 

1 Introduction 
Last Mile Delivery (LMD), also known as city logistics or urban freight transport, addresses the 
challenge of efficiently and effectively transporting goods in urban areas, from distribution centers 
or warehouses to their final destinations to meet consumer demands (Savelsbergh and Van 
Woensel 2016). Its importance to cities is twofold. First, it serves as an essential building block 
for the economic and social development of cities. Second, it generates freight traffic and logistics 
activities that are sources of multiple externalities in urban areas, such as congestion, accidents, 
noise, air pollution, and gas emissions.  
 
Freight Parking Management Problem (FPMP) is one of the key issues of LMD, which aims to 
optimize the use of existing parking infrastructure to improve LMD efficiency. Freight parking is 
critical for both business-to-business and business-to-consumer deliveries, for example, with 
curbside parking accounting for 95% of all freight parking in London (IET 2019). However, the 
current approach to freight parking is fraught with inefficiencies and sustainability issues, 



particularly in megacities like London, Paris, and New York City (Dablanc 2015; Schmid et al. 
2018; Cruz-Daraviña and Bocarejo Suescún 2021). One noticeable problem is illegal parking. In 
Paris, for example, a survey published in 2015 reported that over 50% of vehicle deliveries in the 
city were made by double-parked vehicles, and more than 60% of freight parking operations were 
illegal, often using sidewalk, bus, or bicycle lanes (Dablanc 2015). Similar observations were made 
in New York City in 2018, where nearly 60% of vehicle deliveries were performed by double-
parking, and 80% of delivery vehicles were parked illegally (Schmid et al. 2018). This problem is 
often exacerbated by the need for vehicles to cruise around in search of parking spaces, which not 
only contributes to illegal parking but also results in unnecessary vehicle-km and traffic congestion. 
A study conducted in Seattle’s downtown area in 2020 found that 85% of delivery vehicles 
engaged in parking cruising behavior, which accounted for 28% of the trip time and added up to 
more than an hour per tour (Dalla Chiara and Goodchild 2020). The social and environmental 
concerns raised by the FPMP have come to the city manager’s and logistics service providers’ 
(LSPs) attention. 
 
The FPMP has garnered significant research attention, particularly from the fields of urban design 
and parking management. For instance, to tackle illegal parking in New York City, Schmid et al. 
(2018) recommended providing four to eight times the currently available parking spaces. 
However, cities have limited capacity and space to accommodate the ever-increasing dedicated 
space for logistics use, and mobilizing the existing but underused infrastructures for logistics 
operations is a key for urban sustainability, as stressed in Schachenhofer et al. (2023). Hence, 
increasing freight parking spaces may not fundamentally solve the imbalance problem of spatial-
temporal supply and demand but could even aggravate the underused resources problem. Knowing 
that the demand in the off-hour period can only be accounted for one-third of the peak hour and 
the duration of parking can vary according to the on-site operations (Jaller et al. 2013). From an 
operations management perspective, researchers have drawn attention to the effective and efficient 
use of the existing parking resources. Parking information, especially real-time availability, and 
accessibility, is critical to this end. Dalla Chiara et al. (2022) found that the availability of 
information could reduce cruising parking time by 27.9% and distance by 12.4%.  
 
The fast-advancing IoT/ICT technologies offer new opportunities and solutions for effective 
freight parking management. Recently, some researchers have identified Smart Cities as a game-
changing paradigm that will reshape the research landscape of city logistics. Broadly speaking, 
Smart Cities are cities, where objects are connected via IoT devices, and data generated, are 
collected and consolidated on clouds via ICT technologies (such as 5G, Bluetooth, and Wi-Fi) for 
data analytics, decision-making, and planning (Harrison et al. 2010; Neirotti et al. 2014; Zanella 
et al. 2014). While parking management for private cars is a promising application of this paradigm 
studied in the literature, freight parking is vastly different from car parking and has received less 
attention. Little attention has been paid to investigating how logistics systems can interact with 
Smart Cities to improve the efficiency of freight parking and LMD. 
 
This paper aims to make significant contributions to the research on the FPMP in the context of 
Smart Cities by exploring the practical applications of semantic technologies and Digital Twins 
(DTs) to manage LMD and parking operations. We consider Smart Cities as a holistic semantic 
system to explore how the semantic interactions between individual digital logistics systems (or 
objects) and the delivery environment can provide solutions to the FPMP and improve logistics 



efficiency and urban sustainability. The research questions are designed to address the gaps in the 
current literature on this topic. 
 

RQ1: How to model the DTs of individual physical objects and systems related to last mile 
delivery, while considering the requirements of Smart Cities? We propose that the complexity of 
city logistics operations requires a comprehensive Property Graph-based DT model, which 
includes the properties and inner relationships of the objects. 

 
RQ2: How to seamlessly integrate the modelled DTs into Smart Cities for semantic 

interactions, and enhance the context-awareness of the DTs regarding the dynamic operational 
environment? This work follows the concept of Cognitive Digital Twins (CDTs) discussed by 
Zheng et al. (2021), which refers to DTs with augmented semantic capabilities. A four-layer 
architectural framework is developed based on semantic technology standards and in the context 
of the Web of Things (WoT). The latter provides standard web protocols to encounter the 
segmentation of IoT devices and systems (Lu and Asghar 2020; Guinard and Trifa 2016). 

 
RQ3: How integrated logistics CDTs in a semantic delivery environment can benefit 

stakeholders and serve as a solution at the operational level to the FPMP by optimizing resource 
allocation and assisting in LMD operations management? Valuable information queried from the 
states of CDTs is used in simulations to test various scenarios, which can provide useful guidance 
to multiple stakeholders and enable them to gain maximum benefit from a holistic and systematic 
view. 
 
To demonstrate the effectiveness of our proposed framework and its practical application, a real-
life case study was conducted in Paris. The study resulted in the development of a mobile 
application prototype that provides new business services to LSPs for freight parking in LMD 
operations. A demo of this prototype was presented at the EUCNC & 6G Summit 2022, which 
focuses on the experimentation and application of future communication systems and networks. 
 
The next section will provide a brief review of related concepts and prior research. Then, Section 
3 will give an overview of the proposed architectural framework for modeling and implementation 
procedures. The use case and simulation results will be presented in Section 4, providing 
managerial insights and guidance for multiple stakeholders. Section 5 will conclude this work. 

2 Related works 

2.1 Digitalization of freight parking management 
The ongoing digitalization of logistics has spurred research interest in optimizing freight parking 
management, also known as loading or delivery bays, using historical or real-time data for dynamic 
planning. One approach suggested by Letnik et al. (2018) involves clustering receiver addresses 
using fuzzy k-means algorithm and selecting the best loading bays (for example the least crowded 
ones according to historical data) to determine the best route for each cluster. A simulation was 
conducted to evaluate the operational performance in terms of walking distance and truck waiting 
time. Some other studies have proposed dynamic freight parking locations to cope with spatial and 
temporal demand variation, see Wilson et al. (2022) for example. With the same insight, Roca-Riu 
et al. (2017) et al. have proposed dynamically locating freight parking to reduce traffic disruption. 



 
Pre-booking of delivery bays is another important research topic in the field. This is especially 
investigated from a practical perspective, see some experimental projects like Smart Loading Zone 
in Hamburg or Parkunload in Barcelona among many others. From an academic perspective, Mor 
et al. (2020) proposed a booking system to reduce double parking by having municipalities 
centrally assign and control the utilization of freight parking. LSPs are required to pre-book 
loading bays by providing a fixed or partially flexible start time. In their research, all requests have 
been treated equitably, it is fair but not always the perfect solution. There are mainly two reasons, 
one is part of the loading bays will inevitably become competitive during the peak hour or in the 
delivery-dense areas, then the assignment of these parking needs to be further considered. Another 
reason is that the resource wastes because the reserved time is much longer than the actual use 
time. Hence, Yang et al. (2019) were motivated to study the auction-based booking system by 
taking both time preference and parking duration into account, their pricing rules aim at allocating 
resources efficiently to maximize the system performance. Accordingly, some research attention 
has been paid to the conflict between reservation and utilization which is crucial to booking 
systems in general. McLeod et al. (2011) performed a proof-of-concept of a loading bay booking 
and control system and found that the actual using of the reserved time slots is highly dependent 
on the vehicle arrival time, which is decided by real-time traffic drivers are facing. To deal with 
the issue, Comi et al. (2017) emphasized the importance of telematics applications to enable last-
minute booking, i.e., reserving parking only when a vehicle is approaching the loading bay.  
 
The related literature has shown an interest in digitalizing freight parking management via IoT 
technologies and data techniques. But so far, few studies have considered building semantic 
connections between logistics services providers’ systems/objects and the Smart Cities 
environment for dynamic operations planning. This study aims to fill this gap and investigate how 
to establish the semantic connection and interaction of digital twins (logistics assets, city 
infrastructures, etc.), and how to perform dynamic planning on this basis. 

2.2 Semantic and Cognitive Digital Twins in Logistics 
Cognitive Digital Twins (CDTs) have emerged as a prominent concept originating from Industry 
4.0 and Smart Cities, which are defined as DTs with augmented cognitive capabilities and support 
to execute autonomous activities (Zheng et al. 2021; Rožanec et al. 2022). Previous works argued 
that semantic technologies, such as ontology and Knowledge Graph (KG), can interlink DTs in 
virtual space by eliminating ambiguity across heterogeneous systems to enhance digital 
interoperability enabling cooperative decision-making and acting (Pan et al. 2021). As defined by 
Guarino et al. (2009), ontology provides a set of formal and explicit vocabularies with shareability 
and reusability, to describe the knowledge in a specific domain, including the attributes of the 
things and their relationships. Early research mostly focused on the use of ontology for data 
modelling and sharing (Pan et al. 2021). However, recent studies focusing on the next generation 
of DTs argue that the integration of semantics and DTs technologies will further move forward 
their capability and interoperability of autonomous and cooperative decision-making, namely 
CDTs (Rožanec et al. 2022). Since that, KG has gained increasing attention in supporting the 
development and management of CDTs, owing to its potential to illustrate the relationship between 
real-world entities or to link data (Zheng et al. 2021). For example, some recent works have 
explored the potential of KG for managing assets and tasks in smart and human-centric 
manufacturing systems (Zheng et al., 2023). 



 
Nevertheless, the application of the CDT concept and related technologies in the field of city 
logistics has yet to be extensively studied, despite their immense potential for achieving logistics 
sustainability. To fill the gap, this work investigates the potential of these concepts and 
technologies in freight parking management within the framework of Smart Cities. The latter can 
be viewed as a complex operating system that comprises multiple stakeholders, each with its own 
systems and objects (such as LSPs, city managers, shippers, and their assets), thereby emphasizing 
the criticality of digital interoperability (Pan et al. 2021). More specifically, our work follows the 
previous research suggesting WoT standards to manage the objects and their DT for the 
applications in Smart Cities (Privat et al. 2019). Our research also aligns with the emerging 
paradigms of Smart Logistics, which represent novel approaches to digitalization in logistics and 
provide new opportunities for interdisciplinary research and application, encompassing computer 
and data science and operations management (Song et al. 2020). 

3 Modeling and implementation 

3.1 Architectural framework 
In the first step, an architectural framework based on the WoT standards was devised to guide the 
research and application (see Figure 1). The layered framework adopts a bottom-up modeling 
approach, whereby physical logistics systems are first modeled as DTs with their properties and 
relationships. Then, semantic technologies are employed to establish interoperability among DTs 
for cooperative decision-making processes. The details of each layer are presented as follows. 



 
Figure 1. The architectural framework for implementing dynamic freight parking management. 

Layer 1 Physical Logistics System aims at delineating the physical system(s) of interest and the 
related smart objects. Figure 1 illustrates a simplified example of freight parking, involving the 
objects of vehicle, parcel, destination, and parking nearby. It is assumed that the objects are 
equipped with IoT devices to collect local data for DTs modelling. Moving up to Layer 2 Cyber 
Logistics System, objects and their connections and properties are modeled with Property Graph 
(PG), which is considered a versatile and expressive existing approach to describe and store DT-
related data in IoT/WoT environment, as suggested in Privat et al. (2019). It is for two reasons that 
at this step we adopt PG rather than other standard graph data models directly (like RDF-Resource 
Description Framework). First, it is because most graph databases of enterprises use PG for their 
data model. Second, the nodes in PG only represent physical entities, which is beneficial to identify 
the complex relationship between the objects and clearly capture the structure of a physical system 
(Privat et al. 2019). Through the PG modelling, the real-time states and inner relationships of 
physical objects can be comprehensively and precisely mapped into the cyber layer, represented 
by system-wide interlinked DTs. Furthermore, the relevant data generated from IoT (or open data 
sources) should be injected into the system to synchronize real-time states of DTs for monitoring 
or decision-making. Accordingly, the close-loop Cyber-Physical Logistics Systems (Layer 1&2) 
are constructed for each system owned by heterogeneous stakeholders, which will be the building 
blocks of the complex and collaborative smart city logistics system. 
 

 



Layer 3 focuses on the development of CDTs by augmenting the semantic capacities of the 
modelled DTs. This step is crucial to enable seamless interactions between DTs and support 
decision-making in logistics operations. Subsequently, Layer 4 of decision-making and 
applications will rely on the dynamic status of DTs updated from their physical counterparts 
(Layers 1&2) and semantic interactions (queries) results between CDTs in the semantic 
environment (Layer 3). This comprehensive information and knowledge about the objects and the 
entire system context form the basis for making informed decisions. Then, the decisions made in 
Layer 4 will be communicated to the corresponding DTs in Layer 2 for reaction in Layer 1. We 
should clarify that this work is not yet based on assumptions of fully autonomous objects (like 
autonomous vehicles or robots), which means self-acting is not considered. We assume that the 
behaviors of objects will be determined by the decisions made in Layer 4.  
 
The development of the architectural framework is based on dynamic closed-loop logic, allowing 
real-time information from the physical world to update and synchronize with the digital world. 
By enabling this synchronization, the cyber world can better respond to changes in the physical 
world, leading to improved simulation models. Subsequently, physical objects’ states will change 
and perform the reactions in the physical world. 

3.2 Case presentation 
To assess the applicability and performance of the proposed approaches and framework, a real-life 
use case considering freight parking spaces, a.k.a. delivery spaces, for parcel delivery in Paris is 
conducted. The case is designed from LSPs’ point of view, with data from industry and the city to 
assess economic, environmental, and social impacts. 
 
In detail, a driver (also called a deliveryman as he/she could also handle the final delivery) will 
deliver parcels from a depot as the departure point to multiple final destinations. The journey is 
composed of two legs, from depot to delivery spaces (called the to-parking leg) and from delivery 
spaces to consignees’ addresses (called the to-door leg). The objective is to provide the driver with 
the locations of optimal parking and routes to deliver the parcels within the city. The case is daily 
and involves the delivery of 145 parcels to 54 different destinations situated in the 17th district of 
Paris. According to Paris Open Data, there are 658 freight vehicle parking spaces in the district 
(due to regulatory constraints, only freight parking spaces are considered in this work, generally 
called parking hereinafter). From a practical point of view, parking located in the surrounding 
districts and outer boundary cities is also considered, such as the 8th, 16th, and 18th districts in Paris, 
Levallois-Perret, etc. In total, 3253 parking spaces are considered as input data of parking 
candidates (see Figure 5). 

3.3 Bottom-up modeling 
The first step of modeling follows Layers 1&2 of the architectural framework to construct the 
close-loop Cyber-Physical Logistics Systems and the DTs of the objects involved. DT-related data 
collected from two different sources, e.g., LSPs for logistics assets and city planners for 
infrastructures, are modeled via Property Graph (PG). Objects’ properties and relationships are 
modelled via four components of PG, namely nodes (physical entities), their properties expressed 
with key-value pairs (parameters, states, etc.), links (relationships), and labels (classes). More 
details of the PG modelling can be found in our former research (Liu et al. 2021). 
 



The second step focuses on Layer 3, which involves enhancing the semantic capacity of the cyber 
models in Layer 2 to establish semantic connections. This step is essential to develop and empower 
DTs with the semantic capability toward CDTs (Zheng et al. 2021). This capability is crucial to 
integrate multiple heterogeneous components into the operating context as a unified whole. To this 
end, the DTs data stored via PG in Layer 2 need to be modeled with an ontologies catalog to 
address the diverse and heterogeneous meanings associated with the integrated DTs data from 
various stakeholders. Web Ontology Language (OWL) -a semantic web standard language 
proposed by W3C for things’ knowledge descriptions- is adopted in this step. With the 
transformation illustrated in Figure 2, the knowledge contained in the DTs (in the form of PG) can 
be unambiguously described and then share between heterogeneous stakeholders. Further, query 
language such as SPARQL (Xiao and Corman 2021) is used to query the ontologies in Layer 3, 
which will provide actual information for operations management in Layer 4. Protégé -an open-
source OWL-based ontology editor (Musen 2015)- was exploited to develop the ontologies of the 
case. The ontology prefixes are shown in Figure 3.  
 

 
Figure 2. An example of PG-stored DT-related data abstracted into ontology with OWL. 

 



 
Figure 3. Ontology prefixes in Protégé used in the case. 

To demonstrate the applicability of the research, the built ontology model is injected into a 
federative online DT platform, named Thing in the future, or simply Thing’in, which is a graph-
based platform used to manage the structure and semantic connections of the living IoT objects in 
the physical world (Orange, 2018). Via the platform, the DTs’ dynamic state can be managed and 
synchronized to support operations planning, as shown in Figure 4. More importantly, data from 
objects can be shared between heterogeneous stakeholders based on semantic interoperability. To 
respect data privacy, Thing’in also provides the data (object) owners with the possibility to adjust 
the data visibility level, as can be seen at the top of Figure 4. The platform has already 
experimented in different use cases and projects, like Digital Building Twin in Construction 
(BIM2TWIN.eu) and Smart City Logistics (smarturbanlogistics.eu). 
 

 
Figure 4. Connected objects (nodes: destinations, parcels, parking) with relationships (links) and 

properties (on the top). 

Figure 5 displays the DTs injected into Thing’in, located on a map of the area. Blue nodes represent 
destinations (aggregated), and orange is for parking spaces. The connections between destinations, 
parcels, and destinations are shown in Figure 4. SPARQL is used for querying information from 

 

 



the platform. For example, for each destination, it is possible to query the number (and location) 
of the parking surrounded within a certain radius, as shown in Table 1 in Section 4.1. This 
information can help the driver to find the closest available parking. 

 
Figure 5. Demonstration and visualization of DTs in Thing’in. 

The last step concerns decision-making based on real-time information including operations 
(vehicle location for example) and environment information (parking occupancy for example), 
which can be queried from the Layer 3 model. AnyLogic is adopted here as a decision-making tool 
to simulate the decision-making processes and the performance. It should be specified that the 
optimization models and algorithms (Section 3.4) are also coded in AnyLogic to build an integrated 
decision-making tool. This is only for demonstration (see Section 4.5 for an example of practical 
application). The sequence diagram in Figure 6 shows the interaction between LSP (referred to as 
deliveryman), Thing’in, and AnyLogic. 

 
Figure 6. Sequence diagram between operators, DT platform, and decision-making tools. 

 

 



3.4 Optimization modeling 
Two decisions should be made by the deliveryman based on actual information: parking selection 
(like assignment problem) and route planning (like VRP-Vehicle Routing Problem). A 
straightforward strategy parking-first-routing-second is applied here. Since the related 
optimization problems are well-studied in the literature and are not the focus of this work, we 
adopted well-known modeling approaches and algorithms to solve the problems without making 
further contributions to them. 
 
Parking selection: Choose the best parking places for each parcel from the list of available parking. 
We adopt the following assumptions regarding the operational environment: (1) An order (a 
destination address) has only one parcel and it can be assigned to only one parking place (but it 
could have more than one candidate parking). (2) All orders must be delivered. (3) Some 
operational constraints are not considered, such as parking capacity or temporal availability (due 
to the lack of data), and vehicle or deliveryman capacity (since the total number of parcels in the 
case is reasonable for one vehicle). 
 
The objective of parking selection is to minimize the total number of parking visited (Eq. 1), where 
𝑝! is the decision variable of the problem, and 𝑝! 	 = 	1 if parking 𝑖 is visited; 0 otherwise (Eq. 4). 
It is expected that such an objective will have three major outcomes, firstly maximize parcel 
consolidation per parking to improve last leg efficiency, secondly reduce freight parking land in 
the city, and thirdly reduce the inefficient cruising time by parking fewer times. Other notations 
are present as follows: J is the set of orders, each order 𝑗 ∈ 𝐽, and 𝑗 = {1…𝑛}; I is the set of parking 
spaces, each parking 𝑖 ∈ 𝐼, and 𝑖 = {1…𝑘}. 𝑜!

" is a binary matrix given by Thing’in, i.e., 𝑜!
" 	 = 	1 

means order j can be delivered from parking 𝑖; otherwise, 0 (Eq. 5). The key constraints considered 
are: ⅰ) all orders must be assigned to parking for fulfillment (Eq. 2); ii) only one parking can be 
chosen for each order to avoid repeated fulfillment (Eq. 3).  
 
𝑚𝑖𝑛		 ∑ 𝑝!#

!$%                   (1) 
s.t. 
∑ ∑ 𝑝!𝑜!

" =&
"$%

#
!$% |𝐽|                 (2) 

∑ 𝑝!𝑜!
" = 1#

!$% , ∀𝑗 ∈ 𝐽                (3) 
𝑝! = {0,1}                   (4) 
𝑜!
" = {0,1}                   (5) 
 

The problem is formulated as a combinatorial optimization problem that can be efficiently solved 
by Greedy Algorithm since it has a clear submodular structure and the optimized sub-problem can 
lead to global optimization (Cormen et al. 2022). In our tailed Greedy Algorithm, the parking that 
can deliver the most orders will be regarded as the most important and be selected first. The rest 
of the parking will be chosen following the same rule until all the orders have been assigned. The 
pseudo-code is presented below. 
 
 
 
 



Algorithm 1 Greedy Algorithm for parking selection optimization 
Input: I: a set of parking spaces; J: a set of orders; K: a set of destinations; 
          𝐿"! : a set of orders covered by parking 𝑖; 𝐿#! : a set of destinations covered by parking;  
          𝑜"!: order j can be delivered via parking 𝑖 
Output: the selected parking set P 
1: Assigned order set 𝐷	 = 	∅ 
2: Selected parking set 𝑃	 = 	∅ 
3: while 𝑜𝑟𝑑𝑒𝑟	𝑠𝑒𝑡	𝐷	 < 	𝐽		do 
4:     for all parking 𝑖 ∈ 𝐼 do 
5:         delivery capability 𝑐! of 𝑖 ← count_order (𝑜"!) in 𝐿"!  

6:         COMPUTE maximum	𝑐' to find parking 𝑚 that can deliver most orders 
7:         remove the furthest destinations in 𝐿'#  gradually until to-door time ≤ 30min 
8:         𝑜"' ← 1, 𝐷	 ← 	𝑜"' 

9:         for all parking 𝑖 ∈ 𝐼, 𝑖	 ≠ 	𝑚 do 

10:             𝑜"! ← 0 

11:         end for 
12:         𝑝𝑎𝑟𝑘𝑖𝑛𝑔	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑠𝑒𝑡	𝑃 ← 𝑝𝑎𝑟𝑘𝑖𝑛𝑔	𝑚 
13:     end for 
14: end while 

 
Routing: Upon the list of parking selected, the visiting sequence needs to be decided. The problem 
can be formulated by VRP models. Since the capacity constraint of the vehicle (or deliveryman) 
is not considered at this stage, the problem is equivalent to Travelling Salesman Problem (TSP) 
which is modeled as follows. A set of selected parking are represented by 𝑉 = {1,2, … , 𝑛 − 1}, 
plus {0} signifying the departure point, so that 𝑉( = 𝑉 ∪ {0}, of which the set size is 𝑛. All nodes 
and arcs can be noted in a directed graph 𝐺 = (𝑉(, 𝐴). Each arc (𝑖, 𝑗) ∈ 𝐴	is associated with travel 
distance 𝑑!" > 0. 𝑥!" equals 1 if arc (𝑖, 𝑗) is included in any route, otherwise, equals 0. Accordingly, 
the TSP problem can be formulated by the following integer linear programming model from 
Miller et al. (1960). 

 
𝑚𝑖𝑛	 ∑ ∑ 𝑑!"𝑥!""∈*!!∈*!                  (6) 
s.t.	
∑ 𝑥!" = 1,		𝑖 ∈ 𝑉"∈*!                  (7) 
∑ 𝑥!" = 1,		𝑗 ∈ 𝑉!∈*!                   (8) 
𝑢! + 1 ≤ 𝑛S1 − 𝑥!"T + 𝑢" , 	0 ≤ 𝑢! , 0 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛           (9) 
 
In light of practical applications on large-scale cases, Genetic Algorithm is adopted to solve the 
VRP problem in this work, as suggested by Tasan and Gen (2012). The initial population is set to 
50 feasible routes, with different sequences of chromosomes being the various visiting sequences 



of the selected parking. Fitness is the driving distance accumulated by visiting the parking in 
sequence. The crossover probability is set to 0.8 and the mutation probability to 0.2, which are 
determined after several experimentations. The crossover operator is the Alternating Edges 
Crossover (AEC). The mutation operators are swap mutation, scramble mutation, and inversion 
mutation. Iteration will stop when the population evolves to 500 generations, which shows a good 
trade-off between computing time and acceptable optimal results. 

 
Algorithm 2 Genetic Algorithm for Routing Optimization 
Input: 𝑅: population of routes; 	𝑃𝑏+: crossover probability; 
       𝑃𝑏': mutation probability; 𝐺: number of generations; 
Output: 𝑟 in R with the shortest delivery distance 
1: GenerationCount = 0;  
2: while GenerationCount < 𝐺 do 
3: 				𝑖 = 0; 
4:   if 𝑖 < 	𝑃𝑏+ ∗ |𝑅| 
5:     offspring = crossover of 	(𝑟! , 	𝑟"),	 	𝑟!, 	𝑟" ∈ R, 𝑗	 ≠ 	𝑖; 
6:     insert offspring into R, 𝑖 + +; 
7:   end if 
8: 				𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡	+= 1;  
9: 				𝑅𝑛𝑑 = [0, 1]; 
10:   if  𝑅𝑛𝑑 <	𝑃𝑏'  
11:    						𝑟, mutated into 	𝑟, ', 	𝑟,∈ R and not the best performed in R; 
12:     replace 		𝑟,  with 		𝑟, '  in 𝑅; 
13:     𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡	+= 	1; 
14:   end if 
15:   descend and reduce the extended population to |𝑅| 
16:   select 𝑟 in R with the shortest driving distance 
17: end while 
 

4 Simulation and industrial application 

4.1 Scenarios description 
Three scenarios were simulated, as illustrated in Figure 7. In all scenarios, parking information, 
e.g., the closest candidate parking or those within a radius of each destination, are queried from 
the Thing’in platform, as shown in Table 1. Links here represent the relationships between objects, 
e.g., a parking-destination link meaning that the destination can be accessed via the surrounding 
parking of the link, or a parking-parcel link meaning that a parcel can be delivered from a parking. 



 
Figure 7. Schematic view of current operations (S1) and two tested scenarios (S2, S3). 

S1 of Status-quo scenario simulating the current practices: It is designed that the deliveryman 
drives from the depot and stops at the closest parking of each parcel’s destination address, then 
walks to the consignees and walks back to the parking for heading to the next stop. Consequently, 
parcels are not consolidated in this scenario (we recall the assumption that each destination 
receives only one parcel).  

 
S2 of parcel consolidation: The deliveryman may deliver a bundle of parcels to different 

destinations from one parking through on-foot routing. We aim to investigate the impact of parking 
selection on parcel consolidation, that is, the potential to deliver a higher number of parcels during 
each parking stop within the designated catchment area of the parking facility. Five catchment 
radius settings have been studied: 100, 150, 200, 250, and 300 meters. 100 meters is calculated 
upon the dataset, which is the distance to find at least one parking for each destination, whilst 250 
meters was suggested by Letnik et al. (2018) as the acceptable walking distance regarding the 
walking willingness of the deliveryman. However, the experimental results showed that 300m is 
an interesting turning point in the case study to show the effect of consolidation (see Section 4.2). 
This is of particular interest for investigating a freight-related regulation in Paris, which is the use 
of freight parking spaces is free but limited to 30 minutes (Dablanc 2015). Regulatory and 
environmental insights are expected from a study of the impact of such a regulation on delivery 
consolidation, parking occupation time, and land use. 

 
S3 of eco-friendly modality: It is to investigate how our approach can help facilitate a modal 

shift from vehicle to E-cargo bike at selected parking serving as transit points. This initiative stems 
from the belief that the increasing volume of consolidated parcels necessitates environmentally 
friendly solutions for the last meters. It is designed to enable the deliveryman (in a vehicle) to 
transfer parcels to an E-cargo bike rider at selected parking so that the parcels can be delivered to 
the door via bike routing. Unlike S1 and S2, S3 involves separate operators for the to-parking leg 
and the to-door leg. This setup aims to minimize both vehicle waiting time and parking occupation 
time. 

Catchment radius (m) Parking pool Parking-destination links Parking-parcel links 
100 182 264 665 
150 320 588 1498 
200 466 1037 2660 
250 566 1562 4042 
300 647 2267 5966 

Table 1. Queried results in the semantic layer as the input for the application layer (a link 
represents the relationship between objects). 

 



4.2 KPIs and parameter setting 
The three scenarios are simulated on AnyLogic with actual data, e.g., roads, average speed in the 
city, parcel delivery information, and parking location (recall that real-time traffic information is 
not considered in this step). A set of KPIs (Key Performance Indicators) is established from 
economic, environmental, and social perspectives, which are defined as follows (related 
parameters are listed in Table 2). 
𝐸!"! = ∑𝑑#$%& ∗ 𝑒!"!                 (10) 
𝐷' = ∑𝑑#$%& +	∑𝑑#$%'                (11) 
𝐶' = ∑𝐶#$%& +	∑𝐶#$%'                (12) 
𝐶#$%& = (𝐶( + 𝐶)) ∗ 𝑡#$%& + 𝑑#$%& ∗ 𝐶*) ∗ 𝑃*), for each parking visited       (13) 
𝐶#$%' = (𝐶( + 𝐶)) ∗ (𝑡+ + 𝑡$& + 𝑡,-. ∗ 𝑛&/ ), for each parking visited in S1 & S2     (14) 
(𝐶0! + 𝐶)) ∗ (

'"#$%
1&'

+ 𝑡$& + 𝑡,-. ∗ 𝑛&/ ) + 𝑡#,& ∗ (𝐶0! + 2 ∗ 𝐶) + 𝐶() < (14)      (15) 
                 

Parameter Notions Value Unit 
Vehicle rental cost 𝐶- 13 €/h 
Labor cost 𝐶. 30 €/h 
E-cargo bike cost 𝐶/0  11 €/h 
Diesel price 𝑃1. 1.83 €/L 
Emissions factor 𝑒02" 158 g/km 
Fuel consumption rate 𝐶1. 0.13 L/km 
Picking time per parcel 𝑡345 0.5 min 
Operating time per stop 𝑡67 1 min 
Transshipment time 𝑡837 3 min 
Vehicle speed 𝑆- 20 km/h 
E-cargo bike speed 𝑆/0  10 km/h 
Walking speed 𝑆9 4 km/h 

Table 2. Parameters used in the simulation. 

The CO2 emissions from vehicles are considered as environmental KPI, which equals the 
multiplication of the total vehicle driving distances (km) from depot to parking 𝑑86:7 and the unit 
emission per km 𝑒02" (Eq. 10). Eq. 11 calculates the total delivery distance 𝐷; which is the sum 
of the total vehicle driving distance 𝑑86:7 and to-door distance 𝑑86:; (by foot in S1 & S2, or by 
E-cargo bike in S3). Distance between points is calculated based on OpenStreetMap provided in 
AnyLogic, and the gap compared to Google Maps is within 2%. The total delivery costs 𝐶; is the 
sum of the total to-parking cost 𝐶86:7 and to-door cost 𝐶86:; (Eq. 12). For each parking visited, 
to-parking costs are composed of vehicle usage, labor, and fuel consumption, as shown in Eq.13 
in which 𝐶-  is hourly van rental cost (IKEA, 2020), 𝐶.  hourly labor cost, 𝐶1.  van’s fuel 
consumption rate (IEA, 2020), and 𝑃1. diesel price. The parameters are used for calculating the 
costs in function of driving time and distance. Differently, in S1 and S2, to-door costs (Eq. 14) are 
time-based only, including vehicle costs (waiting time at parking) and labor costs due to on-foot 
delivery time 𝑡9, parking operations time 𝑡67, and the parcels picking time (search, scan, unload) 
computed by time per parcel 𝑡345 and the total number of parcels 𝑛7!  at the stop. Especially in S3, 
it is assumed that transshipment to the E-cargo bike should happen only if it financially 



outperforms the scheme with driver on-foot routing, which is verified by Eq.15. Here the 
transshipment time 𝑡837 is set to 3 minutes, including the hand-over and checking time between 
the driver and E-cargo cycler, as well as the loading time to the cargo bike. The speed settings have 
taken the issues of congestion and safety into account. 

4.3 Simulation Results and Key Findings 
Figure 8 illustrates an example of a simulation scenario (view in AnyLogic) of the case with a 
catchment radius of 150m. The vehicle leaves the depot (on the left-hand side of the map) to visit 
the selected parking spaces (marked out with red dots) and back to the depot. The blue lines 
represent only the visiting sequence, as OpenStreetMap in AnyLogic is used for calculating the 
actual distance. On the right-hand side, the dashboard displays the real-time performance of the 
delivery operations. 
 

 
Figure 8. An illustrative example of route planning and performance reporting in AnyLogic. 

The simulation results reveal key insights from various aspects of urban delivery schemes. The 
first is relating to sustainability, considering the influence of freight policies and resource 
utilization performance. The second is an in-depth operation performance analysis to help LSPs 
identify key activities to implement these delivery schemes effectively. The third is to dive deeper 
into the modal shifting, gaining the critical factors to support the adoption of the multi-modal 
scheme. Quantitative results are detailed in Appendix. 

4.3.1 Resource utilization 
Finding 1.1: Parking demand is significantly reduced because of parcel consolidation, but the 
reduction is limited by regulations on freight parking utilization.  
Compared to S1 with one parking per destination, expanding parking’s catchment area in S2 and 
S3 allows for delivering to multiple destinations from single parking, leading to parking demand 
reduction. As a result, the number of selected parking shows a compelling contrast, decreasing at 
least two-thirds in S2 and S3 (Figure 9(a)). The benefits are in various aspects. From the LSPs 
perspectives, fewer parking searches equate to reduced inefficient cruising time and costs. 

 



Additionally, this advancement yields broader societal benefits such as improved road utilization 
and reduction of negative externalities, e.g., congestion, pollutions, emissions. 
 
However, S2 also shows the impacts of the freight parking-related regulation in Paris on the 
consolidation of parcels in single stop, i.e., freight parking duration limited to 30 minutes. Because 
the number of parcels per stop can easily be constrained by this regulation. Compared to S2, modal 
shift to cargo-bike in S3 may effectively respect the use time constraint, while resulting in a greater 
decrease in parking demand, which increases with the increase of radius as shown in Figure 9(a): 
three and six less parking are needed at the radii of 250m and 300m respectively. The impacts of 
model shift can be observed apparently on driving distance (Figure 10), emission reduction (Figure 
11(a)), and consolidation rate (Figure 12). 
 

 
Figure 9. Parking demand and the use time (the constant value of S1 is for illustrative and 

benchmarking purposes and has no correlation with the catchment radii). 

 
Finding 1.2: Noticeable parking occupation time savings via modal shifting. 
This work considers parking occupation time by freight vehicle as an KPI of resource utilization. 
Although much less parking is needed in S2, the occupation time increases significantly, as shown 
in Figure 9(b). This results from the extended to-door distances and, therefore, time by walking, 
which can be intuitively observed in Figure 10. Transitioning to S3, the adoption of E-cargo bikes 
becomes more time-efficient in parking usage, where parking is used shortly for transshipping. At 
a radius of 300m, this shift results in nearly 80% parking occupation time-saving, showing a 
substantial improvement over S1 and S2. 
 
These findings carry profound implications for urban planning and management. Parking demand 
can be substantially reduced by integrating multi-modality in last-mile delivery and orchestrally 
operating with time-changing urban resource states. This would contribute significantly to 
improving urban logistics efficiency, potentially alleviating issues related to parking shortages and 
parking cruising behaviors. 

4.3.2 Costs and emissions 
Finding 2.1: Less visited parking results in decreased driving distance and emissions. 
Figure 10 illustrates the distance travelled by different means: vehicle driving distance, on-foot 
porter walking distance, and e-cargo biking distance (only in S3). Comparing these three scenarios, 

 

 

 

            

     (a) The number of parking selected                           (b) Parking occupation time  
 



it is observed that in a wider catchment area, the driving distance diminishes gradually, saving over 
40% distance at most. Emissions shown in Figure 11(a) only consider the part directly generated 
from vehicles (Scope 1 only), which means E-cargo bike generates no emissions. In S2, when the 
catchment area becomes larger, emissions decrease by 12% to 35%. Incorporating E-cargo bikes 
minimizes parking demand, achieving a notable emission reduction of 45% at a 300m radius. 
 

 
Figure 10. To-parking distance (driving) and To-door distance (on foot or by E-cargo bike). 

 
Figure 11. Emission saving and delivery cost comparison in different catchment radii. 

Finding 2.2: As the catchment area enlarges, walking distance stably increases in S2, while it 
rapidly decreases and replaced by E-cargo bikes in S3. 
In S2, larger catchment area leads to stable and obvious growth in walking distance, where drivers 
perform the to-door delivery on foot. In S3, walking delivery dominates when in a small catchment 
area since the condition of transshipment has not been satisfied (Eq. 15). As the catchment radius 
increases, modal shifting becomes more prominent. This trend continues until the radius of 300m, 
at which point E-cargo bikes take over all the to-door deliveries that need to be handled by leg-
work (see Figure 10 and Figure 12). 
 
Finding 2.3: Delivery cost increases in S2 but remarkably decreases in S3 via modal shifting. 
Comparing S2 to S1, delivery costs show generally increase as the catchment area enlarges, as 
shown in Figure 11(b). This rise is due to a longer to-door time, which can be interpreted as 
increased walking time (labor cost) and vehicle waiting time (vehicle cost). More specifically, the 
cost changes at radii of 100m and 150m are not significant, which is less than 5%. It is because to-
door cost increases and to-parking cost savings are almost offset. However, at a radius of 300m, 

 

         (a) CO2 emissions saving                                 (b) Delivery costs comparison 

 

 



the to-door cost increase becomes quite pronounced, resulting in a total delivery cost increase of 
20%. The result suggests that parcel consolidation via driver delivery can cause a non-linear cost 
increase, depending on the parcel distribution and the size of the catchment area, so the setting of 
the catchment radius need to be well considered when adopting this scheme.  
 
When comparing S3 to S1, significant cost savings are apparent, ranging from around 10% to over 
40% (see orange bar in Figure 11(b)). Although E-cargo bikes still need to be used as a replacement 
of vehicle, due to shorter to-door time (results from higher E-cargo bikes’ speed), the savings are 
obvious. In addition, instead of waiting and occupying the parking, vehicles will go towards the 
next stop after a short transshipment, which is a cost- and time-effective solution regarding 
operations and resource utilization.  

4.3.3 Opportunities for modal shift 
Finding 3.1: Consolidation rate rises in S2 and S3 while the role of transshipment is increasingly 
significant in S3. 
More parcels are delivered via consolidation at parking as the catchment area becomes larger. At 
a radius of 300m, the consolidation rate (the number of consolidated parcels to the totality) is only 
80% in S2 compared to nearly 100% in S3, which shows the advantages of modal shifting in a 
large catchment area with respect to use time limit. In S3, as the to-door catchment expands and 
more parcels are consolidated, modal shifts are adopted more frequently, until take over all 
consolidated parcels at a radius of 300m. 
 

 
Figure 12. The percentage of consolidated or transshipped parcels. 

 
Finding 3.2: High to-door cost in S2 and noticeable transshipment costs in S3. 

 

 



Figure 13 shows a detailed breakdown of the to-door time and costs in a selected parking, aimed 
at providing a clear understanding of the factors contributing to these differences. Two significant 
insights emerge from this breakdown. First, in S2, it can be observed that more than 80% of the 
to-door time has been spent on walking, which is nearly double that of cycling in S3 (Figure 13(a)). 
This is also aligning with the costs shown in Figure 13(b), the cost associated with vehicle use is 
substantially higher than E-cargo bike costs, more than double. This reflects the low efficiency of 
walking delivery in such a large catchment area. Second, although the transshipment time (in 
purple) is not particularly lengthy compared to other operation times, it incurs substantial costs 
due to the involvement of two vehicles and two delivery personnel during the transshipment. 
Hence, the way to organize the transiting operations will impact the cost heavily. The dynamic 
information about the infrastructure and related personnel are key, as emphasized and involved in 
this work. 
 

 
Figure 13. Example of To-door time and costs in a stop having 12 parcels to 5 destinations. 

In summary, the breakdown indicates that parking acting as a transshipping point can yield 
considerable savings, both in terms of parking occupation time and delivery cost, exceeding 40% 
in both cases. Therefore, S3 exhibits superior performance in terms of both time and cost efficiency, 
proving to be a promising strategy for last-mile delivery. 

4.4 Application prototype 
An application prototype, demonstrating the approach in a real-case scenario, has been developed 
using the same dataset as the simulation. In the future, this application could be applied in real 
world. Serving as another option for Layer 4 implementation (Figure 1), this mobile application 
gives delivery personnel an overview of the round (Figure 14 (a)). Blue markers on the map 
represent parking for parcel bundle delivery, grouped by properties such as destinations. It also 
provides an estimate of the total distance, delivery duration, and Estimated Time of Arrival (ETA) 

 

 

 

 

 

 

 

 

                           

                  

 

              (a) To-door time breakdown            (b) To-door cost breakdown 
 



for the next stop. Upon completion of the round, delivery performance is measured via KPIs, which 
are accessible for LSP managers through a web portal. Grey markers on the map indicate parking 
locations already visited by the delivery personnel (Figure 14 (b)). 
 

 
Figure 14. Delivery rounds overview and performance reporting. 

When the deliverymen start the round, a list of steps is displayed in their mobile application, see 
Figure 15 (a). Each step stands for parking and the related destination of a parcel bundle. Once the 
deliverymen arrive at the parking space, the application provides a walking route to navigate them 
to the destinations and displays the parcels to be delivered, as shown in Figure 15 (b). 
 

 
Figure 15. The delivery sequence in stop and walking routes in the neighborhood. 

Once the deliverymen arrive at a destination, the parcels will be scanned before handing the parcel 
to the receiver, the status of parcels will be synchronized with its Digital Twin, which will change 
from “in delivery” to “delivered”, see Figure 16 (a). When deliverymen deliver all parcels on foot 
and back to the parking, the system will double-check if the next parking space is still available 
before he heads to the next parking, with the hypothesis that all parking is equipped with sensors 
and their availability information is synchronized with the DT of the parking. When the planned 
parking is no longer available, a pop-up dialog box will alert the deliveryman on the application, 
and the new parking will be selected while the route will be recalculated, as shown in Figure 16 
(b). 

 

 

    (a) Overview of the delivery round.             (b) Reporting the status of the delivery rounds. 
 

(a) List of steps to guide walking delivery.                    (b) Walking delivery navigation. 
 



 
Figure 16. The status of parcels and parking synchronizing with their DTs. 

 

5 Conclusion 
This research addresses the Freight Parking Management Problem (FPMP) in last-mile delivery, 
specifically focusing on the efficient utilization of urban infrastructure and resources to support 
urban freight transport, involving multiple stakeholders. We deploy Digital Twin (DT) technology 
and semantic technologies. DT acts as virtual representations of physical objects for asset 
management from individual stakeholder perspectives, while semantic technologies offer 
standardized vocabularies for DT description and sharing, the so-called Cognitive Digital Twins. 
This enables distributed DTs integration in Smart Cities to represent the urban delivery 
environment and facilitates interoperability among heterogeneous stakeholders for collaboration 
and coordination. 
 
This research aims to provide several key insights to the digitalization of city logistics. Firstly, 
transitioning operations management from data-driven to digital twin-driven is advantageous, 
forming a critical foundation for DT interaction for efficient and effective solutions. Secondly, 
semantic-enabled Cognitive Digital Twins (CDT) sharing connects multiple heterogeneous 
stakeholders, promoting a comprehensive understanding of the operating environment and 
facilitating strategic collaboration. Thirdly, the case study underscores service innovation’s 
importance in deriving benefits from the comprehensive delivery environment, with freight 
parking revealing the potential for increased collaboration and heterogeneous objective fulfillment, 
like emission reduction and delivery cost savings. Lastly, the proposed four-layer architectural 
framework comprehending various digital technologies, coupled with multiple tools (Protégé, 
Thing’in, and AnyLogic), shows general applicability for complex scenarios involving asset 
management and heterogeneous stakeholder collaboration. 
 
The work’s limitations include the case study’s scale and data diversity, confined to Paris’ 17th 
district and involving only two city logistics stakeholders: LSPs and the city. Also, the optimization 
constraints are limited, and the algorithm selection lacks performance benchmarking. This research 
focuses more on CDTs semantic capabilities. Future work could develop multi-agent systems with 
CDTs’ reasoning capabilities, and applied scenarios could be expanded to benefit from 
interconnected CDT fed by real-time data. 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 

(a) Status synchronizing with DTs.               (b) Selected parking unavailability alerts. 
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Parking 
selected 

Driving 
distance 

(km) 

Walking 
distance 

(km) 

Emission 
(g) 

Delivery 
time 
(min) 

To-door 
time 
(min) 

To-
parking 

time 
(min) 

Delivery 
cost (€) 

To-door 
cost (€) 

To-
parking 
cost (€) 

54 48.1 4.9 7602 339 195 144 254 140 114 
Table A.1. Simulation results of delivery via the closest parking (S1). 

 

Catchment 
radius (m) 

Parking 
pool 

Parking 
selected 

Driving 
distance 

(km) 

Walking 
distance 

(km) 

Emission 
(g) 

Delivery 
time 
(min) 

To-
door 
time 
(min) 

To-
parking 

time 
(min) 

Delivery 
cost (€) 

To-
door 
cost 
(€) 

To-
parking 
cost (€) 

100 182 38 42.6 7.1 6723 344 217 127 256 155 101 
150 320 28 37.3 9.1 5899 348 236 112 258 169 89 
200 466 24 35.7 11 5645 374 267 107 276 191 85 
250 566 23 35 13.1 5535 397 292 105 292 209 83 
300 647 18 31.4 15.4 4965 415 321 94 305 230 75 

Table A.2. Simulation results of parcel consolidation with driver delivery (S2). 

 

Catchment  
radius (m) 

Parking 
selected 

Number 
of trans-
shipping 

stops 

Number 
of 

parcel 
delivery 

via 
modal 
shift 

Driving 
distance 

(km) 

Walking 
distance 

(km) 

Cycling 
distance 

(km) 

Emission 
(g) 

Delivery 
time 
(min) 

To-door 
time 
(min) 

To-
parking 

time 
(min) 

To-
door 

cost (€) 

To-
parking 
cost (€) 

100 38 2 17 42 5.1 2 6641 309 189 126 135 100 
150 28 5 63 37.1 3.8 5.2 5864 246 151 111 108 88 
200 24 8 92 35.8 2.6 8.8 5663 213 134 107 95 85 
250 20 9 110 34.7 1.4 12.4 5476 180 123 103 86 82 
300 12 11 141 26.5 0.2 19.5 4185 118 123 79 84 63 

Table A.3. Simulation results of parcel consolidation with E-cargo bike-based modal shift (S3). 
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